WO2013146448A1 - Sintered object for forming low-refractive-index film and process for producing same - Google Patents

Sintered object for forming low-refractive-index film and process for producing same Download PDF

Info

Publication number
WO2013146448A1
WO2013146448A1 PCT/JP2013/057754 JP2013057754W WO2013146448A1 WO 2013146448 A1 WO2013146448 A1 WO 2013146448A1 JP 2013057754 W JP2013057754 W JP 2013057754W WO 2013146448 A1 WO2013146448 A1 WO 2013146448A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
thin film
less
mgf
magnesium
Prior art date
Application number
PCT/JP2013/057754
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 奈良
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2014507743A priority Critical patent/JP5837183B2/en
Publication of WO2013146448A1 publication Critical patent/WO2013146448A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3237Substoichiometric titanium oxides, e.g. Ti2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/727Phosphorus or phosphorus compound content

Definitions

  • the present invention relates to a sintered body for forming a low refractive index film that is amorphous and a method for producing the same.
  • the transmittance is high particularly in the entire visible light region.
  • the refractive index is high, the optical loss increases and the viewing angle dependency of the display deteriorates. Therefore, the amorphous film is used to improve the cracking and etching performance of the film because of its low refractive index. desired.
  • the amorphous film Since the amorphous film has low stress and is less likely to crack compared to the crystal film, it is considered that the amorphous film is required to be flexible in the future.
  • a film obtained by adding tin to indium oxide that is, an ITO (Indium-Tin-Oxide) film is transparent and excellent in conductivity, and is used in a wide range of applications such as various displays.
  • ITO Indium-Tin-Oxide
  • this ITO needs to be crystallized in order to improve the low resistance value and the transmittance, and in the amorphous state, it absorbs in the short wavelength region and does not become a transparent film, so it is not suitable for flexible use.
  • IZO Indium-Zinc-Oxide
  • AZO Alluminium-Zinc-Oxide
  • GZO Ga-Zinc-Oxide
  • IZO can be a low-resistance amorphous film, it has a problem of absorption in a short wavelength region.
  • AZO and GZO are ZnO c-axis oriented crystal films, so they are not suitable for flexible applications because of large stress and problems such as film peeling and film cracking.
  • the refractive index of ITO, IZO, AZO, and GZO is 2.0 or more, a material that has a low refractive index, a high transmittance, and an amorphous film is desired.
  • An object of the present invention is to provide a thin film capable of maintaining good visible light transmittance and a low refractive index of 2.0 or less, and a sintered body capable of obtaining an amorphous film. Since this thin film has a high transmittance, a low refractive index, and an amorphous film, it is useful as a transparent conductive film and a protective layer for displays, solar cells, and touch panels.
  • Patent Document 4 discloses a light-transmitting conductive material that realizes a wide range of refractive index, mainly composed of ZnO and an alkaline earth metal fluoride compound. However, this is a crystallized film, and the effect of the amorphous film as in the present invention described later cannot be obtained.
  • Patent Document 5 discloses a transparent conductive film that has a low refractive index and a low specific resistance and is amorphous. However, the composition system differs from the present invention, and the refractive index and the resistance value are disclosed. Cannot be adjusted together.
  • the present invention provides a thin film capable of maintaining good visible light transmittance (extinction coefficient 0.01 or less (wavelength 450 nm)) and a low refractive index of 2.0 or less (wavelength 550 nm), and an amorphous film. It is an object of the present invention to provide a sintered body that can be used. Since this thin film has a high transmittance, a low refractive index, and an amorphous film, it is useful as a transparent conductive film and a protective layer for displays, solar cells, and touch panels.
  • the present inventors have conducted intensive research. As a result, zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F) are the main components, and magnesium (Mg)
  • Zn zinc
  • Mg magnesium
  • O oxygen
  • F fluorine
  • Mg magnesium
  • MgF 2 magnesium fluoride
  • the amorphous stability of the thin film after film formation is ensured and good visible light transmission is achieved. It was found that a thin film capable of maintaining a low refractive index having a refractive index (extinction coefficient of 0.01 or less (wavelength 450 nm)) and a refractive index of 2.0 or less (wavelength 550 nm) can be formed.
  • the peak intensity ratio (magnesium fluoride peak intensity / background intensity) of magnesium fluoride (MgF 2 ) to the background intensity in X-ray diffraction is 1.50 or more.
  • one or more elements selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) are contained in an amount of 0.2 to 10 mol% in terms of oxide of each element.
  • the sintered body according to 4 which is one or more oxides selected from the group of MoO 3 .
  • a thin film composed of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the magnesium (Mg) content is 1.0 to 1.0 in terms of magnesium fluoride (MgF 2 ).
  • the oxides having a melting point of 1000 ° C. or less are B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O. 3.
  • the thin film according to 11 which is at least one oxide selected from the group of MoO 3 . 13)
  • the thin film according to any one of 9) to 12 which is amorphous.
  • the thin film according to any one of 9) to 13) which has a refractive index of 2.0 or less (wavelength 550 nm).
  • magnesium (Mg) As described above, zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F) are the main components, and the content of magnesium (Mg) is 1.0 to 27 mol in terms of magnesium fluoride (MgF 2 ).
  • MgF 2 magnesium fluoride
  • the sintered body of the present invention is a sintered body made of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the magnesium (Mg) content is magnesium fluoride (MgF). 2 ) It is characterized by containing 1.0 to 27 mol% in terms of conversion. Further, the sintered body of the present invention is characterized in that the peak intensity ratio (magnesium fluoride peak intensity / background intensity) of magnesium fluoride (MgF 2 ) to the background intensity in X-ray diffraction is 1.50 or more. One of them.
  • the sintered body of the present invention includes at least one element selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) in terms of oxide of each element. It can be contained in an amount of 0.2 to 10 mol%.
  • the sintered body of the present invention can contain 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C. or less in terms of oxide weight. Examples of the oxide having a melting point of 1000 ° C. or lower include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, and Bi 2 O 3.
  • One or more oxides selected from the group of MoO 3 may be used.
  • the additive element (oxide) more than soot can be selected arbitrarily, and the characteristic according to each additive element can be improved.
  • These sintered bodies are useful as sputtering targets and further as ion plating materials. The case where the sintered body of the present invention is applied will be described in detail below.
  • the sintered body of the present invention is a sintered body made of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the magnesium (Mg) content is magnesium fluoride (MgF). 2 ) Containing 1.0 to 27 mol% in terms of conversion.
  • each metal in the sintered body is specified in terms of oxide or fluoride.
  • a part of each metal in the sintered body exists as a composite oxide. ing.
  • each content is measured not as an oxide or fluoride but as a metal. Therefore, each composition range was calculated
  • This magnesium fluoride is effective for making the film amorphous and lowering the refractive index. If it is less than 1.0 mol%, there is no effect of addition, and if it exceeds 27 mol%, there arises a problem of increasing the resistivity of the film.
  • magnesium fluoride (MgF 2 ) in this sintered body can be confirmed by X-ray diffraction. That is, the peak intensity ratio (magnesium fluoride peak intensity / background intensity) of magnesium fluoride (MgF 2 ) to the background intensity in X-ray diffraction is set to 1.50 or more.
  • the peak intensity of MgF 2 is measured by an X-ray diffractometry using a product obtained by cutting the produced sputtering target or a powder obtained by pulverizing the sputtering target. That is, the intensity around 2 ⁇ : 27.3 ° where the peak of the (110) plane of MgF 2 appears is measured, and the background intensity (average value of the intensity of 28.0 to 29.0 °) is measured. Thereby, the peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) is obtained.
  • Rigak Ultimate IV can be used as a measuring device.
  • one or more elements selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) are included. 2 to 10 at% can be contained. Conductivity can be imparted by adding 0.2 to 10 mol% of an oxide of these elements in terms of element amount. When the amount of oxide of these elements is less than 0.2 mol% in terms of element amount, the effect is small, and when it exceeds 10 mol%, the effect is saturated, so the above range is preferable.
  • germanium oxide and boron oxide are also glass-forming oxides, and are effective in making the film amorphous and lowering the refractive index. If the amount is less than 0.2 mol% in terms of element amount, the effect of addition is not present, and if it exceeds 10 mol%, there is a problem that the film has a high resistivity.
  • the sintered body of the present invention is effective for the sintered body of the present invention to contain a metal that forms an oxide having a melting point of 1000 ° C. or lower (low melting point oxide). Since zinc oxide (ZnO) is easy to reduce and evaporate, the sintering temperature cannot be increased so much, and it may be difficult to improve the density of the sintered body. However, the addition of such a low-melting point oxide has an effect that a high density can be achieved without increasing the sintering temperature so much.
  • the low melting point oxide include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , MoO. 3 can be mentioned. These oxides can be added individually and in combination, respectively, and the object of the present invention can be achieved.
  • the metal forming the low melting point oxide is preferably contained in an amount of 0.1 to 5 wt% in terms of oxide weight. If it is less than 0.1 wt%, the effect cannot be sufficiently exhibited, and if it exceeds 5 wt%, the characteristics may vary depending on the composition, which is not preferable.
  • the relative density is preferably 90% or more. It is desirable that the relative density is 92% or more, and further the relative density is 99% or more. The present invention can obtain such a high-density target.
  • the improvement in density has the effect of increasing the uniformity of the sputtered film and suppressing the generation of particles during sputtering.
  • This sintered body industrially produces a thin film having particularly low visible light transmittance (extinction coefficient 0.01 or less (wavelength 450 nm)) and low refractive index 2.0 or less (wavelength 550 nm). Useful for. Furthermore, the extinction coefficient of ⁇ 0.005 (wavelength 450 nm) can be achieved.
  • a thin film having good visible light transmittance and low refractive index is particularly useful as a thin film for a protective layer of an optical information recording medium, for flexible displays, for organic EL televisions, for touch panel electrodes.
  • the present invention is mainly composed of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the content of magnesium (Mg) is converted to magnesium fluoride (MgF 2 ).
  • a thin film formed using a sintered body containing 1.0 to 27 mol% ensures the amorphous stability of the thin film, and further has a good visible light transmittance (extinction coefficient of 0.01 or less (wavelength 450 nm)) and a low refractive index of 2.0 or less (wavelength 550 nm) can be formed.
  • the sintered body of the present invention can be produced by subjecting each constituent element powder having an average particle size of 5 ⁇ m or less to atmospheric pressure sintering or high temperature pressure sintering in an inert atmosphere. Furthermore, by using the sintered body of the present invention, productivity can be improved and a material with excellent quality can be obtained. Good visible light transmittance (extinction coefficient of 0.01 or less (wavelength 450 nm)) In addition, a low refractive index thin film having a refractive index of 2.0 or less (wavelength 550 nm) can be produced stably at a low cost.
  • this sintered body achieves a low bulk resistance of less than 10 ⁇ ⁇ cm and enables high-speed film formation by DC (direct current) sputtering. Further, the DC sputtering apparatus is advantageous in that it is inexpensive, easy to control, and consumes less power. In the present invention, depending on manufacturing conditions and selection of materials, it may be necessary to perform ion plating and RF sputtering.
  • the sintered body of the present invention is used for ion plating.
  • the ion plating material for forming a low refractive index film of the present invention one or more elements selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) are used. Since oxides (Ga 2 O 3 , B 2 O 3 , GeO 2 , In 2 O 3 , SnO 2 ) and magnesium fluoride (MgF 2 ) have a vapor pressure similar to that of zinc oxide, the material for ion plating Can be used without any problem. The vapor pressure curve of each oxide and fluoride compared with ZnO is shown in FIG.
  • the vapor pressure curve of the oxides of Al 2 O 3 , MgO, and SiO 2 compared with ZnO is shown in FIG.
  • the oxide shown in FIG. 3 has a large difference in vapor pressure as compared with ZnO.
  • the oxides of Al 2 O 3 , MgO, and SiO 2 shown in FIG. 2 are added to ZnO as a sputtering target material, but are slightly unsuitable as an ion plating material because of a large difference in vapor pressure. It can be said.
  • sputtering targets are preferably produced and used.
  • the raw material powder of magnesium fluoride (MgF 2 ) is used for zinc oxide (ZnO) as a main component, or gallium (Ga), boron (B), germanium (Ge).
  • the component composition of the ion plating material can be arbitrarily adjusted according to the purpose of film formation. For example, it can be used for forming a protective layer for flexible displays, organic EL televisions, touch panel electrodes, and optical information recording media. As described above, since there is no significant change in the vapor pressure, the component composition of the ion plating material can be reflected in the component composition of the low refractive index film. Therefore, high-speed film formation is possible, and excellent characteristics such as stable amorphousness and high transmittance can be provided.
  • Example 1 The average particle diameter of 5 ⁇ m or less of MgF 2 powder and at 5 ⁇ m following ZnO powder and 3N corresponding with 3N equivalent was prepared an average particle size 5 ⁇ m or less of GeO 2 powder with 3N equivalent.
  • Hot press sintering was performed at 900 ° C. in an Ar atmosphere at a pressure of 250 kgf / cm 2 . This sintered body was finished into a target shape by machining.
  • the sputtering target of Example 1 had a relative density of 92.0% and a bulk resistance value of 1.2 ⁇ ⁇ cm, and stable DC sputtering was possible.
  • the film formation rate was 2.6 ⁇ / sec, and the film formation rate was good.
  • the refractive index was 1.90 (wavelength 633 nm), indicating amorphousness.
  • the XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2 ⁇ : 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
  • the peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 19.5.
  • Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
  • Example 2 The average particle diameter of 5 ⁇ m or less of MgF 2 powder and at 5 ⁇ m following ZnO powder and 3N corresponding with 3N equivalent was prepared an average particle size 5 ⁇ m or less of GeO 2 powder with 3N equivalent.
  • Hot press sintering was performed in air at 800 ° C. and a pressure of 250 kgf / cm 2 .
  • the sintered body was pulverized to obtain an ion plating material as a granular body having a particle size of 1 to 6 mm.
  • the peak intensity of MgF 2 was measured by pulverizing the obtained ion plating material and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2 ⁇ : 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
  • the peak intensity ratio of MgF 2 to the background intensity was 16.3.
  • Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
  • Example 3 ZnO powder of 3N equivalent to 5 ⁇ m or less, 3N equivalent to MgF 2 powder with an average particle size of 5 ⁇ m or less, 3N equivalent to an average particle size of 5 ⁇ m or less GeO 2 powder, 3N equivalent to an average particle size of 5 ⁇ m or less Ge 2 O 3 powder Got ready.
  • the powder material was hot-press sintered at 1000 ° C. in an Ar atmosphere at a pressure of 250 kgf / cm 2 . This sintered body was finished into a target shape by machining.
  • the sputtering target of Example 3 had a relative density of 99.6% and a bulk resistance value of 4 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and stable DC sputtering was possible.
  • the refractive index was 1.84 (wavelength 633 nm), indicating amorphousness.
  • the XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2 ⁇ : 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
  • the peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 24.1.
  • Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
  • Example 4 ZnO powder of 3N equivalent and 5 ⁇ m or less was prepared, and 3N equivalent MgF 2 powder having an average particle size of 5 ⁇ m or less and 3N equivalent SnO 2 powder of 5 ⁇ m or less in average particle diameter were prepared.
  • the powder material was hot-press sintered at 1050 ° C. in an Ar atmosphere at a pressure of 250 kgf / cm 2 . This sintered body was finished into a target shape by machining.
  • the sputtering target of Example 4 had a relative density of 99.2% and a bulk resistance value of 6 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and stable DC sputtering was possible.
  • the refractive index was 1.96 (wavelength 633 nm), indicating amorphousness.
  • the XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2 ⁇ : 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
  • the peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 14.2.
  • Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
  • Example 5 3N equivalent ZnO powder of 5 ⁇ m or less, 3N equivalent MgF 2 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of In 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent GeO with an average particle size of 5 ⁇ m or less were prepared .
  • the powder material was hot-press sintered at 1050 ° C. in an Ar atmosphere at a pressure of 250 kgf / cm 2 . This sintered body was finished into a target shape by machining.
  • the sputtering target of Example 5 had a relative density of 99.3% and a bulk resistance value of 3 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and stable DC sputtering was possible.
  • the refractive index was 1.93 (wavelength 633 nm), indicating amorphousness.
  • the XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2 ⁇ : 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
  • the peak intensity ratio of MgF 2 to the background intensity was 9.8.
  • Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
  • 3N corresponds with 5 ⁇ m following ZnO powder were prepared an average particle size 5 ⁇ m or less of MgF 2 powder with 3N equivalent.
  • the sputtering target of Comparative Example 1 had a relative density of 98.0% and a bulk resistance value of 2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and stable DC sputtering was possible.
  • the refractive index was 1.93 (wavelength 633 nm), which was insufficient, and did not show amorphous properties.
  • the XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2 ⁇ : 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
  • the peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 1.7.
  • Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
  • the sputtering target of Comparative Example 2 had a relative density of 97.6% and a bulk resistance value of> 10 ⁇ ⁇ cm, and stable DC sputtering could not be performed.
  • the refractive index was 1.78 (wavelength 633 nm), indicating amorphousness.
  • the XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2 ⁇ : 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
  • the peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 36.4.
  • Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
  • the thin film formed using the sintered body of the present invention is a thin film capable of maintaining a good visible light transmittance with an extinction coefficient of 0.01 or less (wavelength 450 nm) and a low refractive index of 2.0 or less. Further, it is possible to provide a sintered body capable of obtaining an amorphous film. Since this thin film has a high transmittance, a low refractive index, and an amorphous film, it is useful as a transparent conductive film and a protective layer for displays, solar cells, and touch panels. For example, it can be used for forming a protective layer for flexible displays, organic EL televisions, touch panel electrodes, and optical information recording media.
  • the major features of the present invention are that the target bulk resistance value is reduced, conductivity is imparted, and stable DC sputtering is possible depending on the material. And there is a remarkable effect that the controllability of sputtering, which is the feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. Ion plating and RF sputtering are performed as necessary, but even in this case, the film formation rate is improved. Thus, there is a remarkable effect that a thin film capable of maintaining a good visible light transmittance and a low refractive index of 2.0 or less can be stably produced at a low cost.

Abstract

A sintered object which comprises zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), characterized by containing the fluoride of magnesium (Mg) in an amount of 1.0-27 mol% in terms of Mg element amount. Provided, on the basis of this sintered object, is a sintered object which can be used in forming a thin film for use as an electrode for flexible displays, organic EL televisions, or touch panels, as an optical thin film for forming the protective layer, reflection layer, or semi-transparent layer of an optical information recording medium, or as the seed layer of a hard disk. With the sintered object, it is possible to provide a thin film which is optimal for such applications and which is amorphous, has such a satisfactory visible light transmittance that the extinction coefficient is 0.01 or lower (wavelength, 450 nm), and has a refractive index as low as 2.0 or less.

Description

低屈折率膜形成用焼結体及びその製造方法Sintered body for forming low refractive index film and method for producing the same
 本発明は、非晶質であり、低屈折率膜形成用焼結体及びその製造方法に関する。 The present invention relates to a sintered body for forming a low refractive index film that is amorphous and a method for producing the same.
 近年、ディスプレイや太陽電池、タッチパネルのように光を扱う分野にてフレキシブル化の検討が進んでいる。ディスプレイ等において光を利用する場合、特に可視光領域の全域において高透過率であることが好ましい。また、屈折率が高いと光損失が大きくなったり、ディスプレイの視野角依存性を悪化したりすることから、低屈折率であることや、膜のクラックやエッチング性能を向上させるためにアモルファス膜が望まれる。 In recent years, studies on flexibility have been made in the field of handling light such as displays, solar cells, and touch panels. When light is used in a display or the like, it is preferable that the transmittance is high particularly in the entire visible light region. In addition, if the refractive index is high, the optical loss increases and the viewing angle dependency of the display deteriorates. Therefore, the amorphous film is used to improve the cracking and etching performance of the film because of its low refractive index. desired.
 アモルファス膜は応力が小さく、結晶膜に比べてクラックが起こりにくいため、今後、フレキシブル化に向けてアモルファス膜であることが求められると考えられる。
 例えば、透明導電膜としては、酸化インジウムにスズを添加した膜、すなわち、ITO(Indium-Tin-Oxide)膜が透明かつ導電性に優れており、各種ディスプレイ等広範囲な用途に使用されている。しかし、このITOは低抵抗値や透過率を向上するために結晶化する必要があり、アモルファス状態では短波長域に吸収を持ち透明膜にはならないため、フレキシブル用途には適していない。
Since the amorphous film has low stress and is less likely to crack compared to the crystal film, it is considered that the amorphous film is required to be flexible in the future.
For example, as the transparent conductive film, a film obtained by adding tin to indium oxide, that is, an ITO (Indium-Tin-Oxide) film is transparent and excellent in conductivity, and is used in a wide range of applications such as various displays. However, this ITO needs to be crystallized in order to improve the low resistance value and the transmittance, and in the amorphous state, it absorbs in the short wavelength region and does not become a transparent film, so it is not suitable for flexible use.
 その他の透明導電膜材料としては、IZO(Indium-Zinc-Oxide)、AZO(Aluminium-Zinc-Oxide)、GZO(Gallium-Zinc-Oxide)などが知られている(特許文献1~3)。しかし、IZOは低抵抗のアモルファス膜とすることが出来るが、短波長域に吸収を持つという問題がある。
 また、AZO,GZOはZnOのc軸配向結晶膜となるため、応力が大きく、膜剥がれや膜割れ等の問題があるためフレキシブル用途には向かない。さらに、ITO、IZO、AZO、GZOともに屈折率が2.0以上となるため、低屈折率で高透過率かつアモルファス膜となる材料が要望されている。
As other transparent conductive film materials, IZO (Indium-Zinc-Oxide), AZO (Aluminium-Zinc-Oxide), GZO (Gallium-Zinc-Oxide), and the like are known (Patent Documents 1 to 3). However, although IZO can be a low-resistance amorphous film, it has a problem of absorption in a short wavelength region.
Further, AZO and GZO are ZnO c-axis oriented crystal films, so they are not suitable for flexible applications because of large stress and problems such as film peeling and film cracking. Furthermore, since the refractive index of ITO, IZO, AZO, and GZO is 2.0 or more, a material that has a low refractive index, a high transmittance, and an amorphous film is desired.
 本発明は、良好な可視光の透過率と屈折率2.0以下の低屈折率を維持できる薄膜、さらにアモルファス膜を得ることが可能な焼結体を提供することを課題とする。この薄膜は透過率が高く、屈折率が低く、且つ、アモルファス膜であるため、ディスプレイや太陽電池、タッチパネルの透明導電膜や保護層として有用である。 An object of the present invention is to provide a thin film capable of maintaining good visible light transmittance and a low refractive index of 2.0 or less, and a sintered body capable of obtaining an amorphous film. Since this thin film has a high transmittance, a low refractive index, and an amorphous film, it is useful as a transparent conductive film and a protective layer for displays, solar cells, and touch panels.
 また、特許文献4には、ZnOとフッ化アルカリ土類金属化合物を主成分とする幅広い屈折率を実現した透光性導電性材料が開示されている。しかし、これは結晶化膜であって、後述する本発明のようなアモルファス膜の効果は得られない。また、特許文献5には、屈折率が小さく、かつ、比抵抗が小さく、さらには非晶質の透明導電膜が開示されているが、本発明とは組成系が異なり、屈折率と抵抗値とを共に調整できないという問題がある。 In addition, Patent Document 4 discloses a light-transmitting conductive material that realizes a wide range of refractive index, mainly composed of ZnO and an alkaline earth metal fluoride compound. However, this is a crystallized film, and the effect of the amorphous film as in the present invention described later cannot be obtained. Patent Document 5 discloses a transparent conductive film that has a low refractive index and a low specific resistance and is amorphous. However, the composition system differs from the present invention, and the refractive index and the resistance value are disclosed. Cannot be adjusted together.
特開2007-008780号公報JP 2007-008780 A 特開2009-184876号公報JP 2009-184876 A 特開2007-238375号公報JP 2007-238375 A 特開2005-219982号公報Japanese Patent Laid-Open No. 2005-219982 特開2007-035342号公報JP 2007-035342 A
 本発明は、良好な可視光の透過率(消衰係数0.01以下(波長450nm))と屈折率2.0以下(波長550nm)の低屈折率を維持できる薄膜、さらにアモルファス膜を得ることが可能な焼結体を提供することを課題とする。この薄膜は透過率が高く、屈折率が低く、且つ、アモルファス膜であるため、ディスプレイや太陽電池、タッチパネルの透明導電膜や保護層として有用である。 The present invention provides a thin film capable of maintaining good visible light transmittance (extinction coefficient 0.01 or less (wavelength 450 nm)) and a low refractive index of 2.0 or less (wavelength 550 nm), and an amorphous film. It is an object of the present invention to provide a sintered body that can be used. Since this thin film has a high transmittance, a low refractive index, and an amorphous film, it is useful as a transparent conductive film and a protective layer for displays, solar cells, and touch panels.
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、亜鉛(Zn)、マグネシウム(Mg)、酸素(O)、フッ素(F)を主成分とし、マグネシウム(Mg)の含有量がマグネシウムのフッ化物(MgF)換算で1.0~27mol%含有する焼結体とすることで、成膜後の薄膜の非晶質安定性を確保し、良好な可視光の透過率(消衰係数0.01以下(波長450nm))と屈折率2.0以下(波長550nm)の低屈折率を維持できる薄膜が形成できるとの知見を得た。さらに、10Ω・cm未満の低バルク抵抗を実現し、DC(直流)スパッタによる高速成膜が可能であり、また必要に応じてイオンプレーティング、RFスパッタを実施することができるとの知見を得た。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F) are the main components, and magnesium (Mg) By making the sintered body contain 1.0 to 27 mol% in terms of magnesium fluoride (MgF 2 ), the amorphous stability of the thin film after film formation is ensured and good visible light transmission is achieved. It was found that a thin film capable of maintaining a low refractive index having a refractive index (extinction coefficient of 0.01 or less (wavelength 450 nm)) and a refractive index of 2.0 or less (wavelength 550 nm) can be formed. Furthermore, we have realized that low bulk resistance of less than 10 Ω · cm is realized, high-speed film formation by DC (direct current) sputtering is possible, and that ion plating and RF sputtering can be performed as necessary. It was.
 また、イオンプレーティング法を使用して低屈折率膜を形成する場合、イオンプレーティング用の蒸発原料と膜の組成が一致していれば、この蒸発原料をそのまま使用してイオンプレーティングすることができるので、より簡便に操作ができるという利点がある。但し、主要成分となる酸化亜鉛(ZnO)と、副成分として添加した酸化物の蒸気圧が大きく相違する場合は、イオンプレーティング法では同じ組成の薄膜が形成されない場合があるので、ある程度の調整が必要である。 In addition, when forming a low refractive index film using the ion plating method, if the evaporation raw material for ion plating and the composition of the film match, ion plating using this evaporation raw material as it is Therefore, there is an advantage that the operation can be performed more easily. However, if the vapor pressure of zinc oxide (ZnO), which is the main component, and the oxide added as a subcomponent are significantly different, a thin film with the same composition may not be formed by the ion plating method. is required.
 本発明はこの知見に基づき、下記の発明を提供する。
 1)亜鉛(Zn)、マグネシウム(Mg)、酸素(O)、フッ素(F)からなる焼結体であって、マグネシウム(Mg)の含有量がマグネシウムのフッ化物(MgF)換算で1.0~27mol%含有することを特徴とする焼結体。
 2)X線回折におけるバックグラウンド強度に対するフッ化マグネシウム(MgF)のピーク強度比(フッ化マグネシウムピーク強度/バックグラウンド強度)が1.50以上であることを特徴とする上記1)に記載の焼結体。
 3)さらにガリウム(Ga)、ボロン(B)、ゲルマニウム(Ge)、インジウム(In)、錫(Sn)から選択した1種以上の元素を各元素の酸化物換算で0.2~10mol%含有することを特徴とする上記1)又は2)のいずれか一項に記載の焼結体。
 4)さらに融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする1)~3)のいずれか一項に記載の焼結体。
 5)前記融点が1000℃以下の酸化物は、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOの群から選択した一種以上の酸化物であることを特徴とする4)記載の焼結体。
 6)相対密度が90%以上であることを特徴とする1)~5)のいずれか一項に記載の焼結体。
 7)バルク抵抗が10Ω・cm未満であることを特徴とする1)~6)に記載の焼結体。
 8)スパッタリングターゲット又はイオンプレーティング用材料である1)~7)のいずれか一項に記載の焼結体。
Based on this finding, the present invention provides the following inventions.
1) A sintered body made of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the content of magnesium (Mg) is 1. in terms of magnesium fluoride (MgF 2 ). A sintered body containing 0 to 27 mol%.
2) The peak intensity ratio (magnesium fluoride peak intensity / background intensity) of magnesium fluoride (MgF 2 ) to the background intensity in X-ray diffraction is 1.50 or more. Sintered body.
3) Further, one or more elements selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) are contained in an amount of 0.2 to 10 mol% in terms of oxide of each element. The sintered body according to any one of 1) or 2) above, wherein:
4) The sintered body according to any one of 1) to 3), further comprising 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C. or less in terms of oxide weight. .
5) The oxide having a melting point of 1000 ° C. or lower is B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O. 3. The sintered body according to 4), which is one or more oxides selected from the group of MoO 3 .
6) The sintered body according to any one of 1) to 5), wherein the relative density is 90% or more.
7) The sintered body according to 1) to 6), wherein the bulk resistance is less than 10 Ω · cm.
8) The sintered body according to any one of 1) to 7), which is a sputtering target or an ion plating material.
 9)亜鉛(Zn)、マグネシウム(Mg)、酸素(O)、フッ素(F)からなる薄膜であって、マグネシウム(Mg)の含有量がマグネシウムのフッ化物(MgF)換算で1.0~27mol%含有することを特徴とする薄膜。
 10)さらにガリウム(Ga)、ボロン(B)、ゲルマニウム(Ge)、インジウム(In)、錫(Sn)から選択した1種以上の元素を各元素の酸化物換算で0.2~10mol%含有することを特徴とする9)に記載の薄膜。
 11)さらに融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする9)又は10)のいずれか一項に記載の薄膜。
 12)前記融点が1000℃以下の酸化物は、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOの群から選択した一種以上の酸化物であることを特徴とする11)に記載の薄膜。
 13)非晶質であることを特徴とする9)~12)のいずれか一項に記載の薄膜。
 14)屈折率が2.0以下(波長550nm)であることを特徴とする9)~13)のいずれか一項に記載の薄膜。
 15)(消衰係数0.01以下(波長450nm))であることを特徴とする9)~14)のいずれか一項に記載の薄膜。
 16)膜の抵抗値が1×10-3~1×10Ωcmであることを特徴とする9)~15)のいずれか一項に記載の薄膜。
 17)スパッタリング又はイオンプレーティングにより形成された9)~16)のいずれか一項に記載の薄膜。
9) A thin film composed of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the magnesium (Mg) content is 1.0 to 1.0 in terms of magnesium fluoride (MgF 2 ). A thin film characterized by containing 27 mol%.
10) Further, one or more elements selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) are contained in an amount of 0.2 to 10 mol% in terms of oxide of each element. 9) The thin film according to 9).
11) The thin film according to any one of 9) or 10), further comprising 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C. or less in terms of oxide weight.
12) The oxides having a melting point of 1000 ° C. or less are B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O. 3. The thin film according to 11), which is at least one oxide selected from the group of MoO 3 .
13) The thin film according to any one of 9) to 12), which is amorphous.
14) The thin film according to any one of 9) to 13), which has a refractive index of 2.0 or less (wavelength 550 nm).
15) The thin film according to any one of 9) to 14), which has an extinction coefficient of 0.01 or less (wavelength 450 nm).
16) The thin film according to any one of 9) to 15), wherein the resistance value of the film is 1 × 10 −3 to 1 × 10 9 Ωcm.
17) The thin film according to any one of 9) to 16) formed by sputtering or ion plating.
 18)上記1)~5)のいずれか一項に記載の焼結体の製造方法であって、不活性雰囲気で焼結することを特徴とする焼結体の製造方法。
 19)上記1)~5)のいずれか一項に記載の焼結体を粉砕して粉末又は粒状とすることを特徴とするイオンプレーティング用材料の製造方法。
18) A method for manufacturing a sintered body according to any one of 1) to 5) above, wherein the sintering is performed in an inert atmosphere.
19) A method for producing an ion plating material, wherein the sintered body according to any one of 1) to 5) above is pulverized into powder or granules.
 上記によって、亜鉛(Zn)、マグネシウム(Mg)、酸素(O)、フッ素(F)を主成分とし、マグネシウム(Mg)の含有量がマグネシウムのフッ化物(MgF)換算で1.0~27mol%含有する焼結体とすることで、良好な可視光の透過率(消衰係数0.01以下(波長450nm))と屈折率2.0以下(波長550nm)の低屈折率なアモルファス薄膜が形成できる優れた効果を得た。さらに、10Ω・cm未満の低バルク抵抗を実現し、DC(直流)スパッタによる高速成膜が可能であり、また必要に応じてイオンプレーティング、RFスパッタを実施することができた。 As described above, zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F) are the main components, and the content of magnesium (Mg) is 1.0 to 27 mol in terms of magnesium fluoride (MgF 2 ). %, A low-refractive-index amorphous thin film having good visible light transmittance (extinction coefficient 0.01 or less (wavelength 450 nm)) and refractive index 2.0 or less (wavelength 550 nm). An excellent effect that can be formed was obtained. Furthermore, a low bulk resistance of less than 10 Ω · cm was realized, high-speed film formation by DC (direct current) sputtering was possible, and ion plating and RF sputtering could be performed as necessary.
 また、イオンプレーティングでは、主要成分となる酸化亜鉛(ZnO)と、副成分として添加した酸化物の蒸発速度が大きく相違することを回避することができるので、その結果イオンプレーティング用原料とほぼ同じ組成の薄膜が形成することができ、高速成膜が可能となる効果を有する。 In addition, in ion plating, it is possible to avoid a large difference in evaporation rate between zinc oxide (ZnO) as a main component and oxide added as a subcomponent, and as a result, almost the same as the raw material for ion plating. A thin film having the same composition can be formed, and the film can be formed at high speed.
バックグラウンド強度に対するMgFのピーク強度比(MgFピーク強度/バックグラウンド強度)の測定結果を示す図である。Is a graph showing measurement results of MgF 2 of the peak intensity ratio to background intensity (MgF 2 peak intensity / background intensity). ZnOと対比した各酸化物及びフッ化物の蒸気圧曲線を示す図である。It is a figure which shows the vapor pressure curve of each oxide and fluoride compared with ZnO. ZnOと対比したAl、MgO、SiOの酸化物の蒸気圧曲線を示す図である。 Al 2 O 3 versus ZnO, MgO, is a diagram showing a vapor pressure curve of the oxides SiO 2.
 本発明の焼結体は、亜鉛(Zn)、マグネシウム(Mg)、酸素(O)、フッ素(F)からなる焼結体であって、マグネシウム(Mg)の含有量がマグネシウムのフッ化物(MgF)換算で1.0~27mol%含有することを特徴とする。
 また、本発明の焼結体は、X線回折におけるバックグラウンド強度に対するフッ化マグネシウム(MgF)のピーク強度比(フッ化マグネシウムピーク強度/バックグラウンド強度)が1.50以上であることが特徴の一つとしている。
The sintered body of the present invention is a sintered body made of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the magnesium (Mg) content is magnesium fluoride (MgF). 2 ) It is characterized by containing 1.0 to 27 mol% in terms of conversion.
Further, the sintered body of the present invention is characterized in that the peak intensity ratio (magnesium fluoride peak intensity / background intensity) of magnesium fluoride (MgF 2 ) to the background intensity in X-ray diffraction is 1.50 or more. One of them.
 さらに、本発明の焼結体は、ガリウム(Ga)、ボロン(B)、ゲルマニウム(Ge)、インジウム(In)、錫(Sn)から選択した1種以上の元素を各元素の酸化物換算で0.2~10mol%含有させることができる。
 また、本発明の焼結体は、融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有させることができる。この融点が1000℃以下の酸化物としては、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOの群から選択した一種以上の酸化物を用いるのが良い。
Furthermore, the sintered body of the present invention includes at least one element selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) in terms of oxide of each element. It can be contained in an amount of 0.2 to 10 mol%.
The sintered body of the present invention can contain 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C. or less in terms of oxide weight. Examples of the oxide having a melting point of 1000 ° C. or lower include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, and Bi 2 O 3. One or more oxides selected from the group of MoO 3 may be used.
 以上の添加元素(酸化物)は任意に選択でき、それぞれの添加元素に応じた特性を向上させることができる。これらの焼結体は、スパッタリングターゲットとして、さらにイオンプレーティング材料として有用である。本発明の焼結体を適用した場合について、以下に詳細に説明する。 The additive element (oxide) more than soot can be selected arbitrarily, and the characteristic according to each additive element can be improved. These sintered bodies are useful as sputtering targets and further as ion plating materials. The case where the sintered body of the present invention is applied will be described in detail below.
 本発明の焼結体は、亜鉛(Zn)、マグネシウム(Mg)、酸素(O)、フッ素(F)からなる焼結体であって、マグネシウム(Mg)の含有量がマグネシウムのフッ化物(MgF)換算で1.0~27mol%含有する。
 原料の調整の際、各酸化物及びフッ化物の比率を、その合計が100mol%の組成となるように調整し、残部をZnOとするが、Znの含有量は、この残部のZnO換算から求めることができる。このような組成とすることで、良好な可視光の透過率低屈折率のアモルファス膜を作製するができ、本発明の上記効果が得られる。
The sintered body of the present invention is a sintered body made of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the magnesium (Mg) content is magnesium fluoride (MgF). 2 ) Containing 1.0 to 27 mol% in terms of conversion.
When adjusting the raw materials, the ratio of each oxide and fluoride is adjusted so that the sum is 100 mol%, and the balance is ZnO. The Zn content is determined from the balance of ZnO. be able to. By setting it as such a composition, the amorphous film of the favorable visible light transmittance | permeability low refractive index can be produced, and the said effect of this invention is acquired.
 なお、本発明では、焼結体中の各金属の含有量を酸化物換算やフッ化物換算で規定しているが、焼結体中の各金属は、その一部が複合酸化物として存在している。また、通常用いられる焼結体の成分分析では、酸化物やフッ化物ではなく、金属として、それぞれの含有量が測定される。従って、焼結体中の各金属の分析値から各酸化物、フッ化物量に換算することで各組成範囲を求めた。
 このフッ化マグネシウムは、膜のアモルファス化および低屈折率化に有効である。1.0mol%未満では添加の効果がなく、27mol%を超えると、膜の高抵抗率化という問題が生ずるので、上記の数値範囲とする。
In the present invention, the content of each metal in the sintered body is specified in terms of oxide or fluoride. However, a part of each metal in the sintered body exists as a composite oxide. ing. Moreover, in the component analysis of the sintered body used normally, each content is measured not as an oxide or fluoride but as a metal. Therefore, each composition range was calculated | required by converting into the amount of each oxide and fluoride from the analytical value of each metal in a sintered compact.
This magnesium fluoride is effective for making the film amorphous and lowering the refractive index. If it is less than 1.0 mol%, there is no effect of addition, and if it exceeds 27 mol%, there arises a problem of increasing the resistivity of the film.
 この焼結体におけるフッ化マグネシウム(MgF)の存在はX線回折で確認することができる。すなわち、X線回折におけるバックグラウンド強度に対するフッ化マグネシウム(MgF)のピーク強度比(フッ化マグネシウムピーク強度/バックグラウンド強度)を1.50以上とする。 Presence of magnesium fluoride (MgF 2 ) in this sintered body can be confirmed by X-ray diffraction. That is, the peak intensity ratio (magnesium fluoride peak intensity / background intensity) of magnesium fluoride (MgF 2 ) to the background intensity in X-ray diffraction is set to 1.50 or more.
 MgFのピーク強度の測定には、製造したスパッタリングターゲットを切断したもの又は、スパッタリングターゲットを粉砕した粉末にてX線回折法により測定する。すなわちMgFの(110)面のピークが現れる2θ:27.3°付近の強度を測定すると共に、バックグラウンド強度(28.0~29.0°の強度の平均値)を測定する。
 これによって、バックグラウンド強度に対するMgFのピーク強度比(MgFピーク強度/バックグラウンド強度)を求める。このための、測定装置としてリガク社製UltimaIVを用いることができる。
The peak intensity of MgF 2 is measured by an X-ray diffractometry using a product obtained by cutting the produced sputtering target or a powder obtained by pulverizing the sputtering target. That is, the intensity around 2θ: 27.3 ° where the peak of the (110) plane of MgF 2 appears is measured, and the background intensity (average value of the intensity of 28.0 to 29.0 °) is measured.
Thereby, the peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) is obtained. For this purpose, Rigak Ultimate IV can be used as a measuring device.
 上記に、さらに添加する元素としては、ガリウム(Ga)、ボロン(B)、ゲルマニウム(Ge)、インジウム(In)、錫(Sn)から選択した1種以上の元素があり、これらの元素を0.2~10at%含有させることができる。これらの元素の酸化物を元素量換算で0.2~10mol%添加することで、導電性を付与することができる。
 これらの元素の酸化物の添加量が元素量換算で0.2mol%未満では、その効果が少なく、10mol%を超える場合には、効果が飽和するので、上記の範囲とするのがのぞましい。
In addition to the above elements, one or more elements selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) are included. 2 to 10 at% can be contained. Conductivity can be imparted by adding 0.2 to 10 mol% of an oxide of these elements in terms of element amount.
When the amount of oxide of these elements is less than 0.2 mol% in terms of element amount, the effect is small, and when it exceeds 10 mol%, the effect is saturated, so the above range is preferable.
 また、ゲルマニウム酸化物、ボロン酸化物は、ガラス形成酸化物でもあり、膜のアモルファス化及び低屈折率化に効果がある。元素量換算で0.2mol%未満では添加の効果がなく、10mol%を超えると、膜が高抵抗率化するという問題が生ずるので、上記の数値範囲とする。 ゲ ル Moreover, germanium oxide and boron oxide are also glass-forming oxides, and are effective in making the film amorphous and lowering the refractive index. If the amount is less than 0.2 mol% in terms of element amount, the effect of addition is not present, and if it exceeds 10 mol%, there is a problem that the film has a high resistivity.
 さらに本発明の焼結体は、融点が1000℃以下の酸化物(低融点酸化物)を形成する金属を含有させることが有効である。酸化亜鉛(ZnO)は還元・蒸発し易いため、焼結温度をそれほど上げることができず、焼結体の密度を向上させることが困難ということがある。しかし、このような低融点酸化物を添加することで、焼結温度をそれほど上げることなく、高密度化が達成できるという効果を有する。
 前記低融点酸化物としては、例えば、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOを挙げることができる。これらの酸化物は、それぞれ単独添加及び複合添加が可能であり、本願発明の目的を達成することができる。
Furthermore, it is effective for the sintered body of the present invention to contain a metal that forms an oxide having a melting point of 1000 ° C. or lower (low melting point oxide). Since zinc oxide (ZnO) is easy to reduce and evaporate, the sintering temperature cannot be increased so much, and it may be difficult to improve the density of the sintered body. However, the addition of such a low-melting point oxide has an effect that a high density can be achieved without increasing the sintering temperature so much.
Examples of the low melting point oxide include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , MoO. 3 can be mentioned. These oxides can be added individually and in combination, respectively, and the object of the present invention can be achieved.
 記低融点酸化物を形成する金属は、酸化物重量換算で0.1~5wt%含有させることが好ましい。0.1wt%未満では、その効果が十分に発揮できず、また5wt%を超えると、組成によっては特性に変動が生じるおそれがあるため、好ましくない。
 本発明の焼結体はスパッタリングターゲットとして使用する場合、相対密度が90%以上とすることが好ましい。相対密度92%以上、さらには相対密度99%以上とすることが望ましい。本願発明は、このような高密度のターゲットを得ることができる。
 密度の向上はスパッタ膜の均一性を高め、また、スパッタリング時のパーティクルの発生を抑制できる効果を有する。
The metal forming the low melting point oxide is preferably contained in an amount of 0.1 to 5 wt% in terms of oxide weight. If it is less than 0.1 wt%, the effect cannot be sufficiently exhibited, and if it exceeds 5 wt%, the characteristics may vary depending on the composition, which is not preferable.
When the sintered body of the present invention is used as a sputtering target, the relative density is preferably 90% or more. It is desirable that the relative density is 92% or more, and further the relative density is 99% or more. The present invention can obtain such a high-density target.
The improvement in density has the effect of increasing the uniformity of the sputtered film and suppressing the generation of particles during sputtering.
 この焼結体は、特に良好な可視光の透過率(消衰係数0.01以下(波長450nm))と屈折率2.0(波長550nm)以下の低屈折率の薄膜を工業的に製造するために有用である。さらに、前記消衰係数を<0.005(波長450nm)が達成できる。このような良好な可視光の透過率と低屈折率の薄膜は、特に、フレキシブルディスプレイ用、有機ELテレビ用、タッチパネル用電極用、光情報記録媒体の保護層の薄膜として有用である。 This sintered body industrially produces a thin film having particularly low visible light transmittance (extinction coefficient 0.01 or less (wavelength 450 nm)) and low refractive index 2.0 or less (wavelength 550 nm). Useful for. Furthermore, the extinction coefficient of <0.005 (wavelength 450 nm) can be achieved. Such a thin film having good visible light transmittance and low refractive index is particularly useful as a thin film for a protective layer of an optical information recording medium, for flexible displays, for organic EL televisions, for touch panel electrodes.
 本発明は、このように、亜鉛(Zn)、マグネシウム(Mg)、酸素(O)、フッ素(F)を主成分とし、マグネシウム(Mg)の含有量がマグネシウムのフッ化物(MgF)換算で1.0~27mol%含有する焼結体を使用して形成された薄膜は、薄膜の非晶質安定性が確保され、さらに良好な可視光の透過率(消衰係数0.01以下(波長450nm))と屈折率2.0以下(波長550nm)の低屈折率を維持できる薄膜が形成できる。 As described above, the present invention is mainly composed of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the content of magnesium (Mg) is converted to magnesium fluoride (MgF 2 ). A thin film formed using a sintered body containing 1.0 to 27 mol% ensures the amorphous stability of the thin film, and further has a good visible light transmittance (extinction coefficient of 0.01 or less (wavelength 450 nm)) and a low refractive index of 2.0 or less (wavelength 550 nm) can be formed.
 本発明の焼結体は、平均粒径が5μm以下である各構成元素の粉末を、不活性雰囲気にて、常圧焼結又は高温加圧焼結することによって製造することができる。
 さらに、本発明の焼結体を使用することにより、生産性が向上し、品質の優れた材料を得ることができ、良好な可視光の透過率(消衰係数0.01以下(波長450nm)と屈折率2.0以下(波長550nm)の低屈折率薄膜を、低コストで安定して製造できるという著しい効果がある。
The sintered body of the present invention can be produced by subjecting each constituent element powder having an average particle size of 5 μm or less to atmospheric pressure sintering or high temperature pressure sintering in an inert atmosphere.
Furthermore, by using the sintered body of the present invention, productivity can be improved and a material with excellent quality can be obtained. Good visible light transmittance (extinction coefficient of 0.01 or less (wavelength 450 nm)) In addition, a low refractive index thin film having a refractive index of 2.0 or less (wavelength 550 nm) can be produced stably at a low cost.
 さらにこの焼結体は、10Ω・cm未満の低バルク抵抗を実現し、DC(直流)スパッタによる高速成膜が可能である。また、DCスパッタリング装置は価格が安く、制御が容易であり、電力の消費量も少なくて済むという利点がある。なお、本発明においては、製造条件及び材料の選択によっては、イオンプレーティング、RFスパッタリングを行うことが必要な場合もあるが、その場合でも成膜速度の向上がある。 Furthermore, this sintered body achieves a low bulk resistance of less than 10 Ω · cm and enables high-speed film formation by DC (direct current) sputtering. Further, the DC sputtering apparatus is advantageous in that it is inexpensive, easy to control, and consumes less power. In the present invention, depending on manufacturing conditions and selection of materials, it may be necessary to perform ion plating and RF sputtering.
 次に、本願発明の焼結体をイオンプレーティングに用いる場合について説明する。本発明の低屈折率膜形成用イオンプレーティング用材料においては、ガリウム(Ga)、ボロン(B)、ゲルマニウム(Ge)、インジウム(In)、錫(Sn)から選択した1種以上の元素の酸化物(Ga、B、GeO、In、SnO)及びフッ化マグネシウム(MgF)は、酸化亜鉛と類似した蒸気圧を有するので、イオンプレーティング用材料として問題なく使用できる。ZnOと対比した各酸化物及びフッ化物の蒸気圧曲線を図1に示す。 Next, the case where the sintered body of the present invention is used for ion plating will be described. In the ion plating material for forming a low refractive index film of the present invention, one or more elements selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) are used. Since oxides (Ga 2 O 3 , B 2 O 3 , GeO 2 , In 2 O 3 , SnO 2 ) and magnesium fluoride (MgF 2 ) have a vapor pressure similar to that of zinc oxide, the material for ion plating Can be used without any problem. The vapor pressure curve of each oxide and fluoride compared with ZnO is shown in FIG.
 対比のために、ZnOと対比したAl、MgO、SiOの酸化物の蒸気圧曲線を図3に示す。図2と図3から明らかなように、図3に示す酸化物は、ZnOと比較して、蒸気圧に大きな差異があることが確認できる。
 図2に示すAl、MgO、SiOの酸化物は、スパッタリングターゲット材としてZnOに添加したものであるが、蒸気圧に大きな相違があるので、イオンプレーティング用材料としてやや不向きであると言える。このような材料についてはスパッタリング用ターゲットを製作して、使用するのが良い。
For comparison, the vapor pressure curve of the oxides of Al 2 O 3 , MgO, and SiO 2 compared with ZnO is shown in FIG. As is clear from FIGS. 2 and 3, it can be confirmed that the oxide shown in FIG. 3 has a large difference in vapor pressure as compared with ZnO.
The oxides of Al 2 O 3 , MgO, and SiO 2 shown in FIG. 2 are added to ZnO as a sputtering target material, but are slightly unsuitable as an ion plating material because of a large difference in vapor pressure. It can be said. For such materials, sputtering targets are preferably produced and used.
 イオンプレーティング用材料の作製に際しては、主成分となる酸化亜鉛(ZnO)に、フッ化マグネシウム(MgF)の原料粉末を、又はこれにガリウム(Ga)、ボロン(B)、ゲルマニウム(Ge)、インジウム(In)、錫(Sn)から選択した1種以上の元素の酸化物(Ga、B、GeO、In、SnO)の原料粉末を添加し、これらを予め混合・焼結して一体化し、焼結体として、またこれをさらに粉砕して粉末又は粒状とし、イオンプレーティングの材料に使用することができる。 When producing an ion plating material, the raw material powder of magnesium fluoride (MgF 2 ) is used for zinc oxide (ZnO) as a main component, or gallium (Ga), boron (B), germanium (Ge). A raw material powder of an oxide (Ga 2 O 3 , B 2 O 3 , GeO 2 , In 2 O 3 , SnO 2 ) of one or more elements selected from Indium (In) and Tin (Sn), These can be mixed and sintered in advance and integrated to form a sintered body, which can be further pulverized into a powder or granular form, and used as an ion plating material.
 イオンプレーティングの材料の成分組成は、成膜の目的に応じて任意に調節できる。例えば、フレキシブルディスプレイ用、有機ELテレビ用、タッチパネル用電極用、光情報記録媒体の保護層を形成するために用いることができる。上記の通り、蒸気圧に大きな変化がないので、イオンプレーティング用材料の成分組成を低屈折率膜の成分組成に反映させることができる。したがって、高速成膜が可能となり、安定した非晶質性、且つ透過率が高いという優れた特性を持たせることができる。 The component composition of the ion plating material can be arbitrarily adjusted according to the purpose of film formation. For example, it can be used for forming a protective layer for flexible displays, organic EL televisions, touch panel electrodes, and optical information recording media. As described above, since there is no significant change in the vapor pressure, the component composition of the ion plating material can be reflected in the component composition of the low refractive index film. Therefore, high-speed film formation is possible, and excellent characteristics such as stable amorphousness and high transmittance can be provided.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1)
 3N相当で5μm以下のZnO粉と3N相当で平均粒径5μm以下のMgF粉および、3N相当で平均粒径5μm以下のGeO粉を準備した。次に、ZnO粉とMgF粉とGeO粉をZnO:MgF:GeO=85.0:13.6:1.4mol%の配合比に調合し、これを混合した後、粉末材料を900°C、Ar雰囲気中、250kgf/cmの圧力でホットプレス焼結した。この焼結体を機械加工で、ターゲット形状に仕上げた。
Example 1
The average particle diameter of 5μm or less of MgF 2 powder and at 5μm following ZnO powder and 3N corresponding with 3N equivalent was prepared an average particle size 5μm or less of GeO 2 powder with 3N equivalent. Next, ZnO powder, MgF 2 powder and GeO 2 powder were prepared in a blending ratio of ZnO: MgF 2 : GeO 2 = 85.0: 13.6: 1.4 mol%, and after mixing this, the powder material was mixed. Hot press sintering was performed at 900 ° C. in an Ar atmosphere at a pressure of 250 kgf / cm 2 . This sintered body was finished into a target shape by machining.
 以上の結果、実施例1のスパッタリングターゲットは、相対密度は92.0%、またバルク抵抗値は1.2Ω・cmとなり、安定したDCスパッタができた。成膜速度が2.6Å/secであり、成膜速度は良好であった。屈折率は1.90(波長633nm)となり、非晶質性を示した。また、比抵抗値は1×10Ωcm、消衰係数(λ=450nm)<0.005となった。この結果を、表1と表2に示す。 As a result, the sputtering target of Example 1 had a relative density of 92.0% and a bulk resistance value of 1.2 Ω · cm, and stable DC sputtering was possible. The film formation rate was 2.6 Å / sec, and the film formation rate was good. The refractive index was 1.90 (wavelength 633 nm), indicating amorphousness. The specific resistance value was 1 × 10 6 Ωcm, and the extinction coefficient (λ = 450 nm) <0.005. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 MgFのXRDピーク強度は、得られたスパッタリングターゲットを粉砕し、粉末X線回折法により測定した。すなわち2θ:27.3°付近に出現するピーク強度は553となり、またバックグラウンド強度(28.0~29.0°の強度の平均値)を測定した。
 バックグラウンド強度に対するMgFのピーク強度比(MgFピーク強度/バックグラウンド強度)は19.5となった。この結果を、図1に示す。
 なお、測定装置としてリガク社製UltimaIVを用い、測定条件は管電圧40kv、管電流30mA、スキャンスピード8°/min、ステップ0.02°とした。
The XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2θ: 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
The peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 19.5. The result is shown in FIG.
In addition, Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
(実施例2)
 3N相当で5μm以下のZnO粉と3N相当で平均粒径5μm以下のMgF粉および、3N相当で平均粒径5μm以下のGeO粉を準備した。次に、ZnO粉とMgF粉とGeO粉をZnO:MgF:GeO=82.0:9.8:8.2mol%の配合比に調合し、これを混合した後、粉末材料を800°C、250kgf/cmの圧力、大気中で、ホットプレス焼結した。この焼結体を粉砕して粒径1~6mmサイズの粒状体としてイオンプレーティング材料とした。
(Example 2)
The average particle diameter of 5μm or less of MgF 2 powder and at 5μm following ZnO powder and 3N corresponding with 3N equivalent was prepared an average particle size 5μm or less of GeO 2 powder with 3N equivalent. Next, ZnO powder, MgF 2 powder and GeO 2 powder were prepared in a blending ratio of ZnO: MgF 2 : GeO 2 = 82.0: 9.8: 8.2 mol%, and after mixing this, the powder material was mixed. Hot press sintering was performed in air at 800 ° C. and a pressure of 250 kgf / cm 2 . The sintered body was pulverized to obtain an ion plating material as a granular body having a particle size of 1 to 6 mm.
 次に、このイオンプレーティング材料を用いて、イオンプレーティングを実施した結果、後述する比較例1のように、るつぼ内に未蒸発残留物は確認されず、イオンプレーティング時のZnOとMgF、GeOの蒸気圧差による差異が殆どないことが確認できた。実施例2のイオンプレーティング材料は、安定したイオンプレーティングができ、作製した膜の透過率は86.6%(405nm)に達し、屈折率は1.92となり、非晶質性を示した。また、比抵抗値は1×10Ωcm、消衰係数(λ=450nm)<0.005となった。この結果を、表1と表2に示す。 Next, as a result of performing ion plating using this ion plating material, no unevaporated residue was confirmed in the crucible as in Comparative Example 1 described later, and ZnO and MgF 2 at the time of ion plating were confirmed. , it was confirmed that the differences due to the vapor pressure difference of GeO 2 is little. The ion plating material of Example 2 was able to perform stable ion plating, the transmittance of the manufactured film reached 86.6% (405 nm), the refractive index was 1.92, and showed amorphousness. . The specific resistance value was 1 × 10 5 Ωcm and the extinction coefficient (λ = 450 nm) <0.005. The results are shown in Tables 1 and 2.
 MgFのピーク強度は、得られたイオンプレーティング材料を粉砕し、粉末X線回折法により測定した。すなわち2θ:27.3°付近に出現するピーク強度は553となり、またバックグラウンド強度(28.0~29.0°の強度の平均値)を測定した。
 バックグラウンド強度に対するMgFのピーク強度比(MgFピーク強度/バックグラウンド強度)は16.3となった。この結果を、図3に示す。
 なお、測定装置としてリガク社製UltimaIVを用い、測定条件は管電圧40kv、管電流30mA、スキャンスピード8°/min、ステップ0.02°とした。
The peak intensity of MgF 2 was measured by pulverizing the obtained ion plating material and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2θ: 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
The peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 16.3. The result is shown in FIG.
In addition, Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
(実施例3)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で平均粒径5μm以下のGeO粉、3N相当で平均粒径5μm以下のGe粉を準備した。次に、ZnO粉とMgF粉とGe粉とGeO粉とを、ZnO:MgF:Ge粉:GeO=73.5:16.8:4.1:5.6mol%の配合比に調合し、これを混合した後、粉末材料を1000°C、Ar雰囲気中、250kgf/cmの圧力でホットプレス焼結した。この焼結体を機械加工で、ターゲット形状に仕上げた。
(Example 3)
ZnO powder of 3N equivalent to 5 μm or less, 3N equivalent to MgF 2 powder with an average particle size of 5 μm or less, 3N equivalent to an average particle size of 5 μm or less GeO 2 powder, 3N equivalent to an average particle size of 5 μm or less Ge 2 O 3 powder Got ready. Next, ZnO powder, MgF 2 powder, Ge 2 O 3 powder, and GeO 2 powder were changed to ZnO: MgF 2 : Ge 2 O 3 powder: GeO 2 = 73.5: 16.8: 4.1: 5. After blending to a blending ratio of 6 mol% and mixing this, the powder material was hot-press sintered at 1000 ° C. in an Ar atmosphere at a pressure of 250 kgf / cm 2 . This sintered body was finished into a target shape by machining.
 以上の結果、実施例3のスパッタリングターゲットは、相対密度は99.6%、またバルク抵抗値は4×10-3Ω・cmとなり、安定したDCスパッタができた。屈折率は1.84(波長633nm)となり、非晶質性を示した。また、比抵抗値は1×10-1Ωcm、消衰係数(λ=450nm)<0.005となった。この結果を、表1と表2に示す。 As a result, the sputtering target of Example 3 had a relative density of 99.6% and a bulk resistance value of 4 × 10 −3 Ω · cm, and stable DC sputtering was possible. The refractive index was 1.84 (wavelength 633 nm), indicating amorphousness. The specific resistance value was 1 × 10 −1 Ωcm, and the extinction coefficient (λ = 450 nm) <0.005. The results are shown in Tables 1 and 2.
 MgFのXRDピーク強度は、得られたスパッタリングターゲットを粉砕し、粉末X線回折法により測定した。すなわち2θ:27.3°付近に出現するピーク強度は553となり、またバックグラウンド強度(28.0~29.0°の強度の平均値)を測定した。
 バックグラウンド強度に対するMgFのピーク強度比(MgFピーク強度/バックグラウンド強度)は24.1となった。
 なお、測定装置としてリガク社製UltimaIVを用い、測定条件は管電圧40kv、管電流30mA、スキャンスピード8°/min、ステップ0.02°とした。
The XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2θ: 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
The peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 24.1.
In addition, Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
(実施例4)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で平均粒径5μm以下のSnO粉を準備した。次に、ZnO粉とMgF粉とSnO粉とを、ZnO:MgF:SnO粉=83.5:8.1:4.1:8.4mol%の配合比に調合し、これを混合した後、粉末材料を1050°C、Ar雰囲気中、250kgf/cmの圧力でホットプレス焼結した。この焼結体を機械加工で、ターゲット形状に仕上げた。
(Example 4)
ZnO powder of 3N equivalent and 5 μm or less was prepared, and 3N equivalent MgF 2 powder having an average particle size of 5 μm or less and 3N equivalent SnO 2 powder of 5 μm or less in average particle diameter were prepared. Next, ZnO powder, MgF 2 powder, and SnO 2 powder were prepared in a compounding ratio of ZnO: MgF 2 : SnO 2 powder = 83.5: 8.1: 4.1: 8.4 mol%, After mixing, the powder material was hot-press sintered at 1050 ° C. in an Ar atmosphere at a pressure of 250 kgf / cm 2 . This sintered body was finished into a target shape by machining.
 以上の結果、実施例4のスパッタリングターゲットは、相対密度は99.2%、またバルク抵抗値は6×10-3Ω・cmとなり、安定したDCスパッタができた。屈折率は1.96(波長633nm)となり、非晶質性を示した。また、比抵抗値は1×10-2Ωcm、消衰係数(λ=450nm)0.008となった。この結果を、表1と表2に示す。 As a result, the sputtering target of Example 4 had a relative density of 99.2% and a bulk resistance value of 6 × 10 −3 Ω · cm, and stable DC sputtering was possible. The refractive index was 1.96 (wavelength 633 nm), indicating amorphousness. The specific resistance value was 1 × 10 −2 Ωcm and the extinction coefficient (λ = 450 nm) was 0.008. The results are shown in Tables 1 and 2.
 MgFのXRDピーク強度は、得られたスパッタリングターゲットを粉砕し、粉末X線回折法により測定した。すなわち2θ:27.3°付近に出現するピーク強度は553となり、またバックグラウンド強度(28.0~29.0°の強度の平均値)を測定した。
 バックグラウンド強度に対するMgFのピーク強度比(MgFピーク強度/バックグラウンド強度)は14.2となった。
 なお、測定装置としてリガク社製UltimaIVを用い、測定条件は管電圧40kv、管電流30mA、スキャンスピード8°/min、ステップ0.02°とした。
The XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2θ: 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
The peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 14.2.
In addition, Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
(実施例5)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で平均粒径5μm以下のIn粉、3N相当で平均粒径5μm以下のGeOを準備した。次に、ZnO粉とMgF粉とIn粉とGeO粉とを、ZnO:MgF:In: GeO=83.9:6.1:2.77:2.72mol%の配合比に調合し、これを混合した後、粉末材料を1050°C、Ar雰囲気中、250kgf/cmの圧力でホットプレス焼結した。この焼結体を機械加工で、ターゲット形状に仕上げた。
(Example 5)
3N equivalent ZnO powder of 5 μm or less, 3N equivalent MgF 2 powder with an average particle size of 5 μm or less, 3N equivalent of In 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent GeO with an average particle size of 5 μm or less were prepared . Next, ZnO powder, MgF 2 powder, In 2 O 3 powder, and GeO powder were mixed with ZnO: MgF 2 : In 2 O 3 : GeO = 83.9: 6.1: 2.77: 2.72 mol%. After mixing to a mixing ratio and mixing this, the powder material was hot-press sintered at 1050 ° C. in an Ar atmosphere at a pressure of 250 kgf / cm 2 . This sintered body was finished into a target shape by machining.
 以上の結果、実施例5のスパッタリングターゲットは、相対密度は99.3%、またバルク抵抗値は3×10-3Ω・cmとなり、安定したDCスパッタができた。屈折率は1.93(波長633nm)となり、非晶質性を示した。また、比抵抗値は1×10-1Ωcm、消衰係数(λ=450nm)<0.005となった。この結果を、表1と表2に示す。 As a result, the sputtering target of Example 5 had a relative density of 99.3% and a bulk resistance value of 3 × 10 −3 Ω · cm, and stable DC sputtering was possible. The refractive index was 1.93 (wavelength 633 nm), indicating amorphousness. The specific resistance value was 1 × 10 −1 Ωcm, and the extinction coefficient (λ = 450 nm) <0.005. The results are shown in Tables 1 and 2.
 MgFのXRDピーク強度は、得られたスパッタリングターゲットを粉砕し、粉末X線回折法により測定した。すなわち2θ:27.3°付近に出現するピーク強度は553となり、またバックグラウンド強度(28.0~29.0°の強度の平均値)を測定した。
 バックグラウンド強度に対するMgFのピーク強度比(MgFピーク強度/バックグラウンド強度)は9.8となった。
 なお、測定装置としてリガク社製UltimaIVを用い、測定条件は管電圧40kv、管電流30mA、スキャンスピード8°/min、ステップ0.02°とした。
The XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2θ: 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
The peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 9.8.
In addition, Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
(比較例1)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のMgF粉を準備した。次に、ZnO粉とMgF粉とを、ZnO:MgF=99.2:0.8mol%の配合比に調合し、これを混合した後、粉末材料を1100°C、Ar雰囲気中、250kgf/cmの圧力でホットプレス焼結した。この焼結体を機械加工で、ターゲット形状に仕上げた。MgF量は、本願発明の目的とする量に達していない。
(Comparative Example 1)
3N corresponds with 5μm following ZnO powder were prepared an average particle size 5μm or less of MgF 2 powder with 3N equivalent. Next, ZnO powder and MgF 2 powder were prepared in a compounding ratio of ZnO: MgF 2 = 99.2: 0.8 mol%, and after mixing, the powder material was 1100 ° C., Ar atmosphere, 250 kgf Hot press sintering was performed at a pressure of / cm 2 . This sintered body was finished into a target shape by machining. The amount of MgF 2 does not reach the target amount of the present invention.
 以上の結果、比較例1のスパッタリングターゲットは、相対密度は98.0%、またバルク抵抗値は2×10-3Ω・cmとなり、安定したDCスパッタができた。屈折率は1.93(波長633nm)で不十分であり、非晶質性を示さなかった。また、比抵抗値は1×10-2Ωcm、消衰係数(λ=450nm)<0.005となった。この結果を、表1と表2に示す。 As a result, the sputtering target of Comparative Example 1 had a relative density of 98.0% and a bulk resistance value of 2 × 10 −3 Ω · cm, and stable DC sputtering was possible. The refractive index was 1.93 (wavelength 633 nm), which was insufficient, and did not show amorphous properties. The specific resistance value was 1 × 10 −2 Ωcm, and the extinction coefficient (λ = 450 nm) <0.005. The results are shown in Tables 1 and 2.
 MgFのXRDピーク強度は、得られたスパッタリングターゲットを粉砕し、粉末X線回折法により測定した。すなわち2θ:27.3°付近に出現するピーク強度は553となり、またバックグラウンド強度(28.0~29.0°の強度の平均値)を測定した。
 バックグラウンド強度に対するMgFのピーク強度比(MgFピーク強度/バックグラウンド強度)は1.7となった。
 なお、測定装置としてリガク社製UltimaIVを用い、測定条件は管電圧40kv、管電流30mA、スキャンスピード8°/min、ステップ0.02°とした。
The XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2θ: 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
The peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 1.7.
In addition, Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
(比較例2)
 3N相当で5μm以下のZnO粉と3N相当で平均粒径5μm以下のMgF粉および、3N相当で平均粒径5μm以下のGe粉を準備した。次に、ZnO粉とMgF粉とGe粉を、ZnO:MgF:Ge=69.2:29.0:1.8mol%の配合比に調合し、これを混合した後、粉末材料を1050°C、Ar雰囲気中、250kgf/cmの圧力でホットプレス焼結した。この焼結体を機械加工で、ターゲット形状に仕上げた。
(Comparative Example 2)
A ZnO powder equivalent to 3N and 5 μm or less, a MgF 2 powder equivalent to 3N and having an average particle diameter of 5 μm or less, and a Ge 2 O 3 powder equivalent to 3N and having an average particle diameter of 5 μm or less were prepared. Next, ZnO powder, MgF 2 powder, and Ge 2 O 3 powder were blended to a blending ratio of ZnO: MgF 2 : Ge 2 O 3 = 69.2: 29.0: 1.8 mol% and mixed. Thereafter, the powder material was hot-press sintered at 1050 ° C. in an Ar atmosphere at a pressure of 250 kgf / cm 2 . This sintered body was finished into a target shape by machining.
 以上の結果、比較例2のスパッタリングターゲットは、相対密度は97.6%、またバルク抵抗値は>10Ω・cmとなり、安定したDCスパッタはできなかった。屈折率は1.78(波長633nm)となり、非晶質性を示した。また、比抵抗値は>1×10Ωcm、消衰係数(λ=450nm)<0.005となった。この結果を、表1と表2に示す。 As a result, the sputtering target of Comparative Example 2 had a relative density of 97.6% and a bulk resistance value of> 10 Ω · cm, and stable DC sputtering could not be performed. The refractive index was 1.78 (wavelength 633 nm), indicating amorphousness. The specific resistance value was> 1 × 10 9 Ωcm, and the extinction coefficient (λ = 450 nm) <0.005. The results are shown in Tables 1 and 2.
 MgFのXRDピーク強度は、得られたスパッタリングターゲットを粉砕し、粉末X線回折法により測定した。すなわち2θ:27.3°付近に出現するピーク強度は553となり、またバックグラウンド強度(28.0~29.0°の強度の平均値)を測定した。
 バックグラウンド強度に対するMgFのピーク強度比(MgFピーク強度/バックグラウンド強度)は36.4となった。この結果を、図1に示す。
 なお、測定装置としてリガク社製UltimaIVを用い、測定条件は管電圧40kv、管電流30mA、スキャンスピード8°/min、ステップ0.02°とした。
The XRD peak intensity of MgF 2 was measured by pulverizing the obtained sputtering target and using a powder X-ray diffraction method. That is, the peak intensity appearing in the vicinity of 2θ: 27.3 ° was 553, and the background intensity (average value of the intensity of 28.0 to 29.0 °) was measured.
The peak intensity ratio of MgF 2 to the background intensity (MgF 2 peak intensity / background intensity) was 36.4. The result is shown in FIG.
In addition, Rigak UltimaIV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 8 ° / min, and step 0.02 °.
 本発明の焼結体を使用して形成された薄膜は、消衰係数0.01以下(波長450nm)の良好な可視光の透過率と屈折率2.0以下の低屈折率を維持できる薄膜、さらにアモルファス膜を得ることが可能な焼結体を提供することができる。この薄膜は透過率が高く、屈折率が低く、且つ、アモルファス膜であるため、ディスプレイや太陽電池、タッチパネルの透明導電膜や保護層として有用である。例えば、フレキシブルディスプレイ用、有機ELテレビ用、タッチパネル用電極用、光情報記録媒体の保護層を形成するために用いることができる。 The thin film formed using the sintered body of the present invention is a thin film capable of maintaining a good visible light transmittance with an extinction coefficient of 0.01 or less (wavelength 450 nm) and a low refractive index of 2.0 or less. Further, it is possible to provide a sintered body capable of obtaining an amorphous film. Since this thin film has a high transmittance, a low refractive index, and an amorphous film, it is useful as a transparent conductive film and a protective layer for displays, solar cells, and touch panels. For example, it can be used for forming a protective layer for flexible displays, organic EL televisions, touch panel electrodes, and optical information recording media.
 さらに、本発明の大きな特徴は、ターゲットバルク抵抗値が減少し、導電性が付与され、材料によっては安定したDCスパッタを可能とする。そして、このDCスパッタリングの特徴である、スパッタの制御性を容易にし、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。必要に応じてイオンプレーティング、RFスパッタを実施するが、その場合でも成膜速度の向上が見られる。
 このように、良好な可視光の透過率と屈折率2.0以下の低屈折率を維持できる薄膜を低コストで安定して製造できるという著しい効果がある。
Further, the major features of the present invention are that the target bulk resistance value is reduced, conductivity is imparted, and stable DC sputtering is possible depending on the material. And there is a remarkable effect that the controllability of sputtering, which is the feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. Ion plating and RF sputtering are performed as necessary, but even in this case, the film formation rate is improved.
Thus, there is a remarkable effect that a thin film capable of maintaining a good visible light transmittance and a low refractive index of 2.0 or less can be stably produced at a low cost.

Claims (19)

  1.  亜鉛(Zn)、マグネシウム(Mg)、酸素(O)、フッ素(F)からなる焼結体であって、マグネシウム(Mg)の含有量がマグネシウムのフッ化物(MgF)換算で1.0~27mol%含有することを特徴とする焼結体。 A sintered body made of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), wherein the magnesium (Mg) content is 1.0 to 1.0 in terms of magnesium fluoride (MgF 2 ). A sintered body containing 27 mol%.
  2.  X線回折におけるバックグラウンド強度に対するフッ化マグネシウム(MgF)のピーク強度比(フッ化マグネシウムピーク強度/バックグラウンド強度)が1.50以上であることを特徴とする請求項1に記載の焼結体。  2. The sintering according to claim 1, wherein the peak intensity ratio (magnesium fluoride peak intensity / background intensity) of magnesium fluoride (MgF 2 ) to the background intensity in X-ray diffraction is 1.50 or more. body.
  3.  さらに、ガリウム(Ga)、ボロン(B)、ゲルマニウム(Ge)、インジウム(In)、錫(Sn)から選択した1種以上の元素を各元素の酸化物換算で0.2~10mol%含有することを特徴とする請求項1又は2のいずれか一項に記載の焼結体。 Furthermore, it contains 0.2 to 10 mol% of one or more elements selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) in terms of oxides of the respective elements. The sintered body according to claim 1, wherein the sintered body is characterized in that
  4.  さらに、融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする請求項1~3のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 3, further comprising 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C or less in terms of oxide weight.
  5.  前記融点が1000℃以下の酸化物は、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOの群から選択した一種以上の酸化物であることを特徴とする請求項4に記載の焼結体。 The oxides having a melting point of 1000 ° C. or less include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , The sintered body according to claim 4, wherein the sintered body is one or more oxides selected from the group of MoO 3 .
  6.  相対密度が90%以上であることを特徴とする請求項1~5のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 5, wherein the relative density of the soot is 90% or more.
  7.  バルク抵抗が10Ω・cm未満であることを特徴とする請求項1~6のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 6, wherein the bulk resistance is less than 10 Ω · cm.
  8.  スパッタリングターゲット又はイオンプレーティング用材料である請求項1~7のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 7, which is a sputtering target or an ion plating material.
  9.  亜鉛(Zn)、マグネシウム(Mg)、酸素(O)、フッ素(F)からなる薄膜であって、マグネシウム(Mg)の含有量がマグネシウムのフッ化物(MgF)換算で1.0~27mol%含有することを特徴とする薄膜。 A thin film made of zinc (Zn), magnesium (Mg), oxygen (O), and fluorine (F), and the magnesium (Mg) content is 1.0 to 27 mol% in terms of magnesium fluoride (MgF 2 ). A thin film characterized by containing.
  10.  さらに、ガリウム(Ga)、ボロン(B)、ゲルマニウム(Ge)、インジウム(In)、錫(Sn)から選択した1種以上の元素を各元素の酸化物換算で0.2~10mol%含有することを特徴とする請求項9に記載の薄膜。 Furthermore, it contains 0.2 to 10 mol% of one or more elements selected from gallium (Ga), boron (B), germanium (Ge), indium (In), and tin (Sn) in terms of oxides of the respective elements. The thin film according to claim 9.
  11.  さらに、融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする請求項9又は10のいずれか一項に記載の薄膜。 11. The thin film according to claim 9, further comprising 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C. or less in terms of oxide weight.
  12.  前記融点が1000℃以下の酸化物は、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOの群から選択した一種以上の酸化物であることを特徴とする請求項11に記載の薄膜。 The oxides having a melting point of 1000 ° C. or less include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , The thin film according to claim 11, wherein the thin film is one or more oxides selected from the group of MoO 3 .
  13.  非晶質膜であることを特徴とする請求項9~12のいずれか一項に記載の薄膜。 The thin film according to any one of claims 9 to 12, which is an amorphous film.
  14.  屈折率が2.0以下(波長550nm)であることを特徴とする請求項9~13のいずれか一項に記載の薄膜。 The thin film according to any one of claims 9 to 13, wherein the refractive index is 2.0 or less (wavelength 550 nm).
  15.  消衰係数が0.01以下(波長450nm)であることを特徴とする請求項9~14のいずれか一項に記載の薄膜。 The thin film according to any one of claims 9 to 14, wherein the extinction coefficient is 0.01 or less (wavelength 450 nm).
  16.  膜の抵抗値が1×10-3~1×10Ωcmであることを特徴とする請求項9~15のいずれか一項に記載の薄膜。 16. The thin film according to claim 9, wherein the resistance value of the film is 1 × 10 −3 to 1 × 10 9 Ωcm.
  17.  スパッタリング又はイオンプレーティングにより形成された膜であることを特徴とする請求項9~16のいずれか一項に記載の薄膜。 The thin film according to any one of claims 9 to 16, which is a film formed by sputtering or ion plating.
  18.  請求項1~5のいずれか一項に記載の焼結体の製造方法であって、不活性雰囲気で焼結することを特徴とする焼結体の製造方法。 A method for manufacturing a sintered body according to any one of claims 1 to 5, wherein the sintered body is sintered in an inert atmosphere.
  19.   請求項1~5のいずれか一項に記載の焼結体を粉砕して粉末又は粒状とすることを特徴とするイオンプレーティング用材料の製造方法。 A method for producing an ion plating material, wherein the sintered body according to any one of claims 1 to 5 is pulverized into powder or granules.
PCT/JP2013/057754 2012-03-28 2013-03-19 Sintered object for forming low-refractive-index film and process for producing same WO2013146448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507743A JP5837183B2 (en) 2012-03-28 2013-03-19 Sintered body for forming low refractive index film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012073549 2012-03-28
JP2012-073549 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013146448A1 true WO2013146448A1 (en) 2013-10-03

Family

ID=49259706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057754 WO2013146448A1 (en) 2012-03-28 2013-03-19 Sintered object for forming low-refractive-index film and process for producing same

Country Status (3)

Country Link
JP (1) JP5837183B2 (en)
TW (1) TWI564267B (en)
WO (1) WO2013146448A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112209A1 (en) * 2013-01-21 2014-07-24 Jx日鉱日石金属株式会社 Sintered compact for fabricating amorphous transparent electroconductive film having low refractive index, and amorphous transparent electroconductive film having low refractive index
JP2016190757A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 SINTERED BODY FOR ZnO-MgO-BASED SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105399413B (en) * 2015-12-09 2017-10-20 苏州博恩希普新材料科技有限公司 A kind of low-k, low-loss microwave-medium ceramics and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840790B1 (en) * 1969-05-02 1973-12-03
JP2005219982A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Translucent conductive material
JP2009001835A (en) * 2007-06-19 2009-01-08 Sumitomo Bakelite Co Ltd Aluminum-added zinc oxide-based transparent conductive film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129410A1 (en) * 2005-05-30 2006-12-07 Nippon Mining & Metals Co., Ltd. Sputtering target and process for producing the same
JP5630747B2 (en) * 2010-05-14 2014-11-26 リンテック株式会社 Zinc oxide-based conductive laminate, method for producing the same, and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840790B1 (en) * 1969-05-02 1973-12-03
JP2005219982A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Translucent conductive material
JP2009001835A (en) * 2007-06-19 2009-01-08 Sumitomo Bakelite Co Ltd Aluminum-added zinc oxide-based transparent conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112209A1 (en) * 2013-01-21 2014-07-24 Jx日鉱日石金属株式会社 Sintered compact for fabricating amorphous transparent electroconductive film having low refractive index, and amorphous transparent electroconductive film having low refractive index
JP2016190757A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 SINTERED BODY FOR ZnO-MgO-BASED SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
TW201348177A (en) 2013-12-01
JPWO2013146448A1 (en) 2015-12-10
TWI564267B (en) 2017-01-01
JP5837183B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5770323B2 (en) Sintered body and amorphous film
JP6767723B2 (en) Oxide thin film and oxide sintered body for sputtering target for producing the thin film
TW201609603A (en) Oxide sintered body, method for manufacturing sputtering target and thin film and oxide sintered body
JP5735190B1 (en) Oxide sintered body, sputtering target, and oxide thin film
JP5837183B2 (en) Sintered body for forming low refractive index film and method for producing the same
TWI631579B (en) Sintered body and amorphous film
JP5695221B2 (en) Sintered body and amorphous film
TWI579254B (en) Sintered and amorphous membranes
JP5866024B2 (en) Sintered body for producing low refractive index amorphous transparent conductive film and low refractive index amorphous transparent conductive film
CN107012435B (en) Sintered body, sputtering target comprising the sintered body, and thin film formed using the sputtering target
JP5865711B2 (en) Ion plating material for forming low refractive index film and low refractive index film
TW201431823A (en) Electrically conductive oxide sintered body, and low-refractive-index film produced using said electrically conductive oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770395

Country of ref document: EP

Kind code of ref document: A1