WO2010018707A1 - Gallium oxide-tin oxide based oxide sintered body and oxide film - Google Patents

Gallium oxide-tin oxide based oxide sintered body and oxide film Download PDF

Info

Publication number
WO2010018707A1
WO2010018707A1 PCT/JP2009/060430 JP2009060430W WO2010018707A1 WO 2010018707 A1 WO2010018707 A1 WO 2010018707A1 JP 2009060430 W JP2009060430 W JP 2009060430W WO 2010018707 A1 WO2010018707 A1 WO 2010018707A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide
gallium
phase
thin film
Prior art date
Application number
PCT/JP2009/060430
Other languages
French (fr)
Japanese (ja)
Inventor
太 宇都野
一吉 井上
健治 後藤
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2010524680A priority Critical patent/JPWO2010018707A1/en
Publication of WO2010018707A1 publication Critical patent/WO2010018707A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/664Reductive annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a gallium oxide-tin oxide based oxide sintered body, a method for producing the same, and an oxide film.
  • the present invention relates to a tin oxide-based transparent amorphous thin film material such as a display panel or a touch panel.
  • the transparent conductive film has both high visible light transmittance and high conductivity, such as a liquid crystal display element, a transparent electrode of a display element such as a plasma light emitting element, a transparent electrode of a solar cell, a heat ray reflective film of automobile or architectural glass, a CRT Widely used as a transparent heating element for various types of anti-fogging, such as antistatic films or frozen and refrigerated showcases.
  • an ITO (tin-doped indium oxide) film is mainly used because a low resistance film can be easily obtained.
  • ITO films are widely used as display element electrodes.
  • a low-cost zinc oxide-based transparent conductive film and a low-cost, highly chemical-resistant tin oxide-based transparent conductive film are also known.
  • ITO is an obstacle to cost reduction because indium which is the main component is expensive.
  • the chemical resistance with respect to an acid, an alkali, etc. is low. Therefore, it is difficult to apply the zinc oxide-based transparent conductive film to industrial products such as display elements.
  • the tin oxide-based transparent conductive film is extremely excellent in chemical resistance as compared with the ITO film and the zinc oxide-based transparent conductive film.
  • the tin oxide system is produced by a spray method or a CVD method as an industrial production method, but it is difficult to form a uniform film thickness.
  • chlorine, hydrogen chloride, etc. are generated during film formation, and there is a problem of environmental pollution due to these exhaust gases (or effluents), and there is a need to establish a film formation method by sputtering that does not generate chlorine or hydrogen chloride. .
  • a sputtering method which is easy to obtain a uniform thin film and has little environmental pollution is suitable.
  • Patent Document 1 proposes a transparent conductive oxide composed of one or more selected from the group consisting of In 2 O 3 , ZnO, SnO 2 , and Ga 2 O 3. Has been. However, there is no specific description or suggestion of an oxide sintered body containing tin oxide as a main component. Patent Documents 2 and 3 propose ITO films containing gallium. This film needs to contain expensive indium oxide as a main component.
  • Patent Document 4 SnO 2 based sintered body obtained by adding the Ga 2 O 3 to SnO 2 is disclosed.
  • Patent Document 5 describes an amorphous SnO 2 transparent conductive film.
  • this film contains expensive In 2 O 3 as an essential component.
  • first antimony oxide Sb 2 O 3
  • a hot press (HP) method is generally used.
  • sintering is performed while pressure is applied, which is advantageous in improving density and strength to some extent.
  • a cold press (CP) method in which a molded body obtained by press-molding the raw material mixed powder is sintered, or a molded body obtained by casting the raw material mixed powder is sintered. There is a casting method to tie.
  • Sb 2 O 3 is generally used at a temperature of about 1000 ° C., such as in the air, in an oxygen atmosphere, in an inert gas, or in a vacuum. In order to melt in atmospheric conditions, it is necessary to heat-treat at a temperature of at least 1000 ° C. Therefore, when the sintered body is fired by the CP method or the casting method, since the sintering temperature is limited, the sintering does not proceed sufficiently and only a brittle sintered body with insufficient sintering can be obtained. There is a problem.
  • JP-A-7-33030 JP-A-4-272612 JP 2000-129432 A Patent No. 3957917 Japanese Patent No. 3806521
  • the following oxide sintered bodies and the like are provided.
  • Ga 4 containing SnO 8, Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 and one or more stannate gallium compound phase selected from a tin oxide phase An oxide sintered body in which at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum, and antimony is dispersed.
  • 2. The oxide sintered body according to 1, wherein the ratio [Ga / (Ga + Sn)] of the gallium element to the total of the gallium element and tin element is 0.01 to 0.80 in atomic ratio. 3. 3. 3.
  • the sintering temperature is set at a heating rate of 0.5 ° C./min or more.
  • an oxide sintered body that does not contain an In element or does not contain a main component, has a low bulk resistance, becomes noduleless during sputtering, can suppress abnormal discharge, An oxide sintered body that is less prone to cracking can be provided. Further, a tin oxide film having a high light transmittance and a method for producing the same can be provided.
  • FIG. 2 is an X-ray diffraction chart of an oxide sintered body produced in Example 1.
  • FIG. 3 is an X-ray diffraction chart of an oxide sintered body produced in Example 2.
  • FIG. 4 is an X-ray diffraction chart of an oxide sintered body produced in Example 3.
  • FIG. 6 is an X-ray diffraction chart of an oxide sintered body produced in Example 4.
  • 6 is an X-ray diffraction chart of an oxide sintered body produced in Example 5.
  • FIG. 6 is an X-ray diffraction chart of an oxide sintered body produced in Example 6.
  • FIG. 7 is an X-ray diffraction chart of an oxide sintered body produced in Example 7.
  • FIG. 10 is an X-ray diffraction chart of an oxide sintered body produced in Comparative Example 6.
  • 10 is an X-ray diffraction chart of an oxide sintered body produced in Comparative Example 7.
  • the oxide sintered body of the present invention contains one or more gallium stannate compound phases selected from Ga 4 SnO 8 , Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 and a tin oxide phase. .
  • at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum, and antimony is dispersed. It contains one or two or more gallium stannate compound phases selected from Ga 4 SnO 8 , Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 .
  • the presence of the gallium stannate compound phase in the oxide sintered body enables stable sputtering.
  • gallium stannate compound phases described above in particular, having a Ga 4 SnO 8 phase increases the dispersibility of gallium and suppresses abnormal discharge, thereby enabling stable sputtering. Moreover, since Ga 4 SnO 8 is doped with Sn element, the resistance of the Ga 4 SnO 8 phase is lowered, so that the bulk resistance of the sintered body is reduced. Moreover, there exists an effect which raises sinterability by containing Ga element. Specifically, a Ga 4 SnO 8 phase is precipitated in the sintered body during sintering, and the density of the sintered body increases.
  • the oxide sintered body of the present invention contains a tin oxide phase. By adding the above element such as zinc to the tin oxide phase, the strength of the sintered body can be increased or the bulk resistance can be reduced.
  • the presence of a gallium stannate compound phase and a tin oxide phase in the sintered body can be determined by X-ray diffraction.
  • the measured diffraction spectrum is confirmed by having a JCPDS (Joint Committee on Powder Diffraction Standards) peak pattern of the hexagonal layered compound phase and indium oxide phase, or a similar (shifted) pattern thereof.
  • the ratio [Ga / (Ga + Sn)] of the gallium element to the total of the gallium element and tin element is preferably 0.01 to 0.80 in atomic ratio.
  • a Ga 4 SnO 8 phase can be obtained without the Ga 2 O 3 phase being precipitated during the production of the oxide sintered body (during sintering).
  • the bulk resistance of a sintered compact becomes low, and when it uses as a sputtering target, stable sputtering can be performed.
  • the specific resistance of the manufactured thin film is 0.1 to 100 ⁇ cm depending on the conditions for manufacturing the thin film, which is suitable for semiconductor applications.
  • the ratio of the gallium element is more preferably 0.05 to 0.70, and particularly preferably 0.20 to 0.60. Note that the content (atomic ratio) in the oxide sintered body can be obtained by measuring the abundance of each element by ICP (Inductively Coupled Plasma) measurement.
  • Ga / (Ga + Sn) is preferably 0.25 to 0.80, and particularly preferably 0.3 to 0.50.
  • Ga / (Ga + Sn) is preferably in the range of 0.01 to 0.25. Within this range, the specific resistance of the thin film is 0.0001 to 0.1 ⁇ cm depending on the conditions for producing the thin film, which is suitable for a transparent electrode or the like.
  • Ga / (Ga + Sn) of 0.05 to 0.25 is more preferable because the transparency is improved.
  • Ga / (Ga + Sn) is preferably 0.10 to 0.20.
  • the oxide sintered body of the present invention contains at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum and antimony in a dispersed state.
  • the above element is substituted in the tin oxide phase of the oxide sintered body.
  • the above-mentioned elements are dispersed in the oxide sintered body can be confirmed by surface analysis using an electron beam microanalyzer (EPMA).
  • EPMA electron beam microanalyzer
  • the elements need not be aggregated at one place but should be distributed in a plurality of regions. It is preferable that the above elements are uniformly dispersed in the tin oxide phase of the oxide sintered body.
  • each element of zinc, silicon, aluminum, indium, germanium, and titanium is derived from a sintering aid (such as oxide powder of these elements) used during the production of the sintered body.
  • a sintering aid such as oxide powder of these elements
  • the density of the sintered body can be improved.
  • the sintering aid has an effect of promoting the sintering reaction by promoting the firing reaction or generating a liquid phase.
  • a compound of zinc, silicon, indium or aluminum is preferable, and zinc or indium is particularly preferable.
  • each element of niobium, tantalum, tungsten, molybdenum, or antimony is dispersed in the oxide sintered body of the present invention, or by solid solution substitution with Sn in the gallium stannate compound phase and / or tin oxide phase.
  • Niobium, tantalum or antimony is particularly preferable.
  • each element of zinc and indium has an effect of reducing the resistivity of a thin film manufactured when an oxide sintered body is used as a sputtering target.
  • the content of the additive element is preferably 0.08 or less in terms of an atomic ratio with respect to the total amount of all metal elements in the sintered body. If it exceeds 0.08, the bulk resistance of the sintered body may increase, or the thin film produced using the sintered body may be colored.
  • the content of the additive element is more preferably 0.01 to 0.08, and particularly preferably 0.02 to 0.05.
  • the average particle diameter of the tin oxide phase or the gallium stannate compound phase is preferably 5 ⁇ m or less. If the average particle size is 5 ⁇ m or less, abnormal discharge such as arc discharge does not occur during sputtering, and generation of black protrusions called nodules on the target can be suppressed. As a result, a film free from massive foreign matters is obtained on the thin film to be formed. If there are massive foreign substances in the thin film, etching may not be performed properly or a desired pattern may not be formed. Moreover, the upper and lower wiring metals may be short-circuited by foreign substances.
  • an average particle diameter is the value measured by the surface analysis of the electron beam microanalyzer (EPMA). Specifically, the surface analysis of oxygen and metal in a 50 ⁇ 50 micron visual field was performed, the major axis of each phase grain was calculated, and the average value of the particle diameters in the visual field was taken as the average grain size.
  • EPMA electron beam microanalyzer
  • the relative density [(actual density) / (theoretical density)] of the sintered body of the present invention is preferably 85% or more, and more preferably 90% or more.
  • a relative density of 85% or more is preferred because the bulk resistance of the obtained sputtering target does not become too high, and abnormal discharge such as arc discharge does not occur during sputtering.
  • the relative density is 90% or more, it is preferable because cracks and cracks are hardly generated in the sintered body, and a large-sized sintered body can be produced.
  • the relative density can be increased by increasing the Ga concentration.
  • the bulk resistance of the sintered body of the present invention is preferably less than 100 k ⁇ cm. More preferably, it is 5 k ⁇ cm or less, and further preferably 1 k ⁇ cm or less.
  • the sintered body of the present invention is preferably amorphous. Amorphous materials are preferred because they have high scratch resistance and no fine irregularities on the surface of the sintered body.
  • the sintered body of the present invention is obtained by the production method of the present invention described below.
  • the method for producing an oxide sintered body of the present invention includes the following steps (A) to (C).
  • the gallium compound and tin compound powder may be oxides or oxides (oxide precursors) that become oxides after firing.
  • oxide precursors oxides
  • examples of the gallium oxide precursor and tin oxide precursor include gallium or tin sulfide, sulfate, nitrate, halide (chloride, bromide, etc.), carbonate, organic acid salt (acetate, propionate). , Naphthenate, etc.), alkoxide (methoxide, ethoxide, etc.), organometallic complex (acetylacetonate, etc.) and the like.
  • nitrates, organic acid salts, alkoxides, or organometallic complexes are preferred in order to completely thermally decompose at low temperatures so that no impurities remain. It is optimal to use an oxide of each metal.
  • a compound (oxide) containing at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum and antimony Etc.) may be added. These compounds function as, for example, a sintering aid.
  • the purity of each raw material is usually 99.9% by mass (3N) or more, preferably 99.99% by mass (4N) or more, more preferably 99.995% by mass or more, particularly preferably 99.999% by mass (5N ) That's it. If the purity of each raw material is 99.9% by mass (3N) or more, the semiconductor characteristics are not deteriorated by impurities such as Fe, Ni, Cu, and the reliability can be sufficiently maintained. In particular, it is preferable that the content of Na, K, and Ca is less than 100 ppm because reliability is improved when a thin film transistor is manufactured.
  • the mixing is preferably carried out by (i) solution method (coprecipitation method) or (ii) physical mixing method. More preferably, a physical mixing method is used for cost reduction.
  • the raw material powder containing the gallium compound and the tin compound is put into a mixer such as a ball mill, a jet mill, a pearl mill, or a bead mill and mixed uniformly.
  • the mixing time is preferably 1 to 200 hours. If it is less than 1 hour, the elements to be dispersed may be insufficiently homogenized, and if it exceeds 200 hours, it may take too much time and productivity may be deteriorated.
  • a particularly preferred mixing time is 10 to 60 hours.
  • the obtained raw material mixed powder preferably has an average particle size of 0.01 to 1.0 ⁇ m.
  • the particle diameter is less than 0.01 ⁇ m, the powder is likely to aggregate, handling is poor, and a dense sintered body may not be obtained. On the other hand, if it exceeds 1.0 ⁇ m, a dense sintered body may not be obtained.
  • the process of calcining the obtained mixture after mixing raw material powder, you may include the process of calcining the obtained mixture.
  • the mixture obtained in the above step is calcined.
  • a heat treatment condition of 200 ° C. or higher and 1 hour or longer is preferable because the raw material compound is sufficiently thermally decomposed. If the heat treatment conditions are 1000 ° C. or less and 100 hours or less, the particles are not coarsened, which is preferable.
  • molding process and sintering process which follow is suitably pulverized using a ball mill, roll mill, pearl mill, jet mill or the like.
  • the average particle size of the mixture after calcining obtained after pulverization is, for example, 0.01 to 3.0 ⁇ m, preferably 0.1 to 2.0 ⁇ m. If the average particle size of the obtained mixture after calcining is 0.01 ⁇ m or more, it is preferable because a sufficient bulk specific gravity can be maintained and handling becomes easy.
  • the average particle diameter of the mixture after calcining is 3.0 ⁇ m or less, it becomes easy to increase the density of the finally obtained sputtering target.
  • the average particle diameter of the mixture after calcining can be measured by the method and method described in JIS R 1619.
  • the molding process is a process in which a mixture of raw material powders (a mixture after calcining when the calcining process is provided) is pressure-molded to form a compact. By this step, the mixture (or the mixture after calcining) is formed into a shape suitable as a sputtering target.
  • Examples of the molding process that can be used in this step include press molding, cold isostatic pressing, uniaxial pressing, mold molding, cast molding, and injection molding.
  • CIP cold isostatic pressure
  • molding aids such as polyvinyl alcohol, methylcellulose, polywax, and oleic acid may be used.
  • the press molding a known molding method such as a cold press method or a hot press method can be used.
  • the obtained mixed powder is filled in a mold and pressure-molded with a cold press machine.
  • the pressure molding is performed at a pressure of 100 to 100,000 kg / cm 2 , preferably 500 to 10,000 kg / cm 2 at normal temperature (25 ° C.), for example.
  • the mixed powder is filled in a mold and a molded body is produced and sintered.
  • the mixed powder is directly sintered in a mold.
  • a dry-type cold press method the raw material after the pulverization step is dried with a spray dryer or the like and then molded.
  • a wet cold press method for example, a filtration molding method (see JP-A-11-286002) is preferably used.
  • This filtration molding method is a filtration molding die made of a water-insoluble material for obtaining a molded body by draining water from a ceramic raw material slurry under reduced pressure, and a lower molding die having one or more drain holes And a water-permeable filter placed on the molding lower mold, and a molding mold clamped from the upper surface side through a sealing material for sealing the filter.
  • the formwork, the sealing material, and the filter are each assembled so that they can be disassembled.
  • a slurry composed of mixed powder, ion-exchanged water and an organic additive is prepared, and this slurry is poured into the filtration mold, Water from the slurry is drained under reduced pressure only from the filter surface side to produce a compact, and the resulting ceramic compact is dried and degreased and then sintered.
  • the sintering temperature may be equal to or higher than the temperature at which the gallium compound reacts with the tin compound to produce a gallium stannate compound phase and a tin oxide phase, preferably 1200 to 1550 ° C., more preferably 1250 to 1500 ° C. 1500 ° C. is particularly preferred. If the sintering temperature is less than 1200 ° C., there is a possibility that gallium oxide-tin oxide based oxides such as Ga 4 SnO 8 , Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 may not be formed. If it exceeds 1550 ° C., the produced compound may be decomposed.
  • the sintering time depends on the sintering temperature, it is preferably 1 to 50 hours, particularly 2 to 30 hours.
  • 0.5 to 10 ° C./min is preferable, 1 to 8 ° C./min is more preferable, and 1 to 5 ° C./min is particularly preferable.
  • the temperature rising temperature is 10 ° C./min or less, sintering is not completed before diffusion, and solid solution substitution is expected to proceed. If it is 0.5 degreeC / min or more, the reaction of a gallium compound and a tin compound will accelerate
  • the sintered body When the rate of temperature rise exceeds 10.0 ° C./min, the sintered body may be broken during the sintering process, or abnormally grown particles may be deposited, and when the sintered body is used as a sputtering target. Uniform film formation may not be possible.
  • Sintering may be performed in an oxidizing atmosphere.
  • the oxidizing atmosphere include an atmosphere in which air or oxygen gas is introduced.
  • it can also sinter under oxygen pressurization.
  • it is preferable to carry out under oxygen inflow and oxygen pressurization.
  • a reduction step may be provided as necessary after the sintering step (C).
  • the bulk resistance of the sintered body obtained in the sintering process can be made uniform as a whole by the reduction process.
  • the reduction method include a method of circulating a reducing gas, a method of sintering in a vacuum, and a method of sintering in an inert gas.
  • reducing gas for example, hydrogen, methane, carbon monoxide, a mixed gas of these gases and oxygen, or the like can be used.
  • inert gas nitrogen, argon, a mixed gas of these gases and oxygen, or the like can be used.
  • the temperature during the reduction treatment is usually 100 to 800 ° C, preferably 200 to 800 ° C.
  • the reduction treatment time is usually 0.01 to 10 hours, preferably 0.05 to 5 hours.
  • the pressure of the reducing gas or inert gas is, for example, 9800 to 1000000 Pa, preferably 98000 to 500000 Pa.
  • the vacuum specifically means a vacuum of about 10 ⁇ 1 to 10 ⁇ 8 Pa, preferably about 10 ⁇ 2 to 10 ⁇ 5 a, and the residual gas is argon, nitrogen or the like. is there.
  • the oxide sintered body obtained by the above production method can be suitably used as a sputtering target.
  • a sputtering target generation of arcing and nodules during film formation can be suppressed, and a crystalline oxide semiconductor film having excellent surface smoothness can be manufactured.
  • the sputtering target can be manufactured by cutting the sintered body into a shape suitable for mounting on a sputtering apparatus as necessary and attaching a mounting jig such as a backing plate.
  • the thickness of the sputtering target is usually 2 to 20 mm, preferably 3 to 12 mm, particularly preferably 4 to 6 mm.
  • the surface of the sputtering target is preferably finished with a 200 to 10,000 diamond grindstone, and particularly preferably finished with a 400 to 5,000 diamond grindstone. It is preferable to use a No. 200-10,000 diamond grindstone because the sputtering target will not break.
  • a plurality of sputtering targets may be attached to one backing plate to substantially form one target. Examples of the backing plate include those made of oxygen-free copper.
  • an oxide semiconductor thin film or an oxide conductive thin film can be obtained by forming a film by a sputtering method or an ion plating method using the target made of the sintered body of the present invention described above.
  • These films are amorphous and have transparency.
  • the light transmittance can be, for example, 82% or more. More preferably, a film of 84% or more, particularly preferably 85% or more is obtained.
  • an oxide semiconductor film formed by a sputtering method is preferable.
  • an RF magnetron sputtering method As a sputtering method, an RF magnetron sputtering method, a DC magnetron sputtering method, an AC magnetron sputtering method, a pulsed DC magnetron sputtering method, or the like is preferably used.
  • the oxygen partial pressure during film formation is preferably 1 vol% or more and less than 20% vol. If it is less than 1% vol, the film immediately after film formation may have conductivity, and use as an oxide semiconductor may be difficult. On the other hand, if it is 20 vol% or more, the film may become an insulator and it may be difficult to use it as an oxide semiconductor. Preferably, it is 3 to 10 vol%.
  • the substrate temperature during film formation is preferably from room temperature to 300 ° C. If it is set below the room temperature or above 300 ° C., the cooling / heating is too expensive. Preferably, the temperature is from room temperature (no substrate heating) to 200 ° C. In the case of continuous sputtering, the substrate may be heated by the plasma being sputtered, and in the case of a film substrate or the like, it is preferable to carry out cooling while keeping the temperature at about room temperature. In the case where a film is formed over a heat-resistant substrate such as a glass substrate, the oxide semiconductor film can be stably and uniformly manufactured by heating the substrate to 150 ° C. to 350 ° C. after sputtering.
  • the stabilization effect is small by heating, and if it exceeds 350 degreeC, heating may be too expensive. 200 ° C to 300 ° C is preferred.
  • the heating time is preferably 10 minutes to 120 minutes. In 10 minutes, the heating effect may not be seen, and in more than 120 minutes, the heating time may be too long and too expensive. 30 minutes to 90 minutes is preferred.
  • the heating atmosphere is preferably an air atmosphere or an oxygen circulation atmosphere.
  • an oxide semiconductor thin film it is considered that electron carriers present in the semiconductor thin film are generated by oxygen vacancies, and the concentration of electron carriers is proportional to the concentration of oxygen vacancies. Therefore, when the electron carrier concentration is controlled, it is necessary to control the oxygen deficiency concentration.
  • the oxygen deficiency concentration can be reduced at a lower heating temperature, which is economical.
  • oxygen vacancies may disappear completely and become an insulator.
  • a preferable oxygen concentration is 5% to 50%, and particularly preferably 10% to 30%.
  • the preferable oxygen concentration is 0 to 50%, preferably 0.1 to 30%, more preferably 0.5 to 20%.
  • the measuring method of the sample obtained in the Example is as follows.
  • (3) Specific Resistance and Light Transmittance of Thin Film The specific resistance was measured with a Mitsubishi Chemical Loresta. The light transmittance was measured as 400 nm to 800 nm for a 100 nm thin film prepared on a glass substrate with a visible spectrophotometer (Shimadzu UV3100), and the average transmittance was determined.
  • Example 1 Production of oxide sintered body 300 g of gallium oxide, 300 g of tin oxide and 5 g of zinc oxide were dispersed in ion-exchanged water, and pulverized and mixed for 10 hours in a bead mill. Next, the obtained slurry was dried and granulated with a spray dryer. This powder was charged into a 140 mm ⁇ mold and pre-molded at a pressure of 100 kg / cm 2 with a mold press molding machine. Next, it compacted with the pressure of 4 t / cm ⁇ 2 > with the cold isostatic press molding machine. The molded body was heated at a temperature increase rate of 500 ° C. or higher at 1.0 ° C./min. And sintered at 1400 ° C.
  • the bulk resistance of the sintered body was 0.160 ⁇ cm. Further, the dispersion state of Ga, Sn, and Zn was confirmed by EPMA measurement in a visual field range of 50 microns. As a result, there were a phase in which Ga and Sn were dispersed and a phase in which only Sn was present, and Zn was dispersed in a phase in which only Sn was present, that is, SnO 2 . As a result, the dispersion state of Ga and Sn was substantially uniform, and the average particle diameters of the tin oxide phase and the gallium stannate phase were 3.5 ⁇ m and 4.2 ⁇ m, respectively.
  • the sintered body on which the target was polished was subjected to a three-point bending test, and the strength was measured. Based on the results, a cumulative failure probability with respect to the bending strength by the median rank method and a Weibull plot with a single mode were prepared, and a Weibull coefficient (m value) indicating variation in the failure probability was obtained. As for the Weibull coefficient, an m value of 10.2 was obtained by obtaining a linear regression line. This means that the larger the Weibull coefficient, the more the non-destructive stress does not vary, but the variation is small and it can be confirmed that the material is stable.
  • the average surface roughness of the surface of the thin film was measured with an AFM apparatus (JSPM-4500, manufactured by JEOL Ltd.) over a range of 10 microns ⁇ 10 microns square, it was very flat at 0.2 nm.
  • the light transmittance of the thin film was 88%.
  • the specific resistance in the hole measurement of the thin film was 10 ⁇ cm, and the carrier concentration was 1.6 ⁇ 10 16 / cm 3 .
  • hole measuring apparatus and its measurement conditions were as follows.
  • Example 2 (1) Production of oxide sintered body 300 g of gallium oxide, 300 g of tin oxide, and 5 g of zinc oxide were dispersed in ion-exchanged water and pulverized and mixed in a bead mill for 72 hours in order to improve dispersibility. Next, the obtained slurry was dried and granulated with a spray dryer. This powder was charged into a 140 mm ⁇ mold, and preformed at a pressure of 100 kg / cm 2 by a mold press molding machine. Next, it compacted with the pressure of 4 t / cm ⁇ 2 > with the cold isostatic press molding machine. The molded body was heated at a temperature increase rate of 500 ° C. or higher at 1.0 ° C./min.
  • the bulk resistance of the sintered body was 0.160 ⁇ cm. Also, when the dispersion state of Ga, Sn, and Zn was confirmed by EPMA measurement in a 50 micron visual field range, there were a phase in which Ga and Sn were dispersed and a phase in which only Sn was present, as in Example 1. Zn was dispersed in a phase having only Sn, that is, SnO 2 . As a result, the dispersion state of Ga and Sn was substantially uniform, and the average particle diameters of the tin oxide phase and the gallium stannate phase were 3.8 ⁇ m and 4.3 ⁇ m, respectively. As in Example 1, a three-point bending test was performed on the polished sintered body and the strength was measured. As a result, the Weibull coefficient (m value) was 10.5. There is no variation in the maximum value, and it can be confirmed that the material is stable with little variation.
  • the surface of the thin film was very flat with an AFM apparatus and Ra was 0.2 nm.
  • the light transmittance of the thin film was 88%.
  • the specific resistance in the hole measurement of the thin film was 15 ⁇ cm, and the carrier concentration was 1.5 ⁇ 10 15 / cm 3 .
  • Example 3 100 g of gallium oxide, 400 g of tin oxide, 10 g of niobium oxide, and a temperature increase rate of 500 ° C. or higher is 2.0 ° C./min.
  • the X-ray diffraction result of the obtained sintered body is shown in FIG. In this result, the tin oxide phase was mainly observed, and the peak of the gallium stannate compound was also observed.
  • the bulk resistance of the sintered body was 0.030 ⁇ cm.
  • the dispersion state was substantially uniform.
  • the relative density of the sintered body was 94%.
  • Example 2 Evaluation of thin film A sputtering target was produced in the same manner as in Example 1 except that the sintered body produced in (1) was used, and a thin film was produced.
  • This thin film was a transparent conductive film.
  • the resulting thin film had a light transmittance of 86%.
  • the specific resistance in the hole measurement of the thin film was 1.5 ⁇ 10 ⁇ 3 ⁇ cm, the carrier concentration was 1.2 ⁇ 10 20 cm ⁇ 3 , and a transparent and low resistance thin film was obtained. Further, when the average surface roughness of the surface of the thin film was measured with an AFM apparatus, Ra was as extremely flat as 0.2 nm.
  • Example 4 100 g of gallium oxide, 400 g of tin oxide and 10 g of niobium oxide were weighed and dispersed in ion-exchanged water, and pulverized and mixed in a bead mill for 72 hours in order to improve dispersibility. Next, the obtained slurry was dried and granulated with a spray dryer. This powder was charged into a 140 mm ⁇ mold, and preformed at a pressure of 100 kg / cm 2 by a mold press molding machine. Next, it compacted with the pressure of 4 t / cm ⁇ 2 > with the cold isostatic press molding machine. The molded body was heated at a heating rate of 500 ° C. or higher at 3.0 ° C./min.
  • the X-ray diffraction result of the obtained sintered body is shown in FIG.
  • the tin oxide phase was mainly observed, and the peak of the gallium stannate compound was also observed.
  • the bulk resistance of the sintered body was as low as 0.010 ⁇ cm.
  • the dispersion state was substantially uniform.
  • the relative density of the sintered body was 95%.
  • Example 2 Evaluation of thin film A sputtering target was produced in the same manner as in Example 1 except that the sintered body produced in (1) was used, and a thin film was produced.
  • This thin film was a transparent conductive film.
  • the resulting thin film had a light transmittance of 87%.
  • the specific resistance in the hole measurement of the thin film was 1.3 ⁇ 10 ⁇ 3 ⁇ cm, the carrier concentration was 1.5 ⁇ 10 20 / cm 3 , and a transparent and low-resistance thin film was obtained. Further, when the average surface roughness of the surface of the thin film was measured with an AFM apparatus, Ra was as extremely flat as 0.2 nm.
  • Example 5 100 g of gallium oxide, 400 g of tin oxide, 10 g of niobium oxide and 10 g of aluminum oxide were weighed and dispersed in ion-exchanged water, and pulverized and mixed in a bead mill for 72 hours in order to improve dispersibility. Next, the obtained slurry was dried and granulated with a spray dryer. This powder was charged into a 140 mm ⁇ mold, and preformed at a pressure of 100 kg / cm 2 by a mold press molding machine. Next, it compacted with the pressure of 4 t / cm ⁇ 2 > with the cold isostatic press molding machine. The molded body was heated at a heating rate of 500 ° C. or higher at 2.0 ° C./min.
  • the X-ray diffraction result of the obtained sintered body is shown in FIG. From this result, the tin oxide phase was mainly observed, and the peak of the gallium stannate compound was also observed.
  • the sintered body had a low bulk resistance of 9.7 ⁇ 10 ⁇ 3 ⁇ cm.
  • the dispersion state was substantially uniform. From the EXAFS measurement at the Nb-K end, it was confirmed that Nb was positive pentavalent and was substituted with SnO 2 phase.
  • the relative density of the sintered body was 96%.
  • Weibull coefficient m value
  • Example 2 Evaluation of thin film A sputtering target was produced in the same manner as in Example 1 except that the sintered body produced in (1) was used, and a thin film was produced.
  • This thin film was a transparent conductive film.
  • the resulting thin film had a light transmittance of 87%.
  • the specific resistance of the thin film in hole measurement was 1.25 ⁇ 10 ⁇ 3 ⁇ cm, the carrier concentration was 2.0 ⁇ 10 20 / cm 3 , and a transparent and low-resistance thin film was obtained. Further, when the average surface roughness of the surface of the thin film was measured with an AFM apparatus, Ra was as extremely flat as 0.2 nm.
  • Examples 6 and 7 A sintered body was produced and evaluated in the same manner as in Example 1 except that the mixing ratio of the raw materials was changed as shown in Table 1. The results are shown in Tables 1 and 2. In the sintered bodies obtained in Examples 6 and 7, the peaks of the tin oxide phase and the gallium stannate compound were observed from X-ray diffraction, and the dispersion state of Ga, Sn, and Zn was confirmed by EPMA measurement. As a result, the dispersion state was substantially uniform.
  • Comparative Example 1 475 g of tin oxide and 25 g of gallium oxide were weighed, added with an aqueous polyvinyl alcohol solution, granulated, and mixed for 20 hours using a ball mill.
  • the mixed powder was filled into a press die having a size of 400 mm ⁇ 800 mm and press-molded at a pressure of 500 Kg / cm 2 .
  • the molding density of the molded body at this time was 3.3 to 3.9 g / cm 3 .
  • the sintered body thus obtained was processed to produce a sputtering target having a size of 300 mm ⁇ 600 mm ⁇ 8 mm.
  • the density of this sputtering target was 5.08 g / cm 3 and the relative density was 88%.
  • the bulk resistance was too high to be measured.
  • the Weibull coefficient (m value) was determined in the same manner as in Example 1, it was 9.2. It was a material with low Weibull coefficient, large variation, and insufficient strength.
  • the specific resistance was 8.0 ⁇ 10 ⁇ 2 ⁇ cm and the carrier concentration was 1.0 ⁇ 10 20 / cm 3 .
  • the light transmittance was 80%.
  • Comparative Example 2 A sintered body was obtained in the same manner as in Example 1 except that 475 g of tin oxide and 25 g of niobium oxide were used. The relative density of the sintered body was 88%, and the bulk resistance was 9.8 ⁇ 10 ⁇ 3 ⁇ cm. When a thin film was produced using this sintered body in the same manner as in Example 1, the specific resistance was 4.5 ⁇ 10 ⁇ 1 ⁇ cm. The light transmittance was 76%.
  • Comparative Example 3 A sintered body was obtained in the same manner as in Example 1 except that 475 g of tin oxide and 25 g of antimony oxide were used. In addition, since antimony oxide has a large amount of evaporation when the temperature is high, the temperature rising rate of 500 ° C. or higher is 15 ° C./min. The sintering temperature was 1000 ° C. and sintering was performed for 15 hours. The density of the sintered body was 73% and the bulk resistance was 120 ⁇ cm. When this sintered body was used to produce a thin film in the same manner as in Example 1, the specific resistance was 5.6 ⁇ 10 ⁇ 2 ⁇ cm. The light transmittance was 79%.
  • Example 2 When a thin film was produced in the same manner as in Example 1 using this sintered target, the specific resistance was 5.6 ⁇ 10 4 ⁇ cm and the light transmittance was 88%. Moreover, when the semiconductor element was produced, the semiconductor characteristic was not shown. Moreover, nodule evaluation was performed on the target in the same manner as in Example 1 (3). As a result, arcing was observed, and the target cracked in 1 hour, making it impossible to discharge.
  • the relative density of this sintered body was 77%, and it was found that the sintered density did not increase. This is because the amount of gallium oxide is too small. Further, the bulk resistance was 1800 ⁇ cm, and from the X-ray diffraction results, only the tin oxide phase was observed as the crystal phase.
  • Example 1 (2) Using this sintered target, a thin film was produced in the same manner as in Example 1 (2).
  • the specific resistance was 3.3 ⁇ 10 ⁇ 2 ⁇ cm.
  • the thin film was colored brown and its light transmittance was 65%.
  • nodule evaluation was performed on the target in the same manner as in Example 1 (3). As a result, abnormal discharge was observed during the sputter discharge, and a large amount of nodules and bubble voids were observed on the surface of the target after the nodule test.
  • Comparative Example 6 A sintered body was obtained in the same manner as in Example 1 except that 300 g of tin oxide and 300 g of gallium oxide were used. The X-ray diffraction result of the obtained sintered body is shown in FIG.
  • Example 1 (3) Using the target made of this sintered body, nodule evaluation was performed in the same manner as in Example 1 (3). As a result, stable discharge could not be performed and sputtering could not be performed.
  • Comparative Example 7 A sintered body was obtained in the same manner as in Example 1 except that 400 g of tin oxide and 100 g of gallium oxide were used. The X-ray diffraction result of the obtained sintered body is shown in FIG.
  • Example 1 shows the raw materials and physical properties of the oxide sintered bodies produced in the examples and comparative examples described above, and Table 2 shows the evaluation of the physical properties and film forming properties of the oxide films.
  • the oxide sintered body of the present invention With the oxide sintered body of the present invention, a sputtering target that does not generate nodules or arcing can be produced.
  • the sputtering target of the present invention is suitable as a material for forming an oxide film.
  • it can be used for semiconductor layers of thin film transistors, formation of oxide semiconductors, transparent electrodes, and the like.
  • the entire contents of the documents described in this specification are incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Disclosed is an oxide sintered body characterized by containing one or more gallium stannate compound phases selected from Ga4SnO8, Ga4Sn5O16 and Ga3Sn4O12, and a tin oxide phase.  The oxide sintered body is also characterized in that at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum and antimony is dispersed therein.

Description

酸化ガリウム-酸化スズ系酸化物焼結体及び酸化物膜Gallium oxide-tin oxide based oxide sintered body and oxide film
 本発明は、酸化ガリウム-酸化スズ系酸化物焼結体、その製造方法及び酸化物膜に関する。特にディスプレイパネルやタッチパネル等の酸化スズ系透明非晶質薄膜材料に関する。 The present invention relates to a gallium oxide-tin oxide based oxide sintered body, a method for producing the same, and an oxide film. In particular, the present invention relates to a tin oxide-based transparent amorphous thin film material such as a display panel or a touch panel.
 透明導電膜は高い可視光透過率と高い導電性を合わせ持ち、液晶表示素子、プラズマ発光素子等の表示素子の透明電極、太陽電池の透明電極、自動車もしくは建築用ガラスの熱線反射膜、CRTの帯電防止膜又は冷凍冷蔵ショーケースをはじめとする各種防曇用の透明発熱体として広く利用されている。 The transparent conductive film has both high visible light transmittance and high conductivity, such as a liquid crystal display element, a transparent electrode of a display element such as a plasma light emitting element, a transparent electrode of a solar cell, a heat ray reflective film of automobile or architectural glass, a CRT Widely used as a transparent heating element for various types of anti-fogging, such as antistatic films or frozen and refrigerated showcases.
 従来、透明導電膜としては、低抵抗膜が容易に得られることからITO(錫ドープ酸化インジウム)膜が主として用いられている。特に、表示素子用電極としてITO膜は広く使われている。また、そのほかに、低コストの酸化亜鉛系透明導電膜や、低コストで耐薬品性の高い酸化錫系透明導電膜が知られている。 Conventionally, as a transparent conductive film, an ITO (tin-doped indium oxide) film is mainly used because a low resistance film can be easily obtained. In particular, ITO films are widely used as display element electrodes. In addition, a low-cost zinc oxide-based transparent conductive film and a low-cost, highly chemical-resistant tin oxide-based transparent conductive film are also known.
 従来の透明導電膜材料の問題点として、ITOは、その主成分であるインジウムが高価であり、低コスト化の障害になっている。酸化亜鉛系透明導電膜については、酸やアルカリ等に対する耐薬品性が低い。従って、酸化亜鉛系透明導電膜を表示素子等工業製品に応用することが困難となっている。 As a problem of the conventional transparent conductive film material, ITO is an obstacle to cost reduction because indium which is the main component is expensive. About a zinc oxide type transparent conductive film, the chemical resistance with respect to an acid, an alkali, etc. is low. Therefore, it is difficult to apply the zinc oxide-based transparent conductive film to industrial products such as display elements.
 酸化錫系透明導電膜は、ITO膜や酸化亜鉛系透明導電膜と比較して、耐薬品性が極めて優れている。酸化錫系については、工業的製法としてスプレー法又はCVD法で作製されているが、膜厚を均一に成膜するのは困難である。また、成膜時に塩素や塩化水素等が生成され、これらの排ガス(又は排液)による環境汚染の問題があり、塩素や塩化水素が発生しないスパッタ法による成膜方法の確立が求められている。大面積の成膜法としては、均一な薄膜が得られやすく、環境汚染の少ないスパッタリング法が適している。 The tin oxide-based transparent conductive film is extremely excellent in chemical resistance as compared with the ITO film and the zinc oxide-based transparent conductive film. The tin oxide system is produced by a spray method or a CVD method as an industrial production method, but it is difficult to form a uniform film thickness. In addition, chlorine, hydrogen chloride, etc. are generated during film formation, and there is a problem of environmental pollution due to these exhaust gases (or effluents), and there is a need to establish a film formation method by sputtering that does not generate chlorine or hydrogen chloride. . As a large-area film forming method, a sputtering method which is easy to obtain a uniform thin film and has little environmental pollution is suitable.
 透明導電性酸化物に関し、例えば、特許文献1に、In、ZnO、SnO、及びGaからなる群より選択された1種又は複数種からなる透明導電性酸化物が提案されている。しかし、酸化スズを主成分として含有する酸化物焼結体の具体的記載や示唆はない。
 特許文献2及び3には、ガリウムを含有するITO膜が提案されている。この膜は、高価な酸化インジウムを主成分として含有する必要がある。
Regarding transparent conductive oxide, for example, Patent Document 1 proposes a transparent conductive oxide composed of one or more selected from the group consisting of In 2 O 3 , ZnO, SnO 2 , and Ga 2 O 3. Has been. However, there is no specific description or suggestion of an oxide sintered body containing tin oxide as a main component.
Patent Documents 2 and 3 propose ITO films containing gallium. This film needs to contain expensive indium oxide as a main component.
 特許文献4では、SnOにGaを添加してなるSnO系焼結体が開示されている。しかしながら、バルク抵抗の調整、スパッタリング時のターゲットの割れ回避等、実用的な酸化ガリウム-酸化スズ系酸化物焼結体の具体的な作製方法や示唆はなされていない。
 また、特許文献5には非晶質SnO透明導電膜が記載されている。しかしながら、この膜は必須成分として高価なInを含む。
In Patent Document 4, SnO 2 based sintered body obtained by adding the Ga 2 O 3 to SnO 2 is disclosed. However, there is no specific method or suggestion for producing a practical gallium oxide-tin oxide based oxide sintered body, such as adjusting the bulk resistance and avoiding cracking of the target during sputtering.
Patent Document 5 describes an amorphous SnO 2 transparent conductive film. However, this film contains expensive In 2 O 3 as an essential component.
 また、SnO系焼結体においては、SnO薄膜の抵抗値を下げるために酸化第一アンチモン(Sb)を添加する場合がある。Sbが添加されたSnO焼結体からなるスパッタリングターゲットを製造するためには、ホットプレス(HP)法が一般に用いられている。ホットプレス法においては、圧力をかけながら焼結を行うため、密度や強度をある程度向上させる上では有利である。しかしながら、装置上の制限から大型の焼結体を得ることは容易ではない。
 従って、従来は大型のスパッタリングターゲットを作製する場合、複数の焼結体を張り合わせてターゲットを構成する。しかしながら、複数の継ぎ目を有するターゲットを使用して、スパッタリングによりSnO薄膜を形成すると、継ぎ目からアーキングやノジュールが発生し、安定な成膜を行うことができないという問題がある。このため、継ぎ目のないターゲット又は継ぎ目の少ないターゲットが要請され、より大型の焼結体を製造する技術が求められている。
In addition, in the SnO 2 based sintered body, there is a case where first antimony oxide (Sb 2 O 3 ) is added to lower the resistance value of the SnO 2 thin film. In order to produce a sputtering target made of a SnO 2 sintered body to which Sb 2 O 3 is added, a hot press (HP) method is generally used. In the hot press method, sintering is performed while pressure is applied, which is advantageous in improving density and strength to some extent. However, it is not easy to obtain a large sintered body due to limitations on the apparatus.
Therefore, conventionally, when producing a large-sized sputtering target, a target is comprised by bonding together a plurality of sintered bodies. However, when a SnO 2 thin film is formed by sputtering using a target having a plurality of seams, there is a problem that arcing and nodules are generated from the seams and stable film formation cannot be performed. For this reason, a seamless target or a target with few seams is required, and a technique for manufacturing a larger sintered body is required.
 大型の焼結体を製造する方法としては、原料混合粉末をプレス成形して得た成形体を焼結するコールドプレス(CP)法や、原料混合粉末を鋳込み成形して得た成形体を焼結する鋳込み法がある。 As a method for producing a large sintered body, a cold press (CP) method in which a molded body obtained by press-molding the raw material mixed powder is sintered, or a molded body obtained by casting the raw material mixed powder is sintered. There is a casting method to tie.
 しかしながら、Sbが添加されたSnOターゲットを作製する場合、Sbが約1000℃前後の温度で、大気中、酸素雰囲気中、不活性ガス中あるいは真空中等の、一般的な雰囲気条件において溶融するため、少なくとも1000℃以下の温度で熱処理する必要がある。従って、CP法又は鋳込み法によって焼結体を焼成する場合は、焼結温度に制限があるため、焼結が十分に進行せず、焼結が不十分な脆い焼結体しか得ることができないという問題がある。このような脆い焼結体からスパッタリングターゲットを作製する場合は、その加工中に加工応力によって焼結体に割れや亀裂が生じたり、あるいはバッキングプレートへ焼結体をボンディングする際の熱応力によって割れが生じるという問題がある。このような割れが生じる傾向は、ターゲットの寸法が大型化するに従って顕著となる。 However, when producing a SnO 2 target to which Sb 2 O 3 is added, Sb 2 O 3 is generally used at a temperature of about 1000 ° C., such as in the air, in an oxygen atmosphere, in an inert gas, or in a vacuum. In order to melt in atmospheric conditions, it is necessary to heat-treat at a temperature of at least 1000 ° C. Therefore, when the sintered body is fired by the CP method or the casting method, since the sintering temperature is limited, the sintering does not proceed sufficiently and only a brittle sintered body with insufficient sintering can be obtained. There is a problem. When a sputtering target is produced from such a brittle sintered body, the sintered body is cracked or cracked by processing stress during the processing, or cracked by thermal stress when bonding the sintered body to the backing plate. There is a problem that occurs. The tendency for such cracks to occur becomes more prominent as the size of the target increases.
 本発明は、貴金属元素であるInを含まないか、又は主成分としない酸化物焼結体であって、バルク抵抗が低く、割れや亀裂が生じにくい焼結体の提供を目的とする。
 また、高光透過率である酸化錫系膜とその製造方法の提供を目的とする。
An object of the present invention is to provide an oxide sintered body that does not contain In, which is a noble metal element, or does not have a main component, and has a low bulk resistance and is unlikely to be cracked or cracked.
Another object of the present invention is to provide a tin oxide film having a high light transmittance and a method for producing the same.
特開平7-335030号公報JP-A-7-33030 特開平4-272612号公報JP-A-4-272612 特開2000-129432号公報JP 2000-129432 A 特許第3957917号Patent No. 3957917 特許第3806521号Japanese Patent No. 3806521
 本発明によれば、以下の酸化物焼結体等が提供される。
1. GaSnO、GaSn16及びGaSn12から選択される1又は2以上のスズ酸ガリウム化合物相と、酸化スズ相を含有し、
 亜鉛、アルミニウム、珪素、インジウム、ゲルマニウム、チタン、ニオブ、タンタル、タングステン、モリブデン及びアンチモンから選択される少なくとも1種の元素が分散している酸化物焼結体。
2. ガリウム元素及びスズ元素の合計に対するガリウム元素の比率[Ga/(Ga+Sn)]が、原子比で0.01~0.80である1に記載の酸化物焼結体。
3. ニオブ、タンタル及びアンチモンから選択される少なくとも1種の元素が分散している1又は2に記載の酸化物焼結体。
4. 前記酸化スズ相中に、亜鉛、アルミニウム、珪素、インジウム、ゲルマニウム、チタン、ニオブ、タンタル、タングステン、モリブデン及びアンチモンから選択される少なくとも1種の元素が固溶置換している1又は2に記載の酸化物焼結体。
5. 前記固溶置換した元素の量が、全金属元素の総量に対し、原子比で0.08以下である4に記載の酸化物焼結体。
6. 前記酸化スズ相又はスズ酸ガリウム化合物相の平均粒径が5μm以下である1~5のいずれかに記載の酸化物焼結体。
7. ガリウム化合物とスズ化合物とを混合する工程と、
 前記工程で得られた混合物を成形して成形物を得る工程と、
 前記工程で得られた成形物を1200~1550℃で焼結する工程と、を含む
 1~6のいずれかに記載の酸化物焼結体の製造方法。
8. 前記焼結する工程において、0.5℃/min以上の昇温速度で焼結温度にする7に記載の酸化物焼結体の製造方法。
9. 1~7のいずれかに記載の酸化物焼結体からなるターゲットを用い、スパッタリング法又はイオンプレーティング法で成膜して得られる酸化物膜。
10. スパッタリング法により形成した9に記載の酸化物膜。
According to the present invention, the following oxide sintered bodies and the like are provided.
1. Ga 4 containing SnO 8, Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 and one or more stannate gallium compound phase selected from a tin oxide phase,
An oxide sintered body in which at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum, and antimony is dispersed.
2. 2. The oxide sintered body according to 1, wherein the ratio [Ga / (Ga + Sn)] of the gallium element to the total of the gallium element and tin element is 0.01 to 0.80 in atomic ratio.
3. 3. The oxide sintered body according to 1 or 2, wherein at least one element selected from niobium, tantalum and antimony is dispersed.
4). 3. The tin oxide phase according to 1 or 2, wherein at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum, and antimony is solid solution substituted. Oxide sintered body.
5). 5. The oxide sintered body according to 4, wherein the amount of the element subjected to solid solution substitution is 0.08 or less in atomic ratio with respect to the total amount of all metal elements.
6). The oxide sintered body according to any one of 1 to 5, wherein an average particle diameter of the tin oxide phase or the gallium stannate compound phase is 5 μm or less.
7). Mixing a gallium compound and a tin compound;
Molding the mixture obtained in the above step to obtain a molded product;
The method for producing an oxide sintered body according to any one of 1 to 6, comprising a step of sintering the molded product obtained in the step at 1200 to 1550 ° C.
8). 8. The method for producing an oxide sintered body according to 7, wherein, in the sintering step, the sintering temperature is set at a heating rate of 0.5 ° C./min or more.
9. An oxide film obtained by forming a film by a sputtering method or an ion plating method using a target comprising the oxide sintered body according to any one of 1 to 7.
10. 10. The oxide film according to 9, formed by a sputtering method.
 本発明によれば、In元素を含まないか、又は主成分としない酸化物焼結体であって、バルク抵抗が低く、スパッタリングの際にノジュールレスとなり、異常放電を抑制ででき、さらに割れや亀裂が生じにくい酸化物焼結体を提供できる。
 また、高光透過率である酸化錫系膜とその製造方法が提供できる。
According to the present invention, it is an oxide sintered body that does not contain an In element or does not contain a main component, has a low bulk resistance, becomes noduleless during sputtering, can suppress abnormal discharge, An oxide sintered body that is less prone to cracking can be provided.
Further, a tin oxide film having a high light transmittance and a method for producing the same can be provided.
実施例1で作製した酸化物焼結体のX線回折チャートである。2 is an X-ray diffraction chart of an oxide sintered body produced in Example 1. FIG. 実施例2で作製した酸化物焼結体のX線回折チャートである。3 is an X-ray diffraction chart of an oxide sintered body produced in Example 2. FIG. 実施例3で作製した酸化物焼結体のX線回折チャートである。4 is an X-ray diffraction chart of an oxide sintered body produced in Example 3. FIG. 実施例4で作製した酸化物焼結体のX線回折チャートである。6 is an X-ray diffraction chart of an oxide sintered body produced in Example 4. 実施例5で作製した酸化物焼結体のX線回折チャートである。6 is an X-ray diffraction chart of an oxide sintered body produced in Example 5. FIG. 実施例6で作製した酸化物焼結体のX線回折チャートである。6 is an X-ray diffraction chart of an oxide sintered body produced in Example 6. FIG. 実施例7で作製した酸化物焼結体のX線回折チャートである。7 is an X-ray diffraction chart of an oxide sintered body produced in Example 7. FIG. 比較例6で作製した酸化物焼結体のX線回折チャートである。10 is an X-ray diffraction chart of an oxide sintered body produced in Comparative Example 6. 比較例7で作製した酸化物焼結体のX線回折チャートである。10 is an X-ray diffraction chart of an oxide sintered body produced in Comparative Example 7.
 本発明の酸化物焼結体は、GaSnO、GaSn16及びGaSn12から選択される1又は2以上のスズ酸ガリウム化合物相と、酸化スズ相を含有する。そして、亜鉛、アルミニウム、珪素、インジウム、ゲルマニウム、チタン、ニオブ、タンタル、タングステン、モリブデン及びアンチモンから選択される少なくとも1種の元素が分散していることを特徴とする。
 GaSnO、GaSn16及びGaSn12から選択される1又は2以上のスズ酸ガリウム化合物相を含有することを特徴とする。酸化物焼結体中に上記のスズ酸ガリウム化合物相が存在することにより、安定したスパッタリングができる。
 上記のスズ酸ガリウム化合物相のうち、特に、GaSnO相を有することにより、ガリウムの分散性が上がり、異常放電が抑えられるため安定したスパッタが可能になる。また、GaSnOに、Sn元素がドープされることでGaSnO相の抵抗が下がるため、焼結体のバルク抵抗が低くなる効果がある。
 また、Ga元素を含有することにより、焼結性を上げる効果がある。具体的に、焼結時に焼結体中にGaSnO相が析出し、焼結体の密度が高くなる。
 本発明の酸化物焼結体は、酸化スズ相を含有する。酸化スズ相に亜鉛等の上記元素を添加することによって、焼結体の強度を高めたり、バルク抵抗を低減することができる。
The oxide sintered body of the present invention contains one or more gallium stannate compound phases selected from Ga 4 SnO 8 , Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 and a tin oxide phase. . In addition, at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum, and antimony is dispersed.
It contains one or two or more gallium stannate compound phases selected from Ga 4 SnO 8 , Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 . The presence of the gallium stannate compound phase in the oxide sintered body enables stable sputtering.
Among the gallium stannate compound phases described above, in particular, having a Ga 4 SnO 8 phase increases the dispersibility of gallium and suppresses abnormal discharge, thereby enabling stable sputtering. Moreover, since Ga 4 SnO 8 is doped with Sn element, the resistance of the Ga 4 SnO 8 phase is lowered, so that the bulk resistance of the sintered body is reduced.
Moreover, there exists an effect which raises sinterability by containing Ga element. Specifically, a Ga 4 SnO 8 phase is precipitated in the sintered body during sintering, and the density of the sintered body increases.
The oxide sintered body of the present invention contains a tin oxide phase. By adding the above element such as zinc to the tin oxide phase, the strength of the sintered body can be increased or the bulk resistance can be reduced.
 焼結体中にスズ酸ガリウム化合物相及び酸化スズ相が存在することは、X線回折により判断できる。測定した回折スペクトルが、六方晶層状化合物相及び酸化インジウム相のJCPDS(Joint Committee on Powder Diffraction Standards)のピークパターン又はこれの類似(シフトした)パターンを有することで確認する。 The presence of a gallium stannate compound phase and a tin oxide phase in the sintered body can be determined by X-ray diffraction. The measured diffraction spectrum is confirmed by having a JCPDS (Joint Committee on Powder Diffraction Standards) peak pattern of the hexagonal layered compound phase and indium oxide phase, or a similar (shifted) pattern thereof.
 本発明の酸化物焼結体において、ガリウム元素及びスズ元素の合計に対するガリウム元素の比率[Ga/(Ga+Sn)]は、原子比で0.01~0.80であることが好ましい。この範囲内であれば、酸化物焼結体の製造時(焼結時)にGa相が析出せずにGaSnO相が得られる。これにより、焼結体のバルク抵抗が低くなり、スパッタリングターゲットとして使用した際に、安定したスパッタができる。
 また、Ga/(Ga+Sn)が0.01~0.80の範囲であれば、薄膜を作製する条件により、作製した薄膜の比抵抗が0.1~100Ωcmとなるため、半導体用途として適当である。
 ガリウム元素の比率は、0.05~0.70であることがさらに好ましく、0.20~0.60であることが特に好ましい。
 尚、酸化物焼結体中の含有量(原子比)は、ICP(Inductively Coupled Plasma)測定により、各元素の存在量を測定することで求めることができる。
In the oxide sintered body of the present invention, the ratio [Ga / (Ga + Sn)] of the gallium element to the total of the gallium element and tin element is preferably 0.01 to 0.80 in atomic ratio. Within this range, a Ga 4 SnO 8 phase can be obtained without the Ga 2 O 3 phase being precipitated during the production of the oxide sintered body (during sintering). Thereby, the bulk resistance of a sintered compact becomes low, and when it uses as a sputtering target, stable sputtering can be performed.
Further, if Ga / (Ga + Sn) is in the range of 0.01 to 0.80, the specific resistance of the manufactured thin film is 0.1 to 100 Ωcm depending on the conditions for manufacturing the thin film, which is suitable for semiconductor applications. .
The ratio of the gallium element is more preferably 0.05 to 0.70, and particularly preferably 0.20 to 0.60.
Note that the content (atomic ratio) in the oxide sintered body can be obtained by measuring the abundance of each element by ICP (Inductively Coupled Plasma) measurement.
 尚、作製した薄膜を半導体用途として使用する場合、Ga/(Ga+Sn)は0.25~0.80であることが好ましく、0.3~0.50であることが特に好ましい。 When the produced thin film is used for semiconductor applications, Ga / (Ga + Sn) is preferably 0.25 to 0.80, and particularly preferably 0.3 to 0.50.
 一方、薄膜を透明導電膜用途として試用する場合、Ga/(Ga+Sn)は0.01~0.25の範囲が好ましい。この範囲であれば、薄膜を作製する条件により、薄膜の比抵抗が0.0001~0.1Ωcmとなるため、透明電極等に適当である。尚、透明導電膜用途として使用する場合は、Ga/(Ga+Sn)が0.05~0.25であれば透明性が向上するので、さらに好ましい。特に、Ga/(Ga+Sn)は0.10~0.20が好ましい。 On the other hand, when the thin film is used as a transparent conductive film, Ga / (Ga + Sn) is preferably in the range of 0.01 to 0.25. Within this range, the specific resistance of the thin film is 0.0001 to 0.1 Ωcm depending on the conditions for producing the thin film, which is suitable for a transparent electrode or the like. When used as a transparent conductive film, Ga / (Ga + Sn) of 0.05 to 0.25 is more preferable because the transparency is improved. In particular, Ga / (Ga + Sn) is preferably 0.10 to 0.20.
 本発明の酸化物焼結体は、亜鉛、アルミニウム、珪素、インジウム、ゲルマニウム、チタン、ニオブ、タンタル、タングステン、モリブデン及びアンチモンから選択される少なくとも1種の元素が分散した状態で含有している。
 特に、酸化物焼結体の酸化スズ相中に、上記元素が固溶置換されていることが好ましい。これにより、焼結体の密度が向上するので焼結体の強度が高くなる。そのため、焼結体をスパッタリングターゲットとして用いた場合に割れを防ぐことができる。
The oxide sintered body of the present invention contains at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum and antimony in a dispersed state.
In particular, it is preferable that the above element is substituted in the tin oxide phase of the oxide sintered body. Thereby, since the density of a sintered compact improves, the intensity | strength of a sintered compact becomes high. Therefore, cracks can be prevented when the sintered body is used as a sputtering target.
 上記の元素が酸化物焼結体内に分散しているかは、電子線マイクロアナライザ(EPMA)の面分析により確認できる。酸化物焼結体内において、元素が1箇所に凝集しているのではなく、複数の領域に分布していればよい。上記元素が酸化物焼結体の酸化スズ相中に均一に分散していることが好ましい。 Whether the above-mentioned elements are dispersed in the oxide sintered body can be confirmed by surface analysis using an electron beam microanalyzer (EPMA). In the oxide sintered body, the elements need not be aggregated at one place but should be distributed in a plurality of regions. It is preferable that the above elements are uniformly dispersed in the tin oxide phase of the oxide sintered body.
 上記の元素のうち、亜鉛、珪素、アルミニウム、インジウム、ゲルマニウム、チタンの各元素は、焼結体製造時に使用する焼結助剤(これら元素の酸化物粉末等)に由来する。焼結助剤を使用することにより焼結体の密度が向上できる。ここで、焼結助剤とは焼成反応を促進するか、又は液体相を生じることにより焼結を促進させる効果を有する。焼結助剤としては、亜鉛、珪素、インジウム又はアルミニウムの化合物が好ましく、亜鉛又はインジウムが特に好ましい。 Among the above-mentioned elements, each element of zinc, silicon, aluminum, indium, germanium, and titanium is derived from a sintering aid (such as oxide powder of these elements) used during the production of the sintered body. By using the sintering aid, the density of the sintered body can be improved. Here, the sintering aid has an effect of promoting the sintering reaction by promoting the firing reaction or generating a liquid phase. As the sintering aid, a compound of zinc, silicon, indium or aluminum is preferable, and zinc or indium is particularly preferable.
 また、ニオブ、タンタル、タングステン、モリブデン又はアンチモンの各元素は、本発明の酸化物焼結体中に分散、又はスズ酸ガリウム化合物相及び/又は酸化スズ相中のSnと固溶置換することにより、キャリア濃度を上昇させ、酸化物焼結体のバルク抵抗を下げる効果がある。特に、ニオブ、タンタル又はアンチモンが好ましい。
 また、亜鉛及びインジウムの各元素は、酸化物焼結体をスパッタリングターゲットとして用いた場合に作製した薄膜の抵抗率を下げる効果がある。
 また、アルミニウム、珪素、ゲルマニウム又はチタンの各元素を含有する酸化物焼結体をスパッタリングターゲットとして用いた場合、作製した薄膜のキャリア濃度を下げる効果があり、薄膜を半導体層として使用する場合には特に効果的である。
 さらに、ニオブを含有することにより、酸化スズの昇華を抑えることができるため、焼結温度を上げることができる。
Further, each element of niobium, tantalum, tungsten, molybdenum, or antimony is dispersed in the oxide sintered body of the present invention, or by solid solution substitution with Sn in the gallium stannate compound phase and / or tin oxide phase. , There is an effect of increasing the carrier concentration and lowering the bulk resistance of the oxide sintered body. Niobium, tantalum or antimony is particularly preferable.
In addition, each element of zinc and indium has an effect of reducing the resistivity of a thin film manufactured when an oxide sintered body is used as a sputtering target.
In addition, when an oxide sintered body containing each element of aluminum, silicon, germanium, or titanium is used as a sputtering target, there is an effect of lowering the carrier concentration of the produced thin film. When the thin film is used as a semiconductor layer, It is particularly effective.
Furthermore, by containing niobium, sublimation of tin oxide can be suppressed, so that the sintering temperature can be raised.
 添加元素の含有量は、焼結体中の全金属元素の総量に対する原子比で0.08以下が好ましい。0.08を超えると焼結体のバルク抵抗が高くなったり、焼結体を用いて作製した薄膜が着色するおそれがある。添加元素の含有量は、0.01~0.08がより好ましく、特に好ましくは0.02~0.05である。 The content of the additive element is preferably 0.08 or less in terms of an atomic ratio with respect to the total amount of all metal elements in the sintered body. If it exceeds 0.08, the bulk resistance of the sintered body may increase, or the thin film produced using the sintered body may be colored. The content of the additive element is more preferably 0.01 to 0.08, and particularly preferably 0.02 to 0.05.
 本発明の焼結体では、酸化スズ相又はスズ酸ガリウム化合物相の平均粒径が5μm以下であることが好ましい。平均粒径が5μm以下であれば、スパッタリング中にアーク放電のような異常放電が発生せず、ターゲット上に、ノジュールと呼ばれる黒色の突起物が発生することを抑制できる。その結果、成膜される薄膜上に、塊状の異物のないものが得られる。薄膜に塊状の異物があると、エッチングが適切にできなかったり、所望のパターンが形成できない場合がある。また、異物により、上下の配線金属がショートすることがある。
 尚、平均粒径は、電子線マイクロアナライザ(EPMA)の面分析により測定した値である。具体的には、50×50ミクロン視野における酸素と金属の面分析を行い、各相の粒の長径を算出し、視野内の粒子径の平均値を平均粒径とした。
In the sintered body of the present invention, the average particle diameter of the tin oxide phase or the gallium stannate compound phase is preferably 5 μm or less. If the average particle size is 5 μm or less, abnormal discharge such as arc discharge does not occur during sputtering, and generation of black protrusions called nodules on the target can be suppressed. As a result, a film free from massive foreign matters is obtained on the thin film to be formed. If there are massive foreign substances in the thin film, etching may not be performed properly or a desired pattern may not be formed. Moreover, the upper and lower wiring metals may be short-circuited by foreign substances.
In addition, an average particle diameter is the value measured by the surface analysis of the electron beam microanalyzer (EPMA). Specifically, the surface analysis of oxygen and metal in a 50 × 50 micron visual field was performed, the major axis of each phase grain was calculated, and the average value of the particle diameters in the visual field was taken as the average grain size.
 本発明の焼結体の相対密度[(実密度)/(理論密度)]は、85%以上が好ましく、より好ましくは、90%以上である。相対密度が85%以上であれば、得られたスパッタリングターゲットのバルク抵抗が高くなりすぎず、スパッタリング中にアーク放電等の異常放電を起こす場合がないため好ましい。さらに、相対密度が90%以上であれば、焼結体に割れや亀裂が生じにくく、大型の焼結体を製造することができるため好ましい。本発明において、相対密度はGa濃度を高くすることにより上昇させることができる。 The relative density [(actual density) / (theoretical density)] of the sintered body of the present invention is preferably 85% or more, and more preferably 90% or more. A relative density of 85% or more is preferred because the bulk resistance of the obtained sputtering target does not become too high, and abnormal discharge such as arc discharge does not occur during sputtering. Furthermore, if the relative density is 90% or more, it is preferable because cracks and cracks are hardly generated in the sintered body, and a large-sized sintered body can be produced. In the present invention, the relative density can be increased by increasing the Ga concentration.
 本発明の焼結体のバルク抵抗は、100kΩcm未満が好ましい。より好ましくは、5kΩcm以下であり、さらに好ましくは、1kΩcm以下である。
 本発明の焼結体は非晶質であることが好ましい。非晶質であれば耐擦傷性が高くなり、焼結体表面に微細な凹凸がなくなるため好ましい。
The bulk resistance of the sintered body of the present invention is preferably less than 100 kΩcm. More preferably, it is 5 kΩcm or less, and further preferably 1 kΩcm or less.
The sintered body of the present invention is preferably amorphous. Amorphous materials are preferred because they have high scratch resistance and no fine irregularities on the surface of the sintered body.
 本発明の焼結体は、以下に説明する本発明の製造方法にて得られる。
 本発明の酸化物焼結体の製造方法は、下記の工程(A)~(C)を有する。
 (A)少なくともガリウム化合物及びスズ化合物を含む原料を混合する工程
 (B)工程(A)で得られる混合物を成形する工程
 (C)得られた成形体を焼結する工程
The sintered body of the present invention is obtained by the production method of the present invention described below.
The method for producing an oxide sintered body of the present invention includes the following steps (A) to (C).
(A) The process of mixing the raw material containing a gallium compound and a tin compound at least (B) The process of shape | molding the mixture obtained at a process (A) (C) The process of sintering the obtained molded object
(A)混合工程
 本工程では、原料粉末であるガリウム化合物粉末及びスズ化合物粉末等を混合する。
 ガリウム化合物及びスズ化合物は、酸化物又は焼成後に酸化物になるもの(酸化物前駆体)であればよい。ガリウム酸化物前駆体及びスズ酸化物前駆体としては、ガリウム又はスズの、硫化物、硫酸塩、硝酸塩、ハロゲン化物(塩化物、臭化物等)、炭酸塩、有機酸塩(酢酸塩、プロピオン酸塩、ナフテン酸塩等)、アルコキシド(メトキシド、エトキシド等)、有機金属錯体(アセチルアセトナート等)等が挙げられる。
 この中でも、低温で完全に熱分解し、不純物が残存しないようにするためには、硝酸塩、有機酸塩、アルコキシド又は有機金属錯体が好ましい。尚、各金属の酸化物を用いるのが最適である。
(A) Mixing step In this step, the gallium compound powder and the tin compound powder, which are raw material powders, are mixed.
The gallium compound and tin compound may be oxides or oxides (oxide precursors) that become oxides after firing. Examples of the gallium oxide precursor and tin oxide precursor include gallium or tin sulfide, sulfate, nitrate, halide (chloride, bromide, etc.), carbonate, organic acid salt (acetate, propionate). , Naphthenate, etc.), alkoxide (methoxide, ethoxide, etc.), organometallic complex (acetylacetonate, etc.) and the like.
Among these, nitrates, organic acid salts, alkoxides, or organometallic complexes are preferred in order to completely thermally decompose at low temperatures so that no impurities remain. It is optimal to use an oxide of each metal.
 尚、ガリウム化合物粉末及びスズ化合物粉末の他に、亜鉛、アルミニウム、珪素、インジウム、ゲルマニウム、チタン、ニオブ、タンタル、タングステン、モリブデン及びアンチモンから選択される少なくとも1種の元素を含有する化合物(酸化物等)を添加してもよい。これらの化合物は、例えば、焼結助剤として機能する。 In addition to gallium compound powder and tin compound powder, a compound (oxide) containing at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum and antimony Etc.) may be added. These compounds function as, for example, a sintering aid.
 上記各原料の純度は、通常99.9質量%(3N)以上、好ましくは99.99質量%(4N)以上、さらに好ましくは99.995質量%以上、特に好ましくは99.999質量%(5N)以上である。各原料の純度が99.9質量%(3N)以上であれば、Fe、Ni、Cu等の不純物により半導体特性が低下することもなく、信頼性を十分に保持できる。特にNa、K、Caの含有量が100ppm未満であると薄膜トランジスタを作製した際に信頼性が向上するため好ましい。 The purity of each raw material is usually 99.9% by mass (3N) or more, preferably 99.99% by mass (4N) or more, more preferably 99.995% by mass or more, particularly preferably 99.999% by mass (5N ) That's it. If the purity of each raw material is 99.9% by mass (3N) or more, the semiconductor characteristics are not deteriorated by impurities such as Fe, Ni, Cu, and the reliability can be sufficiently maintained. In particular, it is preferable that the content of Na, K, and Ca is less than 100 ppm because reliability is improved when a thin film transistor is manufactured.
 混合は、(i)溶液法(共沈法)又は(ii)物理混合法により実施するのが好ましい。より好ましくは、コスト低減のため、物理混合法である。
 物理混合法では、上記のガリウム化合物及びスズ化合物を含む原料粉体を、ボールミル、ジェットミル、パールミル、ビーズミル等の混合器に入れ、均一に混合する。
 混合時間は1~200時間とするのが好ましい。1時間未満では分散する元素の均一化が不十分となるおそれがあり、200時間を超えると時間がかかりすぎ、生産性が悪くなるおそれがある。特に好ましい混合時間は10~60時間である。
The mixing is preferably carried out by (i) solution method (coprecipitation method) or (ii) physical mixing method. More preferably, a physical mixing method is used for cost reduction.
In the physical mixing method, the raw material powder containing the gallium compound and the tin compound is put into a mixer such as a ball mill, a jet mill, a pearl mill, or a bead mill and mixed uniformly.
The mixing time is preferably 1 to 200 hours. If it is less than 1 hour, the elements to be dispersed may be insufficiently homogenized, and if it exceeds 200 hours, it may take too much time and productivity may be deteriorated. A particularly preferred mixing time is 10 to 60 hours.
 混合した結果、得られる原料混合粉末の平均粒子径が0.01~1.0μmになることが好ましい。粒子径が0.01μm未満では粉末が凝集しやすく、ハンドリングが悪く、また、緻密な焼結体が得られない場合がある。一方、1.0μmを超えると緻密な焼結体が得られない場合がある。 As a result of mixing, the obtained raw material mixed powder preferably has an average particle size of 0.01 to 1.0 μm. When the particle diameter is less than 0.01 μm, the powder is likely to aggregate, handling is poor, and a dense sintered body may not be obtained. On the other hand, if it exceeds 1.0 μm, a dense sintered body may not be obtained.
 本発明では、原料粉末の混合後、得られた混合物を仮焼する工程を含んでもよい。
 仮焼工程では、上記工程で得られた混合物が仮焼される。仮焼を行うことにより、最終的に得られるスパッタリングターゲットの密度を上げることが容易になる。
 仮焼工程においては、200~1000℃で、1~100時間、好ましくは2~50時間の条件で(a)工程で得られた混合物を熱処理することが好ましい。200℃以上かつ1時間以上の熱処理条件であれば、原料化合物の熱分解が十分に行われるので好ましい。熱処理条件が、1000℃以下及び100時間以下であれば、粒子が粗大化することもないので好適である。
 さらに、ここで得られた仮焼き後の混合物を、続く成形工程及び焼結工程の前に粉砕することが好ましい。この仮焼き後の混合物の粉砕は、ボールミル、ロールミル、パールミル、ジェットミル等を用いて行うことが適当である。粉砕後に得られた仮焼き後の混合物の平均粒径は、例えば、0.01~3.0μm、好ましくは0.1~2.0μmであることが適当である。得られた仮焼き後の混合物の平均粒径が0.01μm以上であれば、十分な嵩比重を保持することができ、かつ取り扱いが容易になるので好ましい。また、仮焼き後の混合物の平均粒径が3.0μm以下であれば最終的に得られるスパッタリングターゲットの密度を上げることが容易になる。
 尚、仮焼き後の混合物の平均粒径は、JIS R 1619に記載及び方法によって測定することができる。
In this invention, after mixing raw material powder, you may include the process of calcining the obtained mixture.
In the calcining step, the mixture obtained in the above step is calcined. By performing calcination, it becomes easy to increase the density of the finally obtained sputtering target.
In the calcination step, it is preferable to heat-treat the mixture obtained in step (a) at 200 to 1000 ° C. for 1 to 100 hours, preferably 2 to 50 hours. A heat treatment condition of 200 ° C. or higher and 1 hour or longer is preferable because the raw material compound is sufficiently thermally decomposed. If the heat treatment conditions are 1000 ° C. or less and 100 hours or less, the particles are not coarsened, which is preferable.
Furthermore, it is preferable to grind | pulverize the mixture after calcining obtained here before the shaping | molding process and sintering process which follow. The mixture after calcination is suitably pulverized using a ball mill, roll mill, pearl mill, jet mill or the like. The average particle size of the mixture after calcining obtained after pulverization is, for example, 0.01 to 3.0 μm, preferably 0.1 to 2.0 μm. If the average particle size of the obtained mixture after calcining is 0.01 μm or more, it is preferable because a sufficient bulk specific gravity can be maintained and handling becomes easy. Moreover, if the average particle diameter of the mixture after calcining is 3.0 μm or less, it becomes easy to increase the density of the finally obtained sputtering target.
In addition, the average particle diameter of the mixture after calcining can be measured by the method and method described in JIS R 1619.
(B)成形工程
 成形工程は、原料粉末の混合物(上記仮焼工程を設けた場合には仮焼き後の混合物)を加圧成形して成形体とする工程である。この工程により、混合物(又は仮焼き後の混合物)をスパッタリングターゲットとして好適な形状に成形する。
(B) Molding process The molding process is a process in which a mixture of raw material powders (a mixture after calcining when the calcining process is provided) is pressure-molded to form a compact. By this step, the mixture (or the mixture after calcining) is formed into a shape suitable as a sputtering target.
 本工程で用いることができる成形処理としては、例えば、プレス成形、冷間静水圧、一軸加圧、金型成形、鋳込み成形、射出成形等が挙げられる。焼結密度の高い焼結体(スパッタリングターゲット)を得るためには、冷間静水圧(CIP)等で成形するのが好ましい。
 尚、成形処理に際しては、ポリビニルアルコールやメチルセルロース、ポリワックス、オレイン酸等の成形助剤を用いてもよい。
Examples of the molding process that can be used in this step include press molding, cold isostatic pressing, uniaxial pressing, mold molding, cast molding, and injection molding. In order to obtain a sintered body (sputtering target) having a high sintered density, it is preferable to perform molding with cold isostatic pressure (CIP) or the like.
In the molding process, molding aids such as polyvinyl alcohol, methylcellulose, polywax, and oleic acid may be used.
 プレス成形としては、コールドプレス(Cold Press)法やホットプレス(Hot Press)法等、公知の成形方法を用いることができる。例えば、得られた混合粉を金型に充填し、コールドプレス機にて加圧成形する。加圧成形は、例えば、常温(25℃)下、100~100000kg/cm、好ましくは、500~10000kg/cmの圧力で行われる。 As the press molding, a known molding method such as a cold press method or a hot press method can be used. For example, the obtained mixed powder is filled in a mold and pressure-molded with a cold press machine. The pressure molding is performed at a pressure of 100 to 100,000 kg / cm 2 , preferably 500 to 10,000 kg / cm 2 at normal temperature (25 ° C.), for example.
 尚、コールドプレス法では、混合粉を成形型に充填して成形体を作製し、焼結させる。ホットプレス法では、混合粉を成形型内で直接焼結させる。
 乾式法のコールドプレス(Cold Press)法としては、粉砕工程後の原料をスプレードライヤー等で乾燥した後、成形する。
 湿式のコールドプレス法としては、例えば、濾過式成形法(特開平11-286002号公報参照)を用いるのが好ましい。この濾過式成形法は、セラミックス原料スラリーから水分を減圧排水して成形体を得るための非水溶性材料からなる濾過式成形型であって、1個以上の水抜き孔を有する成形用下型と、この成形用下型の上に載置した通水性を有するフィルターと、このフィルターをシールするためのシール材を介して上面側から挟持する成形用型枠からなり、成形用下型、成形用型枠、シール材、及びフィルターが各々分解できるように組立てられている。該フィルター面側からのみスラリー中の水分を減圧排水する濾過式成形型を用い、混合粉、イオン交換水と有機添加剤からなるスラリーを調製し、このスラリーを濾過式成形型に注入し、該フィルター面側からのみスラリー中の水分を減圧排水して成形体を作製し、得られたセラミックス成形体を乾燥脱脂後、焼結する。
In the cold press method, the mixed powder is filled in a mold and a molded body is produced and sintered. In the hot press method, the mixed powder is directly sintered in a mold.
As a dry-type cold press method, the raw material after the pulverization step is dried with a spray dryer or the like and then molded.
As the wet cold press method, for example, a filtration molding method (see JP-A-11-286002) is preferably used. This filtration molding method is a filtration molding die made of a water-insoluble material for obtaining a molded body by draining water from a ceramic raw material slurry under reduced pressure, and a lower molding die having one or more drain holes And a water-permeable filter placed on the molding lower mold, and a molding mold clamped from the upper surface side through a sealing material for sealing the filter. The formwork, the sealing material, and the filter are each assembled so that they can be disassembled. Using a filtration mold that drains water in the slurry under reduced pressure only from the filter surface side, a slurry composed of mixed powder, ion-exchanged water and an organic additive is prepared, and this slurry is poured into the filtration mold, Water from the slurry is drained under reduced pressure only from the filter surface side to produce a compact, and the resulting ceramic compact is dried and degreased and then sintered.
(C)焼結工程
 成形後の焼結は、常圧焼成、HIP(熱間静水圧)焼成等により行なわれる。焼結温度は、ガリウム化合物とスズ化合物が反応し、スズ酸ガリウム化合物相及び酸化スズ相を生成する温度以上であればよく、1200~1550℃が好ましく、1250~1500℃がさらに好ましく、1300~1500℃が特に好ましい。焼結温度が1200℃未満であると、GaSnO、GaSn16及びGaSn12等の酸化ガリウム-酸化スズ系酸化物が生成しないおそれがあり、焼結温度が1550℃超であると生成した化合物が分解したりするおそれがある。
 焼結時間は焼結温度にもよるが、1~50時間、特に2~30時間が好ましい。
(C) Sintering Step Sintering after molding is performed by atmospheric pressure firing, HIP (hot isostatic pressure) firing or the like. The sintering temperature may be equal to or higher than the temperature at which the gallium compound reacts with the tin compound to produce a gallium stannate compound phase and a tin oxide phase, preferably 1200 to 1550 ° C., more preferably 1250 to 1500 ° C. 1500 ° C. is particularly preferred. If the sintering temperature is less than 1200 ° C., there is a possibility that gallium oxide-tin oxide based oxides such as Ga 4 SnO 8 , Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 may not be formed. If it exceeds 1550 ° C., the produced compound may be decomposed.
Although the sintering time depends on the sintering temperature, it is preferably 1 to 50 hours, particularly 2 to 30 hours.
 焼結時の昇温速度に関しては、0.5~10℃/minが好ましく、1~8℃/minがさらに好ましく、1~5℃/minが特に好ましい。昇温温度が10℃/min以下であると、拡散する前に焼結が完了することもなく、固溶置換が進むことが期待される。0.5℃/min以上であれば、ガリウム化合物とスズ化合物の反応が促進することにより、均一に分散したスズ酸ガリウム化合物相が析出する。昇温速度が10.0℃/minを超えると、焼結体が焼結工程中に破壊する場合や異常粒成長した粒子が析出する場合があり、焼結体をスパッタリングターゲットとして用いたときに均一な成膜ができない場合がある。 Regarding the heating rate during sintering, 0.5 to 10 ° C./min is preferable, 1 to 8 ° C./min is more preferable, and 1 to 5 ° C./min is particularly preferable. When the temperature rising temperature is 10 ° C./min or less, sintering is not completed before diffusion, and solid solution substitution is expected to proceed. If it is 0.5 degreeC / min or more, the reaction of a gallium compound and a tin compound will accelerate | stimulate, and the uniformly disperse | distributed gallium stannate compound phase will precipitate. When the rate of temperature rise exceeds 10.0 ° C./min, the sintered body may be broken during the sintering process, or abnormally grown particles may be deposited, and when the sintered body is used as a sputtering target. Uniform film formation may not be possible.
 焼結は酸化雰囲気で行なってもよい。酸化雰囲気としては、大気や酸素ガスを流入させた雰囲気が挙げられる。尚、酸素加圧下で焼結することもできる。ガリウム化合物とスズ化合物の蒸発を防ぐには、酸素流入下、酸素加圧下で行うのが好ましい。
 以上の方法により、GaとSnを主成分とし、スズ酸ガリウム化合物相と酸化スズ相を含む酸化物焼結体が得られる。
Sintering may be performed in an oxidizing atmosphere. Examples of the oxidizing atmosphere include an atmosphere in which air or oxygen gas is introduced. In addition, it can also sinter under oxygen pressurization. In order to prevent evaporation of the gallium compound and the tin compound, it is preferable to carry out under oxygen inflow and oxygen pressurization.
By the above method, an oxide sintered body containing Ga and Sn as main components and including a gallium stannate compound phase and a tin oxide phase is obtained.
 本発明においては、上記焼結工程(C)の後、必要により還元工程を設けてもよい。還元工程により、上記焼結工程で得られた焼結体のバルク抵抗をターゲット全体として均一化することができる場合がある。
 還元方法としては、例えば、還元性ガスを循環させる方法、真空中で焼結する方法、及び不活性ガス中で焼結する方法等が挙げられる。
In the present invention, a reduction step may be provided as necessary after the sintering step (C). In some cases, the bulk resistance of the sintered body obtained in the sintering process can be made uniform as a whole by the reduction process.
Examples of the reduction method include a method of circulating a reducing gas, a method of sintering in a vacuum, and a method of sintering in an inert gas.
 還元性ガスとしては、例えば、水素、メタン、一酸化炭素、これらのガスと酸素との混合ガス等を用いることができる。
 不活性ガスとしては、窒素、アルゴン、これらのガスと酸素との混合ガス等を用いることができる。
As the reducing gas, for example, hydrogen, methane, carbon monoxide, a mixed gas of these gases and oxygen, or the like can be used.
As the inert gas, nitrogen, argon, a mixed gas of these gases and oxygen, or the like can be used.
 還元処理時の温度は、通常100~800℃、好ましくは200~800℃である。また、還元処理の時間は、通常0.01~10時間、好ましくは0.05~5時間である。
 還元ガスや不活性ガスの圧力は、例えば、9800~1000000Pa、好ましくは、98000~500000Paである。真空中で焼結する場合、真空とは、具体的には、10-1~10-8Pa、好ましくは10-2~10-5a程度の真空を言い、残存ガスはアルゴンや窒素等である。
The temperature during the reduction treatment is usually 100 to 800 ° C, preferably 200 to 800 ° C. The reduction treatment time is usually 0.01 to 10 hours, preferably 0.05 to 5 hours.
The pressure of the reducing gas or inert gas is, for example, 9800 to 1000000 Pa, preferably 98000 to 500000 Pa. In the case of sintering in a vacuum, the vacuum specifically means a vacuum of about 10 −1 to 10 −8 Pa, preferably about 10 −2 to 10 −5 a, and the residual gas is argon, nitrogen or the like. is there.
 上記の製造方法で得られた酸化物焼結体は、スパッタリングターゲットとして好適に使用できる。このスパッタリングターゲットでは、製膜時のアーキングの発生やノジュールの発生が抑えられ、表面平滑性に優れた結晶質酸化物半導体膜を製造することができる。 The oxide sintered body obtained by the above production method can be suitably used as a sputtering target. With this sputtering target, generation of arcing and nodules during film formation can be suppressed, and a crystalline oxide semiconductor film having excellent surface smoothness can be manufactured.
 スパッタリングターゲットは、必要に応じて焼結体をスパッタリング装置への装着に適した形状に切削加工し、バッキングプレート等の装着用治具を取り付けることで製造できる。
 スパッタリングターゲットの厚みは、通常2~20mm、好ましくは3~12mm、特に好ましくは4~6mmである。スパッタリングターゲットの表面は200~10,000番のダイヤモンド砥石により仕上げを行うことが好ましく、400~5,000番のダイヤモンド砥石により仕上げを行うことが特に好ましい。200番~10,000番のダイヤモンド砥石を使用すれば、スパッタリングターゲットが割れることもないので好ましい。また、複数のスパッタリングターゲットを一つのバッキングプレートに取り付け、実質一つのターゲットとしてもよい。バッキングプレートとしては、例えば、無酸素銅製のものが挙げられる。
The sputtering target can be manufactured by cutting the sintered body into a shape suitable for mounting on a sputtering apparatus as necessary and attaching a mounting jig such as a backing plate.
The thickness of the sputtering target is usually 2 to 20 mm, preferably 3 to 12 mm, particularly preferably 4 to 6 mm. The surface of the sputtering target is preferably finished with a 200 to 10,000 diamond grindstone, and particularly preferably finished with a 400 to 5,000 diamond grindstone. It is preferable to use a No. 200-10,000 diamond grindstone because the sputtering target will not break. Further, a plurality of sputtering targets may be attached to one backing plate to substantially form one target. Examples of the backing plate include those made of oxygen-free copper.
 本発明では、上述した本発明の焼結体からなるターゲットを用い、スパッタリング法あるいはイオンプレーティング法にて成膜することにより、酸化物半導体薄膜や酸化物導電薄膜が得られる。
 これらの膜は非晶質であり、透明性を有する。光透過率は、例えば、82%以上にできる。より好ましくは84%以上、特に好ましくは85%以上の膜が得られる。
 特に、スパッタリング法にて成膜した酸化物半導体膜が好ましい。
In the present invention, an oxide semiconductor thin film or an oxide conductive thin film can be obtained by forming a film by a sputtering method or an ion plating method using the target made of the sintered body of the present invention described above.
These films are amorphous and have transparency. The light transmittance can be, for example, 82% or more. More preferably, a film of 84% or more, particularly preferably 85% or more is obtained.
In particular, an oxide semiconductor film formed by a sputtering method is preferable.
 スパッタリングの方法としては、RFマグネトロンスパッタ法、DCマグネトロンスパッタ法、ACマグネトロンスパッタ法、パルスDCマグネトロンスパッタ法等が好適に使用される。
 スパッタリングの条件について、成膜時の酸素分圧は1vol%以上、20%vol未満とすることが好ましい。1%vol未満では、成膜直後の膜が導電性を有する場合があり、酸化物半導体としての使用が困難な場合がある。一方、20vol%以上では、膜が絶縁体化し、酸化物半導体しての使用が困難な場合がある。好ましくは、3~10vol%である。
As a sputtering method, an RF magnetron sputtering method, a DC magnetron sputtering method, an AC magnetron sputtering method, a pulsed DC magnetron sputtering method, or the like is preferably used.
Regarding sputtering conditions, the oxygen partial pressure during film formation is preferably 1 vol% or more and less than 20% vol. If it is less than 1% vol, the film immediately after film formation may have conductivity, and use as an oxide semiconductor may be difficult. On the other hand, if it is 20 vol% or more, the film may become an insulator and it may be difficult to use it as an oxide semiconductor. Preferably, it is 3 to 10 vol%.
 また、成膜時の基板温度は、室温から300℃が好ましい。室温未満、又は300℃超に設定すると、冷却・加熱に費用が掛かりすぎる。好ましくは、室温(基板加熱なし)から200℃である。連続してスパッタする場合には、スパッタ中のプラズマにより基板が加熱される場合があり、フィルム基板等の場合に室温程度に保つために冷却しながら行うのも好ましい。
 ガラス基板等の耐熱基板に成膜した場合には、スパッタの後に基板を150℃~350℃に加熱することにより、酸化物半導体膜が安定して均一に製造できる。150℃未満では、加熱により安定化効果が小さく、350℃超では、加熱にコストが掛かりすぎる場合がある。200℃~300℃が好ましい。
 加熱時間は、10分~120分がよい。10分では加熱効果が見られない場合があり、120分超では、加熱時間が長すぎてコストが掛かりすぎる場合がある。30分から90分が好適である。
The substrate temperature during film formation is preferably from room temperature to 300 ° C. If it is set below the room temperature or above 300 ° C., the cooling / heating is too expensive. Preferably, the temperature is from room temperature (no substrate heating) to 200 ° C. In the case of continuous sputtering, the substrate may be heated by the plasma being sputtered, and in the case of a film substrate or the like, it is preferable to carry out cooling while keeping the temperature at about room temperature.
In the case where a film is formed over a heat-resistant substrate such as a glass substrate, the oxide semiconductor film can be stably and uniformly manufactured by heating the substrate to 150 ° C. to 350 ° C. after sputtering. If it is less than 150 degreeC, the stabilization effect is small by heating, and if it exceeds 350 degreeC, heating may be too expensive. 200 ° C to 300 ° C is preferred.
The heating time is preferably 10 minutes to 120 minutes. In 10 minutes, the heating effect may not be seen, and in more than 120 minutes, the heating time may be too long and too expensive. 30 minutes to 90 minutes is preferred.
 加熱の雰囲気は、大気雰囲気、酸素流通雰囲気が好ましい。
 酸化物半導体薄膜の場合、半導体薄膜内に存在する電子キャリアは、酸素欠損により発生していると考えられ、電子キャリアの濃度は、酸素欠損の濃度に比例すると考えられる。従って、電子キャリア濃度を制御する場合、酸素欠損濃度を制御する必要がある。より高い酸素濃度の雰囲気で加熱処理すると、より低い加熱温度で酸素欠損濃度を低下させることができ、経済的である。但し、純酸素中で高温に加熱すると、酸素欠損が完全に消失し、絶縁体化する場合がある。好ましい酸素濃度は、5%~50%であり、特に10%~30%が好ましい。
 尚、酸化物導電薄膜の場合、好ましい酸素濃度は、0~50%であり、好ましくは0.1~30%、より好ましくは0.5~20%である。
The heating atmosphere is preferably an air atmosphere or an oxygen circulation atmosphere.
In the case of an oxide semiconductor thin film, it is considered that electron carriers present in the semiconductor thin film are generated by oxygen vacancies, and the concentration of electron carriers is proportional to the concentration of oxygen vacancies. Therefore, when the electron carrier concentration is controlled, it is necessary to control the oxygen deficiency concentration. When heat treatment is performed in an atmosphere having a higher oxygen concentration, the oxygen deficiency concentration can be reduced at a lower heating temperature, which is economical. However, when heated to a high temperature in pure oxygen, oxygen vacancies may disappear completely and become an insulator. A preferable oxygen concentration is 5% to 50%, and particularly preferably 10% to 30%.
In the case of an oxide conductive thin film, the preferable oxygen concentration is 0 to 50%, preferably 0.1 to 30%, more preferably 0.5 to 20%.
 以下、本発明の実施例について説明する。尚、実施例で得られた試料の測定方法は以下のとおりである。
(1)酸化物焼結体のバルク抵抗
 三菱化学製ロレスタ、又はハイレスタで測定した。
(2)焼結体の密度
 原料混合物から理論密度を算出し、実測密度と比較した相対密度[(実測密度)/(理論密度)]とした。密度は、2cm角サイズに切り出した試料片を、水を溶媒としたアルキメデス法により測定した。
(3)薄膜の比抵抗及び光透過率
 比抵抗は三菱化学製ロレスタで測定した。光透過率はガラス基板上に作製した100nmの薄膜を可視分光光度計(島津製UV3100)で400~800nmを測定し、その平均の透過率とした。
Examples of the present invention will be described below. In addition, the measuring method of the sample obtained in the Example is as follows.
(1) Bulk resistance of oxide sintered body It measured with Mitsubishi Chemical Loresta or Hiresta.
(2) Density of sintered body The theoretical density was calculated from the raw material mixture, and the relative density [(actual density) / (theoretical density)] compared with the actual density was obtained. The density was measured by Archimedes method using a sample piece cut into a 2 cm square size using water as a solvent.
(3) Specific Resistance and Light Transmittance of Thin Film The specific resistance was measured with a Mitsubishi Chemical Loresta. The light transmittance was measured as 400 nm to 800 nm for a 100 nm thin film prepared on a glass substrate with a visible spectrophotometer (Shimadzu UV3100), and the average transmittance was determined.
実施例1
(1)酸化物焼結体の作製
 酸化ガリウム300gと酸化スズ300g、酸化亜鉛5gをイオン交換水に分散させて、ビーズミルにて10時間粉砕・混合した。
 次いで、得られたスラリーをスプレードライヤーにて乾燥・造粒した。この粉末を140mmφの金型に装入し、金型プレス成型機により100kg/cmの圧力で予備成型した。
 次に、冷間静水圧プレス成型機により4t/cmの圧力で圧密化した。
 成形体を、500℃以上の昇温速度を1.0℃/min.とし、1400℃で15時間焼結して、焼結体を得た。
 この焼結体の組成をICP装置で調べた結果は以下のとおりであった。
  Ga/(Ga+Sn)=0.44(原子比)
  Sn/(Ga+Sn)=0.56(原子比)
  Zn/(Ga+Sn+Zn)=0.01(原子比)
 得られた焼結体のX線回折結果を図1に示す。この結果から、酸化スズ相とスズ酸ガリウム化合物相のピークが観察された。GaSnOとSnO相から焼結体がなっていることがわかる。この焼結体の相対密度は91%であった。
Example 1
(1) Production of oxide sintered body 300 g of gallium oxide, 300 g of tin oxide and 5 g of zinc oxide were dispersed in ion-exchanged water, and pulverized and mixed for 10 hours in a bead mill.
Next, the obtained slurry was dried and granulated with a spray dryer. This powder was charged into a 140 mmφ mold and pre-molded at a pressure of 100 kg / cm 2 with a mold press molding machine.
Next, it compacted with the pressure of 4 t / cm < 2 > with the cold isostatic press molding machine.
The molded body was heated at a temperature increase rate of 500 ° C. or higher at 1.0 ° C./min. And sintered at 1400 ° C. for 15 hours to obtain a sintered body.
The result of examining the composition of this sintered body with an ICP apparatus was as follows.
Ga / (Ga + Sn) = 0.44 (atomic ratio)
Sn / (Ga + Sn) = 0.56 (atomic ratio)
Zn / (Ga + Sn + Zn) = 0.01 (atomic ratio)
The X-ray diffraction result of the obtained sintered body is shown in FIG. From this result, the peak of the tin oxide phase and the gallium stannate compound phase was observed. It can be seen that the sintered body is composed of the Ga 4 SnO 8 and SnO 2 phases. The relative density of this sintered body was 91%.
 焼結体のバルク抵抗は、0.160Ωcmであった。
 また、50ミクロンの視野範囲におけるEPMA測定により、Ga、Sn及びZnの分散状態を確認した。その結果、GaとSnが分散している相と、Snのみがある相があり、ZnはSnのみがある相すなわちSnOに分散していた。その結果、Ga及びSnの分散状態は実質的に均一であり、酸化スズ相、及びスズ酸ガリウム相の平均粒径はそれぞれ3.5μm、4.2μmであった。
 ターゲットのポリッシングを行った焼結体を三点曲げ試験を行い、強度を測定した。その結果をメジアン・ランク法による曲げ強度に対する累積破壊確率と単一モードによるワイブルプロットを作成し、破壊確率のばらつきを示すワイブル係数(m値)を求めた。なお、ワイブル係数は線形回帰直線を求めることによりm値10.2を得た。ワイブル係数が大きいほど、非破壊応力の最大値にバラツキが見られなくなることを意味しているが、バラツキが少なく、安定した材料であることが確認できる。
The bulk resistance of the sintered body was 0.160 Ωcm.
Further, the dispersion state of Ga, Sn, and Zn was confirmed by EPMA measurement in a visual field range of 50 microns. As a result, there were a phase in which Ga and Sn were dispersed and a phase in which only Sn was present, and Zn was dispersed in a phase in which only Sn was present, that is, SnO 2 . As a result, the dispersion state of Ga and Sn was substantially uniform, and the average particle diameters of the tin oxide phase and the gallium stannate phase were 3.5 μm and 4.2 μm, respectively.
The sintered body on which the target was polished was subjected to a three-point bending test, and the strength was measured. Based on the results, a cumulative failure probability with respect to the bending strength by the median rank method and a Weibull plot with a single mode were prepared, and a Weibull coefficient (m value) indicating variation in the failure probability was obtained. As for the Weibull coefficient, an m value of 10.2 was obtained by obtaining a linear regression line. This means that the larger the Weibull coefficient, the more the non-destructive stress does not vary, but the variation is small and it can be confirmed that the material is stable.
(2)薄膜の評価
 上記(1)の焼結体を、研削、研磨し、4インチφ、厚み5mmのスパッタリングターゲットを得た。このスパッタリングターゲットを用いて、島津HSM-552スパッタリング装置で、O/(O+Ar)=2%雰囲気、スパッタリング圧力0.2Pa、RF出力100Wで、膜厚100nmの薄膜をガラス基板上に作製した。
 この薄膜を200℃1時間加熱した。
 加熱後の薄膜試料をX線回折(リガクUltimaIII)で測定したところ、非晶質であった。
 また、薄膜の表面をAFM装置(JSPM-4500、日本電子製)で、10ミクロン×10ミクロン角の範囲について平均表面粗度を測定したところ、0.2nmと非常に平坦であった。
 薄膜の光透過率は88%であった。
 薄膜のホール測定での比抵抗は10Ωcmであり、キャリア濃度は1.6×1016/cmであった。
 尚、ホール測定装置、及びその測定条件は下記のとおりであった。
・ホール測定装置
 東陽テクニカ製:Resi Test8310
・測定条件
 測定温度:室温(25℃)
 測定磁場:0.5T
 測定電流:10-12~10-4
 測定モード:AC磁場
(2) Evaluation of thin film The sintered body of (1) was ground and polished to obtain a sputtering target having a diameter of 4 inches and a thickness of 5 mm. Using this sputtering target, a thin film having a thickness of 100 nm was produced on a glass substrate with an Shimadzu HSM-552 sputtering apparatus in an O 2 / (O 2 + Ar) = 2% atmosphere, a sputtering pressure of 0.2 Pa, an RF output of 100 W. did.
This thin film was heated at 200 ° C. for 1 hour.
When the thin film sample after heating was measured by X-ray diffraction (Rigaku Ultimate III), it was amorphous.
Further, when the average surface roughness of the surface of the thin film was measured with an AFM apparatus (JSPM-4500, manufactured by JEOL Ltd.) over a range of 10 microns × 10 microns square, it was very flat at 0.2 nm.
The light transmittance of the thin film was 88%.
The specific resistance in the hole measurement of the thin film was 10 Ωcm, and the carrier concentration was 1.6 × 10 16 / cm 3 .
In addition, the hall | hole measuring apparatus and its measurement conditions were as follows.
・ Hall measuring device manufactured by Toyo Technica: Resi Test 8310
・ Measurement conditions Measurement temperature: Room temperature (25 ℃)
Measurement magnetic field: 0.5T
Measurement current: 10 −12 to 10 −4 A
Measurement mode: AC magnetic field
 薄膜を薄膜トランジスタ半導体素子とした時に、室温下で測定したところ半導体特性が得られた。 When the thin film was used as a thin film transistor semiconductor element, semiconductor characteristics were obtained when measured at room temperature.
(3)ノジュール及びスパッタ放電評価
 (2)で得られたスパッタリングターゲットを、(2)と同様にスパッタリング装置に装着し、RF出力400Wで8時間連続してスパッタリングを行った。その結果、ノジュールは全く発生しなかった。
(3) Nodule and Sputter Discharge Evaluation The sputtering target obtained in (2) was mounted on a sputtering apparatus in the same manner as in (2), and was continuously sputtered at an RF output of 400 W for 8 hours. As a result, no nodules were generated.
実施例2
(1)酸化物焼結体の作製
 酸化ガリウム300gと酸化スズ300g、酸化亜鉛5gをイオン交換水に分散させて、分散性を上げるため、ビーズミルにて72時間粉砕・混合した。
 次いで、得られたスラリーをスプレードライヤーにて乾燥・造粒した。この粉末を140mmφの金型に装入し、金型プレス成型機により100kg/cmの圧力で予備成型を行った。
 次に、冷間静水圧プレス成型機により4t/cmの圧力で圧密化した。
 成形体を、500℃以上の昇温速度を1.0℃/min.とし、1400℃で15時間焼結して、焼結体を得た。
 この焼結体の組成をICP装置で調べた結果は以下のとおりであった。
  Ga/(Ga+Sn)=0.44(原子比)
  Sn/(Ga+Sn)=0.56(原子比)
  Zn/(Ga+Sn+Zn)=0.01(原子比)
 得られた焼結体のX線回折結果から、酸化スズ相とスズ酸ガリウム化合物相のピークが観察された。GaSnOとSnO相から焼結体がなっていることがわかる。この焼結体の密度をアルキメデス法により調べたところ、相対密度は92%であった。
 焼結体のバルク抵抗は、0.160Ωcmであった。
 また、50ミクロンの視野範囲におけるEPMA測定により、Ga、Sn、Znの分散状態を確認したところ、実施例1と同様に、Ga、Snが分散している相と、Snのみがある相があり、ZnはSnのみがある相、すなわちSnOに分散していた。その結果、Ga及びSnの分散状態は実質的に均一であり、酸化スズ相、及びスズ酸ガリウム相の平均粒径はそれぞれ3.8μm、4.3μmであった。
 実施例1と同様に、ポリッシングを行った焼結体に三点曲げ試験を行い、強度を測定した結果、ワイブル係数(m値)は10.5であった。最大値にバラツキも見られず、バラツキが少なく、安定した材料であることが確認できる。
Example 2
(1) Production of oxide sintered body 300 g of gallium oxide, 300 g of tin oxide, and 5 g of zinc oxide were dispersed in ion-exchanged water and pulverized and mixed in a bead mill for 72 hours in order to improve dispersibility.
Next, the obtained slurry was dried and granulated with a spray dryer. This powder was charged into a 140 mmφ mold, and preformed at a pressure of 100 kg / cm 2 by a mold press molding machine.
Next, it compacted with the pressure of 4 t / cm < 2 > with the cold isostatic press molding machine.
The molded body was heated at a temperature increase rate of 500 ° C. or higher at 1.0 ° C./min. And sintered at 1400 ° C. for 15 hours to obtain a sintered body.
The result of examining the composition of this sintered body with an ICP apparatus was as follows.
Ga / (Ga + Sn) = 0.44 (atomic ratio)
Sn / (Ga + Sn) = 0.56 (atomic ratio)
Zn / (Ga + Sn + Zn) = 0.01 (atomic ratio)
From the X-ray diffraction result of the obtained sintered body, peaks of a tin oxide phase and a gallium stannate compound phase were observed. It can be seen that the sintered body is composed of the Ga 4 SnO 8 and SnO 2 phases. When the density of this sintered body was examined by the Archimedes method, the relative density was 92%.
The bulk resistance of the sintered body was 0.160 Ωcm.
Also, when the dispersion state of Ga, Sn, and Zn was confirmed by EPMA measurement in a 50 micron visual field range, there were a phase in which Ga and Sn were dispersed and a phase in which only Sn was present, as in Example 1. Zn was dispersed in a phase having only Sn, that is, SnO 2 . As a result, the dispersion state of Ga and Sn was substantially uniform, and the average particle diameters of the tin oxide phase and the gallium stannate phase were 3.8 μm and 4.3 μm, respectively.
As in Example 1, a three-point bending test was performed on the polished sintered body and the strength was measured. As a result, the Weibull coefficient (m value) was 10.5. There is no variation in the maximum value, and it can be confirmed that the material is stable with little variation.
(2)薄膜の評価
 上記(1)の焼結体を、研削、研磨し、4インチφ、厚み5mmのスパッタリングターゲットを得た。このスパッタリングターゲットを用いて、島津HSM-552スパッタリング装置で、O/(O+Ar)が10%である雰囲気、スパッタリング圧力0.2Pa、RF出力100Wで、膜厚100nmの薄膜をガラス基板上に作製した。
 この薄膜を200℃で1時間加熱した。
 加熱後の薄膜試料をX線回折で測定したところ、非晶質であった。
 また、薄膜の表面をAFM装置で、Raは0.2nmと非常に平坦であった。
 薄膜の光透過率は88%であった。
 薄膜のホール測定での比抵抗は15Ωcmであり、キャリア濃度は1.5×1015/cmであった。
 薄膜を薄膜トランジスタ半導体素子とした時に、室温下で測定したところ半導体特性が得られた。
(2) Evaluation of thin film The sintered body of (1) was ground and polished to obtain a sputtering target having a diameter of 4 inches and a thickness of 5 mm. Using this sputtering target, a thin film having a thickness of 100 nm was formed on a glass substrate with an Shimadzu HSM-552 sputtering apparatus in an atmosphere having an O 2 / (O 2 + Ar) ratio of 10%, a sputtering pressure of 0.2 Pa, an RF output of 100 W. It was prepared.
This thin film was heated at 200 ° C. for 1 hour.
When the thin film sample after heating was measured by X-ray diffraction, it was amorphous.
The surface of the thin film was very flat with an AFM apparatus and Ra was 0.2 nm.
The light transmittance of the thin film was 88%.
The specific resistance in the hole measurement of the thin film was 15 Ωcm, and the carrier concentration was 1.5 × 10 15 / cm 3 .
When the thin film was used as a thin film transistor semiconductor element, semiconductor characteristics were obtained when measured at room temperature.
(3)ノジュールおよびスパッタ放電評価
 (2)で得られたスパッタリングターゲットを、(2)と同様にスパッタリング装置に装着し、RF出力400Wで8時間連続してスパッタリングを行った。その結果、ノジュールは全く発生しなかった。
(3) Nodule and Sputter Discharge Evaluation The sputtering target obtained in (2) was mounted on a sputtering apparatus in the same manner as in (2), and was continuously sputtered at an RF output of 400 W for 8 hours. As a result, no nodules were generated.
実施例3
 酸化ガリウム100g、酸化スズ400g、酸化ニオブ10gと、500℃以上の昇温速度を2.0℃/min.とした他は、実施例1と同様にして酸化物焼結体を作製した。
 この焼結体の組成は以下のとおりであった。
 Ga/(Ga+Sn)=0.25
 Sn/(Ga+Sn)=0.75
 Nb/(Ga+Sn+Nb)=0.01
Example 3
100 g of gallium oxide, 400 g of tin oxide, 10 g of niobium oxide, and a temperature increase rate of 500 ° C. or higher is 2.0 ° C./min. An oxide sintered body was produced in the same manner as in Example 1 except that.
The composition of this sintered body was as follows.
Ga / (Ga + Sn) = 0.25
Sn / (Ga + Sn) = 0.75
Nb / (Ga + Sn + Nb) = 0.01
 得られた焼結体のX線回折結果を図2に示す。
 この結果では、主として酸化スズ相が観察され、スズ酸ガリウム化合物のピークも観察された。
 焼結体のバルク抵抗は、0.030Ωcmであった。
 EPMA測定により、Ga、Sn、Nbの分散状態を確認した結果、分散状態は実質的に均一であった。
 焼結体の相対密度は94%であった。実施例1と同様にしてワイブル係数(m値)を求めたところ10.6であった。ワイブル係数がさらに大きい値となり、バラツキも少なく、安定した高強度材料であることが確認できる。
The X-ray diffraction result of the obtained sintered body is shown in FIG.
In this result, the tin oxide phase was mainly observed, and the peak of the gallium stannate compound was also observed.
The bulk resistance of the sintered body was 0.030 Ωcm.
As a result of confirming the dispersion state of Ga, Sn, and Nb by EPMA measurement, the dispersion state was substantially uniform.
The relative density of the sintered body was 94%. When the Weibull coefficient (m value) was determined in the same manner as in Example 1, it was 10.6. It can be confirmed that the Weibull coefficient is a larger value, there is little variation, and the material is stable and has high strength.
(2)薄膜の評価
 (1)で作製した焼結体を使用した他は、実施例1と同様にてスパッタリングターゲットを作製し、薄膜を作製した。この薄膜は透明導電膜であった。
 得られた薄膜の光透過率は86%であった。
 薄膜のホール測定での比抵抗は1.5×10-3Ωcmであり、キャリア濃度は1.2×1020cm-3であり、透明で低抵抗な薄膜が得られた。
 また、薄膜の表面をAFM装置で平均表面粗度を測定したところ、Raは0.2nmと非常に平坦であった。
(2) Evaluation of thin film A sputtering target was produced in the same manner as in Example 1 except that the sintered body produced in (1) was used, and a thin film was produced. This thin film was a transparent conductive film.
The resulting thin film had a light transmittance of 86%.
The specific resistance in the hole measurement of the thin film was 1.5 × 10 −3 Ωcm, the carrier concentration was 1.2 × 10 20 cm −3 , and a transparent and low resistance thin film was obtained.
Further, when the average surface roughness of the surface of the thin film was measured with an AFM apparatus, Ra was as extremely flat as 0.2 nm.
(3)ノジュール評価
 (2)で得られたスパッタリングターゲットを実施例1と同様にして評価した。その結果、ノジュールは全く発生しなかった。
(3) Nodule evaluation The sputtering target obtained in (2) was evaluated in the same manner as in Example 1. As a result, no nodules were generated.
実施例4
 酸化ガリウム100g、酸化スズ400g及び酸化ニオブ10gを秤量しイオン交換水に分散させて、分散性を上げるためにビーズミルにて72時間粉砕・混合した。
 次いで、得られたスラリーをスプレードライヤーにて乾燥・造粒した。この粉末を140mmφの金型に装入し、金型プレス成型機により100kg/cmの圧力で予備成型を行った。
 次に、冷間静水圧プレス成型機により4t/cmの圧力で圧密化した。
 成形体を、500℃以上の昇温速度を3.0℃/min.とし、1550℃で72時間焼結して、焼結体を得た。
 この焼結体の組成は以下のとおりであった。
 Ga/(Ga+Sn)=0.25
 Sn/(Ga+Sn)=0.75
 Nb/(Ga+Sn+Nb)=0.01
Example 4
100 g of gallium oxide, 400 g of tin oxide and 10 g of niobium oxide were weighed and dispersed in ion-exchanged water, and pulverized and mixed in a bead mill for 72 hours in order to improve dispersibility.
Next, the obtained slurry was dried and granulated with a spray dryer. This powder was charged into a 140 mmφ mold, and preformed at a pressure of 100 kg / cm 2 by a mold press molding machine.
Next, it compacted with the pressure of 4 t / cm < 2 > with the cold isostatic press molding machine.
The molded body was heated at a heating rate of 500 ° C. or higher at 3.0 ° C./min. And sintered at 1550 ° C. for 72 hours to obtain a sintered body.
The composition of this sintered body was as follows.
Ga / (Ga + Sn) = 0.25
Sn / (Ga + Sn) = 0.75
Nb / (Ga + Sn + Nb) = 0.01
 得られた焼結体のX線回折結果を図3に示す。
 この結果では、主として酸化スズ相が観察され、スズ酸ガリウム化合物のピークも観察された。
 焼結体のバルク抵抗は、0.010Ωcmと低バルク抵抗であった。
 EPMA測定により、Ga、Sn、Nbの分散状態を確認した結果、分散状態は実質的に均一であった。
 焼結体の相対密度は95%であった。実施例1と同様にしてワイブル係数(m値)を求めたところ10.9であった。ワイブル係数がさらに大きい値となり、バラツキも少なく、安定した高強度材料であることが確認できる。
The X-ray diffraction result of the obtained sintered body is shown in FIG.
In this result, the tin oxide phase was mainly observed, and the peak of the gallium stannate compound was also observed.
The bulk resistance of the sintered body was as low as 0.010 Ωcm.
As a result of confirming the dispersion state of Ga, Sn, and Nb by EPMA measurement, the dispersion state was substantially uniform.
The relative density of the sintered body was 95%. When the Weibull coefficient (m value) was determined in the same manner as in Example 1, it was 10.9. It can be confirmed that the Weibull coefficient is a larger value, there is little variation, and the material is stable and has high strength.
(2)薄膜の評価
 (1)で作製した焼結体を使用した他は、実施例1と同様にてスパッタリングターゲットを作製し、薄膜を作製した。この薄膜は透明導電膜であった。
 得られた薄膜の光透過率は87%であった。
 薄膜のホール測定での比抵抗は1.3×10-3Ωcmであり、キャリア濃度は1.5×1020/cmであり、透明で低抵抗な薄膜が得られた。
 また、薄膜の表面をAFM装置で平均表面粗度を測定したところ、Raは0.2nmと非常に平坦であった。
(2) Evaluation of thin film A sputtering target was produced in the same manner as in Example 1 except that the sintered body produced in (1) was used, and a thin film was produced. This thin film was a transparent conductive film.
The resulting thin film had a light transmittance of 87%.
The specific resistance in the hole measurement of the thin film was 1.3 × 10 −3 Ωcm, the carrier concentration was 1.5 × 10 20 / cm 3 , and a transparent and low-resistance thin film was obtained.
Further, when the average surface roughness of the surface of the thin film was measured with an AFM apparatus, Ra was as extremely flat as 0.2 nm.
(3)ノジュール評価
 (1)で得られたスパッタリングターゲットを実施例1と同様にして評価した。その結果、ノジュールは全く発生しなかった。
(3) Nodule evaluation The sputtering target obtained in (1) was evaluated in the same manner as in Example 1. As a result, no nodules were generated.
実施例5
 酸化ガリウム100g、酸化スズ400g、酸化ニオブ10g及び酸化アルミニウム10gを秤量し、イオン交換水に分散させて、分散性を上げるためにビーズミルにて72時間粉砕・混合した。
 次いで、得られたスラリーをスプレードライヤーにて乾燥・造粒した。この粉末を140mmφの金型に装入し、金型プレス成型機により100kg/cmの圧力で予備成型を行った。
 次に、冷間静水圧プレス成型機により4t/cmの圧力で圧密化した。
 成形体を、500℃以上の昇温速度を2.0℃/min.とし、1550℃で72時間焼結して、焼結体を得た。
 この焼結体の組成は以下のとおりであった。
 Ga/(Ga+Sn)=0.25
 Sn/(Ga+Sn)=0.75
 Nb/(Ga+Sn+Nb+Al)=0.01
 Al/(Ga+Sn+Nb+Al)=0.01
Example 5
100 g of gallium oxide, 400 g of tin oxide, 10 g of niobium oxide and 10 g of aluminum oxide were weighed and dispersed in ion-exchanged water, and pulverized and mixed in a bead mill for 72 hours in order to improve dispersibility.
Next, the obtained slurry was dried and granulated with a spray dryer. This powder was charged into a 140 mmφ mold, and preformed at a pressure of 100 kg / cm 2 by a mold press molding machine.
Next, it compacted with the pressure of 4 t / cm < 2 > with the cold isostatic press molding machine.
The molded body was heated at a heating rate of 500 ° C. or higher at 2.0 ° C./min. And sintered at 1550 ° C. for 72 hours to obtain a sintered body.
The composition of this sintered body was as follows.
Ga / (Ga + Sn) = 0.25
Sn / (Ga + Sn) = 0.75
Nb / (Ga + Sn + Nb + Al) = 0.01
Al / (Ga + Sn + Nb + Al) = 0.01
 得られた焼結体のX線回折結果を図3に示す。
 この結果から、主として酸化スズ相が観察され、スズ酸ガリウム化合物のピークも観察された。
 焼結体のバルク抵抗は、9.7×10-3Ωcmと低バルク抵抗であった。
 EPMA測定により、Ga、Sn、Nb、Alの分散状態を確認した結果、分散状態は実質的に均一であった。Nb-K端のEXAFSの測定からNb正5価でSnO相に置換していることが確認された。
 焼結体の相対密度は96%であった。実施例1と同様にしてワイブル係数(m値)を求めたところ11.2であった。ワイブル係数がさらに大きい値となり、バラツキも少なく、安定した高強度材料であることが確認できる。
The X-ray diffraction result of the obtained sintered body is shown in FIG.
From this result, the tin oxide phase was mainly observed, and the peak of the gallium stannate compound was also observed.
The sintered body had a low bulk resistance of 9.7 × 10 −3 Ωcm.
As a result of confirming the dispersion state of Ga, Sn, Nb, and Al by EPMA measurement, the dispersion state was substantially uniform. From the EXAFS measurement at the Nb-K end, it was confirmed that Nb was positive pentavalent and was substituted with SnO 2 phase.
The relative density of the sintered body was 96%. When the Weibull coefficient (m value) was determined in the same manner as in Example 1, it was 11.2. It can be confirmed that the Weibull coefficient is a larger value, there is little variation, and the material is stable and has high strength.
(2)薄膜の評価
 (1)で作製した焼結体を使用した他は、実施例1と同様にてスパッタリングターゲットを作製し、薄膜を作製した。この薄膜は透明導電膜であった。
 得られた薄膜の光透過率は87%であった。
 薄膜のホール測定での比抵抗は1.25×10-3Ωcmであり、キャリア濃度は2.0×1020/cmであり、透明で低抵抗な薄膜が得られた。
 また、薄膜の表面をAFM装置で平均表面粗度を測定したところ、Raは0.2nmと非常に平坦であった。
(2) Evaluation of thin film A sputtering target was produced in the same manner as in Example 1 except that the sintered body produced in (1) was used, and a thin film was produced. This thin film was a transparent conductive film.
The resulting thin film had a light transmittance of 87%.
The specific resistance of the thin film in hole measurement was 1.25 × 10 −3 Ωcm, the carrier concentration was 2.0 × 10 20 / cm 3 , and a transparent and low-resistance thin film was obtained.
Further, when the average surface roughness of the surface of the thin film was measured with an AFM apparatus, Ra was as extremely flat as 0.2 nm.
(3)ノジュール評価
 (1)で得られたスパッタリングターゲットを実施例1と同様にして評価した。その結果、ノジュールは全く発生しなかった。
(3) Nodule evaluation The sputtering target obtained in (1) was evaluated in the same manner as in Example 1. As a result, no nodules were generated.
実施例6、7
 原料の配合比を表1に示すように変更した他は、実施例1と同様にして、焼結体を作製し、評価した。結果を表1,2に示す。
 尚、実施例6及び7で得られた焼結体は共に、X線回折から、酸化スズ相及びスズ酸ガリウム化合物のピークが観察され、EPMA測定により、Ga、Sn、Znの分散状態を確認した結果、分散状態は実質的に均一であった。
Examples 6 and 7
A sintered body was produced and evaluated in the same manner as in Example 1 except that the mixing ratio of the raw materials was changed as shown in Table 1. The results are shown in Tables 1 and 2.
In the sintered bodies obtained in Examples 6 and 7, the peaks of the tin oxide phase and the gallium stannate compound were observed from X-ray diffraction, and the dispersion state of Ga, Sn, and Zn was confirmed by EPMA measurement. As a result, the dispersion state was substantially uniform.
比較例1
 酸化スズ475gと酸化ガリウム25gを秤量し、ポリビニルアルコール水溶液を添加して造粒し、ボールミルを用いて20時間混合した。混合粉に、400mm×800mmの寸法のプレス金型に充填し、500Kg/cmの圧力でプレス成形した。この時の成形体の成形密度は3.3~3.9g/cmであった。これを80℃で15時間乾燥したのち、200℃~600℃にて脱脂した物を、500℃以上の昇温速度を12℃/min.とし、酸素雰囲気1500℃にて4時間焼結した。
 このようにして得られた焼結体を加工して、300mm×600mm×8mmの寸法のスパッタリングターゲットを作製した。
 このスパッタリングターゲットの密度は5.08g/cmであり、相対密度は88%であった。バルク抵抗は高すぎて測定不能であった。
 さらに、実施例1と同様にしてワイブル係数(m値)を求めたところ9.2であった。ワイブル係数が小さく、バラツキも大きく、強度が不足した材料であった。
 このターゲットを用いて、実施例1と同様にして薄膜を作製したところ、比抵抗は8.0×10-2Ωcmであり、キャリア濃度は1.0×1020/cmであった。光透過率は80%であった。
Comparative Example 1
475 g of tin oxide and 25 g of gallium oxide were weighed, added with an aqueous polyvinyl alcohol solution, granulated, and mixed for 20 hours using a ball mill. The mixed powder was filled into a press die having a size of 400 mm × 800 mm and press-molded at a pressure of 500 Kg / cm 2 . The molding density of the molded body at this time was 3.3 to 3.9 g / cm 3 . This was dried at 80 ° C. for 15 hours and then degreased at 200 ° C. to 600 ° C., and the temperature rising rate of 500 ° C. or higher was 12 ° C./min. And was sintered for 4 hours at 1500 ° C. in an oxygen atmosphere.
The sintered body thus obtained was processed to produce a sputtering target having a size of 300 mm × 600 mm × 8 mm.
The density of this sputtering target was 5.08 g / cm 3 and the relative density was 88%. The bulk resistance was too high to be measured.
Further, when the Weibull coefficient (m value) was determined in the same manner as in Example 1, it was 9.2. It was a material with low Weibull coefficient, large variation, and insufficient strength.
When this target was used to produce a thin film in the same manner as in Example 1, the specific resistance was 8.0 × 10 −2 Ωcm and the carrier concentration was 1.0 × 10 20 / cm 3 . The light transmittance was 80%.
比較例2
 酸化スズ475gと酸化ニオブ25gを使用した他は、実施例1と同様にして焼結体を得た。
 焼結体の相対密度は88%で、バルク抵抗は9.8×10-3Ωcmであった。
 この焼結体を用いて、実施例1と同様にして薄膜を作製したところ、比抵抗は4.5×10-1Ωcmであった。光透過率は76%であった。
Comparative Example 2
A sintered body was obtained in the same manner as in Example 1 except that 475 g of tin oxide and 25 g of niobium oxide were used.
The relative density of the sintered body was 88%, and the bulk resistance was 9.8 × 10 −3 Ωcm.
When a thin film was produced using this sintered body in the same manner as in Example 1, the specific resistance was 4.5 × 10 −1 Ωcm. The light transmittance was 76%.
比較例3
 酸化スズ475gと酸化アンチモン25gを使用した他は、実施例1と同様にして焼結体を得た。尚、酸化アンチモンは温度が高いと蒸発量が多いため、500℃以上の昇温速度を15℃/min.とし、焼結温度を1000℃とし、15時間焼結した。
 焼結体の密度は73%で、バルク抵抗は120Ωcmであった。
 この焼結体を用いて、実施例1と同様にして薄膜を作製したところ、比抵抗は5.6×10-2Ωcmであった。光透過率は79%であった。
Comparative Example 3
A sintered body was obtained in the same manner as in Example 1 except that 475 g of tin oxide and 25 g of antimony oxide were used. In addition, since antimony oxide has a large amount of evaporation when the temperature is high, the temperature rising rate of 500 ° C. or higher is 15 ° C./min. The sintering temperature was 1000 ° C. and sintering was performed for 15 hours.
The density of the sintered body was 73% and the bulk resistance was 120 Ωcm.
When this sintered body was used to produce a thin film in the same manner as in Example 1, the specific resistance was 5.6 × 10 −2 Ωcm. The light transmittance was 79%.
比較例4
 酸化スズ10gと酸化ガリウム490gを使用した他は、実施例1と同様にして焼結体を得た。この焼結体の組成は以下のとおりであった。
 Ga/(Ga+Sn)=0.99
 Sn/(Ga+Sn)=0.01
Comparative Example 4
A sintered body was obtained in the same manner as in Example 1 except that 10 g of tin oxide and 490 g of gallium oxide were used. The composition of this sintered body was as follows.
Ga / (Ga + Sn) = 0.99
Sn / (Ga + Sn) = 0.01
 この焼結体の相対密度は88%であった。バルク抵抗は高すぎて測定不能であった。
 焼結体のX線回折結果では、結晶相は酸化ガリウム相のみが観察された。
The relative density of this sintered body was 88%. The bulk resistance was too high to be measured.
In the X-ray diffraction result of the sintered body, only the gallium oxide phase was observed as the crystal phase.
 この焼結体からなるターゲットを用いて実施例1と同様にして薄膜を作製したところ、比抵抗は5.6×10Ωcmであり、光透過率は88%であった。
 また、半導体素子を作製したところ半導体特性を示さなかった。
 また、ターゲットについて実施例1(3)と同様にしてノジュール評価を行った。その結果、アーキングが観察され、1時間でターゲットに亀裂が入り、放電不可能となった。
When a thin film was produced in the same manner as in Example 1 using this sintered target, the specific resistance was 5.6 × 10 4 Ωcm and the light transmittance was 88%.
Moreover, when the semiconductor element was produced, the semiconductor characteristic was not shown.
Moreover, nodule evaluation was performed on the target in the same manner as in Example 1 (3). As a result, arcing was observed, and the target cracked in 1 hour, making it impossible to discharge.
比較例5
 酸化スズ495gと酸化ガリウム5gを使用した他は、実施例1と同様にして焼結体を得た。この焼結体の組成は以下のとおりであった。
 Ga/(Ga+Sn)=0.01
 Sn/(Ga+Sn)=0.99
Comparative Example 5
A sintered body was obtained in the same manner as in Example 1 except that 495 g of tin oxide and 5 g of gallium oxide were used. The composition of this sintered body was as follows.
Ga / (Ga + Sn) = 0.01
Sn / (Ga + Sn) = 0.99
 この焼結体の相対密度は77%であり、焼結密度が上がらなかったことがわかる。これは、酸化ガリウムが少量過ぎたためである。
 また、バルク抵抗は1800Ωcmであり、X線回折結果から、結晶相は酸化スズ相のみが観察された。
The relative density of this sintered body was 77%, and it was found that the sintered density did not increase. This is because the amount of gallium oxide is too small.
Further, the bulk resistance was 1800 Ωcm, and from the X-ray diffraction results, only the tin oxide phase was observed as the crystal phase.
 この焼結体からなるターゲットを用いて、実施例1(2)と同様にして薄膜を作製したところ、比抵抗は3.3×10-2Ωcmであった。薄膜は茶色に着色しており、その光透過率は65%であった。
 また、ターゲットについて実施例1(3)と同様にしてノジュール評価を行った。その結果、スパッタ放電中に異常放電が観察され、ノジュール試験後にはターゲットの表面上に大量のノジュールと気泡の空隙が観察された。
Using this sintered target, a thin film was produced in the same manner as in Example 1 (2). The specific resistance was 3.3 × 10 −2 Ωcm. The thin film was colored brown and its light transmittance was 65%.
Moreover, nodule evaluation was performed on the target in the same manner as in Example 1 (3). As a result, abnormal discharge was observed during the sputter discharge, and a large amount of nodules and bubble voids were observed on the surface of the target after the nodule test.
比較例6
 酸化スズ300gと酸化ガリウム300gを使用した他は、実施例1と同様にして焼結体を得た。
 得られた焼結体のX線回折結果を図8に示す。
Comparative Example 6
A sintered body was obtained in the same manner as in Example 1 except that 300 g of tin oxide and 300 g of gallium oxide were used.
The X-ray diffraction result of the obtained sintered body is shown in FIG.
 この焼結体の相対密度は85%であった。また、バルク抵抗は高すぎて測定不能であった。
 さらに、実施例1と同様にしてワイブル係数(m値)を求めたところ8.8であった。
The relative density of this sintered body was 85%. The bulk resistance was too high to be measured.
Further, when the Weibull coefficient (m value) was determined in the same manner as in Example 1, it was 8.8.
 この焼結体からなるターゲットを用いて、実施例1(3)と同様にしてノジュール評価を行った。その結果、安定した放電ができずスパッタリングできなかった。 Using the target made of this sintered body, nodule evaluation was performed in the same manner as in Example 1 (3). As a result, stable discharge could not be performed and sputtering could not be performed.
比較例7
 酸化スズ400gと酸化ガリウム100gを使用した他は、実施例1と同様にして焼結体を得た。
 得られた焼結体のX線回折結果を図9に示す。
Comparative Example 7
A sintered body was obtained in the same manner as in Example 1 except that 400 g of tin oxide and 100 g of gallium oxide were used.
The X-ray diffraction result of the obtained sintered body is shown in FIG.
 この焼結体の相対密度は89%であった。また、バルク抵抗は高すぎて測定不能であった。
 さらに、実施例1と同様にしてワイブル係数(m値)を求めたところ9.5であった。
The relative density of this sintered body was 89%. The bulk resistance was too high to be measured.
Further, when the Weibull coefficient (m value) was determined in the same manner as in Example 1, it was 9.5.
 この焼結体からなるターゲットを用いて、実施例1(3)と同様にしてノジュール評価を行った。その結果、安定した放電ができずスパッタリングできなかった。
 表1に上述した実施例及び比較例で作製した酸化物焼結体の原料及び物性を示し、表2に酸化物膜の物性及び成膜性の評価を示す。
Using the target made of this sintered body, nodule evaluation was performed in the same manner as in Example 1 (3). As a result, stable discharge could not be performed and sputtering could not be performed.
Table 1 shows the raw materials and physical properties of the oxide sintered bodies produced in the examples and comparative examples described above, and Table 2 shows the evaluation of the physical properties and film forming properties of the oxide films.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の酸化物焼結体により、ノジュールやアーキング等を発生しないスパッタリングターゲットが作製できる。
 本発明のスパッタリングターゲットは、酸化物膜の形成材料として好適である。例えば、薄膜トランジスタの半導体層、酸化物半導体の形成、透明電極等に使用できる。
 この明細書に記載の文献の内容を全てここに援用する。
With the oxide sintered body of the present invention, a sputtering target that does not generate nodules or arcing can be produced.
The sputtering target of the present invention is suitable as a material for forming an oxide film. For example, it can be used for semiconductor layers of thin film transistors, formation of oxide semiconductors, transparent electrodes, and the like.
The entire contents of the documents described in this specification are incorporated herein by reference.

Claims (10)

  1.  GaSnO、GaSn16及びGaSn12から選択される1又は2以上のスズ酸ガリウム化合物相と、酸化スズ相を含有し、
     亜鉛、アルミニウム、珪素、インジウム、ゲルマニウム、チタン、ニオブ、タンタル、タングステン、モリブデン及びアンチモンから選択される少なくとも1種の元素が分散している酸化物焼結体。
    Ga 4 containing SnO 8, Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 and one or more stannate gallium compound phase selected from a tin oxide phase,
    An oxide sintered body in which at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum, and antimony is dispersed.
  2.  ガリウム元素及びスズ元素の合計に対するガリウム元素の比率[Ga/(Ga+Sn)]が、原子比で0.01~0.80である請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein the ratio [Ga / (Ga + Sn)] of the gallium element to the total of the gallium element and the tin element is 0.01 to 0.80 in atomic ratio.
  3.  ニオブ、タンタル及びアンチモンから選択される少なくとも1種の元素が分散している請求項1又は2に記載の酸化物焼結体。 The oxide sintered body according to claim 1 or 2, wherein at least one element selected from niobium, tantalum and antimony is dispersed.
  4.  前記酸化スズ相中に、亜鉛、アルミニウム、珪素、インジウム、ゲルマニウム、チタン、ニオブ、タンタル、タングステン、モリブデン及びアンチモンから選択される少なくとも1種の元素が固溶置換している請求項1又は2に記載の酸化物焼結体。 The at least one element selected from zinc, aluminum, silicon, indium, germanium, titanium, niobium, tantalum, tungsten, molybdenum, and antimony is solid solution substituted in the tin oxide phase. The oxide sintered body described.
  5.  前記固溶置換した元素の量が、全金属元素の総量に対し、原子比で0.08以下である請求項4に記載の酸化物焼結体。 The oxide sintered body according to claim 4, wherein the amount of the element substituted by solid solution is 0.08 or less in atomic ratio with respect to the total amount of all metal elements.
  6.  前記酸化スズ相又はスズ酸ガリウム化合物相の平均粒径が5μm以下である請求項1~5のいずれかに記載の酸化物焼結体。 6. The oxide sintered body according to claim 1, wherein an average particle diameter of the tin oxide phase or the gallium stannate compound phase is 5 μm or less.
  7.  ガリウム化合物とスズ化合物とを混合する工程と、
     前記工程で得られた混合物を成形して成形物を得る工程と、
     前記工程で得られた成形物を1200~1550℃で焼結する工程と、を含む
     請求項1~6のいずれかに記載の酸化物焼結体の製造方法。
    Mixing a gallium compound and a tin compound;
    Molding the mixture obtained in the above step to obtain a molded product;
    The method for producing an oxide sintered body according to any one of claims 1 to 6, further comprising a step of sintering the molded product obtained in the step at 1200 to 1550 ° C.
  8.  前記焼結する工程において、0.5℃/min以上の昇温速度で焼結温度にする請求項7に記載の酸化物焼結体の製造方法。 The method for producing an oxide sintered body according to claim 7, wherein in the sintering step, the sintering temperature is set to a sintering temperature of 0.5 ° C / min or more.
  9.  請求項1~7のいずれかに記載の酸化物焼結体からなるターゲットを用い、スパッタリング法又はイオンプレーティング法で成膜して得られる酸化物膜。 An oxide film obtained by forming a film by a sputtering method or an ion plating method using the target comprising the oxide sintered body according to any one of claims 1 to 7.
  10.  スパッタリング法により形成した請求項9に記載の酸化物膜。 The oxide film according to claim 9 formed by a sputtering method.
PCT/JP2009/060430 2008-08-11 2009-06-08 Gallium oxide-tin oxide based oxide sintered body and oxide film WO2010018707A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010524680A JPWO2010018707A1 (en) 2008-08-11 2009-06-08 Gallium oxide-tin oxide based oxide sintered body and oxide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-207274 2008-08-11
JP2008207274 2008-08-11

Publications (1)

Publication Number Publication Date
WO2010018707A1 true WO2010018707A1 (en) 2010-02-18

Family

ID=41668854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060430 WO2010018707A1 (en) 2008-08-11 2009-06-08 Gallium oxide-tin oxide based oxide sintered body and oxide film

Country Status (3)

Country Link
JP (1) JPWO2010018707A1 (en)
TW (1) TW201006781A (en)
WO (1) WO2010018707A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124408A1 (en) * 2011-03-14 2012-09-20 富士フイルム株式会社 Method for producing oxide semiconductor thin film
JP2012211065A (en) * 2011-03-22 2012-11-01 Idemitsu Kosan Co Ltd Sputtering target, oxide semiconductor thin film, and methods for manufacturing these
CN102770577A (en) * 2010-02-24 2012-11-07 出光兴产株式会社 In-Ga-Sn oxide sintered body, target, oxide semiconductor film, and semiconductor element
JP2013040394A (en) * 2011-08-19 2013-02-28 Jx Nippon Mining & Metals Corp Oxide sintered compact target for sputtering and manufacturing method of the same, and forming method of thin film using the target and thin film forming method
WO2013065337A1 (en) * 2011-11-04 2013-05-10 株式会社フェローテックセラミックス Sputtering target and method for producing same
KR20190114751A (en) * 2018-03-30 2019-10-10 제이엑스금속주식회사 Sputtering target and manufacturing method thereof
CN112723875A (en) * 2021-02-03 2021-04-30 郑州大学 Gallium oxide doped tin oxide ceramic target material and preparation method thereof
CN115572167A (en) * 2022-10-18 2023-01-06 长沙壹纳光电材料有限公司 IWZO target material and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026954A1 (en) * 2017-08-01 2019-02-07 出光興産株式会社 Sputtering target, oxide semiconductor thin film, thin film transistor, and electronic device
WO2019097959A1 (en) * 2017-11-15 2019-05-23 三井金属鉱業株式会社 Oxide sintered body and sputtering target

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222410A (en) * 1992-02-17 1993-08-31 Dowa Mining Co Ltd Production of high-purity ito sintered body
JPH0935535A (en) * 1995-07-25 1997-02-07 Sumitomo Metal Mining Co Ltd Zno-sno2 transparent conductive film
JP2000077358A (en) * 1998-08-27 2000-03-14 Asahi Glass Co Ltd Transparent conductive film, sputtering target and basic body with transparent conductive film
JP2003100154A (en) * 2001-09-26 2003-04-04 Tosoh Corp Transparent conductive film, its manufacturing method and its application
JP2005076024A (en) * 2003-08-29 2005-03-24 Uchitsugu Minami Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element
WO2007058232A1 (en) * 2005-11-18 2007-05-24 Idemitsu Kosan Co., Ltd. Semiconductor thin film and method for manufacturing same, and thin film transistor
JP2007277075A (en) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222410A (en) * 1992-02-17 1993-08-31 Dowa Mining Co Ltd Production of high-purity ito sintered body
JPH0935535A (en) * 1995-07-25 1997-02-07 Sumitomo Metal Mining Co Ltd Zno-sno2 transparent conductive film
JP2000077358A (en) * 1998-08-27 2000-03-14 Asahi Glass Co Ltd Transparent conductive film, sputtering target and basic body with transparent conductive film
JP2003100154A (en) * 2001-09-26 2003-04-04 Tosoh Corp Transparent conductive film, its manufacturing method and its application
JP2005076024A (en) * 2003-08-29 2005-03-24 Uchitsugu Minami Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element
WO2007058232A1 (en) * 2005-11-18 2007-05-24 Idemitsu Kosan Co., Ltd. Semiconductor thin film and method for manufacturing same, and thin film transistor
JP2007277075A (en) * 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EDWARDS D D: "Subsolidus Phase Relations in the Ga203-In203-Sn02 System.", J. AM. CERAM. SOC., vol. 81, no. 12, December 1988 (1988-12-01), pages 3285 - 3292 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999208B2 (en) 2010-02-24 2015-04-07 Idemitsu Kosan Co., Ltd. In-Ga-Sn oxide sinter, target, oxide semiconductor film, and semiconductor element
CN102770577A (en) * 2010-02-24 2012-11-07 出光兴产株式会社 In-Ga-Sn oxide sintered body, target, oxide semiconductor film, and semiconductor element
CN105924137B (en) * 2010-02-24 2020-02-18 出光兴产株式会社 In-Ga-Sn oxide sintered body, target, oxide semiconductor film, and semiconductor element
CN105924137A (en) * 2010-02-24 2016-09-07 出光兴产株式会社 In-Ga-Sn oxide sintered body, target, oxide semiconductor film, and semiconductor element
JP2012191132A (en) * 2011-03-14 2012-10-04 Fujifilm Corp Method of manufacturing oxide semiconductor thin film, field-effect transistor, display device, and sensor
WO2012124408A1 (en) * 2011-03-14 2012-09-20 富士フイルム株式会社 Method for producing oxide semiconductor thin film
JP2012211065A (en) * 2011-03-22 2012-11-01 Idemitsu Kosan Co Ltd Sputtering target, oxide semiconductor thin film, and methods for manufacturing these
JP2013040394A (en) * 2011-08-19 2013-02-28 Jx Nippon Mining & Metals Corp Oxide sintered compact target for sputtering and manufacturing method of the same, and forming method of thin film using the target and thin film forming method
WO2013065337A1 (en) * 2011-11-04 2013-05-10 株式会社フェローテックセラミックス Sputtering target and method for producing same
CN103917688A (en) * 2011-11-04 2014-07-09 飞罗得陶瓷股份有限公司 Sputtering target and method for producing same
JPWO2013065337A1 (en) * 2011-11-04 2015-04-02 株式会社フェローテックセラミックス Sputtering target and manufacturing method thereof
CN103917688B (en) * 2011-11-04 2016-06-29 飞罗得陶瓷股份有限公司 Sputtering target material and manufacture method thereof
US10504706B2 (en) 2011-11-04 2019-12-10 Ferrotec Ceramics Corporation Sputtering target and method for producing the same
KR102197875B1 (en) * 2018-03-30 2021-01-04 제이엑스금속주식회사 Sputtering target and manufacturing method thereof
KR20200140777A (en) 2018-03-30 2020-12-16 제이엑스금속주식회사 Sputtering target and manufacturing method thereof
KR20190114751A (en) * 2018-03-30 2019-10-10 제이엑스금속주식회사 Sputtering target and manufacturing method thereof
KR20210082410A (en) 2018-03-30 2021-07-05 제이엑스금속주식회사 Sputtering target and manufacturing method thereof
CN114574824A (en) * 2018-03-30 2022-06-03 Jx金属株式会社 Sputtering target member and method for producing same
CN114592175A (en) * 2018-03-30 2022-06-07 Jx金属株式会社 Sputtering target member and method for producing same
CN112723875A (en) * 2021-02-03 2021-04-30 郑州大学 Gallium oxide doped tin oxide ceramic target material and preparation method thereof
CN112723875B (en) * 2021-02-03 2023-01-20 郑州大学 Gallium oxide doped tin oxide ceramic target material and preparation method thereof
CN115572167A (en) * 2022-10-18 2023-01-06 长沙壹纳光电材料有限公司 IWZO target material and preparation method and application thereof

Also Published As

Publication number Publication date
TW201006781A (en) 2010-02-16
JPWO2010018707A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
WO2010018707A1 (en) Gallium oxide-tin oxide based oxide sintered body and oxide film
US9202603B2 (en) Sputtering target, transparent conductive film and transparent electrode
US8920683B2 (en) Sputtering target, transparent conductive film and transparent electrode
JP4933756B2 (en) Sputtering target
TWI519502B (en) Zn-sn-o type oxide sintered compact and method for manufacturing same
US8637124B2 (en) Oxide material and sputtering target
TWI542566B (en) Zn-Si-O based oxide sintered body, manufacturing method thereof and transparent conductive film
EP2301904B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
WO2011016388A1 (en) Oxide sinter, method for producing same, target and transparent conductive film
JP4947942B2 (en) Sputtering target
WO2012105323A1 (en) Oxide sintered body and tablets obtained by processing same
JP2010070418A (en) SnO2-In2O3-BASED OXIDE SINTERED COMPACT AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM
WO2014021374A1 (en) Oxide sintered body and tablet obtained by processing same
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP2012148937A (en) Electrically conductive composite oxide, zinc oxide type sintered body, method for manufacturing it and target
JP2012126619A (en) Zinc oxide sintered compact and method for producing the same
TW201522689A (en) Sputtering target and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806603

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010524680

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806603

Country of ref document: EP

Kind code of ref document: A1