JP5727130B2 - Composite oxide sintered body and use thereof - Google Patents
Composite oxide sintered body and use thereof Download PDFInfo
- Publication number
- JP5727130B2 JP5727130B2 JP2009162110A JP2009162110A JP5727130B2 JP 5727130 B2 JP5727130 B2 JP 5727130B2 JP 2009162110 A JP2009162110 A JP 2009162110A JP 2009162110 A JP2009162110 A JP 2009162110A JP 5727130 B2 JP5727130 B2 JP 5727130B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- particles
- composite oxide
- sputtering target
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、複合酸化物焼結体及びその複合酸化物焼結体からなるスパッタリングターゲットに関し、特に酸化亜鉛系焼結体及びその焼結体からなるスパッタリングターゲットに関するものである。 The present invention relates to a composite oxide sintered body and a sputtering target made of the composite oxide sintered body, and particularly to a zinc oxide-based sintered body and a sputtering target made of the sintered body.
透明導電膜は、可視光域での高い透過率と高い導電性を有し、液晶表示素子や太陽電池等の各種受光素子の電極に利用され、また、自動車用・建築材用の熱線反射膜・帯電防止膜や、冷凍ショーケース等の防曇用透明発熱体に広範に利用されている。 The transparent conductive film has high transmittance in the visible light range and high conductivity, and is used for electrodes of various light receiving elements such as liquid crystal display elements and solar cells, and is also a heat ray reflective film for automobiles and building materials. -Widely used in anti-fogging films and transparent heating elements for anti-fogging such as frozen showcases.
このような透明導電膜としては、錫をドーパントとして含む酸化インジウム膜や、亜鉛をドーパントとして含む酸化インジウム膜、周期律表の第III族元素を少なくとも1種類以上ドーパントとして含む酸化亜鉛膜等が知られている。 Examples of such transparent conductive films include indium oxide films containing tin as a dopant, indium oxide films containing zinc as a dopant, and zinc oxide films containing at least one group III element in the periodic table as a dopant. It has been.
錫をドーパントとして含む酸化インジウム膜は、ITO膜と称され、低抵抗膜が容易に得られる。しかしながら、ITO膜の原料であるインジウムは、希少金属で高価であるため、この膜を用いたときの低コスト化には限界がある。また、インジウムは資源埋蔵量が少なく、亜鉛鉱処理等の副産物として得られるに過ぎないため、ITO膜の大幅な生産量増加や安定供給は難しい状況にある。亜鉛をドーパントとして含む酸化インジウム膜は、IZO膜と称され、低抵抗の優れた膜が得られるが、ITO膜と同様に原料であるインジウムの問題がある。 An indium oxide film containing tin as a dopant is called an ITO film, and a low resistance film can be easily obtained. However, since indium, which is a raw material for the ITO film, is a rare metal and expensive, there is a limit to cost reduction when this film is used. Moreover, since indium has a small amount of resource reserves and can only be obtained as a by-product such as zinc ore treatment, it is difficult to significantly increase the ITO film production and to stably supply it. An indium oxide film containing zinc as a dopant is referred to as an IZO film, and an excellent low-resistance film can be obtained. However, as with an ITO film, there is a problem of indium as a raw material.
そのため、ITO代替の透明導電膜用材料の開発が盛んに進められており、中でも、酸化亜鉛を主成分とし、周期律表の第III族元素を含む酸化亜鉛膜は、主原料である亜鉛が極めて低価格であり、かつ埋蔵量・生産量ともに極めて多いため、ITO膜のような資源枯渇や安定供給に対する懸念等の問題がなく、安価な上に化学的にも安定で、透明性、導電性にも優れていることから注目されている(例えば、特許文献1参照)。 Therefore, development of materials for transparent conductive films in place of ITO has been actively promoted. Among them, zinc oxide films mainly composed of zinc oxide and containing Group III elements of the periodic table are made of zinc, which is the main raw material. Because it is extremely inexpensive and has a large amount of reserves and production, there are no problems such as depletion of resources and concerns about stable supply like ITO films, it is inexpensive, chemically stable, transparent, conductive It is attracting attention because of its superiority (see, for example, Patent Document 1).
ところで、酸化亜鉛(ZnO)は酸化物半導体であり、化学量論組成からのずれによる酸素空孔等の真性欠陥がドナー準位を形成してn型特性を示す。この酸化亜鉛に周期律表の第III族元素を含有させると、伝導電子が増加し、比抵抗が減少する。酸化亜鉛に含ませる周期律表の第III族元素としては、アルミニウム(例えば、特許文献1、特許文献2参照)、ガリウム(例えば、特許文献3参照)、ホウ素(例えば、特許文献4参照)等が知られている。 By the way, zinc oxide (ZnO) is an oxide semiconductor, and intrinsic defects such as oxygen vacancies due to deviation from the stoichiometric composition form donor levels and exhibit n-type characteristics. When zinc oxide contains a Group III element in the periodic table, conduction electrons increase and specific resistance decreases. Examples of Group III elements in the periodic table included in zinc oxide include aluminum (for example, see Patent Document 1 and Patent Document 2), gallium (for example, see Patent Document 3), boron (for example, see Patent Document 4), and the like. It has been known.
従来から知られている酸化亜鉛系スパッタリングターゲットでは、透明導電膜等の薄膜形成手段として用いられる場合、スパッタリング中に発生する異常放電現象により、スパッタリング装置の稼働率の低下や発生するパーティクルの影響による製品歩留まりの低下等の問題がある。 Conventionally known zinc oxide-based sputtering targets, when used as thin film forming means such as transparent conductive films, due to the abnormal discharge phenomenon that occurs during sputtering, due to the decrease in the operating rate of the sputtering apparatus and the influence of the generated particles There are problems such as a decrease in product yield.
このようなスパッタリング中に発生する異常放電現象を抑制する手段として、例えば、特許文献1では、製造方法に工夫を凝らすことにより、焼結体を高密度化して抑制する効果を提案している。また、例えば、特許文献5では、焼結体を高密度化し、かつ周期律表第III族元素の酸化物として添加された酸化アルミニウムに起因するアルミニウム成分凝集径を最大5μm以下に抑制することで一層抑制することが示されている。さらに、特許文献6では、酸化亜鉛と添加物の酸化アルミニウムからなるZnAl2O4粒子の平均粒径を0.5μm以下とすることで、スパッタリング中の異常放電を抑制し、耐湿性の向上した薄膜の製造歩留まりを向上させることが示されている。 As a means for suppressing such an abnormal discharge phenomenon that occurs during sputtering, for example, Patent Document 1 proposes an effect of suppressing the density of a sintered body by increasing the density of the manufacturing method. Further, for example, in Patent Document 5, the sintered body is densified, and the aluminum component aggregation diameter caused by aluminum oxide added as an oxide of a group III element of the periodic table is suppressed to 5 μm or less at maximum. Further suppression has been shown. Furthermore, in patent document 6, the abnormal discharge during sputtering was suppressed and humidity resistance was improved by making the average particle diameter of ZnAl 2 O 4 particles made of zinc oxide and additive aluminum oxide to be 0.5 μm or less. It has been shown to improve thin film manufacturing yield.
しかしながら、焼結体の高密度化と焼結体内での添加元素由来の凝集径の最大値の制御、あるいは酸化亜鉛と添加剤からなる第二成分粒子の平均粒子径を著しく小さくしただけでは、スパッタリング中の異常放電現象の発生を完全に避けることができず、その際に飛散するパーティクルによる歩留まり低下が生じ、そのために、生産性の低下は免れないという問題があり、より一層の異常放電現象の抑制が求められている。 However, by simply increasing the density of the sintered body and controlling the maximum value of the aggregate diameter derived from the additive elements in the sintered body, or by significantly reducing the average particle diameter of the second component particles consisting of zinc oxide and additives, Occurrence of abnormal discharge phenomenon during sputtering cannot be completely avoided, resulting in a decrease in yield due to scattered particles, and there is a problem that productivity reduction cannot be avoided. There is a need to suppress this.
このような背景に鑑み、本発明者らは鋭意検討を重ねた結果、特定の複合酸化物焼結体から成るスパッタリングターゲットを用いて成膜することにより、スパッタリング中の異常放電現象を著しく抑制することが可能であることを見出し、本発明を完成するに至った。 In view of such a background, as a result of intensive studies, the present inventors significantly reduced the abnormal discharge phenomenon during sputtering by forming a film using a sputtering target made of a specific composite oxide sintered body. As a result, the present invention has been completed.
すなわち本発明は、(A)酸化亜鉛を含有し平均粒径が10μm以下の六方晶系ウルツ型構造を有する粒子、および(B)金属元素M(但し、Mはアルミニウムおよび/またはガリウムを示す)を含有し最大粒径が5μm以下のスピネル構造を有する粒子からなる複合酸化物焼結体であって、当該焼結体を構成する亜鉛と金属元素Mを原子比で表したときにM/(Zn+M)=0.006〜0.07であり、かつ、当該焼結体中のスピネル構造を有する粒子同士の粒子間距離は0.5μm以上のものが個数頻度で10%以上であることを特徴する複合酸化物焼結体である。 That is, the present invention relates to (A) particles containing zinc oxide and having an average particle diameter of 10 μm or less and having a hexagonal wurtzite structure, and (B) a metal element M (where M represents aluminum and / or gallium). Is a composite oxide sintered body composed of particles having a spinel structure with a maximum particle size of 5 μm or less, and when the zinc and the metal element M constituting the sintered body are represented by an atomic ratio, M / ( Zn + M) = 0.006 to 0.07, and the distance between the particles having a spinel structure in the sintered body is 0.5 μm or more and the number frequency is 10% or more. This is a composite oxide sintered body.
また本発明は、酸化亜鉛粉末および金属元素M(但し、Mはアルミニウムおよび/またはガリウムを示す)の酸化物粉末を、原子比で表したときにM/(Zn+M)=0.006〜0.07の範囲となるよう、1.0mmφ以下のビーズを用いた湿式ビーズミルにより混合し、得られたスラリーを又はそれを乾燥後に成形し、焼成することを特徴とする、上述の複合酸化物成形体の製造方法である。 Further, according to the present invention, when an oxide powder of zinc oxide powder and metal element M (wherein M represents aluminum and / or gallium) is represented by an atomic ratio, M / (Zn + M) = 0.006-0. The composite oxide molded body described above, which is mixed by a wet bead mill using beads having a diameter of 1.0 mmφ or less so as to be in the range of 07, and the resulting slurry is molded after being dried or fired. It is a manufacturing method.
さらに本発明は、上述の複合酸化物焼結体から成ることを特徴とするスパッタリングターゲットである。 Furthermore, the present invention is a sputtering target comprising the above-described composite oxide sintered body.
また本発明は、上述のスパッタリングターゲットを用いることを特徴とする薄膜の製造方法である。以下、本発明を詳細に説明する。 Moreover, this invention is a manufacturing method of the thin film characterized by using the above-mentioned sputtering target. Hereinafter, the present invention will be described in detail.
本発明における複合酸化物焼結体中の粒子の平均粒径、最大粒径の測定は以下のように行う。すなわち、本発明の複合酸化物焼結体を適当な大きさに切断した後、観察面を表面研磨し、次に希酢酸溶液でケミカルエッチングを行い、粒界を明確化する。この試料をEPMAやSEM/EDSを用いて、焼結体の研磨面の観察写真を撮るとともに各粒子の組成を確認する。六方晶系ウルツ型構造を有する粒子の平均粒径は、観察写真の当該粒子500個以上の長径を求め、その平均を平均粒径とした。またスピネル構造を有する粒子の最大粒径は、観察写真の当該粒子500個以上の長径を求め、その最大値を最大粒径とした。 The average particle size and the maximum particle size of the particles in the composite oxide sintered body in the present invention are measured as follows. That is, after cutting the composite oxide sintered body of the present invention into an appropriate size, the observation surface is polished, and then chemical etching is performed with a dilute acetic acid solution to clarify the grain boundaries. This sample is taken using EPMA or SEM / EDS, and an observation photograph of the polished surface of the sintered body is taken and the composition of each particle is confirmed. For the average particle size of the particles having a hexagonal wurtzite structure, the major axis of 500 or more of the particles in the observation photograph was obtained, and the average was taken as the average particle size. The maximum particle size of the particles having a spinel structure was determined by obtaining the major axis of 500 or more of the particles in the observation photograph, and taking the maximum value as the maximum particle size.
本発明の複合酸化物焼結体を構成するものとして、(A)酸化亜鉛を含有し平均粒径が10μm以下の六方晶系ウルツ型構造を有する粒子であることが必須である。これによりターゲットとして用いた場合に、異常放電を抑制することができる。ここで、酸化亜鉛を含有し六方晶系ウルツ型構造に帰属される構造を有する粒子とは、X線回折試験で酸化亜鉛の六方晶系ウルツ型構造に帰属される回折パターンを示す物質であり、SEM/EDS、EPMA、SPM等での分析により、確認したものである。 As a constituent of the composite oxide sintered body of the present invention, (A) it is essential that the particles have a hexagonal wurtzite structure containing zinc oxide and having an average particle size of 10 μm or less. Thereby, when used as a target, abnormal discharge can be suppressed. Here, particles containing zinc oxide and having a structure attributed to a hexagonal wurtzite structure are substances that exhibit a diffraction pattern attributed to a hexagonal wurtzite structure of zinc oxide in an X-ray diffraction test. , SEM / EDS, EPMA, SPM etc. were confirmed.
また、本発明の複合酸化物焼結体を構成するものとして(B)金属元素M(但し、Mはアルミニウムおよび/またはガリウムを示す)を含有し最大粒径が5μm以下のスピネル構造を有する粒子であることが必須である。これにより、ターゲットとして用いた場合に異常放電を抑制することができる。ここでスピネル構造を有する粒子とは、X線回折試験でスピネル構造化合物に帰属される回折パターンを示す物質であり、SEM/EDS、EPMA、SPM等での分析により、確認したものである。スピネル構造を有する粒子の最大粒径が3μm以下である場合は、異常放電が一層抑制されるため、特に好ましい。 Further, as a constituent of the composite oxide sintered body of the present invention, (B) particles containing a metal element M (where M represents aluminum and / or gallium) and having a spinel structure with a maximum particle size of 5 μm or less It is essential. Thereby, abnormal discharge can be suppressed when used as a target. Here, the particle having a spinel structure is a substance showing a diffraction pattern attributed to a spinel structure compound in an X-ray diffraction test, and has been confirmed by analysis with SEM / EDS, EPMA, SPM or the like. When the maximum particle size of the particles having a spinel structure is 3 μm or less, abnormal discharge is further suppressed, which is particularly preferable.
このスピネル構造を有する粒子は、金属元素M(但し、Mはアルミニウムおよび/またはガリウムを示す)を含有することが必須であり、この場合に比較的安定した放電特性が得られやすい。金属元素Mとしては、アルミニウムが好ましい。この理由は、アルミニウムは、取扱性が良好で、かつ原料が安価であり、生産性に問題がないためである。このときスピネル構造を有する粒子は主としてZnAl2O4として表される。 The particles having the spinel structure must contain the metal element M (where M represents aluminum and / or gallium), and in this case, relatively stable discharge characteristics are easily obtained. As the metal element M, aluminum is preferable. This is because aluminum is easy to handle, the raw materials are inexpensive, and there is no problem in productivity. At this time, particles having a spinel structure are mainly expressed as ZnAl 2 O 4 .
この金属元素Mの含有量は、本発明の複合酸化物焼結体を構成する亜鉛と金属元素Mを原子比で表したときに、M/(Zn+M)=0.006〜0.07を満たすものである。このような範囲とすることにより、本発明の複合酸化物焼結体から成るスパッタリングターゲットを用いて成膜した場合に、得られた薄膜の抵抗率を低くすることが可能である。 The content of the metal element M satisfies M / (Zn + M) = 0.006 to 0.07 when the zinc constituting the composite oxide sintered body of the present invention and the metal element M are represented by an atomic ratio. Is. By setting it as such a range, when it forms into a film using the sputtering target which consists of complex oxide sintered compact of this invention, it is possible to make the resistivity of the obtained thin film low.
なお、本発明の複合酸化物焼結体には、他の元素が含まれていても良く、例えば、Ti、Zr、In、Si、Ge、Sn、V、Cr、W等を例示することができる。例えばInは、本発明の複合酸化物焼結体の主に六方晶系ウルツ型構造を有する粒子内に存在してもよい。 Note that the complex oxide sintered body of the present invention may contain other elements, and examples thereof include Ti, Zr, In, Si, Ge, Sn, V, Cr, W, and the like. it can. For example, In may be present in particles having a hexagonal wurtzite structure in the composite oxide sintered body of the present invention.
本発明の複合酸化物焼結体中のスピネル構造を有する粒子同士の粒子間距離は0.5μm以上のものが個数頻度で10%以上である。このような粒子間距離の大きい分散状態とすることにより、本発明の複合酸化物焼結体から成るスパッタリングターゲットを用いて成膜した場合に、スパッタリング中の異常放電現象をより一層抑制することが可能となる。 The inter-particle distance between the particles having a spinel structure in the composite oxide sintered body of the present invention is 10% or more in terms of the number frequency of 0.5 μm or more. By forming such a dispersed state with a large interparticle distance, the abnormal discharge phenomenon during sputtering can be further suppressed when a film is formed using a sputtering target comprising the composite oxide sintered body of the present invention. It becomes possible.
なお本発明において、スピネル構造を有する粒子同士の粒子間距離とは、あるスピネル構造を有する粒子と、それと最も近い距離にあるスピネル構造を有する粒子との距離をいい、その求め方は以下のとおりである。即ち、本発明の複合酸化物焼結体の焼肌面から500μm以上内部を鏡面研磨加工し、その面において単位面積20μm×25μmをEPMAによる組成マッピング図と走査型顕微鏡による2次電子像を撮影し、その2つの像を比較することによりスピネル構造を有する粒子同士の粒子間距離を求めることができる。 In the present invention, the interparticle distance between particles having a spinel structure refers to the distance between a particle having a spinel structure and a particle having a spinel structure closest to the particle, and the method for obtaining the distance is as follows. It is. That is, the interior of the composite oxide sintered body of the present invention is mirror-polished at 500 μm or more from the burned surface, and a unit area of 20 μm × 25 μm is photographed on the surface by a composition mapping diagram by EPMA and a secondary electron image by a scanning microscope. Then, the distance between particles having a spinel structure can be determined by comparing the two images.
組成マッピング図及び2次電子像撮影については倍率2000倍以上が好ましく、この倍率で観察することにより、測定誤差を小さくすることができる。また、単位面積が20μm×25μmあれば、本発明の複合酸化物焼結体中のスピネル構造を有する粒子同士の粒子間距離の代表値として捉えることができると考えられる。また測定箇所については、簡易的に1ヶ所のみの測定でも問題はないが、通常、6ヶ所を測定することが好ましい。 For the composition mapping diagram and secondary electron image photographing, a magnification of 2000 times or more is preferable. By observing at this magnification, the measurement error can be reduced. Further, if the unit area is 20 μm × 25 μm, it can be considered as a representative value of the interparticle distance between particles having a spinel structure in the composite oxide sintered body of the present invention. As for the measurement location, there is no problem even if measurement is simple at only one location, but it is usually preferable to measure 6 locations.
なお、本発明において、スピネル構造を有する粒子とは、1次粒子であっても2次粒子であっても良く、そのいずれかが本発明の規定を満たせば良い。 In the present invention, the particles having a spinel structure may be primary particles or secondary particles, and any of them may satisfy the provisions of the present invention.
次に、本発明の複合酸化物焼結体の製造方法について説明する。 Next, a method for producing the composite oxide sintered body of the present invention will be described.
原料粉末としては、酸化亜鉛粉末および金属元素Mの酸化物粉末を用いる。これらの粉末は、取扱性を考慮するとBET値が10〜20m2/gであることが好ましく、これにより本発明の複合酸化物焼結体を得ることが容易となる。BET値が10m2/gよりも小さい粉末の場合は、粉砕処理を行ってBET値が10〜20m2/gの粉末としてから用いることが好ましい。またBET値が20m2/gよりも大きい粉末を使用することも可能であるが、粉末が嵩高くなるため、取り扱い性を改善するために圧密処理等を行うことが好ましい。 As the raw material powder, zinc oxide powder and metal element M oxide powder are used. These powders preferably have a BET value of 10 to 20 m 2 / g in view of handleability, and this makes it easy to obtain the composite oxide sintered body of the present invention. If BET value is less powder than 10 m 2 / g, BET value by performing the pulverization treatment is preferably used after a powder of 10 to 20 m 2 / g. Although it is possible to use a powder having a BET value larger than 20 m 2 / g, since the powder becomes bulky, it is preferable to perform a consolidation treatment or the like in order to improve handleability.
次に、この原料粉末を原子比で表したときにM/(Zn+M)=0.006〜0.07となるよう混合する。混合は、1mmφ以下のビーズを用いた湿式ビーズミルで行う。ジルコニア、アルミナ、ナイロン樹脂等のビーズを用いることが好ましい。 Next, when this raw material powder is represented by atomic ratio, it mixes so that it may become M / (Zn + M) = 0.006-0.07. Mixing is performed by a wet bead mill using beads of 1 mmφ or less. It is preferable to use beads such as zirconia, alumina, and nylon resin.
混合を行うに際しては、スラリー中に添加物を共存させても良い。添加物としては、一般にバインダー、分散剤、可塑剤、消泡剤等と称される有機系添加剤が好ましく用いられる。中でも、ポリカルボン酸系、アクリル系、アルコール系、水溶性ワックス類、エマルジョン系添加剤等の添加剤が好ましく、具体的にはポリカルボン酸アンモニウム塩、ポリアクリル酸、アクリル酸メタクリル酸共重合体、ポリビニルアルコール、ポリエチレングリコール、ステアリン酸エマルジョン等が好ましい。これらの添加剤は、単独でまたは2種以上組み合わせて用いることが可能である。添加量は、原料粉末に対して固形分換算で0.3重量%以下が好ましい。 When mixing, an additive may be allowed to coexist in the slurry. As additives, organic additives generally called binders, dispersants, plasticizers, antifoaming agents and the like are preferably used. Among these, additives such as polycarboxylic acid-based, acrylic-based, alcohol-based, water-soluble waxes, and emulsion-based additives are preferable. Specifically, polycarboxylic acid ammonium salt, polyacrylic acid, acrylic acid-methacrylic acid copolymer Polyvinyl alcohol, polyethylene glycol, stearic acid emulsion and the like are preferable. These additives can be used alone or in combination of two or more. The addition amount is preferably 0.3% by weight or less in terms of solid content with respect to the raw material powder.
混合では、スラリー中に各原料粉末を均一分散させることが肝要である。そのために、スラリー粘度は2000mPa・s以下が好ましく、また混合により原料粉末のBET値が2m2/g以上大きくなるよう混合することが好ましい。このとき、スラリー中の固形分濃度は50重量%以上、かつpH=7〜11とすることが好ましい。固形分濃度を50重量%以上とするのは生産性を向上させるためであり、pH=7〜11とするのは原料の酸化亜鉛粉末の取り扱い性に配慮するためである。なお、混合前のBET値は原料粉末の重量組成比換算で求めた値を用い、混合後のBET値はスラリーを乾燥後に測定される。 In mixing, it is important to uniformly disperse each raw material powder in the slurry. Therefore, the slurry viscosity is preferably 2000 mPa · s or less, and mixing is preferably performed so that the BET value of the raw material powder is increased by 2 m 2 / g or more by mixing. At this time, the solid content concentration in the slurry is preferably 50% by weight or more and pH = 7 to 11. The reason why the solid content concentration is 50% by weight or more is to improve productivity, and the pH is set to 7 to 11 in order to consider the handleability of the raw material zinc oxide powder. In addition, the BET value before mixing uses the value calculated | required by weight composition ratio conversion of the raw material powder, and the BET value after mixing is measured after drying a slurry.
また混合操作は、さらに均一性を向上させるために、回分操作を行うことが好ましい。すなわち、1ロット分の原料粉末を混合するに際し、各原料粉末をそれぞれが目的とする組成になるようにいくつかに分割し、初めにそれぞれを混合し、最終的にそれらを1ロットに混合する方法である。 The mixing operation is preferably a batch operation in order to further improve the uniformity. That is, when mixing one lot of raw material powder, each raw material powder is divided into several parts so that each has the desired composition, and each is first mixed and finally mixed into one lot. Is the method.
次に、湿式ビーズミルで均一混合されたスラリーを成形する。鋳込み成形等の湿式成形方法では、スラリーをそのまま用いることが可能であるが、乾式成形の場合には、乾燥する必要がある。この乾燥方法は特に限定されるものではないが、例えば、濾過乾燥、流動層乾燥、噴霧乾燥等が例示できる。中でもスプレードライヤーによる噴霧乾燥は、生産性が高いとともに、得られる造粒粉末の流動性が良好であることから、乾式成形を用いる場合には好適な乾燥方法として重宝される。 Next, the uniformly mixed slurry is formed by a wet bead mill. In a wet molding method such as cast molding, the slurry can be used as it is, but in the case of dry molding, it needs to be dried. This drying method is not particularly limited, and examples thereof include filtration drying, fluidized bed drying, and spray drying. Above all, spray drying with a spray dryer is highly useful as a suitable drying method when dry molding is used because of high productivity and good fluidity of the resulting granulated powder.
成形方法は、目的とした形状に成形できる成形方法を適宜選択することが肝要であり、特に限定されるものではない。プレス成形法、鋳込み成形法等の乾式、湿式の成形方法が例示できる。成形圧力はクラック等の発生がなく、取り扱いが可能な成形体であれば特に限定されるものではないが、成形密度は可能な限り、高めた方がより好ましい。そのために冷間静水圧成形(CIP)等の方法を用いることも可能である。 As the molding method, it is important to appropriately select a molding method that can be molded into a desired shape, and is not particularly limited. Examples thereof include dry and wet molding methods such as press molding and cast molding. The molding pressure is not particularly limited as long as it does not cause cracks and can be handled, but it is more preferable to increase the molding density as much as possible. Therefore, it is also possible to use a method such as cold isostatic pressing (CIP).
次に得られた成形体を焼成する。焼成温度は800〜1600℃が好ましく、特に1100〜1400℃に範囲が酸化亜鉛系複合酸化物特有の揮発消失が抑制され、かつ焼結密度を比較的高められるのでより好ましい。焼結密度は4.7g/cm3以上が好ましく、これにより取り扱いに優れ、スパッタリング時の破損等を減らすことができる。 Next, the obtained molded body is fired. The firing temperature is preferably from 800 to 1600 ° C., and more preferably from 1100 to 1400 ° C., since the volatilization disappearance peculiar to the zinc oxide-based composite oxide is suppressed and the sintered density can be relatively increased. The sintered density is preferably 4.7 g / cm 3 or more, which makes it easy to handle and can reduce damage during sputtering.
焼成時間は特に限定されるものではないが、通常1〜48時間であり、特に好ましくは3〜24時間である。これは、本発明の複合酸化物焼結体中の均質性を確保し、かつ生産性への影響を考慮したものである。 The firing time is not particularly limited, but is usually 1 to 48 hours, particularly preferably 3 to 24 hours. This ensures the homogeneity in the complex oxide sintered body of the present invention and considers the influence on the productivity.
昇温速度は特に限定されるものではないが、800℃以上の温度域では100℃/h以下であることが好ましい。これは、本発明の複合酸化物焼結体中のスピネル構造を有する粒子の粒成長を抑制し、かつ均質性を高めるためである。 The rate of temperature increase is not particularly limited, but is preferably 100 ° C./h or less in a temperature range of 800 ° C. or higher. This is for suppressing the grain growth of particles having a spinel structure in the composite oxide sintered body of the present invention and enhancing the homogeneity.
焼成雰囲気は特に限定されるものではないが、例えば、大気中、酸素中、不活性ガス雰囲気中等が適宜選択される。また、焼成時の圧力も特に限定されるものではなく、常圧以外に加圧、減圧状態での焼成も可能である。また、HIP法やホットプレス焼結等も可能である。 Although the firing atmosphere is not particularly limited, for example, the atmosphere, oxygen, inert gas atmosphere, or the like is appropriately selected. Moreover, the pressure at the time of baking is not specifically limited, In addition to a normal pressure, baking in a pressurization and pressure reduction state is also possible. Moreover, HIP method, hot press sintering, etc. are also possible.
本発明の複合酸化物焼結体から成るスパッタリングターゲットを用いて成膜することにより、スパッタリング中の異常放電現象を著しく低減でき、その際に飛散するパーティクルによる歩留まり低下や生産性の低下を抑制することが可能となる。 By forming a film using the sputtering target composed of the composite oxide sintered body of the present invention, the abnormal discharge phenomenon during sputtering can be remarkably reduced, and the decrease in yield and productivity due to scattered particles are suppressed at that time. It becomes possible.
本発明を以下の実施例により具体的に説明するが、本発明はこれに限定されるものではない。 The present invention will be specifically described by the following examples, but the present invention is not limited thereto.
実施例1
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表1に示した組成になるように0.5mmφのジルコニア製ビーズを用いた湿式ビーズミルで混合した。このとき、分散剤としてポリカルボン酸アンモニウム塩を原料粉末に対して固形分換算で0.2重量%添加した。得られたスラリー粘度は17mPa・s、pH=9.5、混合後のBET値は6.9m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表1に示す。即ち、XRD、SEM/EDS、EPMAでの分析により、酸化亜鉛を含有し六方晶系ウルツ型構造を有する粒子とスピネル構造を有する粒子を観察、マッピングし、六方晶系ウルツ型構造を有する粒子の平均粒径、スピネル構造を有する粒子の最大粒径、スピネル型構造を有する粒子の粒子間距離を求めた。スピネル型構造を有する粒子の粒子間距離は前述の方法で求め、0.5μm以上のものが個数頻度で10%以上の場合を「○」、10%未満の場合を「×」とした。
Example 1
Zirconia beads having a diameter of 0.5 mmφ were used so that the composition shown in Table 1 was made of a zinc oxide powder having a BET of 4 m 2 / g and a purity of 99.8% and an aluminum oxide powder having a BET of 14 m 2 / g and a purity of 99.99%. Mix in wet bead mill. At this time, polycarboxylic acid ammonium salt was added as a dispersant in an amount of 0.2% by weight in terms of solid content with respect to the raw material powder. The obtained slurry viscosity was 17 mPa · s, pH = 9.5, and the BET value after mixing was 6.9 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 1 shows the characteristics of the obtained sintered body. That is, by analysis with XRD, SEM / EDS, EPMA, particles having a hexagonal wurtzite structure containing zinc oxide and particles having a spinel structure are observed and mapped, and particles having a hexagonal wurtzite structure are observed. The average particle size, the maximum particle size of particles having a spinel structure, and the interparticle distance of particles having a spinel structure were determined. The inter-particle distance of the particles having a spinel structure was determined by the above-described method. The case where the number of particles having a diameter of 0.5 μm or more was 10% or more was “◯”, and the case where the number was less than 10% was “X”.
この焼結体を4インチφサイズに加工してターゲットとし、スパッタリング評価を行った。スパッタリング条件は、DCマグネトロンスパッタ装置、基板温度200℃、到達真空度5×10−5Pa、スパッタリングガスAr、スパッタリングガス圧0.5Pa、DCパワー300Wとした。放電特性は、単位時間当たりに発生した異常放電回数として評価し、10回未満/時間を「○」、10〜100回未満/時間を「△」、100回以上/時間を「×」とした。結果を表1に示す。なお、表1に記載のM量は、使用した酸化亜鉛粉末および金属元素Mの酸化物粉末を原子比で表したときのM/(Zn+M)を示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed. The sputtering conditions were a DC magnetron sputtering apparatus, a substrate temperature of 200 ° C., an ultimate vacuum of 5 × 10 −5 Pa, a sputtering gas Ar, a sputtering gas pressure of 0.5 Pa, and a DC power of 300 W. The discharge characteristics were evaluated as the number of abnormal discharges that occurred per unit time, and less than 10 times / hour was “◯”, less than 10 to 100 times / hour was “Δ”, and more than 100 times / hour was “x”. . The results are shown in Table 1. In addition, the amount of M described in Table 1 indicates M / (Zn + M) when the zinc oxide powder and the oxide powder of the metal element M used are represented by an atomic ratio.
実施例2
BET12.7m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表1に示した組成になるように0.5mmφのアルミナ製ビーズを用いた湿式ビーズミルで混合した。このとき、分散剤としてポリカルボン酸アンモニウム塩を原料粉末に対して固形分換算で0.2重量%添加した。得られたスラリー粘度は23mPa・s、pH=9.2、混合後のBET値は15.3m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で3時間行った。得られた焼結体の特性を表1に示す。
Example 2
BET 12.7 m 2 / g, zinc oxide powder with a purity of 99.8% and BET 14 m 2 / g, aluminum oxide powder with a purity of 99.99% are made of 0.5 mmφ alumina beads so as to have the composition shown in Table 1. It mixed with the used wet bead mill. At this time, polycarboxylic acid ammonium salt was added as a dispersant in an amount of 0.2% by weight in terms of solid content with respect to the raw material powder. The obtained slurry viscosity was 23 mPa · s, pH = 9.2, and the BET value after mixing was 15.3 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 3 hours. Table 1 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表1に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
実施例3
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表1に示した組成になるように1.0mmφのアルミナ製ビーズを用いた湿式ビーズミルで混合した。このときのスラリー粘度は10mPa・s、pH=8.9、混合後のBET値は6.8m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1200℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表1に示す。
Example 3
BET 4 m 2 / g, 99.8% purity zinc oxide powder and BET 14 m 2 / g, 99.99% purity aluminum oxide powder were used with 1.0 mmφ alumina beads so that the composition shown in Table 1 was obtained. Mix in wet bead mill. At this time, the slurry viscosity was 10 mPa · s, pH = 8.9, and the BET value after mixing was 6.8 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1200 ° C. in a nitrogen atmosphere for 5 hours. Table 1 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表1に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
実施例4
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表1に示した組成になるように秤量し、それぞれ2等分してそれぞれを0.3mmφのジルコニア製ビーズを用いた湿式ビーズミルで混合した。さらに両者をあわせて1ロットとして同様に湿式ビーズミルで混合した。このときのスラリー粘度は800mPa・s、pH=9.4、混合後のBET値は7.9m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1500℃、大気雰囲気で12時間行った。得られた焼結体の特性を表1に示す。
Example 4
BET 4 m 2 / g, zinc oxide powder with a purity of 99.8% and BET 14 m 2 / g, aluminum oxide powder with a purity of 99.99% were weighed to the composition shown in Table 1, and divided into two equal parts. Were mixed in a wet bead mill using 0.3 mmφ zirconia beads. Further, both were combined into one lot and mixed in the same manner using a wet bead mill. At this time, the slurry viscosity was 800 mPa · s, pH = 9.4, and the BET value after mixing was 7.9 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1500 ° C. in an air atmosphere for 12 hours. Table 1 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表1に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
実施例5
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表1に示した組成になるように秤量し、それぞれ4等分してそれぞれを0.3mmφのアルミナ製ビーズを用いた湿式ビーズミルで混合した。さらにそれらをあわせて1ロットとして同様に湿式ビーズミルで混合した。このとき、分散剤としてポリカルボン酸アンモニウム塩を原料粉末に対して固形分換算で0.1重量%添加した。得られたスラリー粘度は1225mPa・s、pH=9.8、混合後のBET値は12.8m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表1に示す。
Example 5
BET 4 m 2 / g, zinc oxide powder with a purity of 99.8% and BET 14 m 2 / g, aluminum oxide powder with a purity of 99.99% were weighed to have the composition shown in Table 1, and divided into 4 equal parts. Were mixed in a wet bead mill using 0.3 mmφ alumina beads. Further, they were combined into one lot and similarly mixed by a wet bead mill. At this time, 0.1 wt% of polycarboxylic acid ammonium salt was added as a dispersant in terms of solid content to the raw material powder. The obtained slurry viscosity was 1225 mPa · s, pH = 9.8, and the BET value after mixing was 12.8 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 1 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表1に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
実施例6
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表1に示した組成になるように1.0mmφのアルミナ製ビーズを用いた湿式ビーズミルで混合した。このとき、分散剤としてポリカルボン酸アンモニウム塩を原料粉末に対して固形分換算で0.15重量%添加した。得られたスラリー粘度は17mPa・s、pH=9.1、混合後のBET値は6.9m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1100℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表1に示す。
Example 6
BET 4 m 2 / g, 99.8% purity zinc oxide powder and BET 14 m 2 / g, 99.99% purity aluminum oxide powder were used with 1.0 mmφ alumina beads so that the composition shown in Table 1 was obtained. Mix in wet bead mill. At this time, 0.15% by weight of polycarboxylic acid ammonium salt as a dispersant was added to the raw material powder in terms of solid content. The obtained slurry viscosity was 17 mPa · s, pH = 9.1, and the BET value after mixing was 6.9 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1100 ° C. in a nitrogen atmosphere for 5 hours. Table 1 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表1に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
実施例7
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表1に示した組成になるように0.5mmφのアルミナ製ビーズを用いた湿式ビーズミルで混合した。このとき、分散剤としてポリカルボン酸アンモニウム塩を原料粉末に対して固形分換算で0.l重量%添加した。得られたスラリー粘度は1800mPa・s、pH=9.3、混合後のBET値は7.3m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表1に示す。
Example 7
BET4m 2 / g, 99.8% pure zinc oxide powder and BET14m 2 / g, 99.99% pure aluminum oxide powder 0.5mmφ alumina beads were used so as to have the composition shown in Table 1. Mix in wet bead mill. At this time, a polycarboxylic acid ammonium salt as a dispersant is added to the raw material powder in a solid content conversion of 0.00. 1% by weight was added. The obtained slurry viscosity was 1800 mPa · s, pH = 9.3, and the BET value after mixing was 7.3 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 1 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表1に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
実施例8
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET8m2/g、純度99.99%の酸化ガリウム粉末を表1に示した組成になるように0.4mmφのアルミナ製ビーズを用いた湿式ビーズミルで混合した。このとき、分散剤としてポリカルボン酸アンモニウム塩を原料粉末に対して固形分換算で0.15重量%添加した。得られたスラリー粘度は250mPa・s、pH=9.1、混合後のBET値は6.6m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表1に示す。
Example 8
BET4m 2 / g, 99.8% purity zinc oxide powder and BET8m 2 / g, 99.99% purity gallium oxide powder 0.4mmφ alumina beads were used so as to have the composition shown in Table 1. Mix in wet bead mill. At this time, 0.15% by weight of polycarboxylic acid ammonium salt as a dispersant was added to the raw material powder in terms of solid content. The obtained slurry viscosity was 250 mPa · s, pH = 9.1, and the BET value after mixing was 6.6 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 1 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表1に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
実施例9
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末、BET8m2/g、純度99.99%の酸化ガリウム粉末を表1に示した組成になるように0.5mmφのアルミナ製ビーズを用いた湿式ビーズミルで混合した。このとき、分散剤としてポリカルボン酸アンモニウム塩を原料粉末に対して固形分換算で0.2重量%添加した。得られたスラリー粘度は55mPa・s、pH=9.3、混合後のBET値は6.9m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表1に示す。
Example 9
Table 1 shows a zinc oxide powder having a BET of 4 m 2 / g and a purity of 99.8% and a BET of 14 m 2 / g, an aluminum oxide powder having a purity of 99.99%, and a gallium oxide powder having a BET of 8 m 2 / g and a purity of 99.99%. The mixture was mixed by a wet bead mill using 0.5 mmφ alumina beads so as to have a composition. At this time, polycarboxylic acid ammonium salt was added as a dispersant in an amount of 0.2% by weight in terms of solid content with respect to the raw material powder. The obtained slurry viscosity was 55 mPa · s, pH = 9.3, and the BET value after mixing was 6.9 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 1 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表1に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表2に示した組成になるように1.0mmφのジルコニア製ビーズを用いた湿式ビーズミルで混合した。得られたスラリー粘度は3500mPa・s、pH=9.8、混合後のBET値は5.1m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表2に示す。
BET4m 2 / g, using zirconia beads of 1.0mmφ to a purity of 99.8% zinc oxide powder and BET14m 2 / g, a purity of 99.99% aluminum oxide powder to obtain the compositions shown in Table 2 Mix in wet bead mill. The obtained slurry viscosity was 3500 mPa · s, pH = 9.8, and the BET value after mixing was 5.1 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 2 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表2に示す。なお、表2に記載の各項目は表1と同様の意味を示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 2. Each item described in Table 2 has the same meaning as in Table 1.
比較例2
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表2に示した組成になるように3mmφのアルミナ製ビーズを用いた湿式ビーズミルで混合した。このとき、分散剤としてポリカルボン酸アンモニウム塩を原料粉末に対して固形分換算で0.05重量%添加した。得られたスラリー粘度は14mPa・s、pH=9.2、混合後のBET値は5.3m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表2に示す。
Comparative Example 2
Wet bead mill using BET4m 2 / g, 99.8% pure zinc oxide powder and BET14m 2 / g, 99.99% pure aluminum oxide powder with 3mmφ alumina beads to have the composition shown in Table 2 Mixed. At this time, 0.05% by weight of a polycarboxylic acid ammonium salt as a dispersant was added to the raw material powder in terms of solid content. The obtained slurry viscosity was 14 mPa · s, pH = 9.2, and the BET value after mixing was 5.3 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 2 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表2に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
比較例3
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表2に示した組成になるように15mmφのアルミナ製ボールを用いた乾式ボールミルで混合した。得られた混合粉末のBET値は5.2m2/gであった。この混合粉末を3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表2に示す。
Comparative Example 3
BET4m 2 / g, a dry ball mill purity of 99.8% zinc oxide powder and BET14m 2 / g, a purity of 99.99% aluminum oxide powder with alumina balls 15mmφ so that the composition shown in Table 2 Mixed. The BET value of the obtained mixed powder was 5.2 m 2 / g. This mixed powder was CIP molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 2 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表2に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
比較例4
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET14m2/g、純度99.99%の酸化アルミニウム粉末を表2に示した組成になるように15mmφのアルミナ製ボールを用いた湿式ボールミルで混合した。このとき、分散剤としてポリカルボン酸アンモニウム塩を原料粉末に対して固形分換算で0.5重量%添加した。得られたスラリー粘度は450mPa・s、pH=9.0、混合後のBET値は6.5m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表2に示す。
Comparative Example 4
BET4m 2 / g, a wet ball mill to a purity of 99.8% zinc oxide powder and BET14m 2 / g, a purity of 99.99% aluminum oxide powder with alumina balls 15mmφ so that the composition shown in Table 2 Mixed. At this time, 0.5 wt% of polycarboxylic acid ammonium salt was added as a dispersant in terms of solid content with respect to the raw material powder. The obtained slurry viscosity was 450 mPa · s, pH = 9.0, and the BET value after mixing was 6.5 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 2 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表2に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
比較例5
BET4m2/g、純度99.8%の酸化亜鉛粉末とBET8m2/g、純度99.99%の酸化ガリウム粉末を表2に示した組成になるように5mmφのジルコニア製ビーズを用いた湿式ビーズミルで混合した。得られたスラリー粘度は4100mPa・s、pH=9.1、混合後のBET値は5.0m2/gであった。得られたスラリーをスプレードライヤーで噴霧乾燥した後、3.0ton/cm2で直径150mm、厚さ12mmにCIP成形した。焼結は1400℃、窒素雰囲気で5時間行った。得られた焼結体の特性を表2に示す。
Comparative Example 5
BET4m 2 / g, a purity of 99.8% zinc oxide powder and BET8m 2 / g, a wet bead mill with 99.99% purity gallium oxide powder with zirconia beads 5mmφ so that the composition shown in Table 2 Mixed. The obtained slurry viscosity was 4100 mPa · s, pH = 9.1, and the BET value after mixing was 5.0 m 2 / g. The obtained slurry was spray-dried with a spray dryer, and then CIP-molded at 3.0 ton / cm 2 to a diameter of 150 mm and a thickness of 12 mm. Sintering was performed at 1400 ° C. in a nitrogen atmosphere for 5 hours. Table 2 shows the characteristics of the obtained sintered body.
この焼結体を4インチφサイズに加工してターゲットとし、実施例1と同様にしてスパッタリング評価を行った。結果を表2に示す。 This sintered body was processed into a 4-inch φ size as a target, and sputtering evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
Claims (4)
および
(B)金属元素M(但し、Mはアルミニウムを示す)を含有し最大粒径が5μm以下のスピネル構造を有する粒子
からなるスパッタリングターゲット用複合酸化物焼結体であって、
当該焼結体を構成する亜鉛と金属元素Mを原子比で表したときにM/(Zn+M)=0.024〜0.04であり、かつ、当該焼結体中のスピネル構造を有する粒子同士の粒子間距離は0.5μm以上のものが個数頻度で10%以上であることを特徴とするスパッタリングターゲット用複合酸化物焼結体。 (A) particles having a hexagonal wurtzite structure containing zinc oxide and having an average particle size of 10 μm or less,
And (B) a metal element M (where, M represents an aluminum) a composite oxide sintered body for a sputtering target maximum particle size containing consists particles having the spinel structure 5 [mu] m,
When the zinc and the metal element M constituting the sintered body are represented by an atomic ratio, M / (Zn + M) = 0.024 to 0.04 , and particles having a spinel structure in the sintered body The composite oxide sintered body for a sputtering target is characterized in that the distance between particles is 0.5% or more and the number frequency is 10% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009162110A JP5727130B2 (en) | 2008-08-18 | 2009-07-08 | Composite oxide sintered body and use thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008209820 | 2008-08-18 | ||
JP2008209820 | 2008-08-18 | ||
JP2009162110A JP5727130B2 (en) | 2008-08-18 | 2009-07-08 | Composite oxide sintered body and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010070448A JP2010070448A (en) | 2010-04-02 |
JP5727130B2 true JP5727130B2 (en) | 2015-06-03 |
Family
ID=41707152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009162110A Active JP5727130B2 (en) | 2008-08-18 | 2009-07-08 | Composite oxide sintered body and use thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5727130B2 (en) |
TW (1) | TW201026629A (en) |
WO (1) | WO2010021274A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5418105B2 (en) * | 2009-09-18 | 2014-02-19 | 東ソー株式会社 | Composite oxide sintered body, oxide transparent conductive film, and manufacturing method thereof |
JP5969493B2 (en) | 2011-11-04 | 2016-08-17 | 株式会社フェローテックセラミックス | Sputtering target and manufacturing method thereof |
WO2013136948A1 (en) * | 2012-03-13 | 2013-09-19 | 日本碍子株式会社 | Method for producing zinc oxide single crystal |
JP6278229B2 (en) * | 2012-08-10 | 2018-02-14 | 三菱マテリアル株式会社 | Sputtering target for forming transparent oxide film and method for producing the same |
WO2014155883A1 (en) | 2013-03-25 | 2014-10-02 | 日本碍子株式会社 | Zinc oxide sputtering target |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5358891B2 (en) * | 2006-08-11 | 2013-12-04 | 日立金属株式会社 | Method for producing sintered zinc oxide |
JP4231967B2 (en) * | 2006-10-06 | 2009-03-04 | 住友金属鉱山株式会社 | Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same |
JP5143410B2 (en) * | 2006-12-13 | 2013-02-13 | 出光興産株式会社 | Manufacturing method of sputtering target |
JP5237558B2 (en) * | 2007-01-05 | 2013-07-17 | 出光興産株式会社 | Sputtering target and oxide semiconductor film |
-
2009
- 2009-07-08 JP JP2009162110A patent/JP5727130B2/en active Active
- 2009-08-11 WO PCT/JP2009/064188 patent/WO2010021274A1/en active Application Filing
- 2009-08-17 TW TW98127594A patent/TW201026629A/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2010070448A (en) | 2010-04-02 |
TW201026629A (en) | 2010-07-16 |
WO2010021274A1 (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5625907B2 (en) | Composite oxide sintered body, composite oxide sintered body manufacturing method, sputtering target, and thin film manufacturing method | |
TWI471441B (en) | Oxide sintered body for sputtering and its manufacturing method | |
JP5024226B2 (en) | Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film | |
JP4488184B2 (en) | Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film | |
KR101859787B1 (en) | Sintered composite oxide, manufacturing method therefor, sputtering target, transparent conductive oxide film, and manufacturing method therefor | |
JP5727130B2 (en) | Composite oxide sintered body and use thereof | |
JP2009249187A (en) | Zinc oxide sintered compact, its producing method, sputtering target and electrode | |
TWI655166B (en) | Oxide sintered body sputtering target and manufacturing method thereof | |
JP5585046B2 (en) | Composite oxide sintered body, target and oxide transparent conductive film | |
JP2010120803A (en) | Multiple oxide sintered compact | |
JP6159867B1 (en) | Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method | |
JP5418105B2 (en) | Composite oxide sintered body, oxide transparent conductive film, and manufacturing method thereof | |
CN105008306B (en) | Zinc oxide-based sintered object, process for producing same, sputtering target, and transparent conductive film | |
JP2015187062A (en) | oxide sintered body and oxide transparent conductive film | |
JP6677058B2 (en) | Sn-Zn-O-based oxide sintered body and method for producing the same | |
JP7328246B2 (en) | sintered body | |
KR20170069933A (en) | Sputtering target material | |
JP2018059185A (en) | Sputtering target material | |
JP6155919B2 (en) | Composite oxide sintered body and oxide transparent conductive film | |
JP2011037679A (en) | Multiple oxide sintered compact, sputtering target, multiple oxide amorphous film and production method thereof, and multiple oxide crystalline film and production method thereof | |
JP2010053454A (en) | Indium oxide-zinc oxide-magnesium oxide-based sputtering target, and transparent electroconductive film | |
WO2015052927A1 (en) | Sputtering target and method for producing same | |
TWI748971B (en) | Sn-Zn-O series oxide sintered body and its manufacturing method | |
JP2017149594A (en) | Oxide sintered body and oxide transparent conductive film | |
JP6747003B2 (en) | Oxide sintered body and oxide transparent conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130305 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130419 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140303 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140310 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150402 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5727130 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |