KR20200140777A - Sputtering target and manufacturing method thereof - Google Patents

Sputtering target and manufacturing method thereof Download PDF

Info

Publication number
KR20200140777A
KR20200140777A KR1020200171312A KR20200171312A KR20200140777A KR 20200140777 A KR20200140777 A KR 20200140777A KR 1020200171312 A KR1020200171312 A KR 1020200171312A KR 20200171312 A KR20200171312 A KR 20200171312A KR 20200140777 A KR20200140777 A KR 20200140777A
Authority
KR
South Korea
Prior art keywords
sputtering target
target member
powder
sno
peak area
Prior art date
Application number
KR1020200171312A
Other languages
Korean (ko)
Inventor
코스케 스이토
Original Assignee
제이엑스금속주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스금속주식회사 filed Critical 제이엑스금속주식회사
Publication of KR20200140777A publication Critical patent/KR20200140777A/en
Priority to KR1020210082771A priority Critical patent/KR102341468B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

Provided is an effective method for lowering bulk resistivity (equivalent to volume resistivity) in a Ga-Sn-O-based sputtering target member containing high concentration of Ga. The sputtering target member contains Ga, Sn, and O, the remaining is composed of unavoidable impurities, the atomic ratio of Ga and Sn satisfies 0.33 <= Ga/(Ga+Sn) <= 0.75, and the ratio (I_Sn/I) of the peak area (I_Sn) of a SnO_2 phase to the total peak area (I) in the powder X-ray diffraction measurement is 0.02 or more.

Description

스퍼터링 타깃 부재 및 그 제조 방법{SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF}A sputtering target member and its manufacturing method TECHNICAL FIELD [SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF}

본 발명은 Ga-Sn-O계 스퍼터링 타깃 부재 및 그 제조 방법에 관한 것이다.The present invention relates to a Ga-Sn-O-based sputtering target member and a manufacturing method thereof.

종래, 박막 트랜지스터(TFT)의 채널층에 사용되는 반도체층으로서 다결정 실리콘막 및 비정질 실리콘막과 같은 실리콘계 재료가 사용되어 왔다. 그러나 실리콘계 재료는 가시광 영역에서 흡수하기 때문에, 광 입사에 의한 캐리어 발생으로 박막 트랜지스터가 오동작을 일으킨다는 문제가 있다. 그 방지책으로써 금속 등의 광 차단층을 마련하고 있지만, 개구율이 감소한다는 문제가 있다. 또, 화면의 휘도를 유지하기 위해서 백 라이트의 고휘도화가 필요하고, 소비 전력이 증대하는 등의 결점이 있었다.Conventionally, a silicon-based material such as a polycrystalline silicon film and an amorphous silicon film has been used as a semiconductor layer used for a channel layer of a thin film transistor (TFT). However, since the silicon-based material absorbs in the visible light region, there is a problem in that the thin film transistor malfunctions due to the generation of carriers due to incident light. As a preventive measure, a light blocking layer such as metal is provided, but there is a problem that the aperture ratio decreases. In addition, in order to maintain the brightness of the screen, it is necessary to increase the brightness of the backlight, and there are disadvantages such as an increase in power consumption.

여기서, 최근에는, 실리콘계 재료를 대신해서 투명 산화물 반도체를 이용한 박막 트랜지스터를 개발하고 있다. 그 대표적인 것이 In-Ga-Zn-O계(IGZO) 재료이다(특허문헌 1). 그러나 IGZO는 다성분계이기 때문에, 각 원료 분말의 성질 및 상태, 성분의 배합 및 소결 조건의 최적화가 어렵다. 그렇기 때문에, IGZO는 성질이 변동되기 쉽고, 스퍼터링 시에 결절 및 이상 방전을 일으키는 점이 문제로 여겨졌다. 또, IGZO는 희귀 금속을 포함하기 때문에 비용을 인상하는 요인이 되고, 또 장래에 공급이 부족하게 될 우려가 있다.Here, in recent years, a thin film transistor using a transparent oxide semiconductor instead of a silicon-based material has been developed. A typical example is an In-Ga-Zn-O-based (IGZO) material (Patent Document 1). However, since IGZO is a multi-component system, it is difficult to optimize the properties and conditions of each raw material powder, the composition of the components, and the sintering conditions. Therefore, IGZO is considered to be a problem in that the properties of IGZO are liable to fluctuate, and nodules and abnormal discharge are caused during sputtering. In addition, since IGZO contains rare metals, it is a factor that raises the cost, and there is a fear that the supply will be short in the future.

이러한 배경에서, 구성 원소가 적은 Ga-Sn-O계(GTO) 산화물 타깃이 검토되고 있다(특허문헌 2∼3).Against this background, Ga-Sn-O-based (GTO) oxide targets with few constituent elements have been studied (Patent Documents 2 to 3).

국제공개 제2005/088726호International Publication No. 2005/088726 국제공개 제2010/018707호International Publication No. 2010/018707 일본 공개특허공보 특개2013-40394호Japanese Unexamined Patent Application Publication No. 2013-40394

그러나 특허문헌 2에 기재한 산화물 소결체에서는, 소결체의 강도를 높이고 벌크 저항을 저감하기 위해서 주석산 갈륨 화합물상 및 산화 주석상에 더하여, 추가로, 아연, 알루미늄, 규소, 인듐, 게르마늄, 티탄, 니오브, 탄탈, 텅스텐, 몰리브덴 및 안티몬으로부터 선택되는 적어도 1종의 원소가 분산되어 있을 것이 요구되고 있다. 그리고 특허문헌 2에서는, 산화 갈륨과 산화 주석만 원료로 한 경우, 산화 갈륨 농도가 높으면 벌크 저항이 측정 불가능한 정도로 높아진 것이 나타나 있다(비교예 1, 4, 6 및 7).However, in the oxide sintered body described in Patent Document 2, in addition to the gallium stannate compound phase and the tin oxide phase, in order to increase the strength of the sintered body and reduce the bulk resistance, zinc, aluminum, silicon, indium, germanium, titanium, niobium, At least one element selected from tantalum, tungsten, molybdenum, and antimony is required to be dispersed. In addition, in Patent Document 2, when only gallium oxide and tin oxide are used as raw materials, it is shown that when the gallium oxide concentration is high, the bulk resistance is increased to a degree that cannot be measured (Comparative Examples 1, 4, 6, and 7).

또, 특허문헌 3에는, 갈륨(Ga), 주석(Sn), 산소(O) 및 불가피한 불순물로 이루어지는 스퍼터링용 산화물 소결체 타깃이 기재되어 있지만, Ga2O3의 농도는 20mol% 이하인 것을 요건으로 하고 있다. 특허문헌 3에는, Ga2O3의 농도를 30mol%로 한 경우, 측정 불능일 정도로 벌크 저항률이 높아진 점이 나타나 있다(비교예 4 및 5).In addition, Patent Document 3 describes a target of an oxide sintered body for sputtering composed of gallium (Ga), tin (Sn), oxygen (O) and inevitable impurities, but the concentration of Ga 2 O 3 is required to be 20 mol% or less. have. In Patent Document 3, when the concentration of Ga 2 O 3 was set to 30 mol%, the bulk resistivity increased so as to be impossible to measure (Comparative Examples 4 and 5).

이와 같이, 고농도의 Ga를 함유하는 Ga-Sn-O계 스퍼터링 타깃 부재에서는 DC 스퍼터링에 적합한 벌크 저항률이 낮은 것은 얻지 못했다. 본 발명은 상기 사정에 비추어 창작된 것으로, 일 실시형태에서 고농도의 Ga를 함유하는 Ga-Sn-O계 스퍼터링 타깃 부재에서, 벌크 저항률(「체적 저항률」과 같다.)을 낮추는데 유효한 수단을 제공하는 것을 하나의 과제로 한다.As described above, in the Ga-Sn-O-based sputtering target member containing a high concentration of Ga, a low bulk resistivity suitable for DC sputtering was not obtained. The present invention was created in view of the above circumstances, and in one embodiment, in a Ga-Sn-O-based sputtering target member containing a high concentration of Ga, it provides an effective means for lowering the bulk resistivity (same as "volume resistivity"). Make it a task.

본 발명자는 고농도의 Ga를 함유하는 Ga-Sn-O계 스퍼터링 타깃 부재의 결정 구조를 분말 XRD로 해석하였는데, Ga 및 Sn의 복합 산화물상을 많이 볼 수 있는 한편, 산화 주석상의 생성량이 매우 적다는 것을 발견했다. 그리고 이 지견을 기초로 하여 예의 검토를 거듭한 결과, Ga-Sn-O계 스퍼터링 타깃 부재에서 Ga 및 Sn의 복합 산화물상의 비율을 낮추고 산화 주석상의 비율을 높이면, 전체 조성이 같은 경우에도 체적 저항률이 의미 있게 저하한다는 것을 발견했다.The present inventors analyzed the crystal structure of a Ga-Sn-O-based sputtering target member containing a high concentration of Ga by powder XRD. While a large number of complex oxide phases of Ga and Sn can be seen, the amount of tin oxide phase is very small. Found something. And, based on this knowledge, as a result of repeated careful examination, if the ratio of the complex oxide phase of Ga and Sn in the Ga-Sn-O-based sputtering target member is lowered and the ratio of the tin oxide phase is increased, the volume resistivity is increased even when the total composition is the same. I found it to degrade significantly.

본 발명은 상기 지견을 바탕으로 완성한 것으로, 이하와 같이 예시된다.The present invention has been completed based on the above findings, and is illustrated as follows.

[1][One]

Ga, Sn 및 O를 함유하고, 잔부가 불가피한 불순물로 구성되며, Ga 및 Sn의 원자비가 0.33≤Ga/(Ga+Sn)≤0.75를 만족시키고, 분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 SnO2상의 피크 면적(ISn)의 비(ISn/I)가 0.02 이상인 스퍼터링 타깃 부재.It contains Ga, Sn and O, and the remainder is composed of inevitable impurities, the atomic ratio of Ga and Sn satisfies 0.33≤Ga/(Ga+Sn)≤0.75, and the total peak area (I) in powder X-ray diffraction measurement A sputtering target member having a ratio (I Sn /I) of the peak area (I Sn ) on SnO 2 to that of 0.02 or more.

[2][2]

분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 SnO2상의 피크 면적(ISn)의 비(ISn/I)가 0.1 이상인 [1]에 기재한 스퍼터링 타깃 부재.The sputtering target member according to [1], wherein the ratio (I Sn /I) of the peak area (I Sn ) of the SnO 2 phase to the total peak area (I) in the powder X-ray diffraction measurement is 0.1 or more.

[3][3]

분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 Ga4SnO8상의 피크 면적(IGaSn)의 비(IGaSn/I)가 0.3 이하인 [1] 또는 [2]에 기재한 스퍼터링 타깃 부재.The sputtering target member described in [1] or [2] in which the ratio (I GaSn /I) of the peak area (I GaSn ) on the Ga 4 SnO 8 phase to the total peak area (I) in powder X-ray diffraction measurement is 0.3 or less .

[4][4]

분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 Ga4SnO8상의 피크 면적(IGaSn)의 비(IGaSn/I)가 0.25 이하인 [3]에 기재한 스퍼터링 타깃 부재.The sputtering target member according to [3], wherein the ratio (I GaSn /I) of the peak area (I GaSn ) of the Ga 4 SnO 8 phase to the total peak area (I) in the powder X-ray diffraction measurement is 0.25 or less.

[5][5]

체적 저항률이 50,000Ω·cm 이하인 [1]∼[4]의 어느 한 항에 기재한 스퍼터링 타깃 부재.The sputtering target member according to any one of [1] to [4], having a volume resistivity of 50,000 Ω·cm or less.

[6][6]

상대 밀도가 94% 이상인 [1]∼[5]의 어느 한 항에 기재한 스퍼터링 타깃 부재.The sputtering target member according to any one of [1] to [5] having a relative density of 94% or more.

[7][7]

혼합 분말 중의 Ga2O3 분말이 20mol% 이상 60mol% 이하의 몰 농도가 되도록, Ga2O3 분말 및 SnO2 분말을 혼합 및 분쇄해서 혼합 분말을 준비하는 공정 1과,By the step of, Ga 2 O 3 powder and the SnO 2 powder so that the Ga 2 O 3 powder in the mixed powder, the molar concentration of less than 60mol% 20mol% or more mixing and grinding the mixed powder prepared, and 1,

상기 혼합 분말을 산소 함유 분위기하에서, 1500℃ 이상의 가열 온도로 10시간 이상 소결하여 Ga-Sn-O 복합 산화물상을 함유하는 소결체를 얻는 공정 2와,Step 2 of sintering the mixed powder in an oxygen-containing atmosphere at a heating temperature of 1500°C or higher for 10 hours or more to obtain a sintered body containing a Ga-Sn-O composite oxide phase; and

상기 소결체를 질소 함유 분위기하에서, 1000℃∼1400℃의 가열 온도로 10시간 이상 어닐링(annealing) 하여 Ga-Sn-O 복합 산화물상을 분해하고, SnO2상을 생성하는 공정 3,Step 3 of decomposing the Ga-Sn-O composite oxide phase by annealing the sintered body at a heating temperature of 1000° C. to 1400° C. for 10 hours or more in a nitrogen-containing atmosphere and generating a SnO 2 phase,

을 포함하는 [1]∼[6]의 어느 한 항에 기재한 스퍼터링 타깃 부재의 제조 방법.The method for producing a sputtering target member according to any one of [1] to [6], including.

[8][8]

공정 2에서의 가열 온도로부터 공정 3에서의 가열 온도로 저하시킴에 따라서, 공정 2와 공정 3을 연속으로 실시하는 [7]에 기재한 스퍼터링 타깃 부재의 제조 방법.The method for manufacturing a sputtering target member according to [7] in which Steps 2 and 3 are successively performed by lowering from the heating temperature in Step 2 to the heating temperature in Step 3.

[9][9]

공정 3은 1200℃∼1400℃의 가열 온도로 어닐링 하는 [7] 또는 [8]에 기재한 스퍼터링 타깃 부재의 제조 방법.Step 3 is a method for producing a sputtering target member according to [7] or [8], which is annealed at a heating temperature of 1200°C to 1400°C.

[10][10]

[1]∼[6]의 어느 한 항에 기재한 스퍼터링 타깃 부재를 스퍼터 하는 것을 포함하는 성막 방법.A film forming method comprising sputtering the sputtering target member according to any one of [1] to [6].

본 발명의 일 실시형태에 의하면, 갈륨 농도가 높은데도 불구하고, 낮은 체적 저항률의 Ga-Sn-O계 스퍼터링 타깃 부재를 얻을 수 있게 된다. 또, 본 발명의 일 실시형태에 의하면, DC 스퍼터링에 적합한 높은 갈륨 농도의 Ga-Sn-O계 스퍼터링 타깃을 제공할 수가 있다.According to an embodiment of the present invention, despite a high gallium concentration, a Ga-Sn-O-based sputtering target member having a low volume resistivity can be obtained. Further, according to one embodiment of the present invention, it is possible to provide a Ga-Sn-O-based sputtering target having a high gallium concentration suitable for DC sputtering.

(1. 조성)(1. Composition)

본 발명과 관련되는 스퍼터링 타깃 부재는 일 실시형태에서, Ga, Sn 및 O를 함유하고, 잔부가 불가피한 불순물로 구성된다. 불가피한 불순물이란, 대개 금속제품에서 원료 중에 존재하거나, 제조 공정에서 불가피하게 혼입하는 것으로, 본래 불필요한 것이지만, 미량이고 금속제품의 특성에 영향을 미치지 않기 때문에 허용되는 불순물이다. 본 발명과 관련되는 스퍼터링 타깃 부재에서 불가피한 불순물의 총량은 일반적으로는 5000질량ppm 이하이고, 전형적으로는 3000질량ppm 이하이며, 보다 전형적으로는 2000질량ppm 이하이다.The sputtering target member according to the present invention, in one embodiment, contains Ga, Sn and O, and the remainder is constituted by inevitable impurities. Inevitable impurities are usually present in raw materials in metal products or inevitably mixed in the manufacturing process, and are inherently unnecessary, but are allowed impurities because they are in trace amounts and do not affect the properties of the metal products. The total amount of inevitable impurities in the sputtering target member according to the present invention is generally 5000 mass ppm or less, typically 3000 mass ppm or less, and more typically 2000 mass ppm or less.

본 발명과 관련되는 스퍼터링 타깃 부재는 일 실시형태에서, Ga 및 Sn의 원자비가 0.33≤Ga/(Ga+Sn)≤0.75를 만족시킨다. 0.33≤Ga/(Ga+Sn)로 한 것은, 본 발명은 일 실시형태에서 고농도의 Ga를 함유하는 Ga-Sn-O계 스퍼터링 타깃 부재를 제공하는 것이 목적이기 때문이다. 0.4≤Ga/(Ga+Sn)로 하는 것도 가능하고, 0.5≤Ga/(Ga+Sn)로 하는 것도 가능하다. 또, Ga/(Ga+Sn)≤0.75로 한 것은 낮은 체적 저항률의 스퍼터링 타깃을 얻기 쉽다는 이유 때문이다. 체적 저항률을 낮춘다는 관점에서는, 바람직하게는 Ga/(Ga+Sn)≤0.7이고, 보다 바람직하게는 Ga/(Ga+Sn)≤0.5이다.The sputtering target member according to the present invention satisfies the atomic ratio of Ga and Sn satisfies 0.33≦Ga/(Ga+Sn)≦0.75 in one embodiment. 0.33≦Ga/(Ga+Sn) is because the object of the present invention is to provide a Ga-Sn-O based sputtering target member containing a high concentration of Ga in one embodiment. It is also possible to set it as 0.4≦Ga/(Ga+Sn), and it is also possible to set it as 0.5≦Ga/(Ga+Sn). In addition, the reason why Ga/(Ga+Sn)≦0.75 is set is the reason that it is easy to obtain a sputtering target with a low volume resistivity. From the viewpoint of lowering the volume resistivity, preferably Ga/(Ga+Sn)≦0.7, and more preferably Ga/(Ga+Sn)≦0.5.

본 발명과 관련되는 스퍼터링 타깃 부재의 일 실시형태에서는, Ga 및 Sn은 산화물의 형태로 존재할 수가 있다. 산화물로서는 산화 갈륨(Ga2O3), 산화 주석(SnO2), 및 Ga 및 Sn의 복합 산화물(예: Ga4SnO8, Ga4Sn5O16 및 Ga3Sn4O12)이 예시된다.In one embodiment of the sputtering target member according to the present invention, Ga and Sn may exist in the form of an oxide. Examples of oxides include gallium oxide (Ga 2 O 3 ), tin oxide (SnO 2 ), and complex oxides of Ga and Sn (eg, Ga 4 SnO 8 , Ga 4 Sn 5 O 16 and Ga 3 Sn 4 O 12 ). .

(2. XRD 측정)(2. XRD measurement)

스퍼터링 타깃 부재의 체적 저항률을 효과적으로 낮추기 위해서는, 분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 SnO2상의 피크 면적(ISn)의 비(ISn/I)가 0.02 이상인 것이 바람직하고, 0.05 이상인 것이 보다 바람직하며, 0.10 이상인 것이 더욱 바람직하고, 0.15 이상인 것이 더욱 바람직하며, 0.20 이상인 것이 더욱 바람직하다. ISn/I의 상한은 특별히 설정되지 않지만, 일반적으로는 0.40 이하이고, 전형적으로는 0.30 이하이다.In order to effectively lower the volume resistivity of the sputtering target member, the ratio (I Sn /I) of the peak area (I Sn ) of the SnO 2 phase to the total peak area (I) in the powder X-ray diffraction measurement is preferably 0.02 or more, It is more preferably 0.05 or more, even more preferably 0.10 or more, still more preferably 0.15 or more, and even more preferably 0.20 or more. The upper limit of I Sn /I is not particularly set, but is generally 0.40 or less, and typically 0.30 or less.

스퍼터링 타깃 부재의 체적 저항률을 효과적으로 낮추기 위해서는, 분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 Ga4SnO8상의 피크 면적(IGaSn)의 비(IGaSn/I)가 0.30 이하인 것이 바람직하고, 0.25 이하인 것이 보다 바람직하며, 0.20 이하인 것이 더욱 바람직하다. IGaSn/I의 하한은 특별히 설정되지 않지만, 일반적으로는 0.05 이상이고, 전형적으로는 0.10 이상이다.In order to effectively lower the volume resistivity of the sputtering target member, it is preferable that the ratio (I GaSn /I) of the peak area (I GaSn ) of the Ga 4 SnO 8 phase to the total peak area (I) in the powder X-ray diffraction measurement is 0.30 or less. And, it is more preferable that it is 0.25 or less, and it is still more preferable that it is 0.20 or less. The lower limit of I GaSn /I is not particularly set, but is generally 0.05 or more, and typically 0.10 or more.

XRD 측정은 이하의 순서대로 실시한다. 측정 대상이 되는 스퍼터링 타깃 부재를 분쇄해서 분말 형상으로 하고, 체눈 크기 100㎛의 체로 체질해서 분리한 체 아래의 분말을 압분해서 측정 샘플로 하고, 분말 X선 회절법을 이용하여 관 전압:40kV, 관 전류:30mA, 스캔 속도:5˚/min, 스텝:0.02˚의 조건으로 가로축이 2θ세로축이 X선 강도(cps)인 X선 회절 차트를 얻는다. 그 다음, 얻어진 X선 회절 차트에 Kα2 제거, Sonneveld-Visser법에 따라서 백그라운드 제거의 데이터 처리를 실시한다.XRD measurement is carried out in the following order. The sputtering target member to be measured is pulverized to form a powder, and the powder under the sieve separated by sieving with a sieve having a sieve size of 100 µm is pulverized to obtain a measurement sample, and tube voltage: 40 kV using powder X-ray diffraction method, An X-ray diffraction chart in which the horizontal axis is 2θ and the vertical axis is X-ray intensity (cps) is obtained under the conditions of tube current: 30 mA, scan rate: 5°/min, and step: 0.02°. Then, the obtained X-ray diffraction chart is subjected to data processing of Kα2 removal and background removal according to the Sonneveld-Visser method.

그리고 이하의 기준에 따라서, Isn, IGaSn 및 I를 구하고, ISn/I 및 IGaSn/I를 산출한다.And according to the following criteria, I sn , I GaSn and I are obtained, and I Sn /I and I GaSn /I are calculated.

SnO2상의 피크 면적(Isn)은 2θ=26.2˚∼26.9˚, 33.5˚∼44.2˚, 51.4˚∼52.0˚의 각각의 범위에서의 피크 면적의 합계를 나타낸다.The peak area (I sn ) of SnO 2 represents the sum of the peak areas in the respective ranges of 2θ = 26.2° to 26.9°, 33.5° to 44.2°, and 51.4° to 52.0°.

Ga4SnO8상의 피크 면적(IGaSn)은 2θ=14.2˚∼14.8˚, 25.1˚∼25.8˚, 34.5˚∼35.0˚, 52.9˚∼53.5˚의 각각의 범위에서의 피크 면적의 합계를 나타낸다.The peak area (I GaSn ) of Ga 4 SnO 8 represents the sum of the peak areas in the respective ranges of 2θ=14.2° to 14.8°, 25.1° to 25.8°, 34.5° to 35.0°, and 52.9° to 53.5°.

전체 피크 면적(I)은 2θ=10˚∼60˚의 범위에서의 피크 면적의 합계를 나타낸다.The total peak area (I) represents the sum of the peak areas in the range of 2θ = 10° to 60°.

각 피크 면적은 상기 각도 범위의 각 피크의 최대 피크 강도(Imax)(백그라운드 제거 후의 cps가 0인 곳부터 최대 피크 강도까지의 높이(단위:cps))에, 피크의 반값 폭(Wh)(강도가 Imax/2가 되는 위치의 피크 폭(단위:2θ))을 곱해서 산출한다.Each peak area is the maximum peak intensity (I max ) of each peak in the above angular range (the height from the point where cps after background removal is 0 to the maximum peak intensity (unit: cps)), and the half-value width (Wh) ( It is calculated by multiplying the peak width (unit: 2θ) at the position where the intensity becomes I max /2.

(3. 체적 저항률)(3. Volume resistivity)

본 발명과 관련되는 스퍼터링 타깃 부재는 일 실시형태에에서, 체적 저항률이 50,000Ω·cm 이하이다. 스퍼터링 타깃 부재의 저(低)저항화는 스퍼터링의 안정성에 기여할 수 있다. 체적 저항률은 바람직하게는 25,000Ω·cm 이하이고, 보다 바람직하게는 15,000Ω·cm 이하이며, 예를 들면 5,000∼50,000Ω·cm로 할 수 있다.The sputtering target member according to the present invention has a volume resistivity of 50,000 Ω·cm or less in one embodiment. Low resistance of the sputtering target member can contribute to the stability of sputtering. The volume resistivity is preferably 25,000 Ω·cm or less, more preferably 15,000 Ω·cm or less, and may be, for example, 5,000 to 50,000 Ω·cm.

체적 저항률은 직류 4탐침법을 이용해서 측정 대상이 되는 스퍼터링 타깃 부재의 임의의 5점의 체적 저항률을 측정 개소로 치우치지 않도록 측정했을 때의 평균치로 한다.The volume resistivity is an average value obtained by measuring the volume resistivity of five arbitrary points of the sputtering target member to be measured using the direct current 4-probe method so as not to deviate from the measurement location.

(4. 상대 밀도)(4. Relative density)

스퍼터링 타깃 부재의 상대 밀도는 체적 저항률에 영향을 주는 점에서 높은 것이 바람직하다. 스퍼터링 타깃 부재에 깨짐이나 균열이 발생하는 것을 억제하는 관점에서도 스퍼터링 타깃 부재의 상대 밀도는 높은 것이 바람직하다. 본 발명과 관련되는 스퍼터링 타깃 부재는 일 실시형태에서 상대 밀도가 94% 이상이다. 상대 밀도는 바람직하게는 95% 이상이고, 보다 바람직하게는 98% 이상이며, 예를 들면 94∼98%로 할 수 있다.The relative density of the sputtering target member is preferably high in terms of affecting the volume resistivity. From the viewpoint of suppressing the occurrence of cracks and cracks in the sputtering target member, it is preferable that the relative density of the sputtering target member is high. The sputtering target member according to the present invention has a relative density of 94% or more in one embodiment. The relative density is preferably 95% or more, more preferably 98% or more, and may be, for example, 94 to 98%.

본 발명에서 「상대 밀도」는, 상대 밀도=(측정 밀도/이론 밀도)×100(%)으로 나타난다. 이론 밀도란 소결체의 각 구성 원소에서 산소를 제외한 원소의 산화물의 이론 밀도로부터 산출되는 밀도의 값이다. 본 발명의 Ga-Sn-O 타깃이라면 각 구성 원소인 갈륨, 주석, 산소 중에서, 산소를 제외한 갈륨, 주석 산화물로서 산화 갈륨(Ga2O3)과 산화 주석(SnO2)을 이론 밀도의 산출에 이용한다. 여기서, 소결체 중의 갈륨과 주석의 원소 분석치(at%, 또는 질량%)로부터 산화 갈륨(Ga2O3)과 산화 주석(SnO2)의 질량비로 환산한다. 예를 들면, 환산한 결과, 산화 갈륨이 25질량%, 산화 주석이 75질량%인 GTO 타깃의 경우, 이론 밀도는 (Ga2O3의 밀도(g/cm3)×25+SnO2의 밀도(g/cm3)×75)/100(g/cm3)로 산출한다. Ga2O3의 이론 밀도는 6.44g/cm3, SnO2의 이론 밀도는 6.95g/cm3로서 계산한다. 한편, 측정 밀도란 중량을 체적으로 나눈 값이다. 소결체의 경우는, 아르키메데스법에 의해서 체적을 구해서 산출한다.In the present invention, "relative density" is expressed as relative density = (measured density/theoretical density) x 100 (%). The theoretical density is a value of the density calculated from the theoretical density of oxides of elements other than oxygen in each constituent element of the sintered body. In the case of the Ga-Sn-O target of the present invention, gallium oxide (Ga 2 O 3 ) and tin oxide (SnO 2 ) as respective constituent elements gallium, tin, and oxygen, excluding oxygen, and tin oxides, are used in the calculation of theoretical density. Use. Here, the elemental analysis value (at% or mass%) of gallium and tin in the sintered body is converted into a mass ratio of gallium oxide (Ga 2 O 3 ) and tin oxide (SnO 2 ). For example, as a result of conversion, in the case of a GTO target with 25% by mass of gallium oxide and 75% by mass of tin oxide, the theoretical density is (density of Ga 2 O 3 (g/cm 3 ) × 25 + density of SnO 2 (g /cm 3 ) × 75) / 100 (g / cm 3 ) is calculated. Theoretical density of the Ga 2 O 3 are theoretical density of 6.44g / cm 3, SnO 2 is calculated as 6.95g / cm 3. On the other hand, the measured density is a value obtained by dividing the weight by volume. In the case of a sintered body, the volume is calculated by the Archimedes method.

(5. 제조 방법)(5. Manufacturing method)

이하, 본 발명과 관련되는 스퍼터링 타깃 부재의 바람직한 제조법을 예시적으로 설명한다. 원료 분말로서 산화 갈륨(Ga2O3) 분말 및 산화 주석(SnO2) 분말을 준비한다. 불순물에 의한 전기 특성으로의 악영향을 피하기 위해서, 순도 3N(99.9질량%) 이상의 원료 분말을 이용하는 것이 바람직하고, 순도 4N(99.99질량%) 이상의 원료 분말을 이용하는 것이 보다 바람직하다.Hereinafter, a preferred method of manufacturing the sputtering target member according to the present invention will be exemplarily described. As raw material powders, gallium oxide (Ga 2 O 3 ) powder and tin oxide (SnO 2 ) powder are prepared. In order to avoid adverse effects on electrical properties due to impurities, it is preferable to use a raw material powder having a purity of 3N (99.9 mass%) or higher, and more preferably a raw material powder having a purity of 4N (99.99 mass%) or higher.

그 다음, Ga2O3 분말 및 SnO2 분말을 소정의 몰비로 혼합 및 분쇄해서 혼합 분말을 준비한다. 혼합 분말 중의 Ga 및 Sn의 원자비가 상술한 0.33≤Ga/(Ga+Sn)≤0.75를 만족하도록, Ga2O3 분말 및 SnO2 분말을 혼합한다. 구체적으로는, 혼합 분말 중의 Ga2O3 분말이 20mol% 이상인 것이 바람직하다. 고농도의 Ga를 함유하는 Ga-Sn-O계 스퍼터링 타깃 부재를 제공한다는 관점에서는, 혼합 분말 중의 Ga2O3 분말을 30mol% 이상으로 하는 것도 가능하고, 혼합 분말 중의 Ga2O3 분말을 40mol% 이상으로 하는 것도 가능하다. 또, 얻어지는 스퍼터링 타깃의 체적 저항률을 낮춘다는 관점에서는 혼합 분말 중의 Ga2O3 분말을 60mol% 이하로 하는 것도 가능하고, 혼합 분말 중의 Ga2O3 분말을 55mol% 이하로 하는 것도 가능하다.Then, Ga 2 O 3 powder and SnO 2 powder are mixed and pulverized at a predetermined molar ratio to prepare a mixed powder. Ga 2 O 3 powder and SnO 2 powder are mixed so that the atomic ratio of Ga and Sn in the mixed powder satisfies the above-described 0.33≦Ga/(Ga+Sn)≦0.75. Specifically, it is preferable that the Ga 2 O 3 powder in the mixed powder is 20 mol% or more. From the viewpoint of providing a high concentration of the Ga-Sn-O based sputtering target member containing Ga, can be mixed powder Ga 2 O 3 powder in more than 30mol%, and a Ga 2 O 3 powder in the mixed powder 40mol% It is also possible to do the above. In addition, from the viewpoint of lowering the volume resistivity of the resulting sputtering target, the Ga 2 O 3 powder in the mixed powder may be 60 mol% or less, and the Ga 2 O 3 powder in the mixed powder may be 55 mol% or less.

혼합과 분쇄가 불충분하면, 제조한 스퍼터링 타깃 부재 중에 각 성분이 편석되어 고저항률 영역과 저저항률 영역이 존재하게 되며, 스퍼터 성막(成膜) 시에 고저항률 영역에서의 대전 등에 의한 아크 등의 이상 방전의 원인이 되므로, 혼합과 분쇄를 충분히 실시하는 것이 바람직하다. 바람직한 혼합과 분쇄 방법으로는, 예를 들면, 원료 분말을 물에 투입해서 분산시키고 슬러리화 해서, 이 슬러리를 습식 매체 교반 밀(비드 밀 등)을 이용하여 미분쇄하는 방법을 들 수 있다.If mixing and pulverization are insufficient, each component is segregated in the prepared sputtering target member, resulting in a high resistivity region and a low resistivity region, and abnormalities such as arcs due to charging in the high resistivity region during sputter formation. Since it causes discharge, it is desirable to sufficiently mix and crush. As a preferable mixing and pulverizing method, for example, a method of adding raw material powder to water to disperse it to form a slurry, and pulverizing this slurry using a wet medium stirring mill (bead mill, etc.) is exemplified.

미분쇄 후의 슬러리는 건조하는 것이 바람직하다. 건조는 한정적이지는 않지만, 예를 들면 열풍 건조기로 100∼150℃×5∼48hr의 조건으로 실시할 수 있다. 건조 후에는 체질로 분리해서 조대(粗大) 입자를 분리하는 것이 바람직하다. 체질로 분리하는 것은, 체눈 크기 500㎛ 이하의 체로 하는 것이 바람직하고, 체눈 크기 250㎛ 이하의 체로 하는 것이 보다 바람직하다. 여기서, 체눈 크기는 JIS Z8801-1:2006에 준거하여 측정된다.It is preferable to dry the slurry after pulverization. Although drying is not limited, for example, it can be carried out under conditions of 100 to 150°C x 5 to 48 hours with a hot air dryer. After drying, it is desirable to separate the coarse particles by separating them with a sieve. It is preferable to use a sieve having a sieve size of 500 μm or less, and more preferably a sieve having a sieve size of 250 μm or less. Here, the sieve size is measured according to JIS Z8801-1:2006.

혼합과 분쇄로 얻어지는 혼합 분말은 중간 지름이 5㎛ 이하인 것이 바람직하고, 3㎛ 이하인 것이 보다 바람직하며, 1㎛ 이하인 것이 더욱 바람직하다.The mixed powder obtained by mixing and grinding preferably has a median diameter of 5 µm or less, more preferably 3 µm or less, and even more preferably 1 µm or less.

혼합 분말의 중간 지름은 에탄올을 분산매로 하여 1분간 초음파 분산 후, 레이저 회절 산란법 입도 측정 장치를 이용해서 입도의 누적 분포를 측정했을 때의 체적 기준에 따른 중간 지름(D50)을 나타낸다.The median diameter of the mixed powder is the median diameter (D50) according to the volume standard when the cumulative distribution of particle sizes is measured using a laser diffraction scattering particle size measuring device after ultrasonic dispersion for 1 minute using ethanol as a dispersion medium.

그 다음, 원하는 형상의 금형에 혼합 분말을 충전해서 프레스 함으로써 성형체를 제작한다. 프레스 할 때의 면압은 예를 들면 400∼1000kgf·cm2로 할 수 있다.Then, a molded article is produced by filling and pressing the mixed powder in a mold having a desired shape. The surface pressure at the time of pressing can be, for example, 400 to 1000 kgf·cm 2 .

*그 다음, 성형체를 산소 함유 분위기하에서, 1500℃ 이상의 가열 온도로 10시간 이상 소결하여 Ga-Sn-O 복합 산화물상을 함유하는 소결체를 얻는다. 산소 함유 분위기하에서 가열한다고 한 것은, SnO2의 증발을 억제하여 소결체의 밀도를 향상시키기 때문이다. 산소 함유 분위기로는 예를 들면, 산소 분위기 및 공기 분위기를 들 수 있다. 소결 공정에서의 가열 온도를 1500℃ 이상으로 한 것은 소결의 반응 속도가 충분히 빠르기 때문이다. 소결 공정에서의 가열 온도는 1550℃ 이상이 바람직하고, 1600℃ 이상이 보다 바람직하다. 1500℃ 이상의 가열 온도에서의 가열 시간을 10시간 이상으로 한 것은, 소결을 충분히 진행시키기 때문이다. 상기 가열 시간은 15시간 이상이 바람직하고, 20시간 이상이 보다 바람직하다.* Then, the molded body is sintered for 10 hours or more at a heating temperature of 1500° C. or higher in an oxygen-containing atmosphere to obtain a sintered body containing a Ga-Sn-O composite oxide phase. Heating in an oxygen-containing atmosphere is because the density of the sintered body is improved by suppressing evaporation of SnO 2 . Examples of the oxygen-containing atmosphere include an oxygen atmosphere and an air atmosphere. The reason why the heating temperature in the sintering step is 1500°C or higher is because the reaction rate of sintering is sufficiently fast. The heating temperature in the sintering step is preferably 1550°C or higher, and more preferably 1600°C or higher. The reason why the heating time at the heating temperature of 1500° C. or higher is 10 hours or more is because sintering is sufficiently advanced. The heating time is preferably 15 hours or more, more preferably 20 hours or more.

소결 공정 후, 소정의 어닐링 공정을 실시하면, Ga-Sn-O 복합 산화물상이 분해되어 SnO2상이 생성된다. 이에 따라, SnO2상의 비율이 상승하고, 체적 저항률이 의미 있게 저하한다. 어닐링은 상기 소결체를 질소 함유 분위기하에서, 1000℃∼1400℃의 가열 온도로 10시간 이상 실시하는 것이 바람직하다. 질소 함유 분위기하에서 가열한다고 한 것은 SnO2의 환원에 의해서 소결체의 벌크 저항률을 저하할 목적에 따른 것이다. 질소 함유 분위기로는 예를 들면, 질소 분위기 및 공기 분위기를 들 수 있다. 어닐링 공정에서의 가열 온도는 분해의 반응속도가 충분히 빠른 1000℃ 이상이 바람직하고, 1100℃ 이상이 보다 바람직하며, 1200℃ 이상이 더욱 바람직하다. 또, 어닐링 공정에서의 가열 온도는 Ga-Sn-O 복합 산화물이 생성되지 않는 1400℃ 이하가 바람직하고, 1300℃ 이하가 보다 바람직하다. 1000℃∼1400℃의 가열 온도로 10시간 이상 어닐링을 실시하는 것은 충분히 분해 반응을 진행시키기 때문이다. 상기 가열 시간은 15시간 이상이 바람직하고, 20시간 이상이 보다 바람직하다.After the sintering process, when a predetermined annealing process is performed, the Ga-Sn-O composite oxide phase is decomposed to form a SnO 2 phase. Accordingly, the ratio of the SnO 2 phase increases, and the volume resistivity decreases significantly. The annealing is preferably carried out for 10 hours or more at a heating temperature of 1000°C to 1400°C in a nitrogen-containing atmosphere. Heating in a nitrogen-containing atmosphere is due to the purpose of reducing the bulk resistivity of the sintered body by reduction of SnO 2 . Examples of the nitrogen containing atmosphere include a nitrogen atmosphere and an air atmosphere. The heating temperature in the annealing process is preferably 1000°C or higher, more preferably 1100°C or higher, and still more preferably 1200°C or higher, where the reaction rate of decomposition is sufficiently fast. In addition, the heating temperature in the annealing step is preferably 1400°C or less at which no Ga-Sn-O composite oxide is generated, and more preferably 1300°C or less. The reason why the annealing is performed for 10 hours or more at a heating temperature of 1000°C to 1400°C is because the decomposition reaction proceeds sufficiently. The heating time is preferably 15 hours or more, more preferably 20 hours or more.

소결 공정에서의 가열 온도로부터 어닐링 공정에서의 가열 온도로 저하시킴에 따라서, 소결 공정과 어닐링 공정을 연속으로 실시하는 것이 생산 효율상 바람직하다. 그러나 소결 공정 후, 실온까지 냉각한 후에 다시 어닐링 온도까지 소결체를 가열해도 좋다.As the heating temperature in the sintering step is lowered to the heating temperature in the annealing step, it is preferable in terms of production efficiency to continuously perform the sintering step and the annealing step. However, after the sintering step, after cooling to room temperature, the sintered body may be heated again to the annealing temperature.

상기 공정에 의해서 얻어진 산화물 소결체는, 필요에 따라서 평면 연삭기, 원통형 연삭기, 기계 가공 등 가공기로 원하는 형상으로 가공함으로써, 스퍼터링 타깃 부재로 마무리할 수 있다. 스퍼터링 타깃 부재는 단독으로 사용해도 좋고, 적당히 배킹 플레이트에 접합해서 사용할 수 있다. 배킹 플레이트와의 접합 방법으로는, 예를 들면, 구리제 배킹 플레이트에 인듐계 합금 등을 본딩 메탈로 하여 맞붙이는 방법을 들 수 있다.The oxide sintered body obtained by the above process can be finished into a sputtering target member by processing it into a desired shape with a processing machine such as a plane grinding machine, a cylindrical grinding machine, or a machining machine, if necessary. The sputtering target member may be used alone, or may be suitably bonded to the backing plate and used. As a bonding method with the backing plate, a method of bonding an indium alloy or the like to a copper backing plate as a bonding metal is exemplified.

(6. 성막 방법)(6. Tabernacle Method)

본 발명의 일 실시형태에 의하면, 스퍼터링 타깃 부재를 스퍼터하는 것을 포함하는 성막 방법이 제공된다. 스퍼터법으로는 한정적이지는 않지만, RF 마그네트론 스퍼터법, DC 마그네트론 스퍼터법, AC 마그네트론 스퍼터법, 펄스 DC 마그네트론 스퍼터법 등을 바람직하게 사용할 수 있다. 본 발명과 관련되는 스퍼터링 타깃 부재의 일 실시형태에서는, 체적 저항률이 낮은 점에서, 특히 DC 마그네트론 스퍼터법 및 펄스 DC 마그네트론 스퍼터법에 바람직하다.According to one embodiment of the present invention, a film forming method including sputtering a sputtering target member is provided. The sputtering method is not limited, but an RF magnetron sputtering method, a DC magnetron sputtering method, an AC magnetron sputtering method, a pulse DC magnetron sputtering method, and the like can be preferably used. In one embodiment of the sputtering target member according to the present invention, since the volume resistivity is low, it is particularly preferable for the DC magnetron sputtering method and the pulsed DC magnetron sputtering method.

[실시예][Example]

이하, 본 발명 및 그 이점을 쉽게 이해하도록 하기 위한 실시예를 나타내지만, 본 발명은 실시예로 한정되는 것은 아니다.Hereinafter, examples for easily understanding the present invention and its advantages are shown, but the present invention is not limited to the examples.

하기에 나타내는 실시예 및 비교예에서 각종 측정이나 평가가 필요하지만, 그 조건을 이하에 나타낸다.Various measurements and evaluations are required in Examples and Comparative Examples shown below, but the conditions are shown below.

(중간 지름)(Medium diameter)

각종 분말의 중간 지름은 에탄올을 분산매로 하여 1분간 초음파 분산 후, 레이저 회절 산란법 입도 측정 장치(닛키소 주식회사제, Microtrac MT3000)를 이용하여 입도의 누적 분포를 측정했을 때의 체적 기준에 의한 중간 지름(D50)을 나타낸다.The median diameter of various powders is the median by volume standard when the cumulative distribution of particle sizes is measured using a laser diffraction scattering particle size measuring device (Made by Nikkiso Corporation, Microtrac MT3000) after ultrasonic dispersion for 1 minute using ethanol as a dispersion medium. It shows the diameter (D50).

(체적 저항률)(Volume resistivity)

직류 4탐침법을 이용한 저항률 측정기(NPS 주식회사제, 형식 FELL-TC-100-SB-Σ5+, 측정 지그 RG-5)를 사용하여, 상술한 방법으로 스퍼터링 타깃 부재의 체적 저항률을 측정한다.Using a resistivity measuring device (manufactured by NPS Corporation, type FELL-TC-100-SB-Σ5+, measuring jig RG-5) using a direct current 4-probe method, the volume resistivity of the sputtering target member is measured by the method described above.

(상대 밀도)(Relative density)

측정 대상이 되는 스퍼터링 타깃 부재의 실측 밀도를 아르키메데스법으로 구하고, 상대 밀도=실측 밀도/이론 밀도에 의해 상대 밀도를 구한다.The measured density of the sputtering target member to be measured is determined by the Archimedes method, and the relative density is determined by relative density = measured density/theoretical density.

(XRD 측정)(XRD measurement)

XRD 측정은, 주식회사 리가쿠제 전자동 다목적 X선 회절 장치(형식: Ultima)를 이용하여 상술한 측정 조건에 따라서 실시하고, 얻어진 XRD 차트로부터 Isn/I 및 IGaSn/I를 산출한다.XRD measurement is carried out in accordance with the measurement conditions described above using a fully automatic multipurpose X-ray diffraction apparatus manufactured by Rigaku Corporation (form: Ultima), and I sn /I and I GaSn /I are calculated from the obtained XRD chart.

(비교예 1)(Comparative Example 1)

원료 분말로서 Ga2O3 분말(중간 지름 2.60㎛) 및 SnO2 분말(중간 지름 1.25㎛)을 준비했다. Ga2O3:SnO2=1:1의 몰비로 Ga2O3 분말 및 SnO2 분말을 물에 투입하여 슬러리화 했다. 이 슬러리를 비드 밀을 이용하여 분쇄 혼합했다. 분쇄 혼합 후의 슬러리를 열풍 건조기로 120℃×20시간 건조하고, 체눈 크기 250㎛의 체로 체질을 해서 분리하여 체 아래의 혼합 분말을 회수했다. 혼합 분말의 중간 지름은 0.84㎛였다. 그 다음, 얻어진 혼합 분말 1000g을 ø210mm의 금형에 충전하고, 면압 400∼1000kgf/cm2로 프레스 해서 원반 모양의 성형체를 얻었다. 이 성형체를 산소 분위기하에서 1600℃의 온도로 가열하고, 10시간 유지하여 소결체(스퍼터링 타깃 부재)를 얻었다.As raw material powders, Ga 2 O 3 powder (median diameter 2.60 μm) and SnO 2 powder (median diameter 1.25 μm) were prepared. Ga 2 O 3: was slurried in the Ga 2 O 3 powder and the SnO 2 powder in a molar ratio of 1 input to the water: SnO 2 = 1. This slurry was ground and mixed using a bead mill. The slurry after pulverization and mixing was dried with a hot air dryer for 120°C for 20 hours, sieved through a sieve having a sieve size of 250 µm, separated, and the mixed powder under the sieve was recovered. The median diameter of the mixed powder was 0.84 µm. Then, 1000 g of the obtained mixed powder was filled into a ø210 mm mold and pressed with a surface pressure of 400 to 1000 kgf/cm 2 to obtain a disc-shaped molded body. This molded body was heated at a temperature of 1600° C. in an oxygen atmosphere, and held for 10 hours to obtain a sintered body (sputtering target member).

(비교예 2)(Comparative Example 2)

비교예 1과 같은 조건으로 제작한 성형체를 산소 분위기하에서 1550℃의 온도로 가열하고, 10시간 유지하여 소결체(스퍼터링 타깃 부재)를 얻었다.The molded article produced under the same conditions as in Comparative Example 1 was heated to a temperature of 1550°C in an oxygen atmosphere, and held for 10 hours to obtain a sintered body (sputtering target member).

(비교예 3)(Comparative Example 3)

비교예 1과 같은 조건으로 제작한 성형체를 공기 분위기하에서 1600℃의 온도로 가열하고, 10시간 유지하여 소결체(스퍼터링 타깃 부재)를 얻었다.The molded article produced under the same conditions as in Comparative Example 1 was heated to a temperature of 1600° C. in an air atmosphere, and held for 10 hours to obtain a sintered body (sputtering target member).

(실시예 1)(Example 1)

비교예 1과 같은 조건으로 제작한 성형체를 산소 분위기중에서 1600℃의 온도로 가열하고, 10시간 유지했다. 그 후, 1000℃까지 온도를 낮추고, 공기 분위기하에서 20시간 유지하여 소결체(스퍼터링 타깃 부재)를 얻었다.The molded article produced under the same conditions as in Comparative Example 1 was heated to a temperature of 1600° C. in an oxygen atmosphere and held for 10 hours. Thereafter, the temperature was lowered to 1000°C and held in an air atmosphere for 20 hours to obtain a sintered body (sputtering target member).

(실시예 2)(Example 2)

비교예 1과 같은 조건으로 제작한 성형체를 산소 분위기중에서 1600℃의 온도로 가열하고, 10시간 유지했다. 그 후, 1200℃까지 온도를 낮추고, 공기 분위기하에서 20시간 유지하여 소결체(스퍼터링 타깃 부재)를 얻었다.The molded article produced under the same conditions as in Comparative Example 1 was heated to a temperature of 1600° C. in an oxygen atmosphere and held for 10 hours. Thereafter, the temperature was lowered to 1200°C and held in an air atmosphere for 20 hours to obtain a sintered body (sputtering target member).

(실시예 3)(Example 3)

Ga2O3 분말 및 SnO2 분말을 Ga2O3:SnO2=20:80의 몰비가 되도록 혼합한 것 외에는, 실시예 1과 같은 조건으로 혼합 분말을 제작했다. 혼합 분말의 중간 지름은 0.92㎛였다. 그 다음, 실시예 1과 같은 가열 조건으로 성형체 제작 및 소결을 실시하여 소결체(스퍼터링 타깃 부재)를 얻었다.A mixed powder was produced under the same conditions as in Example 1, except that the Ga 2 O 3 powder and the SnO 2 powder were mixed in a molar ratio of Ga 2 O 3 :SnO 2 =20:80. The median diameter of the mixed powder was 0.92 µm. Then, the molded body was produced and sintered under the same heating conditions as in Example 1 to obtain a sintered body (sputtering target member).

[표 1][Table 1]

Figure pat00001
Figure pat00001

<고찰><Consideration>

비교예 1∼3, 실시예 1∼2는 원료 조성이 동일함에도 불구하고, ISn/I가 크기 때문에, 실시예 1∼2가 체적 저항률이 현저하게 저하한 것을 이해할 수 있다. 또, 실시예 3의 결과로부터, 체적 저항률은 Ga의 몰비를 낮추어서 더 크게 저하시키는 것도 이해할 수 있다.In Comparative Examples 1 to 3 and Examples 1 to 2, although the raw material composition is the same, since I Sn /I is large, it can be understood that Examples 1 to 2 significantly lowered the volume resistivity. Further, from the results of Example 3, it can be understood that the volume resistivity is further reduced by lowering the molar ratio of Ga.

Claims (8)

Ga, Sn 및 O를 함유하고, 잔부가 불가피한 불순물로 구성되며, Ga 및 Sn의 원자비가 0.4≤Ga/(Ga+Sn)≤0.75를 만족하고, 분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 SnO2 상의 피크 면적(ISn)의 비(ISn/I)가 0.02 이상인, 스퍼터링 타깃 부재.It contains Ga, Sn, and O, and the remainder is composed of inevitable impurities, the atomic ratio of Ga and Sn satisfies 0.4≤Ga/(Ga+Sn)≤0.75, and the total peak area (I) in powder X-ray diffraction measurement The sputtering target member whose ratio (I Sn /I) of the peak area (I Sn ) of the SnO 2 phase to the SnO 2 is 0.02 or more. Ga, Sn 및 O를 함유하고, 잔부가 불가피한 불순물로 구성되며, Ga 및 Sn의 원자비가 0.33≤Ga/(Ga+Sn)≤0.75를 만족하고, 분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 SnO2 상의 피크 면적(ISn)의 비(ISn/I)가 0.02 이상이고, 체적저항률이 0.082~13.2Ω·cm인, 스퍼터링 타깃 부재.It contains Ga, Sn and O, and the remainder is composed of inevitable impurities, the atomic ratio of Ga and Sn satisfies 0.33≤Ga/(Ga+Sn)≤0.75, and the total peak area (I) in powder X-ray diffraction measurement A sputtering target member having a ratio (I Sn /I) of the peak area (I Sn ) of the SnO 2 phase to the SnO 2 is 0.02 or more and a volume resistivity of 0.082 to 13.2 Ω·cm. 제1항 또는 제2항에 있어서,
분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 SnO2 상의 피크 면적(ISn)의 비(ISn/I)가 0.1 이상인, 스퍼터링 타깃 부재.
The method according to claim 1 or 2,
A sputtering target member in which the ratio (I Sn /I) of the peak area (I Sn ) of the SnO 2 phase to the total peak area (I) in the powder X-ray diffraction measurement is 0.1 or more.
제1항 또는 제2항에 있어서,
분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 Ga4SnO8 상의 피크 면적(IGaSn)의 비(IGaSn/I)가 0.3 이하인, 스퍼터링 타깃 부재.
The method according to claim 1 or 2,
A sputtering target member in which the ratio (I GaSn /I) of the peak area (I GaSn ) on Ga 4 SnO 8 to the total peak area (I) in powder X-ray diffraction measurement is 0.3 or less.
제4항에 있어서,
분말 X선 회절 측정에서의 전체 피크 면적(I)에 대한 Ga4SnO8상의 피크 면적(IGaSn)의 비(IGaSn/I)가 0.25 이하인 스퍼터링 타깃 부재.
The method of claim 4,
A sputtering target member in which the ratio (I GaSn /I) of the peak area (I GaSn ) on the Ga 4 SnO 8 phase to the total peak area (I) in the powder X-ray diffraction measurement is 0.25 or less.
제1항에 있어서,
체적 저항률이 50,000Ω·cm 이하인 스퍼터링 타깃 부재.
The method of claim 1,
Sputtering target member with a volume resistivity of 50,000 Ω·cm or less.
제1항 또는 제2항에 있어서,
상대 밀도가 94% 이상인, 스퍼터링 타깃 부재.
The method according to claim 1 or 2,
Sputtering target member having a relative density of 94% or more.
제1항 또는 제2항에 기재된 스퍼터링 타깃 부재를 스퍼터하는 것을 포함하는, 성막 방법.A film forming method comprising sputtering the sputtering target member according to claim 1 or 2.
KR1020200171312A 2018-03-30 2020-12-09 Sputtering target and manufacturing method thereof KR20200140777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210082771A KR102341468B1 (en) 2018-03-30 2021-06-25 Sputtering target and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2018-070086 2018-03-30
JP2018070086A JP6724057B2 (en) 2018-03-30 2018-03-30 Sputtering target material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190025399A Division KR102197875B1 (en) 2018-03-30 2019-03-05 Sputtering target and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210082771A Division KR102341468B1 (en) 2018-03-30 2021-06-25 Sputtering target and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20200140777A true KR20200140777A (en) 2020-12-16

Family

ID=68112664

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020190025399A KR102197875B1 (en) 2018-03-30 2019-03-05 Sputtering target and manufacturing method thereof
KR1020200171312A KR20200140777A (en) 2018-03-30 2020-12-09 Sputtering target and manufacturing method thereof
KR1020210082771A KR102341468B1 (en) 2018-03-30 2021-06-25 Sputtering target and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020190025399A KR102197875B1 (en) 2018-03-30 2019-03-05 Sputtering target and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210082771A KR102341468B1 (en) 2018-03-30 2021-06-25 Sputtering target and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP6724057B2 (en)
KR (3) KR102197875B1 (en)
CN (3) CN114592175A (en)
TW (1) TWI737962B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7250723B2 (en) 2020-03-31 2023-04-03 Jx金属株式会社 Sputtering target and sputtering target manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088726A1 (en) 2004-03-12 2005-09-22 Japan Science And Technology Agency Amorphous oxide and thin film transistor
WO2010018707A1 (en) 2008-08-11 2010-02-18 出光興産株式会社 Gallium oxide-tin oxide based oxide sintered body and oxide film
JP2013040394A (en) 2011-08-19 2013-02-28 Jx Nippon Mining & Metals Corp Oxide sintered compact target for sputtering and manufacturing method of the same, and forming method of thin film using the target and thin film forming method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925977B2 (en) * 1997-02-21 2007-06-06 旭硝子セラミックス株式会社 Transparent conductive film, method for producing the same, and sputtering target
JP3957917B2 (en) * 1999-03-26 2007-08-15 三井金属鉱業株式会社 Thin film forming materials
JP2005088726A (en) 2003-09-17 2005-04-07 Advics:Kk Tire pressure alarm, tire monitored by the alarm, and method for controlling characteristic value of tire
JP2005235961A (en) * 2004-02-18 2005-09-02 Univ Waseda Method for controlling conductivity of gallium oxide series monocrystal
KR101420992B1 (en) * 2006-12-13 2014-07-17 이데미쓰 고산 가부시키가이샤 Sputtering target
TWI478347B (en) * 2007-02-09 2015-03-21 Idemitsu Kosan Co A thin film transistor, a thin film transistor substrate, and an image display device, and an image display device, and a semiconductor device
CN103030381B (en) * 2007-07-06 2015-05-27 住友金属矿山株式会社 Oxide sintered body and production method therefor, target, and transparent conductive film and transparent conductive substrate obtained by using the same
JPWO2009157535A1 (en) * 2008-06-27 2011-12-15 出光興産株式会社 Sputtering target for oxide semiconductor comprising InGaO3 (ZnO) crystal phase and method for producing the same
JP5052434B2 (en) 2008-07-10 2012-10-17 三井化学株式会社 Resin composition and molded body comprising the composition
JP2010070418A (en) * 2008-09-18 2010-04-02 Idemitsu Kosan Co Ltd SnO2-In2O3-BASED OXIDE SINTERED COMPACT AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM
WO2011102425A1 (en) * 2010-02-18 2011-08-25 住友化学株式会社 Oxide sintered body, oxide mixture, manufacturing methods for same, and targets using same
JP2012052227A (en) * 2010-08-05 2012-03-15 Mitsubishi Materials Corp Method for manufacturing sputtering target, and sputtering target
JP5750065B2 (en) * 2011-02-10 2015-07-15 株式会社コベルコ科研 Oxide sintered body and sputtering target
JP2013056803A (en) * 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM
JP2013056804A (en) * 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd METHOD FOR PRODUCING β-Ga2O3-BASED SINGLE CRYSTAL FILM AND LAMINATED CRYSTAL STRUCTURE
JP5883367B2 (en) * 2012-09-14 2016-03-15 株式会社コベルコ科研 Oxide sintered body, sputtering target, and manufacturing method thereof
US10515787B2 (en) * 2013-11-29 2019-12-24 Kobelco Research Institute, Inc. Oxide sintered body and sputtering target, and method for producing same
JP5952891B2 (en) * 2014-02-14 2016-07-13 株式会社コベルコ科研 Oxide sintered body and method for producing sputtering target
JP6358083B2 (en) * 2014-02-27 2018-07-18 住友金属鉱山株式会社 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
WO2016072441A1 (en) * 2014-11-07 2016-05-12 Jx金属株式会社 Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
JP6216978B2 (en) * 2016-05-31 2017-10-25 株式会社Flosfia Ga2O3 semiconductor device
JP6267297B1 (en) * 2016-08-29 2018-01-24 Jx金属株式会社 Sintered body, sputtering target and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088726A1 (en) 2004-03-12 2005-09-22 Japan Science And Technology Agency Amorphous oxide and thin film transistor
WO2010018707A1 (en) 2008-08-11 2010-02-18 出光興産株式会社 Gallium oxide-tin oxide based oxide sintered body and oxide film
JP2013040394A (en) 2011-08-19 2013-02-28 Jx Nippon Mining & Metals Corp Oxide sintered compact target for sputtering and manufacturing method of the same, and forming method of thin film using the target and thin film forming method

Also Published As

Publication number Publication date
TW201942401A (en) 2019-11-01
CN114592175A (en) 2022-06-07
JP2019178415A (en) 2019-10-17
TWI737962B (en) 2021-09-01
CN110317053B (en) 2022-03-29
KR102341468B1 (en) 2021-12-20
KR20210082410A (en) 2021-07-05
KR102197875B1 (en) 2021-01-04
CN110317053A (en) 2019-10-11
CN114574824A (en) 2022-06-03
JP6724057B2 (en) 2020-07-15
KR20190114751A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP4054054B2 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
EP2463256B1 (en) Oxide sinter, method for producing same, target and transparent conductive film
EP2301904B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP5796812B2 (en) Oxide sintered body, sputtering target, and manufacturing method thereof
KR101960233B1 (en) Sputtering target
JP2010037161A (en) Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
US9214253B2 (en) Sintered compact of indium oxide system, and transparent conductive film of indium oxide system
WO2007000878A1 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
CN103717779A (en) Zn-sn-o type oxide sintered body and method for producing same
KR102089842B1 (en) Target for forming transparent conductive film, transparent conductive film, method of manufacturing target for forming transparent conductive film and method of manufacturing transparent conductive film
KR102341468B1 (en) Sputtering target and manufacturing method thereof
JP5681590B2 (en) Oxide sintered compact target for sputtering, method for producing the same, thin film forming method and thin film forming method using the target
WO2013065786A1 (en) Oxide sintered compact and sputtering target, and method for producing same
EP2883979A1 (en) Composite oxide sintered body and transparent conductive oxide film
WO2013065784A1 (en) Oxide sintered compact and sputtering target, and method for producing same
JP5883990B2 (en) IGZO sputtering target
JP6906085B2 (en) Sputtering target member and its manufacturing method
US20220307124A1 (en) Sputtering target and method of producing sputtering target
JP6637948B2 (en) IZO target and method for manufacturing the same
JP5255685B2 (en) Oxide sintered body, sputtering target, and manufacturing method thereof
JP6396837B2 (en) Sintered body for ZnO-MgO based sputtering target and method for producing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E601 Decision to refuse application