JP6396837B2 - Sintered body for ZnO-MgO based sputtering target and method for producing the same - Google Patents
Sintered body for ZnO-MgO based sputtering target and method for producing the same Download PDFInfo
- Publication number
- JP6396837B2 JP6396837B2 JP2015071530A JP2015071530A JP6396837B2 JP 6396837 B2 JP6396837 B2 JP 6396837B2 JP 2015071530 A JP2015071530 A JP 2015071530A JP 2015071530 A JP2015071530 A JP 2015071530A JP 6396837 B2 JP6396837 B2 JP 6396837B2
- Authority
- JP
- Japan
- Prior art keywords
- mgo
- zno
- sintered body
- powder
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、Cu−In−Ga−Se系(以下、CIGS系と称す。)太陽電池の窓層材料の形成に適したZnO−MgO系スパッタリングターゲット用焼結体及びその製造方法に関する。 The present invention relates to a sintered body for a ZnO-MgO-based sputtering target suitable for forming a window layer material for a Cu-In-Ga-Se-based (hereinafter referred to as CIGS-based) solar cell and a method for producing the same.
近年、薄膜太陽電池として高変換効率のCIGS系太陽電池の技術開発が進展している。その太陽電池の窓層材料としては、Znを主成分とする酸化物半導体が知られている。例えば、特許文献1には、ZnOや(Zn、Mg)Oなどのスパッタリングターゲットをマグネトロンスパッタ法により、窓層となる薄膜を形成する方法が開示されている。 In recent years, technological development of CIGS solar cells having high conversion efficiency as thin film solar cells has been progressing. As a window layer material of the solar cell, an oxide semiconductor containing Zn as a main component is known. For example, Patent Document 1 discloses a method of forming a thin film to be a window layer by sputtering a sputtering target such as ZnO or (Zn, Mg) O using a magnetron sputtering method.
特許文献2には、太陽電池のn形窓層として、ZnO又はZnMgO等のn型半導体からなる半導体膜を使用することが開示されている。特許文献3には、太陽電池の窓層として、MgとOとを含む酸化物からなる層をスパッタ法で形成することが開示されている。そして、その層の組成は、スパッタリングターゲットの組成を変化させることによって容易に制御できると記載されている。 Patent Document 2 discloses that a semiconductor film made of an n-type semiconductor such as ZnO or ZnMgO is used as an n-type window layer of a solar cell. Patent Document 3 discloses that a layer made of an oxide containing Mg and O is formed as a window layer of a solar cell by a sputtering method. It is described that the composition of the layer can be easily controlled by changing the composition of the sputtering target.
特許文献4には、酸化亜鉛を主成分とし、さらにマグネシウムを含有する酸化物焼結体ターゲットにおいて、マグネシウムの含有量をMg/(Zn+Mg)原子数比で0.02〜0.30とすることによって、酸・アルカリに対する薬品耐性が高く、低抵抗の酸化亜鉛系透明導電膜を得ることが記載されている。 Patent Document 4 discloses that in an oxide sintered body target containing zinc oxide as a main component and further containing magnesium, the magnesium content is 0.02 to 0.30 in terms of the Mg / (Zn + Mg) atomic ratio. Describes that a zinc oxide-based transparent conductive film having high chemical resistance to acids and alkalis and having low resistance is obtained.
また、特許文献5には、酸化亜鉛を主成分とする酸化亜鉛薄膜形成用スパッタターゲットにおいて、元素種として亜鉛(Zn)及び酸素(O)以外の少なくとも1種類以上の元素種を有する添加元素を含み、前記添加元素がターゲット中で酸素を含まない化合物であることを特徴とする酸化亜鉛薄膜形成用スパッタリングターゲットについて開示がある。 Patent Document 5 discloses an additive element having at least one element type other than zinc (Zn) and oxygen (O) as an element type in a sputtering target for forming a zinc oxide thin film containing zinc oxide as a main component. In addition, there is disclosed a sputtering target for forming a zinc oxide thin film, wherein the additive element is a compound that does not contain oxygen in the target.
しかし、特許文献1〜3は、スパッタリング法によって薄膜を形成することが記載されているものの、使用するターゲットの組織や特性等について言及しない。また、特許文献4〜5では、スパッタリングターゲットの組織についての記載はあるが、そのような組織を有するターゲットを使用した場合、スパッタの際にパーティクルが発生するということがあった。 However, although Patent Documents 1 to 3 describe forming a thin film by a sputtering method, they do not mention the structure and characteristics of the target to be used. Moreover, in patent documents 4-5, although there exists description about the structure | tissue of a sputtering target, when using the target which has such a structure | tissue, there existed that a particle generate | occur | produced in the case of sputtering.
このようなことから、出願人は以前、MgがMgO換算で3〜50mol%含有し、MgO相(MgOリッチ固溶相を含む)の最大結晶粒径が10μm以下で、均一に分散した組織を有する、ZnO−MgO系スパッタリングターゲット用焼結体を開発し、スパッタの際のノジュールやパーティクルを低減することを可能とした(特許文献6)。 For this reason, the applicant has previously included a structure in which Mg is contained in an amount of 3 to 50 mol% in terms of MgO, the MgO phase (including the MgO-rich solid solution phase) has a maximum grain size of 10 μm or less, and is uniformly dispersed. The present invention has developed a sintered body for a ZnO-MgO-based sputtering target, and has made it possible to reduce nodules and particles during sputtering (Patent Document 6).
特許文献6のZnO−MgO系スパッタリングターゲットは、スパッタの際のパーティクルの抑制に有効な技術であったが、このターゲットを用いた場合に、成膜速度(スパッタレート)が遅くなり、生産性を低下させるという問題が指摘されることがあった。 The ZnO-MgO-based sputtering target of Patent Document 6 is an effective technique for suppressing particles during sputtering. However, when this target is used, the film formation rate (sputtering rate) becomes slow, and the productivity is reduced. The problem of lowering was sometimes pointed out.
本発明は、高速かつ安定した成膜が可能なZnO−MgO系スパッタリングターゲット及び該ターゲットを作製するための焼結体並びに該焼結体の製造方法を提供することを課題とする。 An object of the present invention is to provide a ZnO-MgO-based sputtering target capable of high-speed and stable film formation, a sintered body for producing the target, and a method for producing the sintered body.
上記課題を解決のために、本発明者は鋭意研究を行った結果、ZnO−MgO系スパッタリングターゲットにおいて、MgOのZnOへの固溶量が増加すると、成膜速度が低下することを見出し、MgOの固溶を抑制することで、成膜速度を高めることが可能となった。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, in a ZnO-MgO-based sputtering target, it has been found that when the solid solution amount of MgO in ZnO increases, the film formation rate decreases. It was possible to increase the film formation rate by suppressing the solid solution.
このような知見に基づき、本願は以下の発明を提供する。
1)MgをMgO換算で3〜50mol%含有し、残部がZnO及び不可避的不純物からなり、X線回折ピークにおいて、ZnO−MgO焼結体でのMgO相(200)のピーク強度をI1とし、焼結体中のMgとZnの比と同等の比となるZnO粉とMgO粉の混合粉(いずれもランダム方位を持つ)でのMgO相(200)のピーク強度をI2とした場合、0.01≦I1/I2≦1.00を満たすことを特徴とするZnO−MgO系焼結体。
2)MgO相の最大結晶粒径が5〜90μm以下であることを特徴とする上記1)記載のZnO−MgO系焼結体。
3)比抵抗が50kΩcm以上であることを特徴とする上記1)又は2)記載のZnO−MgO系焼結体。
4)相対密度が90%以上であることを特徴とする上記1)〜3)のいずれか一に記載のZnO−MgO系焼結体。
5)上記1)〜4)のいずれか一に記載のZnO−MgO系焼結体から作製されるスパッタリングターゲット。
6)上記5)記載のスパッタリングターゲットを用いて、スパッタリング法で作製される薄膜であって、作製した薄膜の膜抵抗が103〜104Ωcmであることを特徴とするZnO−MgO系薄膜。
7)最大粒径5〜90μmのMgO粉と最大粒径5〜90μmのZnO粉とを、MgOが3〜50mol%、残部ZnOとなるように秤量した後、これらを乾式混合し、その後、この混合粉を、アルゴン雰囲気中、温度800〜1300℃、プレス圧力250〜350kgf/cm2、保持時間1〜3時間、焼結することを特徴とするZnO−MgO系焼結体の製造方法。
8)昇温温度1〜20℃/minで焼結することを上記7)記載のZnO−MgO系焼結体の製造方法。
Based on such knowledge, the present application provides the following inventions.
1) Mg is contained in an amount of 3 to 50 mol% in terms of MgO, and the balance is composed of ZnO and inevitable impurities. In the X-ray diffraction peak, the peak intensity of the MgO phase (200) in the ZnO-MgO sintered body is I1, When the peak intensity of the MgO phase (200) in the mixed powder of ZnO powder and MgO powder (both having random orientations) having a ratio equivalent to the ratio of Mg and Zn in the sintered body is set to I2, 0. A ZnO—MgO-based sintered body satisfying 01 ≦ I1 / I2 ≦ 1.00.
2) The ZnO—MgO-based sintered body according to 1) above, wherein the maximum crystal grain size of the MgO phase is 5 to 90 μm or less.
3) The ZnO—MgO-based sintered body according to 1) or 2) above, wherein the specific resistance is 50 kΩcm or more.
4) The ZnO—MgO-based sintered body according to any one of 1) to 3) above, wherein the relative density is 90% or more.
5) A sputtering target produced from the ZnO—MgO-based sintered body according to any one of 1) to 4) above.
6) A ZnO—MgO-based thin film produced by sputtering using the sputtering target described in 5) above, wherein the produced thin film has a film resistance of 10 3 to 10 4 Ωcm.
7) After weighing MgO powder having a maximum particle diameter of 5 to 90 μm and ZnO powder having a maximum particle diameter of 5 to 90 μm so that MgO is 3 to 50 mol% and the balance being ZnO, they are dry-mixed, and then A method for producing a ZnO-MgO-based sintered body, comprising sintering the mixed powder in an argon atmosphere at a temperature of 800 to 1300 ° C, a pressing pressure of 250 to 350 kgf / cm 2 , and a holding time of 1 to 3 hours.
8) The method for producing a ZnO-MgO-based sintered body according to 7) above, wherein sintering is performed at a temperature rising temperature of 1 to 20 ° C / min.
本発明によれば、ZnO−MgO系スパッタリングターゲットにおいて、高い成膜速度を実現することができ、生産性を向上することができるという優れた効果を有する。さらに、スパッタの際にアーキングの発生を効果的に抑制できるという優れた効果を有する。また、本発明のZnO−MgO系スパッタリングターゲットを用いることで、安定的に低抵抗の膜を成膜することができる。 According to the present invention, a ZnO-MgO-based sputtering target has an excellent effect that a high film formation rate can be realized and productivity can be improved. Furthermore, it has the outstanding effect that generation | occurrence | production of arcing can be effectively suppressed in the case of sputtering. In addition, by using the ZnO—MgO-based sputtering target of the present invention, a low-resistance film can be stably formed.
本発明のZnO−MgO系焼結体はMgをMgO換算で3〜50mol%含有し、残部がZnO及び不可避的不純物からなる。MgがMgO換算で3mおl%未満又は50mol%を超えると、太陽電池の窓層材料として十分な機能を発揮することができないからである。また、本発明のZnO−MgO系焼結体は、ZnO相とMgO相とからなり、MgOの一部がZnOに固溶した組織を有する。 The ZnO—MgO-based sintered body of the present invention contains 3 to 50 mol% of Mg in terms of MgO, and the balance consists of ZnO and inevitable impurities. This is because when Mg is less than 3 mOl% or more than 50 mol% in terms of MgO, a function sufficient as a window layer material of a solar cell cannot be exhibited. The ZnO—MgO-based sintered body of the present invention includes a ZnO phase and a MgO phase, and has a structure in which a part of MgO is dissolved in ZnO.
本発明において重要なことは、X線回折ピークにおいて、ZnO−MgO焼結体でのMgO相(200)のピーク強度をI1とし、焼結体中のMgとZnの比と同等の比となるZnO粉とMgO粉の混合粉でのMgO相(200)のピーク強度をI2とした場合、0.01≦I1/I2≦1.00を満たすことである。すなわち本発明は、MgOのZnOへの固溶を抑制し、MgO相を故意に残すことで、ZnOの比較的高いスパッタレートを維持することを可能とする。 What is important in the present invention is that, in the X-ray diffraction peak, the peak intensity of the MgO phase (200) in the ZnO-MgO sintered body is I1, and the ratio is equivalent to the ratio of Mg and Zn in the sintered body. When the peak intensity of the MgO phase (200) in the mixed powder of ZnO powder and MgO powder is defined as I2, 0.01 ≦ I1 / I2 ≦ 1.00 is satisfied. That is, according to the present invention, it is possible to maintain a relatively high sputtering rate of ZnO by suppressing solid solution of MgO in ZnO and intentionally leaving the MgO phase.
X線回折法(XRD)の測定条件は、電圧:40kV、電流:30mA、測定範囲:20°≦2θ≦120°、サンプリング幅:0.02°、スキャンスピード:4.00°/minとする。強度比はそれぞれのピークの積分強度の比とする。X線回折ピーク強度I1は、図1のように焼結体の端部から10mm以上内側の、中心を通り、直角に交差する2本の直線上の4個所から採取した表面を測定し、その平均とする。また、X線回折ピーク強度I2の測定に用いるZnO粉とMgO粉は、特定の配向を持たないランダム方位を持つものを用いる。 The measurement conditions of the X-ray diffraction method (XRD) are: voltage: 40 kV, current: 30 mA, measurement range: 20 ° ≦ 2θ ≦ 120 °, sampling width: 0.02 °, scan speed: 4.00 ° / min. . The intensity ratio is the ratio of the integrated intensity of each peak. The X-ray diffraction peak intensity I1 is measured on the surface taken from four points on two straight lines passing through the center and intersecting at a right angle, 10mm or more from the end of the sintered body as shown in FIG. Average. In addition, as the ZnO powder and MgO powder used for the measurement of the X-ray diffraction peak intensity I2, those having a random orientation not having a specific orientation are used.
また、本発明のZnO−MgO系焼結体は、MgO相の最大結晶粒径が5〜90μm以下であることが好ましい。結晶粒径が5μm未満であると、均質な膜が得られ、低パーティクルが実現できるが、ZnO中にMgOが固溶する傾向が強まり、スパッタレートが低下するという問題がある。一方、結晶粒径が90μm超であると、そこを起点とする異常放電によって、パーティクル発生が増加し易くなる。 In the ZnO—MgO-based sintered body of the present invention, the maximum crystal grain size of the MgO phase is preferably 5 to 90 μm or less. When the crystal grain size is less than 5 μm, a homogeneous film can be obtained and low particles can be realized, but there is a problem that MgO is more likely to be dissolved in ZnO and the sputtering rate is lowered. On the other hand, if the crystal grain size is more than 90 μm, the generation of particles tends to increase due to abnormal discharge starting from the crystal grain size.
結晶粒径は、ターゲット断面を走査型電子顕微鏡(SEM)により2000倍の視野を、図1に示すように4箇所について観察し、それぞれの視野において、JIS G0551の切断法による評価方法で粒径を測定する。そして、この4視野のうちの最大の粒径を最大粒径として算出する。 As for the crystal grain size, the target cross section was observed with a scanning electron microscope (SEM) at a 2000-fold field of view at four locations as shown in FIG. Measure. Then, the maximum particle size of the four fields of view is calculated as the maximum particle size.
また、本発明のZnO−MgO系焼結体は、比抵抗が50kΩcm以上であることが好ましい。ZnOが酸素欠損により導電性を持った場合、MgOがチャージアップして、異常放電してしまうからである。これを防止するためには、全面において高抵抗であることが望ましい。本発明における比抵抗は、薄膜の場合も含めて、四端針法により測定した値とする。 The ZnO—MgO-based sintered body of the present invention preferably has a specific resistance of 50 kΩcm or more. This is because when ZnO has conductivity due to oxygen deficiency, MgO is charged up and abnormally discharged. In order to prevent this, it is desirable that the entire surface has a high resistance. The specific resistance in the present invention is a value measured by the four-end needle method including the case of a thin film.
なお、四端針法での測定は、NPS社製のResistivity Processor Model Σ−5+に、焼結体測定時には同社製のプローブFELL−TC−100−SBを、薄膜測定時にはKulicke &Soffa社製のプローブFELL PROBE HEADを取り付け、測定した。 In addition, the measurement by the four-end needle method is the Resistivity Processor Model Σ-5 + made by NPS, the probe FELL-TC-100-SB made by the company when measuring a sintered body, and the probe made by Kullike & Soffa when measuring a thin film. A FELL PROBE HEAD was attached and measured.
さらに、本発明のZnO−MgO系焼結体は、相対密度が90%以上であることが好ましい。焼結体(ターゲット)の相対密度が低いということは、ターゲット内部に空孔が多数存在することを意味するので、スパッタの際に、空孔を起点とするスプラッシュや異常放電が発生しやすくなるため好ましくない。 Further, the ZnO—MgO-based sintered body of the present invention preferably has a relative density of 90% or more. The fact that the relative density of the sintered body (target) is low means that there are many vacancies inside the target, so that splashing and abnormal discharge starting from the vacancies are likely to occur during sputtering. Therefore, it is not preferable.
本発明において相対密度は次式から算出する。
相対密度(%)={(焼結体密度)/(理論密度)}×100
前記焼結体密度は、焼結体の寸法をノギスで測長し、その体積と測定重量から算出する。また、前記理論密度は、下記の通り、原料の単体密度それぞれに混合質量比を掛け、得られた値の総和とする。
理論密度=Σ{(ZnOの理論密度×混合質量比)+(MgOの理論密度×混合質量比)}
In the present invention, the relative density is calculated from the following equation.
Relative density (%) = {(sintered body density) / (theoretical density)} × 100
The density of the sintered body is calculated from the volume and measured weight of the sintered body by measuring the dimensions of the sintered body with calipers. In addition, as described below, the theoretical density is the sum of the values obtained by multiplying the single density of raw materials by the mixing mass ratio.
Theoretical density = Σ {(Theoretical density of ZnO × Mixed mass ratio) + (Theoretical density of MgO × Mixed mass ratio)}
本発明のスパッタリングターゲットは、ZnO−MgO系焼結体を機械加工等により作製することができる。そして、このターゲットを用いて、スパッタリング法で作製した薄膜は、膜抵抗が103〜104Ωcmであり、太陽電池の窓層材料として十分な機能を発揮することができる。なお、成膜はRFスパッタにて行い、出力:500W、基板:ガラス(Eagle2000)、ターゲット−基板間距離:115mm、基板温度:室温、ガス導入前到達真空度:<5×10−4Pa、使用ガス:Ar、ガス圧:2.0Paとした。 The sputtering target of the present invention can be produced by machining a ZnO—MgO-based sintered body. A thin film produced by sputtering using this target has a film resistance of 10 3 to 10 4 Ωcm, and can exhibit a sufficient function as a window layer material of a solar cell. Film formation is performed by RF sputtering, output: 500 W, substrate: glass (Eagle 2000), target-substrate distance: 115 mm, substrate temperature: room temperature, ultimate vacuum before gas introduction: <5 × 10 −4 Pa, Gas used: Ar, gas pressure: 2.0 Pa.
次に、本発明のZnO−MgO系焼結体(スパッタリングターゲット)の製造方法について説明する。
まず、最大粒径5〜90μmのMgO粉と最大粒径5〜90μmのZnO粉を用意し、所定の組成となるように調合する。このように、MgO粉の比較的粗い粉を用いることで、大気との反応による変質を防ぐことができ、さらにMgOの固溶を抑制することができる。次に、MgO粉とZnO粉を乾式にて均一に混合する。このとき、MgOの凝集体を残すように比較的緩やかに混合することが重要であり、これにより、MgOの固溶を抑制することができる。また、MgO粉は吸湿等により、Mg(OH)2やMgCO3を形成するため、湿式混合を避けることが好ましい。
Next, a method for producing the ZnO—MgO-based sintered body (sputtering target) of the present invention will be described.
First, MgO powder having a maximum particle size of 5 to 90 μm and ZnO powder having a maximum particle size of 5 to 90 μm are prepared and mixed so as to have a predetermined composition. Thus, by using a relatively coarse powder of MgO powder, alteration due to reaction with the atmosphere can be prevented, and solid solution of MgO can be suppressed. Next, the MgO powder and the ZnO powder are uniformly mixed by a dry method. At this time, it is important to mix relatively gently so as to leave an MgO aggregate, and thus, solid solution of MgO can be suppressed. Moreover, since MgO powder forms Mg (OH) 2 or MgCO 3 by moisture absorption or the like, it is preferable to avoid wet mixing.
次に、この混合粉を、ホットプレス装置を用いて成形・焼結して焼結体を作製する。焼結前に混合粉を仮焼して、合成する方法が知られているが、合成によりMgOの固溶が促進するため、仮焼は行わない。焼結条件は、温度800〜1300℃、プレス圧力250〜350kgf/cm2、保持時間1〜3時間、アルゴン雰囲気とする。このように比較的低温で焼結することにより、MgOの固溶を抑制することができ、さらに、ZnOの揮発を抑制することができる。成型・焼結は、ホットプレスに限らず、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。その後、焼結体を旋盤や平面研削等の機械加工により、所望のサイズ、形状のターゲットに加工することができる。 Next, this mixed powder is formed and sintered using a hot press apparatus to produce a sintered body. A method is known in which the mixed powder is calcined prior to sintering and synthesized, but since the solid solution of MgO is promoted by synthesis, calcining is not performed. The sintering conditions are a temperature of 800 to 1300 ° C., a press pressure of 250 to 350 kgf / cm 2 , a holding time of 1 to 3 hours, and an argon atmosphere. Thus, by sintering at a relatively low temperature, solid solution of MgO can be suppressed, and volatilization of ZnO can be suppressed. Molding / sintering is not limited to hot pressing, and plasma discharge sintering and hot isostatic pressing can also be used. Thereafter, the sintered body can be processed into a target having a desired size and shape by machining such as lathe or surface grinding.
次に、本願発明の実施例及び比較例について説明する。なお、以下の実施例は、あくまで代表的な例を示しているもので、本願発明はこれらの実施例に制限される必要はなく、明細書の記載される技術思想の範囲で解釈されるべきものである。 Next, examples and comparative examples of the present invention will be described. The following examples are merely representative examples, and the present invention need not be limited to these examples, and should be interpreted within the scope of the technical idea described in the specification. Is.
(実施例1)
ZnO粉、MgO粉を、焼結体組成がZnO:85mol%、MgO:15mol%となるように秤量した。MgO原料は、保管中に大気との反応を防止するため、また焼結中にZnOとの反応を防止するため、最大粒径が90μmのものを選定した。ZnO原料は、最大粒径が5μmのものを選定した。次に、これら原料粉末をスーパーミキサーにて、2000rpm、10分間保持して乾式混合した。混合後、アルゴン雰囲気中、昇温速度5℃/分、最終到達温度1300℃、プレス圧力300kgf/cm2にてホットプレスした。
Example 1
ZnO powder and MgO powder were weighed so that the composition of the sintered body was ZnO: 85 mol% and MgO: 15 mol%. The MgO raw material was selected to have a maximum particle size of 90 μm in order to prevent reaction with the atmosphere during storage and to prevent reaction with ZnO during sintering. A ZnO raw material having a maximum particle size of 5 μm was selected. Next, these raw material powders were dry mixed by holding at 2000 rpm for 10 minutes in a super mixer. After mixing, hot pressing was performed in an argon atmosphere at a heating rate of 5 ° C./min, a final reached temperature of 1300 ° C., and a press pressure of 300 kgf / cm 2 .
このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は86.25μmであり、相対密度は96%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.20であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。そのとき、スパッタレートは0.87Å/秒、膜抵抗は1×103〜104Ωcmとなり、良好な結果が得られた。 As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 86.25 μm, the relative density was 96%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.20. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At that time, the sputtering rate was 0.87 Å / sec, and the film resistance was 1 × 10 3 to 10 4 Ωcm, and good results were obtained.
(実施例2)
原料であるMgO粉の最大粒径を50μmとした以外は、実施例1と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は41.25μmであり、相対密度は97%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.16であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。そのとき、スパッタレートは0.81Å/秒、膜抵抗は1×103〜104Ωcmとなり、良好な結果が得られた。
(Example 2)
A sintered body was produced under the same conditions as in Example 1 except that the maximum particle size of the raw material MgO powder was 50 μm. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 41.25 μm, the relative density was 97%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.16. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At that time, the sputtering rate was 0.81 Å / sec and the film resistance was 1 × 10 3 to 10 4 Ωcm, and good results were obtained.
(実施例3)
原料であるMgO粉の最大粒径を8μmとした以外は、実施例1と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は6.00μmであり、相対密度は98%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.13であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。そのとき、スパッタレートは0.76Å/秒、膜抵抗は1×103〜104Ωcmとなり、良好な結果が得られた。
(Example 3)
A sintered body was produced under the same conditions as in Example 1 except that the maximum particle diameter of the raw material MgO powder was 8 μm. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 6.00 μm, the relative density was 98%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.13. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At that time, the sputtering rate was 0.76 Å / sec and the film resistance was 1 × 10 3 to 10 4 Ωcm, and good results were obtained.
(実施例4)
ZnO粉、MgO粉を、焼結体組成がZnO:97mol%、MgO:3mol%となるように秤量した以外は、実施例1と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は88.50μmであり、相対密度は99%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.01であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。そのとき、スパッタレートは0.66Å/秒、膜抵抗は1×103〜104Ωcmとなり、良好な結果が得られた。
(Example 4)
A sintered body was produced under the same conditions as in Example 1 except that ZnO powder and MgO powder were weighed so that the sintered body composition was ZnO: 97 mol% and MgO: 3 mol%. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 88.50 μm, the relative density was 99%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.01. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At that time, the sputtering rate was 0.66 Å / sec, the film resistance was 1 × 10 3 to 10 4 Ωcm, and good results were obtained.
(実施例5)
ZnO粉、MgO粉を、焼結体組成がZnO:50mol%、MgO:50mol%となるように秤量した以外は、実施例1と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は90.25μmであり、相対密度は90%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.66であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。このとき、スパッタレートは1.27Å/秒、膜抵抗は1×103〜104Ωcmとなり、良好な結果が得られた。
(Example 5)
A sintered body was produced under the same conditions as in Example 1 except that the ZnO powder and MgO powder were weighed so that the composition of the sintered body was ZnO: 50 mol% and MgO: 50 mol%. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 90.25 μm, the relative density was 90%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.66. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At this time, the sputtering rate was 1.27 Å / sec and the film resistance was 1 × 10 3 to 10 4 Ωcm, and good results were obtained.
(実施例6)
焼結温度を1000℃に変更した以外は、実施例1と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は87.00μmであり、相対密度は96%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.95であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。そのとき、スパッタレートは1.78Å/秒、膜抵抗は1×103〜104Ωcmとなり、良好な結果が得られた。
(Example 6)
A sintered body was produced under the same conditions as in Example 1 except that the sintering temperature was changed to 1000 ° C. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 87.00 μm, the relative density was 96%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.95. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At that time, the sputtering rate was 1.78 Å / sec, the film resistance was 1 × 10 3 to 10 4 Ωcm, and good results were obtained.
(実施例7)
焼結温度を1000℃に変更した以外は、実施例2と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は41.00μmであり、相対密度は97%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.81であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。そのとき、スパッタレートは1.49Å/秒、膜抵抗は1×103〜104Ωcmとなり、良好な結果が得られた。
(Example 7)
A sintered body was produced under the same conditions as in Example 2 except that the sintering temperature was changed to 1000 ° C. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 41.00 μm, the relative density was 97%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.81. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At that time, the sputtering rate was 1.49 Å / sec, the film resistance was 1 × 10 3 to 10 4 Ωcm, and good results were obtained.
(比較例1)
原料となるZnO粉とMgO粉を混合後、1400℃での仮焼した後、ボールミルでの湿式粉砕を行った以外は、実施例1と同様の条件にて焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は87.00μmであり、相対密度は96%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.00であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。このとき、スパッタレートは0.46Å/秒、膜抵抗は1×103〜104Ωcmであった。
(Comparative Example 1)
A sintered body was produced under the same conditions as in Example 1, except that the raw material ZnO powder and MgO powder were mixed, calcined at 1400 ° C., and then wet pulverized with a ball mill. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 87.00 μm, the relative density was 96%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.00. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At this time, the sputtering rate was 0.46 Å / sec, and the film resistance was 1 × 10 3 to 10 4 Ωcm.
(比較例2)
ホットプレスの温度を1400℃とした以外は、実施例1と同様の条件にて焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は88.75μmであり、相対密度は96%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.005であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。このとき、スパッタレートは0.41Å/秒、膜抵抗は1×107〜108Ωcmであった。
(Comparative Example 2)
A sintered body was produced under the same conditions as in Example 1 except that the temperature of the hot press was 1400 ° C. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 88.75 μm, the relative density was 96%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.005. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At this time, the sputtering rate was 0.41 Å / sec, and the film resistance was 1 × 10 7 to 10 8 Ωcm.
(比較例3)
原料であるMgO粉の最大粒径を5μmとした以外は、実施例1と同様の条件にて焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は4.00μmであり、相対密度は99%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.008であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。このとき、スパッタレートは0.43Å/秒、膜抵抗は1×107〜108Ωcmであった。
(Comparative Example 3)
A sintered body was produced under the same conditions as in Example 1 except that the maximum particle diameter of the raw material MgO powder was 5 μm. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 4.00 μm, the relative density was 99%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.008. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At this time, the sputtering rate was 0.43 Å / sec, and the film resistance was 1 × 10 7 to 10 8 Ωcm.
(比較例4)
原料であるMgO粉の最大粒径を100μmとした以外は、実施例1と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は95.75μmであり、相対密度は96%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.21であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。このとき、スパッタレートは0.82Å/秒、膜抵抗は1×107〜108Ωcmであった。
(Comparative Example 4)
A sintered body was produced under the same conditions as in Example 1 except that the maximum particle diameter of the raw material MgO powder was 100 μm. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 95.75 μm, the relative density was 96%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.21. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At this time, the sputtering rate was 0.82 Å / sec, and the film resistance was 1 × 10 7 to 10 8 Ωcm.
(比較例5)
ZnO粉、MgO粉を、焼結体組成がZnO:98mol%、MgO:2mol%となるように秤量した以外は、実施例1と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は88.50μmであり、相対密度は98%、抵抗率は45kΩcmであった。また、X線回折ピーク強度比I1/I2は0.007であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。このとき、スパッタレートは0.57Å/秒、膜抵抗は1×101〜102Ωcmであった。
(Comparative Example 5)
A sintered body was produced under the same conditions as in Example 1 except that ZnO powder and MgO powder were weighed so that the composition of the sintered body was ZnO: 98 mol% and MgO: 2 mol%. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 88.50 μm, the relative density was 98%, and the resistivity was 45 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.007. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At this time, the sputtering rate was 0.57 Å / sec, and the film resistance was 1 × 10 1 to 10 2 Ωcm.
(比較例6)
ZnO粉、MgO粉を、焼結体組成がZnO:49mol%、MgO:51mol%となるように秤量した以外は、実施例1と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は89.25μmであり、相対密度は90%、抵抗率は48kΩcmであった。また、X線回折ピーク強度比I1/I2は0.05であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。このとき、スパッタレートは0.54Å/秒、膜抵抗は1×107〜108Ωcmであった。
(Comparative Example 6)
A sintered body was produced under the same conditions as in Example 1 except that ZnO powder and MgO powder were weighed so that the sintered body composition was ZnO: 49 mol% and MgO: 51 mol%. As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 89.25 μm, the relative density was 90%, and the resistivity was 48 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.05. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At this time, the sputtering rate was 0.54 Å / sec, and the film resistance was 1 × 10 7 to 10 8 Ωcm.
(比較例7)
ホットプレスでのプレス圧力を150kgf/cm2に変更した以外は、実施例1と同様の条件で焼結体を作製した。このようにして作製した焼結体を評価した結果、MgO相の最大結晶粒径は86.25μmであり、相対密度は85%、抵抗率は50kΩcm超であった。また、X線回折ピーク強度比I1/I2は0.23であった。また、残部の焼結体から作製したターゲットを用いてスパッタリングを実施し、シリコン基板上に成膜した。このとき、スパッタレートは0.90Å/秒、膜抵抗は1×101〜104Ωcmと安定しなかった。
(Comparative Example 7)
A sintered body was produced under the same conditions as in Example 1 except that the pressing pressure in the hot press was changed to 150 kgf / cm 2 . As a result of evaluating the sintered body thus produced, the maximum crystal grain size of the MgO phase was 86.25 μm, the relative density was 85%, and the resistivity was more than 50 kΩcm. The X-ray diffraction peak intensity ratio I1 / I2 was 0.23. Moreover, sputtering was performed using the target produced from the remaining sintered body, and it formed into a film on the silicon substrate. At this time, the sputtering rate was 0.90 Å / sec, and the film resistance was not stable at 1 × 10 1 to 10 4 Ωcm.
以上の結果をまとめたものを表1に示す。
本発明のZnO−MgO系スパッタリングターゲットは、高い成膜速度を実現することができ、生産性を向上することができる。さらに、スパッタの際にアーキングの発生を効果的に抑制できる。本発明のZnO−MgO系スパッタリングターゲットを用いて作製される薄膜は、CIGS系の太陽電池の窓層材料として最適である。 The ZnO—MgO-based sputtering target of the present invention can realize a high film formation rate and can improve productivity. Furthermore, arcing can be effectively suppressed during sputtering. The thin film produced using the ZnO-MgO-based sputtering target of the present invention is optimal as a window layer material for CIGS-based solar cells.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015071530A JP6396837B2 (en) | 2015-03-31 | 2015-03-31 | Sintered body for ZnO-MgO based sputtering target and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015071530A JP6396837B2 (en) | 2015-03-31 | 2015-03-31 | Sintered body for ZnO-MgO based sputtering target and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016190757A JP2016190757A (en) | 2016-11-10 |
JP6396837B2 true JP6396837B2 (en) | 2018-09-26 |
Family
ID=57246407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015071530A Expired - Fee Related JP6396837B2 (en) | 2015-03-31 | 2015-03-31 | Sintered body for ZnO-MgO based sputtering target and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6396837B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7328246B2 (en) * | 2018-10-31 | 2023-08-16 | 出光興産株式会社 | sintered body |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5593612B2 (en) * | 2006-06-08 | 2014-09-24 | 住友金属鉱山株式会社 | Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate |
WO2012014688A1 (en) * | 2010-07-30 | 2012-02-02 | Jx日鉱日石金属株式会社 | Sintered material for zno-mgo-based sputtering target |
CN102453865B (en) * | 2010-10-25 | 2015-09-16 | 海洋王照明科技股份有限公司 | A kind of preparation method of MgZnO film and application thereof |
JP5837183B2 (en) * | 2012-03-28 | 2015-12-24 | Jx日鉱日石金属株式会社 | Sintered body for forming low refractive index film and method for producing the same |
-
2015
- 2015-03-31 JP JP2015071530A patent/JP6396837B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016190757A (en) | 2016-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5024226B2 (en) | Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film | |
JP5349587B2 (en) | Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film | |
TWI433823B (en) | Composite oxide sinter, method for producing composite oxide sinter, method for producing sputtering target and thin film | |
JP2008063214A (en) | Zinc oxide sintered compact, process for producing the same, and sputtering target | |
JP5411945B2 (en) | Indium oxide-based sintered body and indium oxide-based transparent conductive film | |
JPWO2011058828A1 (en) | Cu-In-Ga-Se sputtering target and manufacturing method thereof | |
JP2010047829A (en) | Sputtering target and manufacturing method thereof | |
JP2016510363A (en) | ZnO-Al2O3-MgO sputtering target and method for producing the same | |
JP5583771B2 (en) | Sintered body for ZnO-MgO sputtering target | |
JP2010120803A (en) | Multiple oxide sintered compact | |
JP6396837B2 (en) | Sintered body for ZnO-MgO based sputtering target and method for producing the same | |
JP6357757B2 (en) | Oxide sintered body, sputtering target and oxide film using the same | |
JP5720726B2 (en) | Zinc oxide sintered body and method for producing the same | |
JP5255685B2 (en) | Oxide sintered body, sputtering target, and manufacturing method thereof | |
KR20190114751A (en) | Sputtering target and manufacturing method thereof | |
JP2010222176A (en) | ZnO SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME | |
JP5602820B2 (en) | Manufacturing method of ZnO sintered body | |
JP6800405B2 (en) | Oxide sintered body, its manufacturing method and sputtering target | |
WO2019097959A1 (en) | Oxide sintered body and sputtering target | |
TW201209008A (en) | Sputtering target and process for production thereof | |
JP2020164957A (en) | Sputtering target and manufacturing method of sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180830 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6396837 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |