JP2010120803A - Multiple oxide sintered compact - Google Patents

Multiple oxide sintered compact Download PDF

Info

Publication number
JP2010120803A
JP2010120803A JP2008295249A JP2008295249A JP2010120803A JP 2010120803 A JP2010120803 A JP 2010120803A JP 2008295249 A JP2008295249 A JP 2008295249A JP 2008295249 A JP2008295249 A JP 2008295249A JP 2010120803 A JP2010120803 A JP 2010120803A
Authority
JP
Japan
Prior art keywords
sintered body
oxide sintered
powder
composite oxide
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008295249A
Other languages
Japanese (ja)
Inventor
Toshihito Kuramochi
豪人 倉持
Hitoshi Iigusa
仁志 飯草
Tetsuo Shibutami
哲夫 渋田見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008295249A priority Critical patent/JP2010120803A/en
Publication of JP2010120803A publication Critical patent/JP2010120803A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple oxide sintered compact which can control the generation of an abnormal discharge phenomenon during sputtering and suppress reduction in the yield caused by particles. <P>SOLUTION: The multiple oxide sintered compact comprises zinc, and an element(s) A which can take a positive trivalent or more valence whose ion radius when six-coordination is assumed in oxygen ions is 0.7 to 1.1 Å and an element(s) M different from the element(s) A which can take a positive trivalent or more valence whose ion radius when 4-coordination is assumed in oxygen ions is 0.5 to 0.7 Å by at least one or more kinds, respectively, and in which diffraction peaks detected within the range of 2θ=30 to 40° in an X-ray diffraction pattern (XRD) with Cu as a beam source are composed only of the (100) face, (002) face and (101) face belonging to a hexagonal wurtzite type structure. Thus, the generation of an abnormal discharge phenomenon can be suppressed, and reduction in the yield caused by particles can be suppressed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸化亜鉛を主とした複合酸化物焼結体及びその複合酸化物焼結体からなるスパッタリングターゲットに関するものである。   The present invention relates to a composite oxide sintered body mainly composed of zinc oxide and a sputtering target composed of the composite oxide sintered body.

錫をドーパントとして含む酸化インジウム膜はITO(Indium Tin Oxide)膜と称され、低抵抗膜が容易に得られるため透明導電膜として広範に利用されている。しかしながら、ITO膜の主原料であるInは、希少金属で高価であるため、この膜を用いたときの低コスト化には限界がある。   An indium oxide film containing tin as a dopant is called an ITO (Indium Tin Oxide) film, and is widely used as a transparent conductive film because a low-resistance film can be easily obtained. However, In, which is the main raw material of the ITO film, is a rare metal and expensive, so there is a limit to reducing the cost when this film is used.

そのため、ITO代替の透明導電膜用材料の開発が盛んに進められており、酸化亜鉛を主成分とする周期律表の第III族元素を含む酸化亜鉛膜は、安価な上に化学的にも安定で、透明性、導電性にも優れていることから注目されている。   Therefore, development of materials for transparent conductive films in place of ITO has been actively promoted, and zinc oxide films containing Group III elements of the periodic table mainly composed of zinc oxide are inexpensive and chemically It is attracting attention because it is stable and has excellent transparency and conductivity.

このような透明導電膜の成膜方法として、大面積に均一な膜厚で成膜可能である点でスパッタリングターゲットを用いたスパッタリング法がよく採用されている。しかし、このスパッタリング法はスパッタリング中の異常放電現象により、スパッタリング装置の稼働率の低下や発生するパーティクルの影響による製品歩留まりの低下等の問題があった。   As a method for forming such a transparent conductive film, a sputtering method using a sputtering target is often employed because it can form a film with a uniform thickness over a large area. However, this sputtering method has problems such as a decrease in operating rate of the sputtering apparatus and a decrease in product yield due to the influence of generated particles due to an abnormal discharge phenomenon during sputtering.

スパッタリング中に発生する異常放電現象を抑制する手段として、例えば高密度化したターゲットを使用することが提案されている(例えば特許文献1参照)。また、ターゲットを高密度化し、かつ周期律表の第III族元素の酸化物として添加された酸化アルミニウムに起因するアルミニウム成分凝集径を最大5μm以下としたターゲットを使用することが提案されている(例えば特許文献2参照)。   As a means for suppressing an abnormal discharge phenomenon that occurs during sputtering, for example, use of a high-density target has been proposed (see, for example, Patent Document 1). In addition, it has been proposed to use a target having a high density of the target and an aluminum component aggregation diameter caused by aluminum oxide added as an oxide of a group III element in the periodic table of 5 μm or less at maximum ( For example, see Patent Document 2).

しかしながら、ターゲットの高密度化とターゲット内での添加元素由来の第二成分の凝集径の制御をしただけでは、スパッタリング中の異常放電現象の発生を完全に避けることができず、その際に飛散するパーティクルによる歩留まり低下が生じ、そのために、生産性の低下は免れないという問題があり、より一層の異常放電現象の抑制が求められている。   However, only by increasing the density of the target and controlling the agglomerated diameter of the second component derived from the additive element in the target, the occurrence of abnormal discharge during sputtering cannot be completely avoided. Therefore, there is a problem that the yield decreases due to the particles to be generated, and therefore the productivity is unavoidable, and further suppression of the abnormal discharge phenomenon is demanded.

特開平2−149459号公報JP-A-2-14959 特開平7−258836号公報JP-A-7-258836

本発明の課題は、スパッタリング中の異常放電現象の発生を制御し、パーティクルによる歩留まり低下を抑制することができる複合酸化物焼結体を提供することである。   The subject of this invention is providing the complex oxide sintered compact which can control generation | occurrence | production of the abnormal discharge phenomenon during sputtering and can suppress the yield fall by a particle.

本発明者らは、上記問題を解決するために特定のイオン半径を有する正三価以上の価数を取り得る元素を特定の原子比で組み合わせた複合酸化物焼結体について鋭意検討を重ねた結果、本発明を完成するに至った。   In order to solve the above problems, the present inventors have conducted extensive studies on a composite oxide sintered body in which elements having a specific ionic radius and having a positive trivalent or higher valence can be combined at a specific atomic ratio. The present invention has been completed.

本発明の態様は以下の通りである。   Aspects of the present invention are as follows.

(1)亜鉛と、酸素イオンに6配位を仮定したときのイオン半径が0.7〜1.1Åの正三価以上の価数を取り得る元素A、酸素イオンに4配位を仮定したときのイオン半径が0.5〜0.7Åの正三価以上の価数を取り得る、元素Aとは異なる元素Mをそれぞれ少なくとも1種含み、Cuを線源とするX線回折パターン(XRD)の2Θ=30〜40°の範囲内に検出される回折ピークが六方晶系ウルツ型構造に帰属される(100)面、(002)面、(101)面のみから構成されることを特徴とする複合酸化物焼結体。   (1) Zinc, element A capable of taking a valence of positive trivalent or higher with an ionic radius of 0.7 to 1.1Å when assuming 6-coordination with oxygen ions, and assuming 4-coordination with oxygen ions Of an X-ray diffraction pattern (XRD) containing at least one element M different from the element A and having Cu as a radiation source, which can have a positive trivalent or higher valence having an ion radius of 0.5 to 0.7% The diffraction peak detected in the range of 2Θ = 30 to 40 ° is composed of only the (100) plane, (002) plane, and (101) plane belonging to the hexagonal wurtzite structure. Composite oxide sintered body.

(2)元素Aが、In、Ti、Zr、Snの群より選ばれる少なくとも1種の元素を含むことを特徴とする(1)に記載の複合酸化物焼結体。   (2) The composite oxide sintered body according to (1), wherein the element A includes at least one element selected from the group of In, Ti, Zr, and Sn.

(3)元素Mが、Al、Ga、Nbの群より選ばれる少なくとも1種の元素を含むことを特徴とする(1)又は(2)に記載の複合酸化物焼結体。   (3) The composite oxide sintered body according to (1) or (2), wherein the element M contains at least one element selected from the group consisting of Al, Ga, and Nb.

(4)焼結体の相対密度が95%以上であることを特徴とする(1)〜(3)のいずれかに記載の複合酸化物焼結体。   (4) The composite oxide sintered body according to any one of (1) to (3), wherein a relative density of the sintered body is 95% or more.

(5)亜鉛化合物の粉末とその粉末の1次粒子径よりも小さい1次粒子径の元素Aと元素Mの化合物粉末を亜鉛、元素A及び元素Mの各原子比としてA/(A+M)が0.4以上、かつ原子比(A+M)/(Zn+A+M)が0.001〜0.17となるように原料粉末を混合する工程と、当該混合粉末を成形して成形体を作製する工程と、当該成形体を1000〜1600℃の範囲内で焼成して焼結体を作製する工程とを含むことを特徴とする(1)〜(4)のいずれかに記載の複合酸化物焼結体の製造方法。   (5) A powder of a zinc compound and a compound powder of an element A and an element M having a primary particle size smaller than the primary particle size of the powder is expressed by A / (A + M) as each atomic ratio of zinc, element A, and element M. A step of mixing raw material powder so that the atomic ratio (A + M) / (Zn + A + M) is 0.001 to 0.17, and a step of forming the mixed powder to form a molded body, The composite oxide sintered body according to any one of (1) to (4), including a step of firing the molded body within a range of 1000 to 1600 ° C. to produce a sintered body. Production method.

(6)(1)〜(4)のいずれかに記載の複合酸化物焼結体からなる複合酸化物スパッタリングターゲット。   (6) A composite oxide sputtering target comprising the composite oxide sintered body according to any one of (1) to (4).

(7)(6)に記載の複合酸化物スパッタリングターゲットを用いて成膜してなる透明導電膜。   (7) A transparent conductive film formed by using the composite oxide sputtering target according to (6).

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の複合酸化物焼結体は亜鉛と、正三価以上の価数を取り得る元素の中から酸素イオンに6配位を仮定したときのイオン半径が0.7〜1.1Åの元素Aを少なくとも1種以上、正三価以上の価数を取り得る元素の中から酸素イオンに4配位を仮定したときのイオン半径が0.5〜0.7Åの元素Mを少なくとも1種以上含んでいることを特徴とする。   The composite oxide sintered body of the present invention is an element A having an ionic radius of 0.7 to 1.1 Å when zinc and hexagonal coordination are assumed among elements capable of taking a valence of positive trivalent or higher. Including at least one element M having an ionic radius of 0.5 to 0.7% when assuming four-coordination to oxygen ions among elements capable of taking at least one kind of valence of positive trivalent or more. It is characterized by being.

なお、本発明におけるイオン半径とは、「R.D.Shannon,Acta Crystallogr.A32,751−767(1976)」の報告値であるCR(crystal radius)を用いている。この報告によれば、同一元素で酸素4配位と酸素6配位で同一のイオン半径を有する元素は存在しない。   In addition, CR (crystal radius) which is a reported value of “RD Shannon, Acta Crystallogr. A32, 751-767 (1976)” is used as the ionic radius in the present invention. According to this report, there is no element having the same ionic radius in the oxygen tetracoordinate and the oxygen hexacoordinate with the same element.

元素Aとしては、In(0.94Å)、Ti(0.75Å)、Zr(0.86Å)、Sn(0.83Å)の群より選ばれることが好ましく、Inであることがより好ましい。これらの元素が元素Aとして選ばれることにより、スパッタリング中の異常放電を一層低減することが可能となる。   The element A is preferably selected from the group of In (0.94 Å), Ti (0.75 Å), Zr (0.86 Å), Sn (0.83 Å), and more preferably In. By selecting these elements as the element A, it is possible to further reduce abnormal discharge during sputtering.

元素Mとしては、Al(0.53Å)、Ga(0.61Å)、Nb(0.62Å)の群より選ばれることが好ましく、Alであることがより好ましい。これらの元素が元素Mとして選ばれることにより、スパッタリング中の異常放電を一層低減することが可能となる。   The element M is preferably selected from the group consisting of Al (0.53Å), Ga (0.61Å), and Nb (0.62Å), and more preferably Al. By selecting these elements as the element M, it is possible to further reduce abnormal discharge during sputtering.

元素Aと元素Mの原子比A/(A+M)は0.4以上であり、0.45以上であることが好ましい。また、原子比(A+M)/(Zn+A+M)は0.001以上0.17以下であり、0.05以上0.15以下が好ましい。この範囲でスパッタリングを行うと、スパッタリング中の異常放電を一層低減することが可能となる。   The atomic ratio A / (A + M) between the element A and the element M is 0.4 or more, and preferably 0.45 or more. The atomic ratio (A + M) / (Zn + A + M) is 0.001 or more and 0.17 or less, and preferably 0.05 or more and 0.15 or less. When sputtering is performed within this range, abnormal discharge during sputtering can be further reduced.

また、一般的に酸化亜鉛に周期律表の第III族元素等の添加元素を含有させた酸化亜鉛系スパッタリングターゲットにおいては、添加元素が一部固溶した酸化亜鉛から主としてなる六方晶系構造の母相と添加元素と酸化亜鉛の反応生成物であるスピネル型構造を有する第2相からその微細構造は構成される。   In general, in a zinc oxide-based sputtering target in which zinc oxide contains an additive element such as a group III element of the periodic table, a hexagonal structure mainly composed of zinc oxide in which the additive element is partly dissolved. The microstructure is composed of a second phase having a spinel structure which is a reaction product of a parent phase, an additive element and zinc oxide.

しかし、亜鉛、元素A及び元素Mの各原子比が前述の範囲内である複合酸化物焼結体をX線解析すると、Cuを線源とするXRDの2Θ=30〜40°の範囲内に検出される回折ピークが、実質的に酸化亜鉛を含む六方晶系ウルツ型構造に帰属される(100)面、(002)面、(101)面のみから構成されており、元素Aや元素Mと酸化亜鉛の反応生成物であるスピネル型構造を有する電気抵抗の高い第2相がX線的に消失していることがわかった。   However, when a composite oxide sintered body in which each atomic ratio of zinc, element A, and element M is within the above-mentioned range is analyzed by X-ray analysis, XRD using Cu as a radiation source is within a range of 2Θ = 30-40 °. The detected diffraction peak is composed of only the (100) plane, (002) plane, and (101) plane that belong to the hexagonal wurtzite structure substantially containing zinc oxide. It was found that the second phase having a spinel structure, which is a reaction product of zinc oxide and high electrical resistance, disappeared in an X-ray manner.

従って、本発明でいう「六方晶系ウルツ型構造に帰属される(100)面、(002)面、(101)面のみから構成される」とは、第2相のスピネル型構造に帰属される(311)面のX線回折ピークの積分強度I(311)と、六方晶系ウルツ鉱型構造に帰属される(101)面のX線回折ピークとの積分強度I(101)とから表されるI(311)/(I(101)+I(311))の値が2.5%以下、好ましくは0%であることを意味する。 Therefore, “consisting only of the (100) plane, (002) plane, (101) plane attributed to the hexagonal wurtzite structure” in the present invention is attributed to the spinel structure of the second phase. The integrated intensity I (311) of the (311 ) plane X-ray diffraction peak and the integrated intensity I (101) of the (101) plane X-ray diffraction peak attributed to the hexagonal wurtzite structure The value of I (311) / (I (101) + I (311) ) is 2.5% or less, preferably 0%.

また、第2相としてスピネル型構造以外の相を形成する場合も、当該相に帰属するX線回折ピークの積分強度と六方晶系ウルツ鉱型構造に帰属される(101)面のX線回折ピークの積分強度I(101)との関係は上記と同様のものとなる。 In addition, when a phase other than the spinel structure is formed as the second phase, the X-ray diffraction peak attributed to the integrated intensity of the X-ray diffraction peak attributed to the phase and the hexagonal wurtzite structure is also observed. The relationship with the integrated intensity I (101) of the peak is the same as described above.

この原因としては、複合酸化物焼結体中に元素A及び元素Mが前述の組成で存在すると、元素Aと元素Mがそれぞれ、酸化亜鉛中の酸素に4配位または6配位し、酸化亜鉛と反応せず、スピネル型構造等の第2相を生じなくなるためと考えられる。   This is because, when the element A and the element M are present in the composite oxide sintered body in the above-described composition, the element A and the element M are respectively 4-coordinated or 6-coordinated to oxygen in zinc oxide, and oxidized. This is probably because it does not react with zinc and does not generate a second phase such as a spinel structure.

また、本発明の複合酸化物焼結体の相対密度は95%以上であることが好ましく、97%以上であることが更に好ましい。この範囲を逸脱すると、スパッタリング中の異常放電が著しく増加するとともに、形状を整えるために機械加工等での破損の問題等も生じるためである。   The relative density of the composite oxide sintered body of the present invention is preferably 95% or more, and more preferably 97% or more. If it deviates from this range, abnormal discharge during sputtering increases remarkably, and a problem of breakage in machining or the like occurs in order to adjust the shape.

なお、相対密度はJIS−R1634−1998に準拠してアルキメデス法で測定した焼結密度X(g/cm)を算術的に求めた理論密度Y(g/cm)に対する相対値として(1)式により求めた。 The relative density is expressed as a relative value with respect to the theoretical density Y (g / cm 3 ) obtained by arithmetically calculating the sintered density X (g / cm 3 ) measured by the Archimedes method in accordance with JIS-R1634-1998. ).

相対密度(%)=(X/Y)×100 (1)
ここで、算術的な理論密度Yは、亜鉛、元素A、元素Mを酸化物換算した場合の比重と組成重量比から体積比を求め、亜鉛、元素A、元素Mの酸化物の比重を体積比配分して算出した。
Relative density (%) = (X / Y) × 100 (1)
Here, the arithmetic theoretical density Y is obtained by determining the volume ratio from the specific gravity and the composition weight ratio when zinc, element A, and element M are converted into oxides, and the specific gravity of the oxide of zinc, element A, and element M is the volume. Calculated by ratio distribution.

また、本発明の複合酸化物焼結体の平均粒径は20μm以下であることが好ましい。平均粒径が20μmを超えると、形状を整えるために機械加工等での破損の問題等が生じることがあるからである。   The average particle size of the composite oxide sintered body of the present invention is preferably 20 μm or less. This is because if the average particle diameter exceeds 20 μm, a problem of breakage in machining or the like may occur in order to adjust the shape.

なお、本発明における複合酸化物中の粒径の測定方法は、以下の通りである。   In addition, the measuring method of the particle size in the composite oxide in the present invention is as follows.

本発明の複合酸化物焼結体を適当な大きさに切断した後、観察面を表面研磨し、次に希酢酸溶液でケミカルエッチングを行い、粒界を明確化する。この試料を走査型電子顕微鏡(SEM)を用いて、焼結体の研磨面の観察写真を画像処理し、500〜1000個の長径を求め、その平均を平均粒径として求める。   After cutting the composite oxide sintered body of the present invention into an appropriate size, the observation surface is polished, and then chemical etching is performed with a dilute acetic acid solution to clarify the grain boundaries. This sample is image-processed using a scanning electron microscope (SEM), and an observation photograph of the polished surface of the sintered body is subjected to image processing, 500 to 1000 major axes are obtained, and the average is obtained as the average grain size.

次に、本発明の複合酸化物焼結体の製造方法について説明する。   Next, a method for producing the composite oxide sintered body of the present invention will be described.

本発明の複合酸化物焼結体の製造方法は、(1)亜鉛化合物の粉末とその粉末の1次粒子径よりも小さい1次粒子径の元素Aの化合物粉末と元素Mの化合物粉末を所定の原子比となるように原料粉末を混合する工程と、(2)当該混合粉末を成形して成形体を作製する工程と、(3)当該成形体を1000〜1600℃の範囲内で焼成して焼結体を作製する工程とを含むことを特徴とする。   In the method for producing a composite oxide sintered body of the present invention, (1) a zinc compound powder, an element A compound powder having a primary particle size smaller than the primary particle size of the powder, and an element M compound powder are predetermined. (2) a step of forming the mixed powder to produce a molded body, and (3) firing the molded body within a range of 1000 to 1600 ° C. And a step of producing a sintered body.

以下、本発明の複合酸化物焼結体の製造方法を工程毎に説明する。   Hereinafter, the manufacturing method of the composite oxide sintered body of the present invention will be described for each step.

(1)原料混合工程
原料粉末は特に限定されるものではなく、例えば、金属塩粉末、塩化物、硝酸塩、炭酸塩等を用いることも可能であるが、取り扱い性を考慮すると酸化物粉末が好ましい。このときの粉末粒径は、微細である方が焼結性に優れるため、通常は1次粒子径として10μm以下の粉末が好ましく用いられ、特に1μm以下の粉末が好ましく用いられる。
(1) Raw material mixing step The raw material powder is not particularly limited, and for example, metal salt powder, chloride, nitrate, carbonate and the like can be used. . Since the finer the powder particle size is, the finer the powder is, the better the sinterability is. Therefore, usually, a powder having a primary particle diameter of 10 μm or less is preferably used, and a powder of 1 μm or less is particularly preferably used.

さらに、元素A、元素Mの化合物粉末は亜鉛化合物の粉末の1次粒子径よりも小さい1次粒子径の化合物粉末を用いる必要がある。亜鉛化合物の粉末の1次粒子径の方が小さい若しくは同一であると、混合状態の均質性が劣るためである。   Furthermore, the compound powder of the element A and the element M needs to use a compound powder having a primary particle size smaller than the primary particle size of the zinc compound powder. This is because if the primary particle size of the zinc compound powder is smaller or the same, the homogeneity of the mixed state is poor.

これら各粉末の混合は、特に限定されるものではないが、ジルコニア、アルミナ、ナイロン樹脂等のボールやビーズを用いた乾式、湿式のメディア撹拌型ミルやメディアレスの容器回転式混合、機械撹拌式混合等の混合方法が例示される。具体的には、ボールミル、ビーズミル、アトライタ、振動ミル、遊星ミル、ジェットミル、V型混合機、パドル式混合機、二軸遊星撹拌式混合機等が挙げられる。   The mixing of each of these powders is not particularly limited, but dry, wet media agitation type mills or medialess container rotary mixing, mechanical agitation types using balls and beads such as zirconia, alumina, nylon resin, etc. Examples of the mixing method include mixing. Specific examples include a ball mill, a bead mill, an attritor, a vibration mill, a planetary mill, a jet mill, a V-type mixer, a paddle mixer, and a twin-shaft planetary agitation mixer.

また、粉末の混合と同時に粉砕が行われるが、粉砕後の粉末粒径は微細であるほど好ましい。このとき、湿式法のボールミルやビーズミル、アトライタ、振動ミル、遊星ミル、ジェットミル等を用いる場合には、粉砕後のスラリーを乾燥する必要がある。この乾燥方法は特に限定されるものではないが、例えば、濾過乾燥、流動層乾燥、噴霧乾燥等が例示できる。   Further, although pulverization is performed simultaneously with mixing of the powder, the finer the particle size of the powder after pulverization, the better. At this time, when a wet ball mill, bead mill, attritor, vibration mill, planetary mill, jet mill, or the like is used, the pulverized slurry needs to be dried. This drying method is not particularly limited, and examples thereof include filtration drying, fluidized bed drying, and spray drying.

また、酸化物粉末以外の粉末を混合する場合は、混合後に500〜1000℃で仮焼を行い、仮焼粉末の粒径が大きくなった場合は粉砕することが好ましい。   Moreover, when mixing powders other than oxide powder, it is preferable to calcine at 500-1000 degreeC after mixing, and to grind | pulverize, when the particle size of calcined powder becomes large.

各原料粉末の純度は、通常99%以上、好ましくは99.9%以上、より好ましくは99.99%以上である。純度が低いと、不純物物質により、本発明の複合酸化物焼結体を用いたスパッタリングターゲットで形成された透明導電膜に影響が及ぼされることがあるからである。   The purity of each raw material powder is usually 99% or higher, preferably 99.9% or higher, more preferably 99.99% or higher. This is because if the purity is low, the impurity material may affect the transparent conductive film formed by the sputtering target using the composite oxide sintered body of the present invention.

これらの原料の配合は、元素Aと元素Mの原子比A/(A+M)が0.4以上であり、かつ各元素の原子比(A+M)/(Zn+A+M)が0.001〜0.17となるように原料を混合する必要がある。   The composition of these raw materials is such that the atomic ratio A / (A + M) of the elements A and M is 0.4 or more, and the atomic ratio (A + M) / (Zn + A + M) of each element is 0.001 to 0.17. It is necessary to mix the raw materials to become.

(2)成形工程
成形方法は、金属酸化物の混合粉末(仮焼した場合には仮焼した混合粉末)を目的とした形状に成形できる成形方法を適宜選択することが肝要であり、特に限定されるものではない。プレス成形法、鋳込み成形法、射出成形法等が例示できる。
(2) Molding process It is important to select a molding method that can form a mixed powder of metal oxide (or a calcined mixed powder if calcined) into a desired shape, and is particularly limited. Is not to be done. Examples thereof include a press molding method, a casting molding method, and an injection molding method.

成形圧力はクラック等の発生がなく、取り扱いが可能な成形体であれば特に限定されるものではないが、成形密度は可能な限り高めた方が好ましい。そのために冷間静水圧(CIP)成形等の方法を用いることも可能である。   The molding pressure is not particularly limited as long as it is a molded body that does not generate cracks and can be handled, but it is preferable to increase the molding density as much as possible. Therefore, it is also possible to use a method such as cold isostatic pressing (CIP) molding.

なお、成形処理に際しては、ポリビニルアルコール、アクリル系ポリマー、メチルセルロース、ワックス類、オレイン酸等の成形助剤を用いても良い。   In the molding treatment, molding aids such as polyvinyl alcohol, acrylic polymer, methyl cellulose, waxes, oleic acid and the like may be used.

(3)焼成工程
次に得られた成形体を1000〜1600℃で焼成する。この焼成温度範囲により前記複合酸化物焼結体の微構造が得られるが、酸化亜鉛系複合酸化物特有の揮発消失が抑制され、かつ比較的焼結密度を高められる点から、1100〜1400℃がより好ましい。
(3) Firing step Next, the obtained molded body is fired at 1000 to 1600 ° C. Although the microstructure of the composite oxide sintered body can be obtained by this firing temperature range, the volatilization disappearance peculiar to the zinc oxide-based composite oxide is suppressed, and the sintering density can be relatively increased, so that the sintering density is relatively high. Is more preferable.

本発明によれば、複合酸化物焼結体の微構造を前記したように制御することにより、例えば、相対密度99%以上といった高焼結密度を必ずしも得られなくても、スパッタリング中の異常放電現象を著しく抑制することが可能である。ただし、焼結密度が低すぎると、取り扱いやスパッタリング時に破損等を起こすことがあるため、相対密度95%以上が総合的には好ましく、特に好ましいのは97%以上の範囲となる。   According to the present invention, by controlling the microstructure of the composite oxide sintered body as described above, for example, even if a high sintered density such as a relative density of 99% or more cannot always be obtained, abnormal discharge during sputtering is performed. The phenomenon can be remarkably suppressed. However, if the sintered density is too low, damage or the like may occur during handling or sputtering. Therefore, a relative density of 95% or more is generally preferable, and a range of 97% or more is particularly preferable.

焼成時間は特に限定されるものではないが、通常1〜48時間が通常用いられ、特に好ましいのは3〜24時間である。これは、本発明の複合酸化物焼結体中の均質性を確保するためであり、24時間より長時間の保持でも均質性を確保することは可能であるが、生産性への影響を考慮すると24時間以下で十分である。   The firing time is not particularly limited, but usually 1 to 48 hours is usually used, and 3 to 24 hours is particularly preferable. This is to ensure the homogeneity in the composite oxide sintered body of the present invention, and it is possible to ensure the homogeneity even if it is maintained for a longer time than 24 hours, but the influence on the productivity is considered. Then 24 hours or less is sufficient.

昇温速度は特に限定されるものではないが、800℃以上の温度域では50℃/h以下であることがより好ましい。これは、本発明の複合酸化物焼結体を酸化亜鉛を主として含む六方晶系ウルツ型構造の粒子のみで実質的に構成させるためである。   The rate of temperature increase is not particularly limited, but is more preferably 50 ° C./h or less in the temperature range of 800 ° C. or higher. This is because the composite oxide sintered body of the present invention is substantially constituted only by particles having a hexagonal wurtzite structure mainly containing zinc oxide.

焼成雰囲気は特に限定されるものではないが、例えば、大気中、酸素中、不活性ガス雰囲気中等が適宜選択されるが、大気よりも低酸素濃度の雰囲気とすることがより好ましい。   Although the firing atmosphere is not particularly limited, for example, the atmosphere, oxygen, inert gas atmosphere, and the like are appropriately selected, but an atmosphere having a lower oxygen concentration than the atmosphere is more preferable.

これは、本発明の複合酸化物焼結体中に酸素欠陥を導入しやすくなり、そのため、複合酸化物焼結体の抵抗率が低下して異常放電が発生する要因をより一層低減することが可能となるためである。また、焼成時の圧力も特に限定されるものではなく、常圧以外に加圧、減圧状態での焼成も可能である。また、熱間静水圧(HIP)法やホットプレス焼結等も可能である。   This makes it easier to introduce oxygen defects into the composite oxide sintered body of the present invention, and therefore, the resistivity of the composite oxide sintered body decreases and the cause of abnormal discharge can be further reduced. This is because it becomes possible. Moreover, the pressure at the time of baking is not specifically limited, In addition to a normal pressure, baking in a pressurization and pressure reduction state is also possible. Moreover, a hot isostatic pressure (HIP) method, hot press sintering, etc. are also possible.

本発明によれば、亜鉛と、酸素イオンに6配位を仮定したときのイオン半径が0.7〜1.1Åの正三価以上の価数を取り得る元素A、酸素イオンに4配位を仮定したときのイオン半径が0.5〜0.7Åの正三価以上の価数を取り得る元素Aとは異なる元素Mをそれぞれ少なくとも1種以上含む、本発明の複合酸化物焼結体はスピネル型構造を有する電気抵抗の高い第2相が消失し、焼結体の電気抵抗のばらつきが少なく、スパッタリングの際の異常放電が起こりにくい複合酸化物焼結体を得ることが可能となる。   According to the present invention, zinc and element A capable of taking a valence of positive trivalent or higher with an ion radius of 0.7 to 1.1 と き when assuming 6-coordination to oxygen ions, 4-coordination to oxygen ions. The composite oxide sintered body of the present invention, which contains at least one element M different from the element A that can have a positive trivalent or higher valence having an ionic radius of 0.5 to 0.7%, is spinel. The second phase with a high electrical resistance having a mold structure disappears, and there is little variation in the electrical resistance of the sintered body, and it is possible to obtain a complex oxide sintered body that hardly causes abnormal discharge during sputtering.

本発明を以下の実施例により具体的に説明するが、本発明はこれに限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited thereto.

(実施例1〜12および比較例1〜4)
純度99.8%、平均粒径0.6μm(1次粒径)の酸化亜鉛粉末と純度99.99%、平均粒径0.1〜0.3μm(1次粒径)の元素A及び元素Mの酸化物粉末を表1に記載の組成となるように湿式ボールミルで混合、造粒し、3.0ton/cmでCIP成形した。
(Examples 1-12 and Comparative Examples 1-4)
Zinc oxide powder having a purity of 99.8% and an average particle size of 0.6 μm (primary particle size), and an element A and an element having a purity of 99.99% and an average particle size of 0.1 to 0.3 μm (primary particle size) M oxide powder was mixed and granulated by a wet ball mill so as to have the composition shown in Table 1, and CIP-molded at 3.0 ton / cm 2 .

(焼成条件)
・焼結温度 :1400℃
・昇温速度 :50℃/h
・降温速度 :100℃/h
・保持時間 :5時間
・焼結雰囲気:窒素雰囲気
得られた複合酸化物焼結体を加工した後、鏡面研磨し、その研磨面をXRD、SEM、電子線マイクロアナライザ(EPMA)、走査型プローブ顕微鏡(SPM)で分析し、結晶相、粒径を分析した。XRDの分析結果は、六方晶系ウルツ型構造相、スピネル型構造相、その他の相に分類して、表1に示した。
(Baking conditions)
・ Sintering temperature: 1400 ° C
・ Temperature increase rate: 50 ° C / h
・ Cooling rate: 100 ° C / h
-Holding time: 5 hours-Sintering atmosphere: Nitrogen atmosphere After processing the obtained composite oxide sintered body, it is mirror-polished, and the polished surface is XRD, SEM, electron beam microanalyzer (EPMA), scanning probe Analysis was performed with a microscope (SPM), and the crystal phase and particle size were analyzed. The results of XRD analysis are shown in Table 1, classified into hexagonal wurtzite phase, spinel phase and other phases.

さらに、得られた焼結体を4インチφサイズに加工してターゲットとし、スパッタリング評価を行った。
(X線回折試験の測定条件)
・X線源 :CuKα
・パワー :40kV、30mA
・走査速度 :1°/分
(スパッタリング成膜条件)
・装置 :DCマグネトロンスパッタ装置
・磁界強度 :1000Gauss(ターゲット真上、水平成分)
・基板温度 :200℃
・到達真空度 :5×10−5Pa
・スパッタリングガス :Ar
・スパッタリングガス圧:0.5Pa
・DCパワー :300W
・スパッタリング時間 :30時間
放電特性はスパッタリングを30時間行い、単位時間当たりに発生した異常放電回数として評価し、0.5回未満/時間を「○」、0.5〜10回/時間を「△」、10回超/時間を「×」とした。結果を表1に示す。
Furthermore, the obtained sintered body was processed into a 4 inch φ size as a target, and sputtering evaluation was performed.
(Measurement conditions for X-ray diffraction test)
-X-ray source: CuKα
・ Power: 40kV, 30mA
・ Scanning speed: 1 ° / min (sputtering film formation conditions)
-Equipment: DC magnetron sputtering equipment-Magnetic field strength: 1000 Gauss (directly above the target, horizontal component)
-Substrate temperature: 200 ° C
・ Achieved vacuum: 5 × 10 −5 Pa
・ Sputtering gas: Ar
・ Sputtering gas pressure: 0.5 Pa
・ DC power: 300W
Sputtering time: 30 hours Discharge characteristics were evaluated by performing sputtering for 30 hours and evaluating the number of abnormal discharges per unit time as less than 0.5 times / hour as “◯”, and 0.5-10 times / hour as “ [Delta] "More than 10 times / hour was designated as" x ". The results are shown in Table 1.

Figure 2010120803
以上のように、実施例と比較例を比較することにより、酸化亜鉛と、特定のイオン半径を有する正三価以上の価数を取り得る元素を特定の原子比で組み合わせることにより、異常放電を著しく抑制することが可能であることがわかる。
Figure 2010120803
As described above, by comparing the example and the comparative example, by combining zinc oxide and an element having a specific ionic radius and having a positive trivalent or higher valence at a specific atomic ratio, abnormal discharge is significantly reduced. It can be seen that it can be suppressed.

実施例1と比較例1のX線回折ピークを比較したものを示す。A comparison of the X-ray diffraction peaks of Example 1 and Comparative Example 1 is shown.

Claims (7)

亜鉛と、酸素イオンに6配位を仮定したときのイオン半径が0.7〜1.1Åの正三価以上の価数を取り得る元素A、酸素イオンに4配位を仮定したときのイオン半径が0.5〜0.7Åの正三価以上の価数を取り得る、元素Aとは異なる元素Mをそれぞれ少なくとも1種含み、Cuを線源とするX線回折パターン(XRD)の2Θ=30〜40°の範囲内に検出される回折ピークが六方晶系ウルツ型構造に帰属される(100)面、(002)面、(101)面のみから構成されることを特徴とする複合酸化物焼結体。 Zinc, an element A that can take a valence of positive trivalent or higher with an ionic radius of 0.7 to 1.1Å when assuming 6-coordination for oxygen ions, and an ionic radius when assuming 4-coordination for oxygen ions Is an X-ray diffraction pattern (XRD) of 2Θ = 30 containing at least one element M different from the element A and having Cu as a radiation source. A complex oxide characterized in that a diffraction peak detected within a range of ˜40 ° is composed only of (100) plane, (002) plane, and (101) plane belonging to a hexagonal wurtzite structure Sintered body. 元素Aが、In、Ti、Zr、Snの群より選ばれる少なくとも1種の元素を含むことを特徴とする請求項1に記載の複合酸化物焼結体。 2. The composite oxide sintered body according to claim 1, wherein the element A includes at least one element selected from the group of In, Ti, Zr, and Sn. 元素Mが、Al、Ga、Nbの群より選ばれる少なくとも1種の元素を含むことを特徴とする請求項1又は2に記載の複合酸化物焼結体。 The complex oxide sintered body according to claim 1 or 2, wherein the element M contains at least one element selected from the group consisting of Al, Ga, and Nb. 焼結体の相対密度が95%以上であることを特徴とする請求項1〜3のいずれかに記載の複合酸化物焼結体。 The composite oxide sintered body according to claim 1, wherein a relative density of the sintered body is 95% or more. 亜鉛化合物の粉末とその粉末の1次粒子径よりも小さい1次粒子径の元素Aと元素Mの化合物粉末とを、亜鉛、元素A及び元素Mの各原子比としてA/(A+M)が0.4以上、かつ原子比(A+M)/(Zn+A+M)が0.001〜0.17となるように原料粉末を混合する工程と、当該混合粉末を成形して成形体を作製する工程と、当該成形体を1000〜1600℃の範囲内で焼成して焼結体を作製する工程とを含むことを特徴とする請求項1〜4のいずれかに記載の複合酸化物焼結体の製造方法。 A zinc compound powder and a compound powder of an element A and an element M having a primary particle size smaller than the primary particle size of the powder, and each atomic ratio of zinc, element A, and element M, A / (A + M) is 0 4 or more, and the step of mixing the raw material powder so that the atomic ratio (A + M) / (Zn + A + M) is 0.001 to 0.17, the step of forming the mixed powder to produce a molded body, The method for producing a composite oxide sintered body according to any one of claims 1 to 4, further comprising a step of firing the molded body within a range of 1000 to 1600 ° C to produce a sintered body. 請求項1〜4のいずれかに記載の複合酸化物焼結体からなる複合酸化物スパッタリングターゲット。 A complex oxide sputtering target comprising the complex oxide sintered body according to claim 1. 請求項6に記載の複合酸化物スパッタリングターゲットを用いて成膜してなる透明導電膜。 A transparent conductive film formed using the complex oxide sputtering target according to claim 6.
JP2008295249A 2008-11-19 2008-11-19 Multiple oxide sintered compact Pending JP2010120803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295249A JP2010120803A (en) 2008-11-19 2008-11-19 Multiple oxide sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295249A JP2010120803A (en) 2008-11-19 2008-11-19 Multiple oxide sintered compact

Publications (1)

Publication Number Publication Date
JP2010120803A true JP2010120803A (en) 2010-06-03

Family

ID=42322479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295249A Pending JP2010120803A (en) 2008-11-19 2008-11-19 Multiple oxide sintered compact

Country Status (1)

Country Link
JP (1) JP2010120803A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031497A (en) * 2010-07-02 2012-02-16 Mitsubishi Materials Corp Vapor-deposition material for forming thin film, thin sheet including thin film, and laminated sheet
WO2012043571A1 (en) * 2010-09-29 2012-04-05 東ソー株式会社 Sintered composite oxide, manufacturing method therefor, sputtering target, transparent conductive oxide film, and manufacturing method therefor
JP2012144409A (en) * 2011-01-14 2012-08-02 Tosoh Corp Oxide sintered compact, target formed of the same, and transparent conductive film
JP2013177676A (en) * 2012-02-06 2013-09-09 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
JP2013212981A (en) * 2013-05-23 2013-10-17 Sumitomo Metal Mining Co Ltd Zn-Si-O SYSTEM OXIDE SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET, AND TABLET FOR VAPOR DEPOSITION
US9058914B2 (en) 2010-11-16 2015-06-16 Kobelco Research Institute, Inc. Oxide sintered compact and sputtering target
JP2017163149A (en) * 2012-06-29 2017-09-14 三星コーニングアドバンスドガラス有限会社Samsung Corning Advanced Glass, LLC Thin film transistor and zinc oxide-based sputtering target therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031497A (en) * 2010-07-02 2012-02-16 Mitsubishi Materials Corp Vapor-deposition material for forming thin film, thin sheet including thin film, and laminated sheet
WO2012043571A1 (en) * 2010-09-29 2012-04-05 東ソー株式会社 Sintered composite oxide, manufacturing method therefor, sputtering target, transparent conductive oxide film, and manufacturing method therefor
US9111663B2 (en) 2010-09-29 2015-08-18 Tosoh Corporation Sintered composite oxide, manufacturing method therefor, sputtering target, transparent conductive oxide film, and manufacturing method therefor
KR101859787B1 (en) 2010-09-29 2018-05-18 토소가부시키가이샤 Sintered composite oxide, manufacturing method therefor, sputtering target, transparent conductive oxide film, and manufacturing method therefor
US9058914B2 (en) 2010-11-16 2015-06-16 Kobelco Research Institute, Inc. Oxide sintered compact and sputtering target
JP2012144409A (en) * 2011-01-14 2012-08-02 Tosoh Corp Oxide sintered compact, target formed of the same, and transparent conductive film
JP2013177676A (en) * 2012-02-06 2013-09-09 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
JP2017163149A (en) * 2012-06-29 2017-09-14 三星コーニングアドバンスドガラス有限会社Samsung Corning Advanced Glass, LLC Thin film transistor and zinc oxide-based sputtering target therefor
JP2013212981A (en) * 2013-05-23 2013-10-17 Sumitomo Metal Mining Co Ltd Zn-Si-O SYSTEM OXIDE SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET, AND TABLET FOR VAPOR DEPOSITION

Similar Documents

Publication Publication Date Title
TWI433823B (en) Composite oxide sinter, method for producing composite oxide sinter, method for producing sputtering target and thin film
JP4324470B2 (en) Sputtering target, transparent conductive film and method for producing them
KR101859787B1 (en) Sintered composite oxide, manufacturing method therefor, sputtering target, transparent conductive oxide film, and manufacturing method therefor
JP2010120803A (en) Multiple oxide sintered compact
JP2010047829A (en) Sputtering target and manufacturing method thereof
EP2767610B1 (en) ZnO-Al2O3-MgO sputtering target and method for the production thereof
JP5585046B2 (en) Composite oxide sintered body, target and oxide transparent conductive film
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
TW201736316A (en) Oxide sintered sputtering target and manufacturing method for the same
KR20130018321A (en) Sintered zinc oxide tablet and process for producing same
JP5727130B2 (en) Composite oxide sintered body and use thereof
JP5418105B2 (en) Composite oxide sintered body, oxide transparent conductive film, and manufacturing method thereof
JP6287327B2 (en) Oxide sintered body and oxide transparent conductive film
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP2011037679A (en) Multiple oxide sintered compact, sputtering target, multiple oxide amorphous film and production method thereof, and multiple oxide crystalline film and production method thereof
JP5942414B2 (en) Composite oxide sintered body, target, oxide transparent conductive film and manufacturing method thereof
JP5740992B2 (en) Oxide sintered body, target comprising the same, and transparent conductive film
JP2010150611A (en) Sintered compact for transparent conductive film, sputtering target, and method for producing the sintered compact for transparent conductive film
JP6800405B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JP2016190757A (en) SINTERED BODY FOR ZnO-MgO-BASED SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR