WO2014112209A1 - Sintered compact for fabricating amorphous transparent electroconductive film having low refractive index, and amorphous transparent electroconductive film having low refractive index - Google Patents

Sintered compact for fabricating amorphous transparent electroconductive film having low refractive index, and amorphous transparent electroconductive film having low refractive index Download PDF

Info

Publication number
WO2014112209A1
WO2014112209A1 PCT/JP2013/081773 JP2013081773W WO2014112209A1 WO 2014112209 A1 WO2014112209 A1 WO 2014112209A1 JP 2013081773 W JP2013081773 W JP 2013081773W WO 2014112209 A1 WO2014112209 A1 WO 2014112209A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
sintered body
refractive index
amorphous
oxide
Prior art date
Application number
PCT/JP2013/081773
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 奈良
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2014535838A priority Critical patent/JP5866024B2/en
Publication of WO2014112209A1 publication Critical patent/WO2014112209A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3237Substoichiometric titanium oxides, e.g. Ti2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite

Definitions

  • the present invention relates to a sintered body capable of obtaining a transparent conductive film having good visible light transmittance and conductivity, and an amorphous film having a low refractive index and produced using the sintered body.
  • the material When using visible light in various optical devices such as displays and touch panels, the material needs to be transparent, and it is particularly preferable that the transmittance is high in the entire visible light region.
  • the refractive index is high, light loss increases or the viewing angle dependency of a display or the like deteriorates. Therefore, the refractive index is low, and it is amorphous to improve film cracking and etching performance. It is desired to be a membrane.
  • ITO indium oxide-tin oxide
  • ITO indium oxide-tin oxide
  • ITO needs to crystallize the film in order to improve conductivity and transmittance, and if it is amorphous, there is a problem that it has absorption in a short wavelength region and does not become a transparent film.
  • IZO indium oxide-zinc oxide
  • GZO gallium oxide-zinc oxide
  • AZO aluminum oxide-zinc oxide
  • Patent Documents 1 to 3 IZO can be a low-resistance amorphous film, it has a problem that it has absorption in a short wavelength region and has a high refractive index.
  • GZO and AZO easily become crystallized films due to the ease of c-axis orientation of ZnO and the formation of ZnGe 2 O 4 , and such crystallized films increase stress, so that film peeling or film cracking occurs. There are problems such as.
  • Patent Document 4 discloses a light-transmitting conductive material that realizes a wide refractive index mainly composed of ZnO and an alkaline earth metal fluoride compound. However, this is a crystallized film, and the effect of the amorphous film as in the present invention described later cannot be obtained.
  • Patent Document 5 discloses a transparent conductive film that has a low refractive index and a low specific resistance and is amorphous. However, the composition system differs from the present invention, and the refractive index and the resistance value are disclosed. Cannot be adjusted together.
  • An object of the present invention is to provide a transparent conductive film capable of maintaining good visible light transmittance and conductivity, in particular, a sintered body capable of obtaining an amorphous film having a low refractive index. Since this thin film has a high transmittance and excellent mechanical properties, it is useful as a thin film for optical devices, particularly as an optical adjustment thin film. Accordingly, it is an object to improve the characteristics of the optical device, reduce the equipment cost, and greatly improve the film forming characteristics.
  • the present inventors have conducted intensive research. As a result, by adopting the material system presented below, it becomes possible to arbitrarily adjust the resistivity and the refractive index. In addition to ensuring the optical characteristics of the film, it is possible to form a stable film by sputtering or ion plating. By using an amorphous film, it is possible to improve the characteristics and productivity of an optical device including the thin film. And gained knowledge.
  • the present invention provides the following inventions. 1) zinc (Zn), gallium (Ga) or aluminum (Al) or boron (B), germanium (Ge) or silicon (Si), magnesium (Mg), and oxygen (O), and, fluorine consist (F), gallium (Ga) or aluminum (Al) or boron Amol% in the content of (B) is Ga 2 O 3 or Al 2 O 3 or terms of B 2 O 3, germanium (Ge) Or, when the content of silicon (Si) is Bmol% in terms of GeO 2 or SiO 2 and the content of magnesium (Mg) is C mol% in terms of MgF 2 , the firing is characterized by 10 ⁇ A + B + C ⁇ 70 Union, 2) It consists of zinc (Zn), gallium (Ga), germanium (Ge), magnesium (Mg), oxygen (O), and fluorine (F), and the content of gallium (Ga) is Ga 2 O 3.
  • the sintered body according to 4) above which is one or more oxides selected from the group of MoO 3 , 6)
  • the present invention also provides: 10) Zinc (Zn) and Gallium (Ga) or Aluminum (Al) or Boron (B), Germanium (Ge) or Silicon (Si), Magnesium (Mg), and Oxygen (O), And a thin film made of fluorine (F) and characterized by being amorphous, 11)
  • the thin film as described in 10) above which is made of zinc (Zn), gallium (Ga), germanium (Ge), magnesium (Mg), oxygen (O), and fluorine (F), and is amorphous.
  • the thin film according to 12) above which is one or more oxides selected from the group of MoO 3 14)
  • the present invention by adopting the material system shown above, it is possible to arbitrarily adjust the resistivity and the refractive index, and it is possible to ensure desired optical characteristics, as well as sputtering and ion plating. Can be stably formed, and by using an amorphous film, it is possible to improve the characteristics and productivity of an optical device including the film.
  • the present invention includes 1) zinc (Zn), 2) gallium (Ga) or aluminum (Al) or boron (B), 3) germanium (Ge) or silicon (Si), 4) magnesium (Mg), and 5) oxygen. (O), 6) A sintered body containing fluorine (F) as a constituent element. What is important in the present invention is that the content of gallium (Ga), aluminum (Al) or boron (B) in 2) above is calculated in terms of Ga 2 O 3, Al 2 O 3 or B 2 O 3 , respectively.
  • the content of Zn can be determined from the ZnO equivalent of the remainder because the remainder is ZnO and the ratio of each oxide is adjusted to a total of 100 mol% in the raw material adjustment. By setting it as such a composition, the amorphous film of a low refractive index can be produced and the said effect of this invention is acquired.
  • the content of each metal in the sintered body is specified in terms of oxide or fluoride. However, a part of each metal in the sintered body exists as a composite oxide. ing. Moreover, in the component analysis used normally of a sintered compact, each content is measured not as an oxide or fluoride but as a metal.
  • germanium oxide (GeO 2 ) and silicon dioxide (SiO 2 ) contained in the sintered body of the present invention are vitrification components
  • the thin film can be made amorphous (vitrified).
  • germanium oxide (GeO 2 ) such as these vitrification components, tends to form a crystallized film by forming zinc oxide (ZnO) and ZnGe 2 O 4, and such a crystallized film has a large film stress. Cause film peeling and film cracking. Therefore, by introducing gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), and boron oxide (B 2 O 3 ), a mullite composition (for example, 3Ga 2 O 3 -2GeO 2 ) is formed. Therefore, it can be expected to inhibit the production of ZnGe 2 O 4 and the like.
  • gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), germanium oxide (GeO 2 ), and silicon dioxide (SiO 2 ) are zinc oxide (ZnO).
  • the refractive index of the film can be lowered by adding these oxides.
  • the composition is adjusted so as to lower the refractive index (when ZnO is reduced), the resistance value tends to increase, so it is extremely difficult to adjust both the resistance value and the refractive index. .
  • the refractive index can be lowered while suppressing an increase in resistivity.
  • MgF 2 magnesium fluoride
  • the resistance value tends to increase, but since the refractive index is lower than the other three components, the refractive index can be lowered even with a small amount of addition, and an increase in resistance value can be suppressed.
  • MgF 2 is an optically transparent material, the addition does not reduce the transmittance and does not hinder the amorphization.
  • the addition amount of MgF 2 can be determined in consideration of the resistance value and the refractive index, but is preferably 50 mol% or less.
  • the oxidation of gallium, aluminum, or boron with respect to the oxide equivalent content (Bmol%) of germanium or silicon it is preferable to increase the content (Amol%) in terms of physical properties. Thereby, formation of ZnGe 2 O 4 can be suppressed, and crystallization of the film can be suppressed.
  • the total of the oxide equivalent content (A mol%) of gallium, aluminum or boron and the oxide equivalent content (B mol%) of germanium or silicon thus, it is preferable to increase the content (Dmol%) of zinc oxide in terms of ZnO.
  • the sintered body of the present invention is effective for the sintered body of the present invention to contain a metal that forms an oxide having a melting point of 1000 ° C. or lower (low melting point oxide). Since zinc oxide (ZnO) is easy to reduce and evaporate, the sintering temperature cannot be increased so much, and it may be difficult to improve the density of the sintered body. However, the addition of such a low-melting point oxide has an effect that a high density can be achieved without increasing the sintering temperature so much. In order to improve the density of the sintered body, it is important to sinter the low melting point oxide in a liquid phase state. In order to accelerate the reaction of the raw material powder, calcining after adding a low melting point oxide may be considered.
  • the low melting point oxide forms a solid solution or forms a composite oxide with zinc oxide.
  • the melting point becomes higher than the original melting point of the low melting point oxide, and the effect of increasing the density may not be obtained. Therefore, after adding the low melting point oxide, it is very important to perform pressure sintering such as hot pressing without calcining.
  • the low melting point oxide examples include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , MoO. 3 can be mentioned. These oxides can be added individually and in combination, respectively, and the object of the present invention can be achieved.
  • the metal forming the low melting point oxide is preferably contained in an amount of 0.1 to 5 wt% in terms of oxide weight. If it is less than 0.1 wt%, the effect cannot be sufficiently exhibited, and if it exceeds 5 wt%, the characteristics may vary depending on the composition, which is not preferable.
  • the relative density is preferably 90% or more.
  • the improvement in density has the effect of increasing the uniformity of the sputtered film and suppressing the generation of particles during sputtering.
  • the sintered body of the present invention can achieve a bulk resistance of 10 ⁇ ⁇ cm or less. Reduction of the bulk resistance value enables high-speed film formation by direct current (DC) sputtering.
  • DC direct current
  • RF radio frequency
  • magnetron sputtering is required, but even in that case, the deposition rate is improved. By improving the deposition rate, production throughput can be improved, which can greatly contribute to cost reduction.
  • the sintered body of the present invention can be used as an ion plating material in addition to the above sputtering target.
  • the ion plating method is a method in which a metal is evaporated with an electron beam in a vacuum, ionized with high-frequency plasma or vacuum discharge, and a negative potential is applied to a substrate to accelerate and attach cations to form a film. Yes (Science and Chemistry Dictionary).
  • the evaporation raw material for ion plating and the composition of the film match, the evaporation raw material can be used as it is for ion plating.
  • gallium oxide (Ga 2 O 3 ), germanium oxide (GeO 2 ), and magnesium fluoride (MgF 2 ) have a vapor pressure similar to that of zinc oxide (ZnO). Suitable material.
  • the sintered body of the present invention can efficiently form a thin film having excellent characteristics by utilizing a vapor phase growth method such as the sputtering method or the ion plating method as described above.
  • a vapor phase growth method such as the sputtering method or the ion plating method as described above.
  • it is useful for industrially producing a low refractive index optical thin film having a refractive index of 2.00 or less (light wavelength of 550 nm).
  • the thin film formed using the sintered body of the present invention is 1) zinc (Zn), 2) gallium (Ga) or aluminum (Al) or boron (B), 3) germanium (Ge) or silicon (Si), 4) Magnesium (Mg), 5) Oxygen (O), 6) An amorphous film having fluorine (F) as a constituent element.
  • Magnesium is contained in the sintered body as a fluoride, but magnesium fluoride forms a complex oxide with zinc, gallium, and germanium, most of which is magnesium as a film. On the other hand, part of the fluorine remains in the film and does not completely desorb.
  • the thin film of the present invention can realize a refractive index at a wavelength of 550 nm of 2.00 or less and a volume resistivity of 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 9 ⁇ ⁇ cm.
  • the thin film formed using the sintered body of the present invention can achieve an extinction coefficient of 0.01 or less at a wavelength of 450 nm.
  • Thin films for optical devices such as displays and touch panels need to be transparent over the entire visible light range, but oxide films such as IZO films generally absorb in the short wavelength range, so they produce a clear blue color. It was difficult to make.
  • oxide films such as IZO films generally absorb in the short wavelength range, so they produce a clear blue color. It was difficult to make.
  • the extinction coefficient at a wavelength of 450 nm is 0.01 or less and there is almost no absorption in a short wavelength region, it can be said that the material is extremely suitable as a transparent material.
  • Example 1 After using ZnO powder, Ga 2 O 3 powder, GeO 2 powder, and MgF 2 powder as basic raw materials, and adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Then, this sintered body was finished into a sputtering target shape having a diameter of 6 inches and a thickness of 5 cm by machining. The bulk resistance and relative density of the obtained target were measured.
  • the relative density reached 99.8%, the bulk resistance was 4.2 m ⁇ ⁇ cm, and stable DC sputtering was possible. Further, sputtering was performed using the finished target.
  • the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample were measured.
  • the thin film formed by sputtering is an amorphous film
  • the refractive index is 1.75 (wavelength 550 nm)
  • the volume resistivity is> 1 ⁇ 10 6 ⁇ ⁇ cm
  • the extinction coefficient is 0.01.
  • an amorphous film having a low refractive index (wavelength 450 nm).
  • Example 2 ZnO powder, Al 2 O 3 powder, GeO 2 powder, MgF 2 powder are used as basic raw materials, and after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1.
  • hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured.
  • the relative density reached 98.9%, the bulk resistance was 16 m ⁇ ⁇ cm, and stable DC sputtering was possible. Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. As shown in Table 2, the thin film formed by sputtering is an amorphous film, the refractive index is 1.71 (wavelength 550 nm), the volume resistivity is> 1 ⁇ 10 7 ⁇ ⁇ cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
  • Example 3 ZnO powder, Ga 2 O 3 powder, SiO 2 powder, and MgF 2 powder are used as basic raw materials, and after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition Bi 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, it press-molded with the pressure of 500 kgf / cm ⁇ 2 >. After pressure molding, atmospheric pressure sintering was performed at 1400 ° C. in the atmosphere, and this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured.
  • the relative density reached 96.3%, the bulk resistance was 45 m ⁇ ⁇ cm, and stable DC sputtering was possible. Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. As shown in Table 2, the thin film formed by sputtering is an amorphous film, the refractive index is 1.65 (wavelength 550 nm), the volume resistivity is> ⁇ 10 8 ⁇ ⁇ cm, and the extinction coefficient is less than 0.01. An amorphous film having a low refractive index (wavelength 450 nm) was obtained.
  • Example 4 ZnO powder, Ga 2 O 3 powder, GeO 2 powder, and MgF 2 powder were used as basic raw materials, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%.
  • hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 .
  • the sintered body was pulverized to finish an ion plating material having a particle size of 1 to 6 mm.
  • ion plating was performed in a 2% O 2 atmosphere to form a film having a thickness of 1500 to 7000 mm.
  • the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample were measured.
  • the thin film formed by ion plating is an amorphous film
  • the refractive index is 1.80 (wavelength 550 nm)
  • the volume resistivity is> 1 ⁇ 10 2 ⁇ ⁇ cm
  • the extinction coefficient is 0.
  • An amorphous film having a low refractive index of less than 0.01 (wavelength 450 nm) was obtained.
  • Example 5 After using ZnO powder, Al 2 O 3 powder, SiO 2 powder, and MgF 2 powder as basic raw materials and adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured.
  • the relative density reached 98.4%
  • the bulk resistance was 2.3 m ⁇ ⁇ cm
  • stable DC sputtering was possible.
  • sputtering was performed under the same conditions as in Example 1 using the finished target.
  • the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample as shown in Table 2, the thin film formed by sputtering is an amorphous film.
  • the refractive index is 1.91 (wavelength 550 nm), the volume resistivity is 1 ⁇ 10 0 ⁇ ⁇ cm, the extinction coefficient is less than 0.01 (wavelength 450 nm), and an amorphous film having a low refractive index is obtained. It was.
  • Example 6 ZnO powder, Ga 2 O 3 powder, GeO 2 powder, and MgF 2 powder were used as basic raw materials, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%.
  • hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 .
  • the sintered body was pulverized to finish an ion plating material having a particle size of 1 to 6 mm. Using the above ion plating material, ion plating was performed under the same conditions as in Example 4.
  • the thin film formed by ion plating was An amorphous film having a refractive index of 1.82 (wavelength 550 nm), a volume resistivity> 1 ⁇ 10 3 ⁇ ⁇ cm, an extinction coefficient of less than 0.01 (wavelength 450 nm), and a low refractive index amorphous film was gotten.
  • Example 7 After using ZnO powder, Al 2 O 3 powder, SiO 2 powder, and MgF 2 powder as basic raw materials and adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured.
  • the relative density reached 99.2%, the bulk resistance was 5.4 m ⁇ ⁇ cm, and stable DC sputtering was possible. Further, sputtering was performed under the same conditions as in Example 1 using the finished target.
  • amorphousness amorphous
  • refractive index wavelength 550 nm
  • volume resistivity volume resistivity
  • extinction coefficient wavelength 450 nm
  • Example 8 ZnO powder, Ga 2 O 3 powder, GeO 2 powder, and MgF 2 powder were used as basic raw materials, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%.
  • hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 .
  • the sintered body was pulverized to finish an ion plating material having a particle size of 1 to 6 mm. Using the above ion plating material, ion plating was performed under the same conditions as in Example 4.
  • the thin film formed by ion plating was An amorphous film having a refractive index of 1.82 (wavelength 550 nm), a volume resistivity> 1 ⁇ 10 3 ⁇ ⁇ cm, an extinction coefficient of less than 0.01 (wavelength 450 nm), and a low refractive index amorphous film was gotten.
  • Example 9 After using ZnO powder, B 2 O 3 powder, GeO 2 powder, and MgF 2 powder as basic raw materials, and adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured.
  • the relative density reached 99.3%, the bulk resistance was 7.2 m ⁇ ⁇ cm, and stable DC sputtering was possible. Further, sputtering was performed under the same conditions as in Example 1 using the finished target.
  • amorphousness amorphous
  • refractive index wavelength 550 nm
  • volume resistivity volume resistivity
  • extinction coefficient wavelength 450 nm
  • Example 10 ZnO powder, B 2 O 3 powder, GeO 2 powder, and MgF 2 powder were used as basic raw materials, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%.
  • hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured. As shown in Table 1, the relative density reached 93.8%, the bulk resistance was 12 m ⁇ ⁇ cm, and stable DC sputtering was possible.
  • the thin film formed by sputtering is an amorphous film.
  • the refractive index is 1.74 (wavelength 550 nm)
  • the volume resistivity is> 1 ⁇ 10 2 ⁇ ⁇ cm
  • the extinction coefficient is less than 0.01 (wavelength 450 nm). Obtained.
  • Comparative Example 1 As an example in which MgF 2 powder is not added and the condition of A + B + C ⁇ 70 is not satisfied, Comparative Example 1 uses ZnO powder, Al 2 O 3 powder, and SiO 2 powder as basic raw materials, and these are shown in Table 1. The ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance of the obtained target was measured. As shown in Table 1, the bulk resistance was as high as 13 m ⁇ ⁇ cm.
  • sputtering was performed under the same conditions as in Example 1 using the finished target.
  • amorphousness amorphous
  • refractive index wavelength 550 nm
  • volume resistivity volume resistivity
  • extinction coefficient wavelength 450 nm
  • Comparative Example 2 As an example in which MgF 2 powder is not added and the condition of 10 ⁇ A + B + C is not satisfied, Comparative Example 2 uses ZnO powder, Ga 2 O 3 powder, and GeO 2 powder as basic raw materials, and these are shown in Table 1. The ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance of the obtained target was measured. As shown in Table 1, the bulk resistance was 1.5 m ⁇ ⁇ cm.
  • sputtering was performed under the same conditions as in Example 1 using the finished target.
  • amorphousness amorphous
  • refractive index wavelength 550 nm
  • volume resistivity volume resistivity
  • extinction coefficient wavelength 450 nm
  • the sintered body of the present invention can be used as a sputtering target, and the thin film formed using the sputtering target forms a part of the structure of a transparent conductive film for optical adjustment in a display or a touch panel or an optical disk.
  • the main feature of the present invention is that it is an amorphous film, and therefore has an excellent effect that the cracking and etching performance of the film can be remarkably improved.
  • the sputtering target using the sintered body of the present invention has a low bulk resistance value and a high relative density of 90% or more, and thus enables stable DC sputtering.
  • the sintered body of the present invention can be used not only as a sputtering target but also as an ion beam evaporation material.
  • the ion beam deposition material the sintered body can be further crushed and used as a granular material or a powdery material. Formation of a thin film by ion beam evaporation can be more easily performed by controlling the change in vapor pressure, and is effective for forming a film. In this way, there is a remarkable effect that a film for optical adjustment of an optical device can be stably manufactured at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A sintered compact characterized by comprising: zinc (Zn); gallium (Ga), aluminum (Al), or boron (B); germanium (Ge) or silicon (Si); magnesium (Mg); oxygen (O); and fluorine (F); and in satisfying the relationship 10 ≤ A + B + C ≤ 70, where A is the content of gallium (Ga), aluminum (Al), or boron (B) converted to mol% in terms of Ga2O3, Al2O3, or B2O3, B is the content of germanium (Ge) or silicon (Si) converted to mol% in terms of GeO2 or SiO2, and C is the content of magnesium (Mg) converted to mol% in terms of MgF2. In particular, a low-refractive-index amorphous thin film can be formed which has low bulk resistance and is capable of DC sputtering.

Description

低屈折率のアモルファス透明導電膜作製用焼結体及び低屈折率のアモルファス透明導電膜Sintered body for producing low refractive index amorphous transparent conductive film and low refractive index amorphous transparent conductive film
 本発明は良好な可視光の透過率と導電性を備えた透明導電膜を得ることが可能な焼結体及び該焼結体を用いて作製した低屈折率を有するアモルファス膜に関する。 The present invention relates to a sintered body capable of obtaining a transparent conductive film having good visible light transmittance and conductivity, and an amorphous film having a low refractive index and produced using the sintered body.
 ディスプレイやタッチパネル等の各種光デバイスにおいて可視光を利用する場合、材料が透明である必要があり、特に、可視光領域の全域において透過率が高いことが好ましい。また、屈折率が高いと、光損失が大きくなったり、ディスプレイ等の視野角依存性を悪化したりすることから、低屈折率であることや、膜のクラックやエッチング性能を向上させるためにアモルファス膜であることが望まれる。 When using visible light in various optical devices such as displays and touch panels, the material needs to be transparent, and it is particularly preferable that the transmittance is high in the entire visible light region. In addition, if the refractive index is high, light loss increases or the viewing angle dependency of a display or the like deteriorates. Therefore, the refractive index is low, and it is amorphous to improve film cracking and etching performance. It is desired to be a membrane.
 アモルファス膜は応力が小さいため、結晶膜に比べてクラックが起こりにくく、今後、フレキシブル化に向かうディスプレイ用途ではアモルファス膜であることが求められると考えられる。透明かつ導電性のある材料として、ITO(酸化インジウム-酸化錫)が知られている。しかし、ITOは、導電性や透過率を向上するために膜を結晶化する必要があり、また、アモルファスとすると、短波長域に吸収を持ち、透明な膜にはならないという問題がある。 Since the amorphous film has low stress, cracks are less likely to occur compared to the crystal film, and it is considered that the amorphous film will be required for display applications toward flexible use. ITO (indium oxide-tin oxide) is known as a transparent and conductive material. However, ITO needs to crystallize the film in order to improve conductivity and transmittance, and if it is amorphous, there is a problem that it has absorption in a short wavelength region and does not become a transparent film.
 また、上記と同様の材料として、IZO(酸化インジウム-酸化亜鉛)、GZO(酸化ガリウム-酸化亜鉛)、AZO(酸化アルミニウム-酸化亜鉛)などが知られている(特許文献1~3)。しかし、IZOは低抵抗のアモルファス膜とすることができるが、短波長域に吸収を持ち、屈折率が高いという問題がある。また、GZO、AZOは、ZnOのc軸配向のし易さや、ZnGe24の生成により、結晶化膜になりやすく、このような結晶化膜は応力が大きくなるため、膜剥がれや膜割れ等の問題がある。 As materials similar to those described above, IZO (indium oxide-zinc oxide), GZO (gallium oxide-zinc oxide), AZO (aluminum oxide-zinc oxide), and the like are known (Patent Documents 1 to 3). However, although IZO can be a low-resistance amorphous film, it has a problem that it has absorption in a short wavelength region and has a high refractive index. Also, GZO and AZO easily become crystallized films due to the ease of c-axis orientation of ZnO and the formation of ZnGe 2 O 4 , and such crystallized films increase stress, so that film peeling or film cracking occurs. There are problems such as.
また、特許文献4には、ZnOとフッ化アルカリ土類金属化合物を主成分とする幅広い屈折率を実現した透光性導電性材料が開示されている。しかし、これは結晶化膜であって、後述する本発明のようなアモルファス膜の効果は得られない。また、特許文献5には、屈折率が小さく、かつ、比抵抗が小さく、さらには非晶質の透明導電膜が開示されているが、本発明とは組成系が異なり、屈折率と抵抗値とを共に調整できないという問題がある。 Further, Patent Document 4 discloses a light-transmitting conductive material that realizes a wide refractive index mainly composed of ZnO and an alkaline earth metal fluoride compound. However, this is a crystallized film, and the effect of the amorphous film as in the present invention described later cannot be obtained. Patent Document 5 discloses a transparent conductive film that has a low refractive index and a low specific resistance and is amorphous. However, the composition system differs from the present invention, and the refractive index and the resistance value are disclosed. Cannot be adjusted together.
特開2007-008780号公報JP 2007-008780 A 特開2009-184876号公報JP 2009-184876 A 特開2007-238375号公報JP 2007-238375 A 特開2005-219982号公報Japanese Patent Laid-Open No. 2005-219982 特開2007-035342号公報JP 2007-035342 A
 本発明は、良好な可視光の透過率と導電性を維持できる透明導電膜、特には、低屈折率のアモルファス膜を得ることが可能な焼結体を提供することを課題とする。この薄膜は、透過率が高く、且つ、機械特性に優れているため、光デバイス用の薄膜、特には光学調整薄膜として有用である。これによって、光デバイスの特性の向上、設備コストの低減化、成膜の特性を大幅に改善することを目的とする。 An object of the present invention is to provide a transparent conductive film capable of maintaining good visible light transmittance and conductivity, in particular, a sintered body capable of obtaining an amorphous film having a low refractive index. Since this thin film has a high transmittance and excellent mechanical properties, it is useful as a thin film for optical devices, particularly as an optical adjustment thin film. Accordingly, it is an object to improve the characteristics of the optical device, reduce the equipment cost, and greatly improve the film forming characteristics.
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、下記に提示する材料系を採用することで、抵抗率と屈折率とを任意に調整することが可能となり、所望の光学特性を確保できると共に、スパッタリングやイオンプレーティングによる安定的な成膜が可能であり、また、アモルファス膜とすることで、該薄膜を備える光デバイスの特性改善、生産性向上が可能であるとの知見を得た。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, by adopting the material system presented below, it becomes possible to arbitrarily adjust the resistivity and the refractive index. In addition to ensuring the optical characteristics of the film, it is possible to form a stable film by sputtering or ion plating. By using an amorphous film, it is possible to improve the characteristics and productivity of an optical device including the thin film. And gained knowledge.
本発明はこの知見に基づき、下記の発明を提供する。
1)亜鉛(Zn)、及び、ガリウム(Ga)又はアルミニウム(Al)又はホウ素(B)、及び、ゲルマニウム(Ge)又はケイ素(Si)、及び、マグネシウム(Mg)、及び、酸素(O)、及び、フッ素(F)からなり、ガリウム(Ga)又はアルミニウム(Al)又はホウ素(B)の含有量がGa23又はAl23又はB23換算でAmol%、ゲルマニウム(Ge)又はケイ素(Si)の含有量がGeO2又はSiO2換算でBmol%、マグネシウム(Mg)の含有量がMgF2換算でCmol%としたとき、10≦A+B+C≦70であることを特徴とする焼結体、
2)亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、マグネシウム(Mg)、及び、酸素(O)、及び、フッ素(F)からなり、ガリウム(Ga)の含有量がGa23換算でAmol%、ゲルマニウム(Ge)の含有量がGeO2換算でBmol%、マグネシウム(Mg)の含有量がMgF2換算でCmol%としたとき、10≦A+B+C≦70であることを特徴とする上記1)記載の焼結体、
3)さらに、A>Bであり、亜鉛(Zn)の含有量がZnO換算でDmol%としたとき、D>A+Bであることを特徴とする上記1)又は2)記載の焼結体、
4)さらに、融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする上記1)~3)のいずれか一に記載の焼結体、
 5)前記融点が1000℃以下の酸化物は、B23、P25、K2O、V25、Sb23、TeO2、Ti23、PbO、Bi23、MoO3の群から選択した一種以上の酸化物であることを特徴とする上記4)記載の焼結体、
6)相対密度が90%以上であることを特徴とする上記1)~5)のいずれか一に記載の焼結体、
7)バルク抵抗が10Ω・cm以下であることを特徴とする上記1)~6)のいずれか一に記載の焼結体、
8)上記1)~6)に記載される焼結体を用いることを特徴とするスパッタリングターゲット、
9)上記2)~6)に記載される焼結体を用いることを特徴とするイオンプレーティング材、
Based on this finding, the present invention provides the following inventions.
1) zinc (Zn), gallium (Ga) or aluminum (Al) or boron (B), germanium (Ge) or silicon (Si), magnesium (Mg), and oxygen (O), and, fluorine consist (F), gallium (Ga) or aluminum (Al) or boron Amol% in the content of (B) is Ga 2 O 3 or Al 2 O 3 or terms of B 2 O 3, germanium (Ge) Or, when the content of silicon (Si) is Bmol% in terms of GeO 2 or SiO 2 and the content of magnesium (Mg) is C mol% in terms of MgF 2 , the firing is characterized by 10 ≦ A + B + C ≦ 70 Union,
2) It consists of zinc (Zn), gallium (Ga), germanium (Ge), magnesium (Mg), oxygen (O), and fluorine (F), and the content of gallium (Ga) is Ga 2 O 3. 10 ≦ A + B + C ≦ 70, where Amol% in terms of conversion, germanium (Ge) content is Bmol% in terms of GeO 2 , and magnesium (Mg) content is Cmol% in terms of MgF 2. The sintered body according to 1) above,
3) Furthermore, when A> B and the content of zinc (Zn) is Dmol% in terms of ZnO, D> A + B, wherein the sintered body according to 1) or 2) above,
4) The sintering according to any one of 1) to 3) above, further comprising 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C. or less in terms of oxide weight. body,
5) The oxides having a melting point of 1000 ° C. or less are B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O. 3. The sintered body according to 4) above, which is one or more oxides selected from the group of MoO 3 ,
6) The sintered body according to any one of 1) to 5) above, wherein the relative density is 90% or more,
7) The sintered body according to any one of 1) to 6) above, wherein the bulk resistance is 10 Ω · cm or less,
8) A sputtering target using the sintered body described in 1) to 6) above,
9) An ion plating material using the sintered body described in 2) to 6) above,
また、本発明は、
10)亜鉛(Zn)、及び、ガリウム(Ga)又はアルミニウム(Al)又はホウ素(B)、及び、ゲルマニウム(Ge)又はケイ素(Si)、及び、マグネシウム(Mg)、及び、酸素(O)、及び、フッ素(F)からなり、アモルファスであることを特徴とする薄膜、
11)亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、マグネシウム(Mg)、酸素(O)、フッ素(F)からなり、アモルファスであることを特徴とする上記10)記載の薄膜、
 12)さらに、融点が1000℃以下の酸化物を形成する金属を含有することを特徴とする上記10)又は11)記載の薄膜、
 13)前記融点が1000℃以下の酸化物は、B23、P25、K2O、V25、Sb23、TeO2、Ti23、PbO、Bi23、MoO3の群から選択した一種以上の酸化物であることを特徴とする上記12)記載の薄膜、
 14)前記融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする上記12)又は13)記載の薄膜、
 15)上記8)に記載されるスパッタリングターゲットを用いて形成した薄膜であって、アモルファス膜であることを特徴とする薄膜、
 16)上記9)に記載されるイオンプレーティング材を用いて形成した薄膜であって、アモルファス膜であることを特徴とする薄膜、
17)波長550nmにおける屈折率が2.00以下であることを特徴とする上記10)~16)のいずれか一に記載の薄膜、
18)波長450nmにおける消衰係数が0.01以下であることを特徴とする上記10)~17)のいずれか一に記載の薄膜、
19)体積抵抗率が1×10-3~1×109Ω・cmであることを特徴とする上記10)~18)のいずれか一に記載の薄膜、を提供する。
The present invention also provides:
10) Zinc (Zn) and Gallium (Ga) or Aluminum (Al) or Boron (B), Germanium (Ge) or Silicon (Si), Magnesium (Mg), and Oxygen (O), And a thin film made of fluorine (F) and characterized by being amorphous,
11) The thin film as described in 10) above, which is made of zinc (Zn), gallium (Ga), germanium (Ge), magnesium (Mg), oxygen (O), and fluorine (F), and is amorphous.
12) The thin film according to 10) or 11), further comprising a metal that forms an oxide having a melting point of 1000 ° C. or lower,
13) The oxides having a melting point of 1000 ° C. or lower are B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O. 3. The thin film according to 12) above, which is one or more oxides selected from the group of MoO 3
14) The thin film according to 12) or 13) above, which contains 0.1 to 5 wt% of a metal forming an oxide having a melting point of 1000 ° C. or less in terms of oxide weight,
15) A thin film formed using the sputtering target described in 8) above, which is an amorphous film,
16) A thin film formed using the ion plating material described in 9) above, which is an amorphous film,
17) The thin film as described in any one of 10) to 16) above, wherein the refractive index at a wavelength of 550 nm is 2.00 or less,
18) The thin film according to any one of 10) to 17) above, wherein the extinction coefficient at a wavelength of 450 nm is 0.01 or less,
19) The thin film according to any one of 10) to 18) above, which has a volume resistivity of 1 × 10 −3 to 1 × 10 9 Ω · cm.
本発明によれば、上記に示す材料系を採用することにより、抵抗率と屈折率とを任意に調整することが可能となり、所望の光学特性を確保することができると共に、スパッタリングやイオンプレーティングによる安定的な成膜が可能であり、アモルファス膜とすることで該膜を備えた光デバイスの特性改善、生産性を向上することが可能となるという優れた効果を有する。 According to the present invention, by adopting the material system shown above, it is possible to arbitrarily adjust the resistivity and the refractive index, and it is possible to ensure desired optical characteristics, as well as sputtering and ion plating. Can be stably formed, and by using an amorphous film, it is possible to improve the characteristics and productivity of an optical device including the film.
本発明は、1)亜鉛(Zn)、2)ガリウム(Ga)又はアルミニウム(Al)又はホウ素(B)、3)ゲルマニウム(Ge)又はケイ素(Si)、4)マグネシウム(Mg)、5)酸素(O)、6)フッ素(F)を構成元素とする焼結体である。
本発明において重要なことは、上記2)のガリウム(Ga)又はアルミニウム(Al)又はホウ素(B)の含有量を、それぞれGa23換算又はAl23換算又はB23換算でAmol%とし、ゲルマニウム(Ge)又はケイ素(Si)の含有量を、それぞれGeO2換算又はSiO2換算でBmol%とし、マグネシウム(Mg)の含有量をMgF2換算でCmol%としたときに、10≦A+B+C≦70を満たすことを特徴とすることである。これにより、良好な抵抗率と屈折率とを得ることができる。
The present invention includes 1) zinc (Zn), 2) gallium (Ga) or aluminum (Al) or boron (B), 3) germanium (Ge) or silicon (Si), 4) magnesium (Mg), and 5) oxygen. (O), 6) A sintered body containing fluorine (F) as a constituent element.
What is important in the present invention is that the content of gallium (Ga), aluminum (Al) or boron (B) in 2) above is calculated in terms of Ga 2 O 3, Al 2 O 3 or B 2 O 3 , respectively. and Amol%, the content of germanium (Ge) or silicon (Si), when each and Bmol% by GeO 2 terms or in terms of SiO 2, was C mol% content of magnesium (Mg) in MgF 2 terms, It is characterized by satisfying 10 ≦ A + B + C ≦ 70. Thereby, a favorable resistivity and refractive index can be obtained.
Znの含有量は、原料の調整の際、残部をZnOとして各酸化物の比率をその合計が100mol%の組成となるように調整するため、この残部のZnO換算から求めることができる。このような組成とすることで、低屈折率のアモルファス膜を作製するができ、本発明の上記効果が得られる。
なお、本発明では、焼結体中の各金属の含有量を酸化物換算やフッ化物換算で規定しているが、焼結体中の各金属は、その一部が複合酸化物として存在している。また、焼結体の通常用いられる成分分析では、酸化物やフッ化物ではなく、金属として、それぞれの含有量が測定される。
The content of Zn can be determined from the ZnO equivalent of the remainder because the remainder is ZnO and the ratio of each oxide is adjusted to a total of 100 mol% in the raw material adjustment. By setting it as such a composition, the amorphous film of a low refractive index can be produced and the said effect of this invention is acquired.
In the present invention, the content of each metal in the sintered body is specified in terms of oxide or fluoride. However, a part of each metal in the sintered body exists as a composite oxide. ing. Moreover, in the component analysis used normally of a sintered compact, each content is measured not as an oxide or fluoride but as a metal.
本発明の焼結体に含有する酸化ゲルマニウム(GeO2)や二酸化ケイ素(SiO2)は、ガラス化成分であるため、薄膜をアモルファス化(ガラス化)させることができる。一方、これらのガラス化成分のたとえば酸化ゲルマニウム(GeO2)は、酸化亜鉛(ZnO)とZnGe24を形成して結晶化膜になりやすく、このような結晶化膜は膜応力が大きくなって、膜剥がれや膜割れを引き起こす。そこで、酸化ガリウム(Ga23)、酸化アルミニウム(Al23)、酸化ホウ素(B23)を導入することで、ムライト組成(たとえば、3Ga23-2GeO2)を形成させて、ZnGe24などの生成を阻害することが期待できる。 Since germanium oxide (GeO 2 ) and silicon dioxide (SiO 2 ) contained in the sintered body of the present invention are vitrification components, the thin film can be made amorphous (vitrified). On the other hand, germanium oxide (GeO 2 ), such as these vitrification components, tends to form a crystallized film by forming zinc oxide (ZnO) and ZnGe 2 O 4, and such a crystallized film has a large film stress. Cause film peeling and film cracking. Therefore, by introducing gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), and boron oxide (B 2 O 3 ), a mullite composition (for example, 3Ga 2 O 3 -2GeO 2 ) is formed. Therefore, it can be expected to inhibit the production of ZnGe 2 O 4 and the like.
ところで、酸化ガリウム(Ga23)、酸化アルミニウム(Al23)、酸化ホウ素(B23)、また、酸化ゲルマニウム(GeO2)、二酸化ケイ素(SiO2)は、酸化亜鉛(ZnO)よりも低屈折材料であるため、これら酸化物の添加により膜の屈折率を下げることができる。一方、屈折率を下げるように組成を調整していくと(ZnOを減らしていくと)、抵抗値が高くなる傾向にあるため、抵抗値と屈折率とをともに調整することが極めて困難となる。 By the way, gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), germanium oxide (GeO 2 ), and silicon dioxide (SiO 2 ) are zinc oxide (ZnO). The refractive index of the film can be lowered by adding these oxides. On the other hand, when the composition is adjusted so as to lower the refractive index (when ZnO is reduced), the resistance value tends to increase, so it is extremely difficult to adjust both the resistance value and the refractive index. .
そこで、上記3元系の組成に、さらにフッ化マグネシウム(MgF2)を加えた4元系の組成とすることで、抵抗率の上昇を抑制しつつ、屈折率を低下させることができる。
MgF2を添加すると、抵抗値は上がる傾向にあるが、屈折率が他の3成分よりも低いため、少量の添加量でも屈折率を下げることが可能となり、抵抗値の上昇を抑えることができる。また、MgF2は、光学的に透明な材料であるため、添加により透過率を低下することなく、アモルファス化を阻害することもない。なお、MgF2の添加量は抵抗値と屈折率とを考慮して決定することができるが、好ましくは50mol%以下である。
Therefore, by using a quaternary composition in which magnesium fluoride (MgF 2 ) is further added to the ternary composition, the refractive index can be lowered while suppressing an increase in resistivity.
When MgF 2 is added, the resistance value tends to increase, but since the refractive index is lower than the other three components, the refractive index can be lowered even with a small amount of addition, and an increase in resistance value can be suppressed. . Further, since MgF 2 is an optically transparent material, the addition does not reduce the transmittance and does not hinder the amorphization. The addition amount of MgF 2 can be determined in consideration of the resistance value and the refractive index, but is preferably 50 mol% or less.
 また、本発明の焼結体において、前述したムライト組成の存在比率を多くするために、ゲルマニウム又は珪素の前記酸化物換算の含有量(Bmol%)に対して、ガリウム、アルミニウム又はホウ素の前記酸化物換算の含有量(Amol%)を、多くすることが好ましい。これにより、ZnGe24の形成を抑制して、膜の結晶化を抑えることができる。
また、膜の抵抗値を確保するために、ガリウム、アルミニウム又はホウ素の前記酸化物換算の含有量(Amol%)と、ゲルマニウム又は珪素の前記酸化物換算の含有量(Bmol%)の総和に対して、酸化亜鉛のZnO換算の含有量(Dmol%)を多くすることが好ましい。
Further, in the sintered body of the present invention, in order to increase the abundance ratio of the mullite composition described above, the oxidation of gallium, aluminum, or boron with respect to the oxide equivalent content (Bmol%) of germanium or silicon. It is preferable to increase the content (Amol%) in terms of physical properties. Thereby, formation of ZnGe 2 O 4 can be suppressed, and crystallization of the film can be suppressed.
In order to secure the resistance value of the film, the total of the oxide equivalent content (A mol%) of gallium, aluminum or boron and the oxide equivalent content (B mol%) of germanium or silicon Thus, it is preferable to increase the content (Dmol%) of zinc oxide in terms of ZnO.
さらに本発明の焼結体は、融点が1000℃以下の酸化物(低融点酸化物)を形成する金属を含有させることが有効である。酸化亜鉛(ZnO)は還元・蒸発し易いため、焼結温度をそれほど上げることができず、焼結体の密度を向上させることが困難ということがある。しかし、このような低融点酸化物を添加することで、焼結温度をそれほど上げることなく、高密度化が達成できるという効果を有する。
焼結体の密度を向上させるためには、低融点酸化物は液相状態で焼結することが重要である。原料粉末の反応を促進させるため、低融点酸化物を添加した後に仮焼することも考えられるが、仮焼を行うと、低融点酸化物が固溶したり、酸化亜鉛と複合酸化物を形成したりして、低融点酸化物本来の融点よりも融点が高くなってしまい、高密度化の効果が得られないことがある。したがって、低融点酸化物を添加した後は、仮焼せずにホットプレスなどの加圧焼結をすることが非常に重要である。
Furthermore, it is effective for the sintered body of the present invention to contain a metal that forms an oxide having a melting point of 1000 ° C. or lower (low melting point oxide). Since zinc oxide (ZnO) is easy to reduce and evaporate, the sintering temperature cannot be increased so much, and it may be difficult to improve the density of the sintered body. However, the addition of such a low-melting point oxide has an effect that a high density can be achieved without increasing the sintering temperature so much.
In order to improve the density of the sintered body, it is important to sinter the low melting point oxide in a liquid phase state. In order to accelerate the reaction of the raw material powder, calcining after adding a low melting point oxide may be considered. However, when calcining, the low melting point oxide forms a solid solution or forms a composite oxide with zinc oxide. As a result, the melting point becomes higher than the original melting point of the low melting point oxide, and the effect of increasing the density may not be obtained. Therefore, after adding the low melting point oxide, it is very important to perform pressure sintering such as hot pressing without calcining.
前記低融点酸化物としては、例えば、B23、P25、K2O、V25、Sb23、TeO2、Ti23、PbO、Bi23、MoO3を挙げることができる。これらの酸化物は、それぞれ単独添加及び複合添加が可能であり、本願発明の目的を達成することができる。
記低融点酸化物を形成する金属は、酸化物重量換算で0.1~5wt%含有させることが好ましい。0.1wt%未満では、その効果が十分に発揮できず、また5wt%を超えると、組成によっては特性に変動が生じるおそれがあるため、好ましくない。
Examples of the low melting point oxide include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , MoO. 3 can be mentioned. These oxides can be added individually and in combination, respectively, and the object of the present invention can be achieved.
The metal forming the low melting point oxide is preferably contained in an amount of 0.1 to 5 wt% in terms of oxide weight. If it is less than 0.1 wt%, the effect cannot be sufficiently exhibited, and if it exceeds 5 wt%, the characteristics may vary depending on the composition, which is not preferable.
本発明の焼結体をスパッタリングターゲットとして使用する場合、相対密度が90%以上とすることが好ましい。密度の向上はスパッタ膜の均一性を高め、また、スパッタリング時のパーティクルの発生を抑制できる効果を有する。
また、本発明の焼結体は、そのバルク抵抗が10Ω・cm以下を達成できる。バルク抵抗値の低減化により、直流(DC)スパッタリングによる高速成膜が可能となる。材料の選択によっては高周波(RF)スパッタリング又はマグネトロンスパッタリングを必要とするが、その場合でも成膜速度の向上がある。成膜速度の向上により、生産のスループットを改善することができ、コスト削減に大きく寄与することができる。
When the sintered body of the present invention is used as a sputtering target, the relative density is preferably 90% or more. The improvement in density has the effect of increasing the uniformity of the sputtered film and suppressing the generation of particles during sputtering.
In addition, the sintered body of the present invention can achieve a bulk resistance of 10 Ω · cm or less. Reduction of the bulk resistance value enables high-speed film formation by direct current (DC) sputtering. Depending on the selection of the material, radio frequency (RF) sputtering or magnetron sputtering is required, but even in that case, the deposition rate is improved. By improving the deposition rate, production throughput can be improved, which can greatly contribute to cost reduction.
本発明の焼結体は、上述のスパッタリングターゲットの他、イオンプレーティング材として用いることができる。イオンプレーティング法は、真空中で、金属を電子線などで蒸発させ、高周波プラズマ又は真空放電でイオン化させ、基板に負電位を与えることにより、カチオンを加速化して付着させ膜を形成するものである(理化学辞典)。イオンプレーティング法を使用して成膜する場合、イオンプレーティング用の蒸発原料と膜の組成が一致していれば、この蒸発原料をそのまま使用してイオンプレーティングすることができるので、より簡便に操作ができるという利点がある。
特に、本発明において、酸化ガリウム(Ga23)、酸化ゲルマニウム(GeO2)、フッ化マグネシウム(MgF2)は、酸化亜鉛(ZnO)と類似した蒸気圧を有するので、イオンプレーティング用として適した材料である。
The sintered body of the present invention can be used as an ion plating material in addition to the above sputtering target. The ion plating method is a method in which a metal is evaporated with an electron beam in a vacuum, ionized with high-frequency plasma or vacuum discharge, and a negative potential is applied to a substrate to accelerate and attach cations to form a film. Yes (Science and Chemistry Dictionary). When film formation is performed using the ion plating method, if the evaporation raw material for ion plating and the composition of the film match, the evaporation raw material can be used as it is for ion plating. There is an advantage that it can be operated.
In particular, in the present invention, gallium oxide (Ga 2 O 3 ), germanium oxide (GeO 2 ), and magnesium fluoride (MgF 2 ) have a vapor pressure similar to that of zinc oxide (ZnO). Suitable material.
本発明の焼結体は、上記のようなスパッタリング法あるいはイオンプレーティング法などの気相成長法を利用することで、効率的に特性の優れた薄膜を形成することができる。特に、屈折率2.00以下(光の波長550nm)の低屈折率の光学薄膜を工業的に製造するのに有用である。 The sintered body of the present invention can efficiently form a thin film having excellent characteristics by utilizing a vapor phase growth method such as the sputtering method or the ion plating method as described above. In particular, it is useful for industrially producing a low refractive index optical thin film having a refractive index of 2.00 or less (light wavelength of 550 nm).
本発明の焼結体を用いて形成した薄膜は、1)亜鉛(Zn)、2)ガリウム(Ga)又はアルミニウム(Al)又はホウ素(B)、3)ゲルマニウム(Ge)又はケイ素(Si)、4)マグネシウム(Mg)、5)酸素(O)、6)フッ素(F)を構成元素とするアモルファス膜であることを特徴とするものである。
なお、マグネシウムは、フッ化物として焼結体中に含有するが、成膜の段階でフッ化マグネシウムは、その大部分がマグネシウムとして、亜鉛、ガリウム、ゲルマニウムと複合酸化物を形成する。一方で、フッ素の一部は膜中に残留し、完全に脱離するものではない。
The thin film formed using the sintered body of the present invention is 1) zinc (Zn), 2) gallium (Ga) or aluminum (Al) or boron (B), 3) germanium (Ge) or silicon (Si), 4) Magnesium (Mg), 5) Oxygen (O), 6) An amorphous film having fluorine (F) as a constituent element.
Magnesium is contained in the sintered body as a fluoride, but magnesium fluoride forms a complex oxide with zinc, gallium, and germanium, most of which is magnesium as a film. On the other hand, part of the fluorine remains in the film and does not completely desorb.
先述の通り、ZnO-Ga23-GeO2のような3元系では、屈折率を低下させるように組成調整(ZnOを減らすように調整)すると、抵抗値が高くなる傾向にあるが、フッ化マグネシウム(MgF2)を導入することで、抵抗値の上昇を抑制しつつ、屈折率を下げることができる。特に、本発明の薄膜は、波長550nmにおける屈折率を2.00以下、体積抵抗率を1×10-3~1×109Ω・cmを実現することができる。 As described above, in a ternary system such as ZnO—Ga 2 O 3 —GeO 2 , when the composition is adjusted so as to reduce the refractive index (adjusted so as to reduce ZnO), the resistance value tends to increase. By introducing magnesium fluoride (MgF 2 ), the refractive index can be lowered while suppressing an increase in resistance value. In particular, the thin film of the present invention can realize a refractive index at a wavelength of 550 nm of 2.00 or less and a volume resistivity of 1 × 10 −3 to 1 × 10 9 Ω · cm.
また、本発明の焼結体を用いて形成した薄膜では、波長450nmにおける消衰係数0.01以下を達成することができる。ディスプレイやタッチパネル等の光デバイス用の薄膜は可視光の全域において透明であることが必要であるが、IZO膜等の酸化物系膜は一般に短波長域に吸収を持つため、鮮明な青色を発色させることが困難であった。しかし、本発明によれば、波長450nmにおける消衰係数が0.01以下と、短波長域において吸収がほとんどないため、透明材料として極めて適した材料といえる。 Moreover, the thin film formed using the sintered body of the present invention can achieve an extinction coefficient of 0.01 or less at a wavelength of 450 nm. Thin films for optical devices such as displays and touch panels need to be transparent over the entire visible light range, but oxide films such as IZO films generally absorb in the short wavelength range, so they produce a clear blue color. It was difficult to make. However, according to the present invention, since the extinction coefficient at a wavelength of 450 nm is 0.01 or less and there is almost no absorption in a short wavelength region, it can be said that the material is extremely suitable as a transparent material.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1)
ZnO粉、Ga23粉、GeO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、この基本組成に対して低融点酸化物であるB23粉を表1に示す比率で添加した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を機械加工で直径6インチ、厚さ5cmのスパッタリングターゲット形状に仕上げた。
得られたターゲットのバルク抵抗と相対密度を測定した。表1に示すとおり、相対密度は99.8%に達し、バルク抵抗は4.2mΩ・cmとなり、安定したDCスパッタが可能であった。また、上記仕上げ加工したターゲットを使用して、スパッタリングを行った。スパッタ条件は、DCスパッタ、スパッタパワー500W、O2を0~2vol%含有するArガス圧0.5Paとし、膜厚1500~7000Åに成膜した。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。表2に示すとおり、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.75(波長550nm)、体積抵抗率は>1×106Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
(Example 1)
After using ZnO powder, Ga 2 O 3 powder, GeO 2 powder, and MgF 2 powder as basic raw materials, and adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Then, this sintered body was finished into a sputtering target shape having a diameter of 6 inches and a thickness of 5 cm by machining.
The bulk resistance and relative density of the obtained target were measured. As shown in Table 1, the relative density reached 99.8%, the bulk resistance was 4.2 mΩ · cm, and stable DC sputtering was possible. Further, sputtering was performed using the finished target. The sputtering conditions, DC sputtering, sputtering power 500 W, the O 2 and Ar gas pressure 0.5Pa containing 0 ~ 2 vol%, was formed to a thickness of 1500 ~ 7000 Å. The amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample were measured. As shown in Table 2, the thin film formed by sputtering is an amorphous film, the refractive index is 1.75 (wavelength 550 nm), the volume resistivity is> 1 × 10 6 Ω · cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例2)
ZnO粉、Al23粉、GeO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、この基本組成に対して低融点酸化物であるB23粉を表1に示す比率で添加した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した。表1に示すとおり、相対密度は98.9%に達し、バルク抵抗は16mΩ・cmとなり、安定したDCスパッタが可能であった。
また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。表2に示すとおり、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.71(波長550nm)、体積抵抗率は>1×107Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
(Example 2)
ZnO powder, Al 2 O 3 powder, GeO 2 powder, MgF 2 powder are used as basic raw materials, and after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured. As shown in Table 1, the relative density reached 98.9%, the bulk resistance was 16 mΩ · cm, and stable DC sputtering was possible.
Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. As shown in Table 2, the thin film formed by sputtering is an amorphous film, the refractive index is 1.71 (wavelength 550 nm), the volume resistivity is> 1 × 10 7 Ω · cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
(実施例3)
 ZnO粉、Ga23粉、SiO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、この基本組成に対して低融点酸化物であるBi23粉を表1に示す比率で添加した。次に、これを混合した後、500kgf/cm2の圧力でプレス成形した。加圧成形後、大気中1400°Cの温度で常圧焼結し、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した。表1に示すとおり、相対密度は96.3%に達し、バルク抵抗は45mΩ・cmとなり、安定したDCスパッタが可能であった。
また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。表2に示すとおり、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.65(波長550nm)、体積抵抗率は>×108Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
(Example 3)
ZnO powder, Ga 2 O 3 powder, SiO 2 powder, and MgF 2 powder are used as basic raw materials, and after adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition Bi 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, it press-molded with the pressure of 500 kgf / cm < 2 >. After pressure molding, atmospheric pressure sintering was performed at 1400 ° C. in the atmosphere, and this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured. As shown in Table 1, the relative density reached 96.3%, the bulk resistance was 45 mΩ · cm, and stable DC sputtering was possible.
Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. As shown in Table 2, the thin film formed by sputtering is an amorphous film, the refractive index is 1.65 (wavelength 550 nm), the volume resistivity is> × 10 8 Ω · cm, and the extinction coefficient is less than 0.01. An amorphous film having a low refractive index (wavelength 450 nm) was obtained.
(実施例4)
ZnO粉、Ga23粉、GeO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を粉砕して粒径1~6mmサイズのイオンプレーティング材に仕上げた。
上記イオンプレーティング材を使用して、2%O2雰囲気下にてイオンプレーティングを行い、膜厚1500~7000Åに成膜した。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。表2に示すとおり、イオンプレーティングにより形成した薄膜はアモルファス膜であって、その屈折率は1.80(波長550nm)、体積抵抗率は>1×102Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
Example 4
ZnO powder, Ga 2 O 3 powder, GeO 2 powder, and MgF 2 powder were used as basic raw materials, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, the sintered body was pulverized to finish an ion plating material having a particle size of 1 to 6 mm.
Using the above ion plating material, ion plating was performed in a 2% O 2 atmosphere to form a film having a thickness of 1500 to 7000 mm. The amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample were measured. As shown in Table 2, the thin film formed by ion plating is an amorphous film, the refractive index is 1.80 (wavelength 550 nm), the volume resistivity is> 1 × 10 2 Ω · cm, and the extinction coefficient is 0. An amorphous film having a low refractive index of less than 0.01 (wavelength 450 nm) was obtained.
(実施例5)
ZnO粉、Al23粉、SiO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、この基本組成に対して低融点酸化物であるB23粉を表1に示す比率で添加した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した。表1に示すとおり、相対密度は98.4%に達し、バルク抵抗は2.3mΩ・cmとなり、安定したDCスパッタが可能であった。
また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、表2に示すとおり、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.91(波長550nm)、体積抵抗率は1×100Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
(Example 5)
After using ZnO powder, Al 2 O 3 powder, SiO 2 powder, and MgF 2 powder as basic raw materials and adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured. As shown in Table 1, the relative density reached 98.4%, the bulk resistance was 2.3 mΩ · cm, and stable DC sputtering was possible.
Further, sputtering was performed under the same conditions as in Example 1 using the finished target. As a result of measuring the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample, as shown in Table 2, the thin film formed by sputtering is an amorphous film. The refractive index is 1.91 (wavelength 550 nm), the volume resistivity is 1 × 10 0 Ω · cm, the extinction coefficient is less than 0.01 (wavelength 450 nm), and an amorphous film having a low refractive index is obtained. It was.
(実施例6)
ZnO粉、Ga23粉、GeO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を粉砕して粒径1~6mmサイズのイオンプレーティング材に仕上げた。
上記イオンプレーティング材を使用して、実施例4と同様の条件で、イオンプレーティングを行った。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、表2に示すとおり、イオンプレーティングにより形成した薄膜はアモルファス膜であって、屈折率は1.82(波長550nm)、体積抵抗率は>1×103Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
(Example 6)
ZnO powder, Ga 2 O 3 powder, GeO 2 powder, and MgF 2 powder were used as basic raw materials, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, the sintered body was pulverized to finish an ion plating material having a particle size of 1 to 6 mm.
Using the above ion plating material, ion plating was performed under the same conditions as in Example 4. As a result of measuring the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample, as shown in Table 2, the thin film formed by ion plating was An amorphous film having a refractive index of 1.82 (wavelength 550 nm), a volume resistivity> 1 × 10 3 Ω · cm, an extinction coefficient of less than 0.01 (wavelength 450 nm), and a low refractive index amorphous film was gotten.
(実施例7)
ZnO粉、Al23粉、SiO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、この基本組成に対して低融点酸化物であるB23粉を表1に示す比率で添加した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した。表1に示すとおり、相対密度は99.2%に達し、バルク抵抗は5.4mΩ・cmとなり、安定したDCスパッタが可能であった。
また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、表2に示すとおり、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.82(波長550nm)、体積抵抗率は>1×102Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
(Example 7)
After using ZnO powder, Al 2 O 3 powder, SiO 2 powder, and MgF 2 powder as basic raw materials and adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured. As shown in Table 1, the relative density reached 99.2%, the bulk resistance was 5.4 mΩ · cm, and stable DC sputtering was possible.
Further, sputtering was performed under the same conditions as in Example 1 using the finished target. As a result of measuring the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample, as shown in Table 2, the thin film formed by sputtering is an amorphous film. The refractive index is 1.82 (wavelength 550 nm), the volume resistivity is> 1 × 10 2 Ω · cm, and the extinction coefficient is less than 0.01 (wavelength 450 nm). Obtained.
(実施例8)
 ZnO粉、Ga23粉、GeO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を粉砕して粒径1~6mmサイズのイオンプレーティング材に仕上げた。
上記イオンプレーティング材を使用して、実施例4と同様の条件で、イオンプレーティングを行った。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、表2に示すとおり、イオンプレーティングにより形成した薄膜はアモルファス膜であって、屈折率は1.82(波長550nm)、体積抵抗率は>1×103Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
(Example 8)
ZnO powder, Ga 2 O 3 powder, GeO 2 powder, and MgF 2 powder were used as basic raw materials, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, the sintered body was pulverized to finish an ion plating material having a particle size of 1 to 6 mm.
Using the above ion plating material, ion plating was performed under the same conditions as in Example 4. As a result of measuring the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample, as shown in Table 2, the thin film formed by ion plating was An amorphous film having a refractive index of 1.82 (wavelength 550 nm), a volume resistivity> 1 × 10 3 Ω · cm, an extinction coefficient of less than 0.01 (wavelength 450 nm), and a low refractive index amorphous film was gotten.
(実施例9)
ZnO粉、B23粉、GeO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した後、この基本組成に対して低融点酸化物であるB23粉を表1に示す比率で添加した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した。表1に示すとおり、相対密度は99.3%に達し、バルク抵抗は7.2mΩ・cmとなり、安定したDCスパッタが可能であった。
また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、表2に示すとおり、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.74(波長550nm)、体積抵抗率は>1×102Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
Example 9
After using ZnO powder, B 2 O 3 powder, GeO 2 powder, and MgF 2 powder as basic raw materials, and adjusting the ratio of the basic raw materials so that the total amount becomes 100 mol% as shown in Table 1, this basic composition B 2 O 3 powder, which is a low melting point oxide, was added at a ratio shown in Table 1. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured. As shown in Table 1, the relative density reached 99.3%, the bulk resistance was 7.2 mΩ · cm, and stable DC sputtering was possible.
Further, sputtering was performed under the same conditions as in Example 1 using the finished target. As a result of measuring the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample, as shown in Table 2, the thin film formed by sputtering is an amorphous film. The refractive index is 1.74 (wavelength 550 nm), the volume resistivity is> 1 × 10 2 Ω · cm, and the extinction coefficient is less than 0.01 (wavelength 450 nm). Obtained.
(実施例10)
ZnO粉、B23粉、GeO2粉、MgF2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した。表1に示すとおり、相対密度は93.8%に達し、バルク抵抗は12mΩ・cmとなり、安定したDCスパッタが可能であった。
また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、表2に示すとおり、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.74(波長550nm)、体積抵抗率は>1×102Ω・cm、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。
(Example 10)
ZnO powder, B 2 O 3 powder, GeO 2 powder, and MgF 2 powder were used as basic raw materials, and as shown in Table 1, the ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance and relative density of the obtained target were measured. As shown in Table 1, the relative density reached 93.8%, the bulk resistance was 12 mΩ · cm, and stable DC sputtering was possible.
Further, sputtering was performed under the same conditions as in Example 1 using the finished target. As a result of measuring the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample, as shown in Table 2, the thin film formed by sputtering is an amorphous film. The refractive index is 1.74 (wavelength 550 nm), the volume resistivity is> 1 × 10 2 Ω · cm, and the extinction coefficient is less than 0.01 (wavelength 450 nm). Obtained.
(比較例1)
MgF2粉は添加せず、また、A+B+C<70の条件を満たさない例として、比較例1では、ZnO粉、Al23粉、SiO2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗を測定した。表1に示すとおり、バルク抵抗は13mΩ・cmと高抵抗となった。
また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、表2に示すとおり、スパッタにより形成した薄膜は、屈折率が1.75であったが、体積抵抗率は1×109Ω・cm超と、抵抗率が著しく上昇した。
(Comparative Example 1)
As an example in which MgF 2 powder is not added and the condition of A + B + C <70 is not satisfied, Comparative Example 1 uses ZnO powder, Al 2 O 3 powder, and SiO 2 powder as basic raw materials, and these are shown in Table 1. The ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance of the obtained target was measured. As shown in Table 1, the bulk resistance was as high as 13 mΩ · cm.
Further, sputtering was performed under the same conditions as in Example 1 using the finished target. As a result of measuring the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample, as shown in Table 2, the thin film formed by sputtering is refracted. The resistivity was 1.75, but the resistivity increased remarkably as the volume resistivity exceeded 1 × 10 9 Ω · cm.
(比較例2)
MgF2粉は添加せず、また、10<A+B+Cの条件を満たさない例として、比較例2では、ZnO粉、Ga23粉、GeO2粉を基本原料とし、これらを表1に示すように合計量が100mol%となるように基本原料の比率を調整した。次に、これを混合した後、温度1050℃、圧力250kgf/cm2の条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗を測定した。表1に示すとおり、バルク抵抗は1.5mΩ・cmであった。
また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、表2に示すとおり、スパッタにより形成した薄膜は、アモルファス膜にならなかった。
(Comparative Example 2)
As an example in which MgF 2 powder is not added and the condition of 10 <A + B + C is not satisfied, Comparative Example 2 uses ZnO powder, Ga 2 O 3 powder, and GeO 2 powder as basic raw materials, and these are shown in Table 1. The ratio of the basic raw materials was adjusted so that the total amount was 100 mol%. Next, after mixing this, hot press sintering was performed under conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. The bulk resistance of the obtained target was measured. As shown in Table 1, the bulk resistance was 1.5 mΩ · cm.
Further, sputtering was performed under the same conditions as in Example 1 using the finished target. As a result of measuring the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample, as shown in Table 2, the thin film formed by sputtering is amorphous. It did not become a film.
本発明の焼結体は、スパッタリングターゲットとすることができ、スパッタリングターゲットを使用して形成された薄膜は、ディスプレイやタッチパネルにおける光学調整用の透明導電膜や光ディスクの構造の一部を形成して、透過率、屈折率、導電性において、極めて優れた特性を有するという効果がある。また本発明の大きな特徴は、アモルファス膜であることにより、膜のクラックやエッチング性能を格段に向上させることができるという優れた効果を有する。
本発明の焼結体を用いたスパッタリングターゲットは、バルク抵抗値が低く、相対密度が90%以上と高密度であることから、安定したDCスパッタを可能とする。そして、このDCスパッタリングの特徴であるスパッタの制御性を容易にし、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。必要に応じてRFスパッタを実施するが、その場合でも成膜速度の向上が見られる。また、成膜の際にスパッタ時に発生するパーティクル(発塵)やノジュールを低減し、品質のばらつきが少なく量産性を向上させることができる。
The sintered body of the present invention can be used as a sputtering target, and the thin film formed using the sputtering target forms a part of the structure of a transparent conductive film for optical adjustment in a display or a touch panel or an optical disk. There is an effect that it has extremely excellent characteristics in terms of transmittance, refractive index, and conductivity. In addition, the main feature of the present invention is that it is an amorphous film, and therefore has an excellent effect that the cracking and etching performance of the film can be remarkably improved.
The sputtering target using the sintered body of the present invention has a low bulk resistance value and a high relative density of 90% or more, and thus enables stable DC sputtering. And there is a remarkable effect that the controllability of sputtering, which is a feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. RF sputtering is performed as necessary, but even in this case, the film formation rate is improved. In addition, particles (dust generation) and nodules generated during sputtering during film formation can be reduced, and quality variation can be reduced and mass productivity can be improved.
さらに、本発明の焼結体は、スパッタリングターゲットとして使用するだけでなく、イオンビーム蒸着材料として使用できる。イオンビーム蒸着材料としては、焼結体をさらに破砕し、粒状物質又は粉末状物質として使用することができる。イオンビーム蒸着法による薄膜の形成は、蒸気圧の変化をコントロールすることにより、より簡便に成膜が可能であり、これによる膜の形成に有効である。このようにして、光デバイスの光学調整用の膜を低コストで安定して製造できるという著しい効果がある。 Furthermore, the sintered body of the present invention can be used not only as a sputtering target but also as an ion beam evaporation material. As the ion beam deposition material, the sintered body can be further crushed and used as a granular material or a powdery material. Formation of a thin film by ion beam evaporation can be more easily performed by controlling the change in vapor pressure, and is effective for forming a film. In this way, there is a remarkable effect that a film for optical adjustment of an optical device can be stably manufactured at low cost.

Claims (19)

  1.  亜鉛(Zn)、及び、ガリウム(Ga)又はアルミニウム(Al)又はホウ素(B)、及び、ゲルマニウム(Ge)又はケイ素(Si)、及び、マグネシウム(Mg)、及び、酸素(O)、及び、フッ素(F)からなり、ガリウム(Ga)又はアルミニウム(Al)又はホウ素(B)の含有量がGa23又はAl23又はB23換算でAmol%、ゲルマニウム(Ge)又はケイ素(Si)の含有量がGeO2又はSiO2換算でBmol%、マグネシウム(Mg)の含有量がMgF2換算でCmol%としたとき、10≦A+B+C≦70であることを特徴とする焼結体。 Zinc (Zn), gallium (Ga) or aluminum (Al) or boron (B), germanium (Ge) or silicon (Si), magnesium (Mg), oxygen (O), and consists fluorine (F), gallium (Ga) or aluminum (Al) or boron (B) Amol% content is Ga 2 O 3 or Al 2 O 3 or terms of B 2 O 3, and germanium (Ge) or silicon Bmol% content is GeO 2 or SiO 2 in terms of (Si), when the content of magnesium (Mg) has a C mol% with MgF 2 terms, the sintered body, which is a 10 ≦ a + B + C ≦ 70 .
  2. 亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、マグネシウム(Mg)、及び、酸素(O)、及び、フッ素(F)からなり、ガリウム(Ga)の含有量がGa23換算でAmol%、ゲルマニウム(Ge)の含有量がGeO2換算でBmol%、マグネシウム(Mg)の含有量がMgF2換算でCmol%としたとき、10≦A+B+C≦70であることを特徴とする請求項1記載の焼結体。 It consists of zinc (Zn), gallium (Ga), germanium (Ge), magnesium (Mg), oxygen (O), and fluorine (F), and the content of gallium (Ga) in terms of Ga 2 O 3 Amol%, Bmol% content is GeO 2 conversion germanium (Ge), when the content of magnesium (Mg) has a C mol% with MgF 2 terms, claims, characterized in that a 10 ≦ a + B + C ≦ 70 1. The sintered body according to 1.
  3. さらに、A>Bであり、亜鉛(Zn)の含有量がZnO換算でDmol%としたとき、D>A+Bであることを特徴とする請求項1又は2記載の焼結体。 Furthermore, it is A> B and it is D> A + B when content of zinc (Zn) is Dmol% in conversion of ZnO, The sintered body according to claim 1 or 2 characterized by things.
  4. さらに、融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする請求項1~3のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 3, further comprising 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C or less in terms of oxide weight.
  5.  前記融点が1000℃以下の酸化物は、B23、P25、K2O、V25、Sb23、TeO2、Ti23、PbO、Bi23、MoO3の群から選択した一種以上の酸化物であることを特徴とする請求項4記載の焼結体。 The oxides having a melting point of 1000 ° C. or less include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , The sintered body according to claim 4, wherein the sintered body is one or more oxides selected from the group of MoO 3 .
  6. 相対密度が90%以上であることを特徴とする請求項1~5のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 5, wherein the relative density is 90% or more.
  7.  バルク抵抗が10Ω・cm以下であることを特徴とする請求項1~6のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 6, wherein the bulk resistance is 10 Ω · cm or less.
  8.  請求項1~6に記載される焼結体を用いることを特徴とするスパッタリングターゲット。 A sputtering target using the sintered body according to any one of claims 1 to 6.
  9.  請求項2~6に記載される焼結体を用いることを特徴とするイオンプレーティング材。 An ion plating material using the sintered body according to any one of claims 2 to 6.
  10.  亜鉛(Zn)、及び、ガリウム(Ga)又はアルミニウム(Al)又はホウ素(B)、及び、ゲルマニウム(Ge)又はケイ素(Si)、及び、マグネシウム(Mg)、及び、酸素(O)、及び、フッ素(F)からなり、アモルファスであることを特徴とする薄膜。 Zinc (Zn), gallium (Ga) or aluminum (Al) or boron (B), germanium (Ge) or silicon (Si), magnesium (Mg), oxygen (O), and A thin film made of fluorine (F) and characterized by being amorphous.
  11.  亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、マグネシウム(Mg)、酸素(O)、フッ素(F)からなり、アモルファスであることを特徴とする請求項10記載の薄膜。 The thin film according to claim 10, wherein the thin film is made of zinc (Zn), gallium (Ga), germanium (Ge), magnesium (Mg), oxygen (O), and fluorine (F), and is amorphous.
  12. さらに、融点が1000℃以下の酸化物を形成する金属を含有することを特徴とする請求項10又は11記載の薄膜。 Furthermore, the thin film of Claim 10 or 11 containing the metal which forms an oxide whose melting | fusing point is 1000 degrees C or less.
  13. 前記融点が1000℃以下の酸化物は、B23、P25、K2O、V25、Sb23、TeO2、Ti23、PbO、Bi23、MoO3の群から選択した一種以上の酸化物であることを特徴とする請求項12記載の薄膜。 The oxides having a melting point of 1000 ° C. or less include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , The thin film according to claim 12, wherein the thin film is one or more oxides selected from the group of MoO 3 .
  14. 前記融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする請求項12又は13記載の薄膜。 14. The thin film according to claim 12, wherein the metal forming an oxide having a melting point of 1000 ° C. or less is contained in an amount of 0.1 to 5 wt% in terms of oxide weight.
  15.  請求項8に記載されるスパッタリングターゲットを用いて形成した薄膜であって、アモルファス膜であることを特徴とする薄膜。 A thin film formed using the sputtering target according to claim 8, wherein the thin film is an amorphous film.
  16.  請求項9に記載されるイオンプレーティング材を用いて形成した薄膜であって、アモルファス膜であることを特徴とする薄膜。 A thin film formed using the ion plating material according to claim 9, wherein the thin film is an amorphous film.
  17. 波長550nmにおける屈折率が2.00以下であることを特徴とする請求項10~16のいずれか一項に記載の薄膜。 The thin film according to any one of claims 10 to 16, wherein a refractive index at a wavelength of 550 nm is 2.00 or less.
  18. 波長450nmにおける消衰係数が0.01以下であることを特徴とする請求項10~17のいずれか一項に記載の薄膜。 The thin film according to any one of claims 10 to 17, wherein an extinction coefficient at a wavelength of 450 nm is 0.01 or less.
  19. 体積抵抗率が1×10-3~1×109Ω・cmであることを特徴とする請求項10~18のいずれか一項に記載の薄膜。 19. The thin film according to claim 10, wherein the volume resistivity is 1 × 10 −3 to 1 × 10 9 Ω · cm.
PCT/JP2013/081773 2013-01-21 2013-11-26 Sintered compact for fabricating amorphous transparent electroconductive film having low refractive index, and amorphous transparent electroconductive film having low refractive index WO2014112209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535838A JP5866024B2 (en) 2013-01-21 2013-11-26 Sintered body for producing low refractive index amorphous transparent conductive film and low refractive index amorphous transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013008291 2013-01-21
JP2013-008291 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014112209A1 true WO2014112209A1 (en) 2014-07-24

Family

ID=51209319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081773 WO2014112209A1 (en) 2013-01-21 2013-11-26 Sintered compact for fabricating amorphous transparent electroconductive film having low refractive index, and amorphous transparent electroconductive film having low refractive index

Country Status (3)

Country Link
JP (1) JP5866024B2 (en)
TW (1) TWI580661B (en)
WO (1) WO2014112209A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022169430A (en) * 2021-04-27 2022-11-09 Jx金属株式会社 Layered body having function as transparent electroconductive film and method for producing the same, and oxide sputtering target for that layered body production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219982A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Translucent conductive material
WO2013146448A1 (en) * 2012-03-28 2013-10-03 Jx日鉱日石金属株式会社 Sintered object for forming low-refractive-index film and process for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887100B1 (en) * 2005-05-30 2011-05-11 Nippon Mining & Metals Co., Ltd. Sputtering target and process for producing the same
JP5630747B2 (en) * 2010-05-14 2014-11-26 リンテック株式会社 Zinc oxide-based conductive laminate, method for producing the same, and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219982A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Translucent conductive material
WO2013146448A1 (en) * 2012-03-28 2013-10-03 Jx日鉱日石金属株式会社 Sintered object for forming low-refractive-index film and process for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022169430A (en) * 2021-04-27 2022-11-09 Jx金属株式会社 Layered body having function as transparent electroconductive film and method for producing the same, and oxide sputtering target for that layered body production
JP7257562B2 (en) 2021-04-27 2023-04-13 Jx金属株式会社 LAMINATED FUNCTION AS TRANSPARENT CONDUCTIVE FILM, METHOD FOR MANUFACTURING SAME, AND OXIDE SPUTTERING TARGET FOR MANUFACTURING SAME LAMINATED PRODUCT

Also Published As

Publication number Publication date
TW201439026A (en) 2014-10-16
JPWO2014112209A1 (en) 2017-01-19
JP5866024B2 (en) 2016-02-17
TWI580661B (en) 2017-05-01

Similar Documents

Publication Publication Date Title
JP5770323B2 (en) Sintered body and amorphous film
KR101738742B1 (en) Oxide sintered compact, sputtering target, thin film and method of producing oxide sintered compact
JP5735190B1 (en) Oxide sintered body, sputtering target, and oxide thin film
TWI631579B (en) Sintered body and amorphous film
JP5837183B2 (en) Sintered body for forming low refractive index film and method for producing the same
JP5866024B2 (en) Sintered body for producing low refractive index amorphous transparent conductive film and low refractive index amorphous transparent conductive film
JP5695221B2 (en) Sintered body and amorphous film
TWI579254B (en) Sintered and amorphous membranes
KR101748017B1 (en) Oxide sintered compact, oxide sputtering target, conductive oxide thin film having high refractive index, and method for producing the oxide sintered compact
KR101945083B1 (en) Sintered body, sputtering target comprising sintered body and thin film formed by using spattering target
JP5865711B2 (en) Ion plating material for forming low refractive index film and low refractive index film
WO2021019854A1 (en) Method for manufacturing vacuum deposition tablet, oxide transparent conductive film, and tin-oxide-based sintered body
JP5476636B2 (en) Sputtering target manufacturing method and sputtering target

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014535838

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871893

Country of ref document: EP

Kind code of ref document: A1