JP6637948B2 - IZO target and method for manufacturing the same - Google Patents
IZO target and method for manufacturing the same Download PDFInfo
- Publication number
- JP6637948B2 JP6637948B2 JP2017227269A JP2017227269A JP6637948B2 JP 6637948 B2 JP6637948 B2 JP 6637948B2 JP 2017227269 A JP2017227269 A JP 2017227269A JP 2017227269 A JP2017227269 A JP 2017227269A JP 6637948 B2 JP6637948 B2 JP 6637948B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- izo
- present
- izo target
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000000843 powder Substances 0.000 claims description 86
- 239000002245 particle Substances 0.000 claims description 74
- 229910052760 oxygen Inorganic materials 0.000 claims description 43
- 238000004544 sputter deposition Methods 0.000 claims description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 39
- 239000001301 oxygen Substances 0.000 claims description 39
- 238000005245 sintering Methods 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 21
- 229910052738 indium Inorganic materials 0.000 claims description 17
- 229910052718 tin Inorganic materials 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 6
- 238000004453 electron probe microanalysis Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 47
- 239000011701 zinc Substances 0.000 description 41
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 35
- 238000010298 pulverizing process Methods 0.000 description 24
- 238000002156 mixing Methods 0.000 description 22
- 229910006404 SnO 2 Inorganic materials 0.000 description 18
- 239000011787 zinc oxide Substances 0.000 description 18
- 238000005477 sputtering target Methods 0.000 description 15
- 239000002994 raw material Substances 0.000 description 13
- 238000000465 moulding Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 238000005469 granulation Methods 0.000 description 8
- 230000003179 granulation Effects 0.000 description 8
- 239000011812 mixed powder Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000011324 bead Substances 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 238000005211 surface analysis Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 238000001354 calcination Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 101150031287 petH gene Proteins 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
- C04B35/457—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
本発明はインジウム亜鉛酸化物(IZO)ターゲット及びその製造方法に関する。また、本発明はインジウム亜鉛酸化物(IZO)ターゲット及びそれを用いた成膜方法に関する。 The present invention relates to an indium zinc oxide (IZO) target and a method for manufacturing the same. Further, the present invention relates to an indium zinc oxide (IZO) target and a film formation method using the same.
インジウム亜鉛酸化物(In2O3−ZnO:一般にIZOと称呼されている)の焼結体を材料とするスパッタリングターゲットは液晶表示装置の透明導電性薄膜やガスセンサーなど多数の電子部品に広く使用されている。IZO膜は、代表的な透明導電性薄膜であるITO膜よりもエッチング速度が大きい、パーティクルの発生が少ない、アモルファス膜が得られる等の利点がある。しかしながら、IZOはITOよりもバルク抵抗率が高く、更には膜抵抗にばらつきが見られるという問題があった。このため、特にDCマグネトロンスパッタリングプロセスでは、スパッタリング中の放電が不安定となる場合があった。 Sputtering targets made of a sintered body of indium zinc oxide (In 2 O 3 -ZnO: generally called IZO) are widely used for many electronic components such as a transparent conductive thin film of a liquid crystal display and a gas sensor. Have been. The IZO film has advantages such as a higher etching rate, less generation of particles, and an amorphous film than an ITO film which is a typical transparent conductive thin film. However, IZO has a problem that the bulk resistivity is higher than that of ITO and that the film resistance varies. For this reason, especially in the DC magnetron sputtering process, the discharge during the sputtering may become unstable.
特許文献1(特開平6−234565号公報)には、IZOにSn等の正三価以上の原子価を有する元素をドープすることで、導電性に優れた透明導電膜が得られることが記載されている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 6-234565) discloses that a transparent conductive film having excellent conductivity can be obtained by doping IZO with an element having a valence of three or more positive valences, such as Sn. ing.
特許文献2(国際公開第2000/68456号)には、非常にわずかなSn量の添加によりバルク抵抗値を下げ、スパッタリングにおいて安定的に放電が可能な透明導電膜形成用IZOスパッタリングターゲットを提供することを目的とした発明が記載されている。具体的には、100〜2000ppmのSnを含有することを特徴とするIn及びZn酸化物を主成分とする透明導電膜形成用IZOスパッタリングターゲットが記載されている。 Patent Document 2 (International Publication No. 2000/68456) provides an IZO sputtering target for forming a transparent conductive film capable of lowering the bulk resistance value by adding a very small amount of Sn and stably discharging in sputtering. The invention aiming at this is described. Specifically, there is described an IZO sputtering target for forming a transparent conductive film mainly containing In and Zn oxides, which contains 100 to 2000 ppm of Sn.
特許文献3(特開2017−014534号公報)には、特許文献2に記載のスパッタリングターゲットでは、ターゲット表面に色ムラが生じやすく、色ムラがなくなるまで表面を研磨する必要があったと記載されている。そして、色ムラをなくすために、Snの含有量を2000ppmより多く20000ppm以下(2000ppm超〜20000ppm)とすることが提案されている。 Patent Literature 3 (Japanese Patent Application Laid-Open No. 2017-014534) describes that in the sputtering target described in Patent Literature 2, color unevenness easily occurs on the target surface, and it was necessary to polish the surface until the color unevenness disappeared. I have. Then, in order to eliminate color unevenness, it has been proposed that the content of Sn is set to be more than 2,000 ppm and 20,000 ppm or less (more than 2,000 ppm to 20,000 ppm).
しかしながら、特許文献1〜3に記載のIZOターゲットを用いると、スパッタ膜の膜抵抗がスパッタリング時の雰囲気中の酸素濃度に依存しやすいことが判明した。より詳細には、これらのIZOターゲットを用いてスパッタリングすると、スパッタリング時の雰囲気中の酸素濃度が低くなるにつれて、スパッタ膜の膜抵抗が有意に高くなる傾向にあることが分かった。また、Snを添加しても必ずしもバルク抵抗が減少するとは限らないことも分かった。アプリケーションによっては低酸素濃度、更には無酸素条件でのスパッタが求められることから、膜抵抗の酸素濃度依存性を軽減することができることが望ましい。特に、近年注目を浴びている有機ELは酸素に弱いため、酸素導入無での成膜が求められることから、低酸素濃度下においても、膜抵抗の低いスパッタ膜が得られることが有利である。 However, it has been found that when the IZO targets described in Patent Documents 1 to 3 are used, the film resistance of the sputtered film tends to depend on the oxygen concentration in the atmosphere during sputtering. More specifically, it has been found that when sputtering is performed using these IZO targets, the film resistance of the sputtered film tends to significantly increase as the oxygen concentration in the atmosphere during sputtering decreases. It was also found that the addition of Sn does not always reduce the bulk resistance. Depending on the application, sputtering under a low oxygen concentration and further under an oxygen-free condition is required. Therefore, it is desirable that the dependency of the film resistance on the oxygen concentration can be reduced. In particular, since organic EL, which has attracted attention in recent years, is sensitive to oxygen, it is necessary to form a film without introducing oxygen. Therefore, it is advantageous to obtain a sputtered film having a low film resistance even under a low oxygen concentration. .
本発明はこのような事情に鑑みて創作されたものであり、スパッタ時の酸素濃度にスパッタ膜の膜抵抗が影響を受け難いIZOターゲットを提供することを課題の一つとする。本発明はそのようなIZOターゲットの製造方法を提供することを別の課題の一つとする。本発明は本発明に係るIZOターゲットを用いた成膜方法を提供することを更に別の課題の一つとする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an IZO target in which the film resistance of a sputtered film is hardly affected by the oxygen concentration during sputtering. Another object of the present invention is to provide a method for manufacturing such an IZO target. Another object of the present invention is to provide a film formation method using the IZO target according to the present invention.
本発明者は上記課題を解決するために鋭意検討したところ、IZOの母相中にIn及びSnを含有するSn偏析粒が分散した焼結体組織をもつIZOターゲットが有効であることが分かった。このようなIZOターゲットは、IZOターゲットの原料粉にITO粉を添加することで製造可能である。当該組織を有するIZOターゲットをスパッタリングターゲットとして用いて成膜したところ、スパッタ雰囲気中の酸素濃度の変化に対して膜抵抗率が変動しにくいことが分かった。使用される用途によってスパッタ中の酸素濃度は異なることが多いが、膜抵抗率がスパッタ雰囲気中の酸素濃度に依存しにくいということは、安定した品質のスパッタ膜を得る上で有利である。 The present inventors have conducted intensive studies to solve the above-mentioned problems, and found that an IZO target having a sintered body structure in which Sn segregated grains containing In and Sn are dispersed in a parent phase of IZO is effective. . Such an IZO target can be manufactured by adding ITO powder to the raw material powder of the IZO target. When a film was formed by using an IZO target having the structure as a sputtering target, it was found that the film resistivity was hardly changed by a change in oxygen concentration in a sputtering atmosphere. Although the oxygen concentration during sputtering often differs depending on the application to be used, the fact that the film resistivity hardly depends on the oxygen concentration in the sputtering atmosphere is advantageous in obtaining a sputtered film of stable quality.
以上の知見を基礎として完成した本発明は一側面において、In、Sn及びZnを、原子比で、Zn/(In+Sn+Zn)=0.030〜0.250、Sn/(In+Sn+Zn)=0.002〜0.080を満たすように含有し、残部がO及び不可避不純物で構成される全体組成を有するIZOターゲットであり、FE−EPMAにて特定されるIn、Sn及びOを含有する粒径200nm以上のSn偏析粒が分散したターゲット組織を有するIZOターゲットである。 In one aspect of the present invention, which has been completed on the basis of the above findings, In / Sn and Zn are represented by atomic ratios of Zn / (In + Sn + Zn) = 0.030 to 0.250 and Sn / (In + Sn + Zn) = 0.002 to It is an IZO target having a total composition of 0.080 and a balance of O and unavoidable impurities, and a particle diameter of 200 nm or more containing In, Sn and O specified by FE-EPMA. This is an IZO target having a target structure in which Sn segregated grains are dispersed.
本発明に係るIZOターゲットは一実地形態において、In、Sn及びZnを、原子比で、Sn/(In+Sn+Zn)=0.010〜0.030を満たすように含有する。 In one embodiment, the IZO target according to the present invention contains In, Sn, and Zn in an atomic ratio so as to satisfy Sn / (In + Sn + Zn) = 0.10 to 0.030.
本発明に係るIZOターゲットは別の一実地形態において、In、Sn及びZnを、原子比で、Zn/(In+Sn+Zn)=0.040〜0.200を満たすように含有する。 In another embodiment, the IZO target according to the present invention contains In, Sn, and Zn so that the atomic ratio satisfies Zn / (In + Sn + Zn) = 0.040 to 0.200.
本発明に係るIZOターゲットは更に別の一実地形態において、ターゲット組織中に粒径200nm以上のSn偏析粒が0.003個/μm2以上の個数密度で存在する。 In still another embodiment of the IZO target according to the present invention, Sn segregated grains having a particle diameter of 200 nm or more are present in the target structure at a number density of 0.003 / μm 2 or more.
本発明に係るIZOターゲットは更に別の一実地形態において、ターゲット組織中に粒径1000nm以上のSn偏析粒が0.0003個/μm2以上の個数密度で存在する。 In still another practical embodiment of the IZO target according to the present invention, Sn segregated grains having a particle diameter of 1000 nm or more are present in the target structure at a number density of 0.0003 / μm 2 or more.
本発明に係るIZOターゲットは更に別の一実地形態において、相対密度が90%以上である。 In still another embodiment, the IZO target according to the present invention has a relative density of 90% or more.
本発明に係るIZOターゲットは更に別の一実地形態において、バルク抵抗が0.3mΩ・cm以上7.0mΩ・cm未満である。 In still another embodiment, the IZO target according to the present invention has a bulk resistance of 0.3 mΩ · cm or more and less than 7.0 mΩ · cm.
本発明に係るIZOターゲットは更に別の一実地形態において、前記Sn偏析粒の平均粒径が、450nm以上9000nm以下である。 In still another embodiment of the IZO target according to the present invention, the Sn segregated particles have an average particle size of 450 nm or more and 9000 nm or less.
本発明に係るIZOターゲットは更に別の一実地形態において、ターゲット組織中に粒径10000nm以上のSn偏析粒が0.0002個/μm2以下の個数密度で存在する。 In another embodiment of the IZO target according to the present invention, Sn segregated grains having a particle diameter of 10,000 nm or more are present in the target structure at a number density of 0.0002 / μm 2 or less.
本発明に係るIZOターゲットは更に別の一実地形態において、Bを、原子比で、B/(In+Sn+Zn+B)=0.036以下を満たすように更に含有する。 In still another embodiment, the IZO target according to the present invention further contains B so that the atomic ratio satisfies B / (In + Sn + Zn + B) = 0.036 or less.
本発明は別の一側面において、ITO粉、In2O3粉及びZnO粉の混合物を焼結する工程を含む本発明に係るIZOターゲットの製造方法である。 In another aspect, the present invention is a method for producing an IZO target according to the present invention, comprising a step of sintering a mixture of ITO powder, In 2 O 3 powder, and ZnO powder.
本発明に係るIZOターゲットの製造方法の一実施形態において、ITO粉を構成する各粒子は、原子比で6≦In/Sn≦36を満たすようにIn及びSnを含有する。 In one embodiment of the method for manufacturing an IZO target according to the present invention, each particle constituting the ITO powder contains In and Sn so that the atomic ratio satisfies 6 ≦ In / Sn ≦ 36.
本発明は更に別の一側面において、ITO粉、In2O3粉、ZnO粉及びB2O3粉の混合物を焼結する工程を含む本発明に係るIZOターゲットの製造方法である。 In still another aspect, the present invention is a method for producing an IZO target according to the present invention, comprising a step of sintering a mixture of ITO powder, In 2 O 3 powder, ZnO powder, and B 2 O 3 powder.
本発明は更に別の一側面において、本発明に係るIZOターゲットを用いてスパッタリングする工程を含む成膜方法である。 In another aspect, the present invention is a film forming method including a step of performing sputtering using the IZO target according to the present invention.
本発明に係る成膜方法の一実施形態においては、スパッタリングする工程を酸素濃度が0.1vol%以下の雰囲気ガス中で実施する。 In one embodiment of the film forming method according to the present invention, the step of performing sputtering is performed in an atmosphere gas having an oxygen concentration of 0.1 vol% or less.
本発明に係るIZOターゲットは、スパッタ雰囲気中の酸素濃度の変化に対して得られる膜抵抗の変動が小さいという特性がある。このため、酸素濃度に関わらず安定した品質のスパッタ膜を得ることが可能となる。本発明は、有機ELのように、酸素導入無での成膜が求められるアプリケーションに、特に有用である。 The IZO target according to the present invention has a characteristic that a change in film resistance obtained with respect to a change in oxygen concentration in a sputtering atmosphere is small. Therefore, a sputtered film of stable quality can be obtained regardless of the oxygen concentration. INDUSTRIAL APPLICABILITY The present invention is particularly useful for applications requiring film formation without introducing oxygen, such as organic EL.
(1.全体組成)
本発明に係るIZOターゲットは一実施形態において、In、Sn及びZnを、原子比で、Zn/(In+Sn+Zn)=0.030〜0.250、Sn/(In+Sn+Zn)=0.002〜0.080を満たすように含有し、残部がO及び不可避不純物で構成される全体組成を有する。全体組成とは焼結体の組織中に分散したSn偏析粒を含む焼結体の全体組成を指す。
(1. Overall composition)
In one embodiment of the IZO target according to the present invention, the atomic ratio of In, Sn and Zn is Zn / (In + Sn + Zn) = 0.030 to 0.250, Sn / (In + Sn + Zn) = 0.002 to 0.080. Is contained so as to satisfy the condition, and the balance has an entire composition composed of O and unavoidable impurities. The overall composition refers to the overall composition of the sintered body including Sn segregated grains dispersed in the structure of the sintered body.
Zn/(In+Sn+Zn)を0.030以上としたのは、Znの量を適正な範囲にすることにより、導電性が良好なスパッタ膜が得られるためである。Zn/(In+Sn+Zn)は好ましくは0.030以上であり、より好ましくは0.040以上である。また、Zn/(In+Sn+Zn)を0.250以下としたのもまた、Znの量が多すぎるとスパッタ膜の導電性が悪くなるためである。Zn/(In+Sn+Zn)は好ましくは0.250以下であり、より好ましくは0.200以下である。 The reason why Zn / (In + Sn + Zn) is set to 0.030 or more is that by setting the amount of Zn to an appropriate range, a sputtered film having good conductivity can be obtained. Zn / (In + Sn + Zn) is preferably at least 0.030, and more preferably at least 0.040. Further, the reason why Zn / (In + Sn + Zn) is set to 0.250 or less is also that if the amount of Zn is too large, the conductivity of the sputtered film is deteriorated. Zn / (In + Sn + Zn) is preferably 0.250 or less, more preferably 0.200 or less.
Sn/(In+Sn+Zn)を0.002以上としたのは、バルク抵抗の減少と、スパッタ雰囲気中の酸素濃度変化に対する膜抵抗の変動を抑える効果を有意に発揮させるためである。Sn/(In+Sn+Zn)は好ましくは0.002以上であり、より好ましくは0.005以上であり、更により好ましくは0.010以上である。また、Sn/(In+Sn+Zn)を0.080以下としたのは、それ以上添加すると、焼結体密度が低くなりすぎるため、バルク抵抗が高くなりやすく、また、パーティクルの増加などスパッタへの悪影響が懸念されるためである。Sn/(In+Sn+Zn)は好ましくは0.065以下であり、より好ましくは0.060以下であり、更により好ましくは0.030以下である。 The reason why Sn / (In + Sn + Zn) is 0.002 or more is to significantly reduce the bulk resistance and significantly suppress the fluctuation of the film resistance due to the change in the oxygen concentration in the sputtering atmosphere. Sn / (In + Sn + Zn) is preferably at least 0.002, more preferably at least 0.005, and even more preferably at least 0.010. Further, the reason why Sn / (In + Sn + Zn) is set to 0.080 or less is that if added more, the density of the sintered body becomes too low, so that the bulk resistance is likely to be increased, and adverse effects on sputtering such as increase of particles are caused. This is because there is concern. Sn / (In + Sn + Zn) is preferably at most 0.065, more preferably at most 0.060, even more preferably at most 0.030.
不可避不純物とは、原料中に存在したり、製造工程において不可避的に混入したりするもので、本来は不要なものであるが、微量であり、焼結体の特性に有意な影響を及ぼさないため、許容されている不純物である。 The unavoidable impurities are present in the raw material or inevitably mixed in the manufacturing process, and are originally unnecessary, but are trace amounts and do not significantly affect the characteristics of the sintered body. Therefore, it is an allowable impurity.
本発明に係るIZOターゲットは一実施形態において、Bを、B/(In+Sn+Zn+B)が原子比で0.036以下となるように更に含有する。Bは例えばB2O3に由来する。B2O3は融点が450℃と低いため、焼結中に焼結体内で液相が生成し、焼結性を向上させ、密度を上げることができる。優位に焼結性向上の効果を発揮させるため、B/(In+Sn+Zn+B)は0.004以上が好ましいが、添加しすぎるとバルク抵抗が大きく上昇することから、B/(In+Sn+Zn+B)=0.036以下にするのが好ましい。 In one embodiment, the IZO target according to the present invention further contains B such that B / (In + Sn + Zn + B) has an atomic ratio of 0.036 or less. B is derived, for example, from B 2 O 3 . Since B 2 O 3 has a low melting point of 450 ° C., a liquid phase is generated in the sintered body during sintering, so that the sinterability can be improved and the density can be increased. B / (In + Sn + Zn + B) is preferably 0.004 or more in order to exert the effect of improving sinterability in an advantageous manner, but if added too much, the bulk resistance greatly increases. Therefore, B / (In + Sn + Zn + B) = 0.036 or less It is preferred that
(2.Sn偏析粒)
本発明に係るIZOターゲットは一実施形態において、主として酸化インジウム(In2O3)とインジウムと亜鉛の複合酸化物(ZnkIn2Ok+3、k=2〜7(kは整数))で構成される母相中に、In、Sn及びOを含有し、粒径が200nm以上であるSn偏析粒が分散した焼結体組織を有する。母相中には酸化インジウム及び酸化亜鉛の何れか一方又は両方の酸化物が含まれていてもよい。粒径が200nm以上のSn偏析粒が母相中に分散した焼結体組織を有するスパッタリングターゲットを用いると、スパッタ膜のスパッタ雰囲気中の酸素濃度に対する依存性が低くなる。このため、用途に応じてスパッタ雰囲気中の酸素濃度が変化しても、安定した膜抵抗率のスパッタ膜を得ることが可能となる。
(2. Sn segregated grains)
In one embodiment, the IZO target according to the present invention is mainly composed of indium oxide (In 2 O 3 ) and a composite oxide of indium and zinc (Zn k In 2 O k + 3 , k = 2 to 7 (k is an integer)). Has a sintered body structure in which Sn segregated particles containing In, Sn, and O and having a particle size of 200 nm or more are dispersed. The parent phase may contain one or both oxides of indium oxide and zinc oxide. When a sputtering target having a sintered body structure in which Sn segregated particles having a particle diameter of 200 nm or more are dispersed in a matrix is used, the dependency of the sputtered film on the oxygen concentration in the sputtering atmosphere is reduced. For this reason, even if the oxygen concentration in the sputtering atmosphere changes depending on the application, a sputtered film having a stable film resistivity can be obtained.
導電性向上効果およびスパッタ雰囲気中の酸素濃度変化に対する膜抵抗の変動を抑える効果を有意に発揮させるため、粒径200nm以上のSn偏析粒が0.003個/μm2以上の個数密度で焼結体組織中に存在していることが好ましく、0.0045個/μm2以上の個数密度で焼結体組織中に存在していることが好ましく、0.01個/μm2以上の個数密度で焼結体組織中に存在していることがより好ましい。但し、粒径200nm以上のSn偏析粒の個数密度が過剰になると、ターゲット中のSnの原子濃度が同一の場合で比較したときに、一つ一つのSn偏析粒のSn濃度が低下するため、SnO2として添加してSnが拡散している状態に近くなり、本来のスパッタ特性を得にくくなる可能性がある。そこで、粒径200nm以上のSn偏析粒は0.1個/μm2以下の個数密度で焼結体組織中に存在することが好ましく、0.08個/μm2以下の個数密度で焼結体組織中に存在することがより好ましく、0.04個/μm2以下の個数密度で焼結体組織中に存在することが更により好ましい。 In order to significantly exhibit the effect of improving conductivity and the effect of suppressing the change in film resistance due to the change in oxygen concentration in the sputtering atmosphere, Sn segregated grains having a particle diameter of 200 nm or more are sintered at a number density of 0.003 / μm 2 or more. It is preferably present in the body structure, preferably present in the sintered body structure at a number density of 0.0045 / μm 2 or more, and preferably present in the body structure at a number density of 0.01 / μm 2 or more. More preferably, it is present in the sintered body structure. However, when the number density of Sn segregated particles having a particle diameter of 200 nm or more is excessive, the Sn concentration of each Sn segregated particle decreases when compared with the case where the atomic concentration of Sn in the target is the same. There is a possibility that the state becomes close to a state where Sn is diffused by being added as SnO 2 , and it is difficult to obtain the original sputtering characteristics. Therefore, it is preferable that the Sn segregated particles having a particle diameter of 200 nm or more exist in the sintered body structure at a number density of 0.1 / μm 2 or less, and the sintered body has a number density of 0.08 / μm 2 or less. It is more preferably present in the structure, and even more preferably present in the structure of the sintered body at a number density of 0.04 / μm 2 or less.
また、導電性向上効果およびスパッタ雰囲気中の酸素濃度変化に対する膜抵抗の変動を抑える効果を有意に発揮させるため、粒径1000nm以上のSn偏析粒が、0.0003個/μm2以上の個数密度で焼結体組織中に存在していることが好ましく、0.001個/μm2以上の個数密度で焼結体組織中に存在していることが好ましく、0.003個/μm2以上の個数密度で焼結体組織中に存在していることがより好ましい。但し、粒径1000nm以上のSn偏析粒の個数密度が過剰になると、焼結性が下がり、焼結体密度が低下し、バルク抵抗が上昇したり、パーティクルの原因となる懸念がある。そこで、粒径1000nm以上のSn偏析粒は0.03個/μm2以下の個数密度で焼結体組織中に存在することが好ましく、0.026個/μm2以下の個数密度で焼結体組織中に存在することがより好ましく、0.02個/μm2以下の個数密度で焼結体組織中に存在することが更により好ましい。 Further, in order to significantly exhibit the effect of improving the conductivity and the effect of suppressing the change in the film resistance due to the change in the oxygen concentration in the sputtering atmosphere, the Sn segregated particles having a particle diameter of 1000 nm or more have a number density of 0.0003 / μm 2 or more. In the sintered body structure, it is preferable to be present in the sintered body structure with a number density of 0.001 pieces / μm 2 or more, and it is preferable that the number density is 0.003 pieces / μm 2 or more. More preferably, it exists in the sintered body structure at a number density. However, when the number density of the Sn segregated grains having a particle diameter of 1000 nm or more is excessive, sinterability is reduced, the density of the sintered body is reduced, the bulk resistance is increased, and there is a concern that particles may be caused. Therefore, 0.03 is the particle size 1000nm or more Sn polarized析粒pieces / [mu] m is preferably present in the sintered body structure 2 in the following number density sintered body 0.026 pieces / [mu] m 2 or less of number density It is more preferably present in the structure, and even more preferably present in the structure of the sintered body at a number density of 0.02 / μm 2 or less.
また、過大なSn偏析粒はアーキングの原因となるおそれがあることから、粒径10000nm以上のSn偏析粒が、0.0002個/μm2以下の個数密度で焼結体組織中に存在していることが好ましく、0.0001個/μm2以下の個数密度で焼結体組織中に存在していることが好ましく、0.00005個/μm2以下の個数密度で焼結体組織中に存在していることがより好ましい。 Further, since excessively large Sn segregated particles may cause arcing, Sn segregated particles having a particle diameter of 10,000 nm or more are present in the sintered body structure at a number density of 0.0002 / μm 2 or less. Preferably, it is present in the structure of the sintered body at a number density of 0.0001 / μm 2 or less, and is present in the structure of the sintered body at a number density of 0.00005 / μm 2 or less. Is more preferable.
Sn偏析粒の平均粒径は、スパッタ雰囲気中の酸素濃度変化に対する膜抵抗の変動を抑える効果を有意に発揮させるため、450nm以上であることが好ましく、800nm以上であることがより好ましく、900nm以上であることが更により好ましい。Sn偏析粒の平均サイズは、大きすぎるとバルク抵抗が増大し、また、アーキングの原因になる可能性があるため、9000nm以下であることが好ましく、6000nm以下であることがより好ましく、3000nm以下であることが更により好ましい。 The average particle size of the Sn segregated particles is preferably 450 nm or more, more preferably 800 nm or more, and more preferably 900 nm or more, in order to significantly exert the effect of suppressing the change in the film resistance with respect to the oxygen concentration change in the sputtering atmosphere. Is even more preferred. If the average size of the Sn segregated grains is too large, the bulk resistance increases, and there is a possibility of causing arcing. Therefore, the average size is preferably 9000 nm or less, more preferably 6000 nm or less, and 3,000 nm or less. Is even more preferred.
本発明において、Sn偏析粒の粒径及び個数密度は以下の方法で測定する。測定機器としては、FE−EPMA(電界放出型電子プローブマイクロアナライザ)を用いる。実施例では、JXA−8500F(日本電子製FE−EPMA)を用いた。
測定サンプル:スパッタリングターゲットをスパッタ面と垂直に切断して断面を鏡面研磨し、1/2の厚みの部分を観察する。
観察方法:FE−EPMAに付属の面分析機能を使用し、以下の条件で、面分析を実施する。
・加速電圧:15.0kV
・照射電流:1.0〜2.5×10-7A
・倍率:2000倍
・測定方式:ビームスキャン
・ビーム径(μm):0
・測定時間(ms):5
・積算:1
・測定元素および分光結晶:In(PETH)、Zn(LIFH)、Sn(PETH)、O(LDE1)
・測定視野(一視野当たり):50μm×50μm
・ピクセル:256×256
In the present invention, the particle size and number density of Sn segregated particles are measured by the following methods. An FE-EPMA (field emission electron probe microanalyzer) is used as a measuring instrument. In the examples, JXA-8500F (FE-EPMA manufactured by JEOL Ltd.) was used.
Measurement sample: The sputtering target is cut perpendicularly to the sputtering surface, the section is mirror-polished, and a half-thick portion is observed.
Observation method: Using the surface analysis function attached to FE-EPMA, surface analysis is performed under the following conditions.
・ Acceleration voltage: 15.0 kV
・ Irradiation current: 1.0 to 2.5 × 10 -7 A
-Magnification: 2000 times-Measurement method: Beam scan-Beam diameter (μm): 0
-Measurement time (ms): 5
・ Integration: 1
Measurement elements and spectral crystals: In (PETH), Zn (LIFH), Sn (PETH), O (LDE1)
・ Measurement visual field (per visual field): 50 μm × 50 μm
・ Pixel: 256 × 256
上記手順で面分析を実施し、元素マッピング像をグレースケール表示すると、図1(実施例3)や図2(比較例2)の測定データが得られる。Lvは手動での操作も可能であるが、機械的に自動で算出されるLvをそのまま使用する。実施例3では、Snが粗粒状に偏析している箇所(Snの元素マッピング像の最も淡い部分)が見られるのに対し、比較例4では粗粒状の偏析が見られない。比較例4において、Sn偏析粒が見られないのは、SnO2粉を原料として投入した場合、SnがIn2O3粒中に拡散し、FE−EPMAの検出下限以下の濃度になるためと考えられる。一方で、本発明が限定されることを意図するものではないが、粗大なITO粉を添加した場合に、Snが拡散しない原因については、予想であるが、拡散の駆動力が濃度勾配に依存すると考えており、SnO2粉とITO粉では、ITO粉の方がSn濃度が低いため、ITO粉の方がSnが周囲に拡散しにくくなっている為と考えられる。 When the surface analysis is performed by the above procedure and the element mapping image is displayed in gray scale, the measurement data of FIG. 1 (Example 3) and FIG. 2 (Comparative Example 2) are obtained. Although Lv can be manually operated, Lv that is automatically calculated mechanically is used as it is. In Example 3, a portion where Sn is segregated in the form of coarse particles (the lightest part in the element mapping image of Sn) is seen, whereas in Comparative Example 4, coarse segregation is not seen. In Comparative Example 4, Sn segregated grains were not observed because Sn diffused into In 2 O 3 grains when SnO 2 powder was used as a raw material, resulting in a concentration below the lower detection limit of FE-EPMA. Conceivable. On the other hand, although the present invention is not intended to be limited, it is expected that Sn is not diffused when coarse ITO powder is added, but the driving force for diffusion depends on the concentration gradient. It is considered that between the SnO 2 powder and the ITO powder, the Sn concentration of the ITO powder is lower, so that the Sn is less likely to diffuse into the surroundings of the ITO powder.
得られたSnのグレースケール像から、粒子計測機能を使用して、Sn偏析粒の各粒径とSn偏析粒の個数密度を測定する。以下は、JXA−8500Fに付属の分析ソフトウェアでの実施手順となるが、同様の画像処理ソフトを用いても良い。まず、フィルター項目から、スムージングフィルターを実行する。実施例3の例を図3に示す。ついで、2値化を実施する。2値化における閾値は、面分析中のSn偏析粒形状を過不足なく取り込めるよう閾値を手動で設定するが、グレースケール像内で比較的大きいSn偏析粒に合わせ、形状が過不足なく取り込めるように、閾値を設定する。実施例3の例を図4に示す。 From the obtained gray scale image of Sn, the particle diameter of each Sn segregated particle and the number density of the Sn segregated particle are measured using a particle measurement function. The following is an execution procedure using analysis software attached to JXA-8500F, but similar image processing software may be used. First, a smoothing filter is executed from the filter item. FIG. 3 shows an example of the third embodiment. Next, binarization is performed. The threshold value in the binarization is manually set so that the shape of the Sn segregated grains during the surface analysis can be captured without excess or deficiency. , A threshold is set. FIG. 4 shows an example of the third embodiment.
その後、2値化像のラベリングを行う。本ソフト内でラベリング処理の選択項目は、“3連結”、“外周の粒子はラベリングしない”、を選択する。続いて、ラベリング像の計測を行い、各Sn偏析粒の円相当径を機械的に算出する。各Sn偏析粒の円相当径をSn偏析粒の粒径として、粒径200nm以上、1000nm以上及び10000nm以上の粒子個数をそれぞれカウントし、測定視野である2500μm2に存在する粒子個数を求め、個数を測定視野面積で除することで個数密度(個/μm2)を得る。また、Sn偏析粒の平均粒径は機械的に算出された各Sn偏析粒の円相当径から求める。上記手順を5以上の測定視野において行い、その平均値を測定結果とする。 Thereafter, labeling of the binarized image is performed. In this software, the selection items of the labeling process are “3-connected” and “the outer peripheral particles are not labeled”. Subsequently, the labeling image is measured, and the circle equivalent diameter of each Sn segregated grain is mechanically calculated. The circle equivalent diameter of each Sn polarized析粒as the particle size of the Sn-polarized析粒, particle size 200nm or more, 1000 nm or more and 10000nm more number of particles was counted, respectively, determine the number of particles present in 2500 [mu] m 2 is measured field of view, the number Is divided by the measurement visual field area to obtain a number density (pieces / μm 2 ). Further, the average particle size of the Sn segregated particles is determined from the circle equivalent diameter of each Sn segregated particle calculated mechanically. The above procedure is performed in five or more measurement visual fields, and the average value is used as the measurement result.
(3.バルク抵抗率)
本発明の一実施形態に係るIZOターゲットはSn偏析粒が組織中に分散しているおかげで従来のIZOターゲットに比べてバルク抵抗率を大幅に低くできる。具体的には、本発明に係るIZOターゲットは一実施形態において、7.0mΩ・cm未満のバルク抵抗率を有することができる。本発明に係るIZOターゲットのバルク抵抗率は好ましくは3.0mΩ・cm以下であり、より好ましくは2.0mΩ・cm以下である。バルク抵抗率の下限に制約はないが、IZOの物質的な限界から、本発明に係るIZOターゲットのバルク抵抗率は通常は0.3mΩ・cm以上であり、典型的には0.5mΩ・cm以上である。
(3. Bulk resistivity)
The bulk resistivity of the IZO target according to one embodiment of the present invention can be significantly lower than that of the conventional IZO target because the Sn segregated grains are dispersed in the structure. Specifically, the IZO target according to the present invention, in one embodiment, can have a bulk resistivity of less than 7.0 mΩ · cm. The bulk resistivity of the IZO target according to the present invention is preferably 3.0 mΩ · cm or less, more preferably 2.0 mΩ · cm or less. Although the lower limit of the bulk resistivity is not limited, the bulk resistivity of the IZO target according to the present invention is usually 0.3 mΩ · cm or more, and typically 0.5 mΩ · cm, due to the material limit of IZO. That is all.
本発明において、ターゲットのバルク抵抗率は抵抗率測定器を用いて四探針法により測定する。焼結体の表面には、Zn量が少ない変質層が存在するため、0.5mm研削し、研磨紙で#400まで仕上げる。実施例においては、以下の装置で測定した。
抵抗率測定器:型式FELL−TC−100−SB−Σ5+(エヌピイエス株式会社製)
測定治具RG−5
In the present invention, the bulk resistivity of the target is measured by a four-probe method using a resistivity meter. Since there is an altered layer with a small amount of Zn on the surface of the sintered body, the sintered body is ground by 0.5 mm and finished to # 400 with abrasive paper. In the examples, the measurement was performed with the following apparatus.
Resistivity measuring device: Model FELL-TC-100-SB- # 5 + (manufactured by NPS Corporation)
Measurement jig RG-5
(4.相対密度)
ターゲットの相対密度は高い方が、アーキングの少ない安定的なスパッタリングを行う上で、好ましい。本発明に係るIZOターゲットは一実施形態において、相対密度が90%以上である。相対密度は好ましくは92%以上であり、より好ましくは95%以上であり、更により好ましくは96%以上であり、例えば90〜99%とすることができる。相対密度は、組成によって定まる基準密度に対するアルキメデス密度の比で求められる。
(4. Relative density)
It is preferable that the relative density of the target is high in order to perform stable sputtering with little arcing. In one embodiment, the IZO target according to the present invention has a relative density of 90% or more. The relative density is preferably at least 92%, more preferably at least 95%, even more preferably at least 96%, for example, 90 to 99%. The relative density is determined by the ratio of the Archimedes density to the reference density determined by the composition.
ここで、基準密度は、スパッタリングターゲットの成分分析を行い、それにより得られるInとZnとSnとBの合計100at%に対するInとZnとSnとBのそれぞれの原子比(at%)から換算して求めた酸化物重量比(重量%)、並びにIn2O3、ZnO、SnO2及びB2O3の単体密度を用いて算出する。具体的には、In2O3の単体密度を7.18(g/cm3)、ZnOの単体密度を5.61(g/cm3)、SnO2の単体密度を6.95(g/cm3)、B2O3の単体密度を1.85、In2O3の重量比をWIn2O3(重量%)、ZnOの重量比をWZnO(重量%)、SnO2の重量比をWSnO2(重量%)、B2O3の重量比をWB2O3として、基準密度(g/cm3)=(7.18×WIn2O3+5.61×WZnO+6.95×WSnO2+1.85×WB2O3)/100で算出される。ただし、Bを添加しない場合は、WB2O3を0として計算する。 Here, the reference density is obtained by performing a component analysis of the sputtering target and converting the atomic ratio (at%) of In, Zn, Sn, and B with respect to a total of 100 at% of In, Zn, Sn, and B obtained by the analysis. It is calculated using the oxide weight ratio (% by weight) obtained as described above and the elemental densities of In 2 O 3 , ZnO, SnO 2 and B 2 O 3 . Specifically, the simplex density of In 2 O 3 is 7.18 (g / cm 3 ), the simplex density of ZnO is 5.61 (g / cm 3 ), and the simplex density of SnO 2 is 6.95 (g / cm 3 ). cm 3 ), the density of B 2 O 3 alone as 1.85, the weight ratio of In 2 O 3 as W In2O3 (weight%), the weight ratio of ZnO as W ZnO (weight%), and the weight ratio of SnO 2 as W SnO2 (% by weight), the weight ratio of B 2 O 3 as W B2 O3, the reference density (g / cm 3) = ( 7.18 × W In2O3 + 5.61 × W ZnO + 6.95 × W SnO2 + 1.85 × WB2O3 ) / 100. However, when B is not added, the calculation is performed with WB2O3 set to 0.
なお、この相対密度は、スパッタリングターゲットをIn2O3とZnOとSnO2の混合物と仮定して計算される基準密度を基準とするものであり、対象とするスパッタリングターゲットの密度の真の値は上記の基準密度より高くなることもあることから、ここでいう相対密度は100%を超えることもあり得る。 This relative density is based on a reference density calculated on the assumption that the sputtering target is a mixture of In 2 O 3 , ZnO and SnO 2 , and the true value of the density of the target sputtering target is Since the density may be higher than the above-mentioned reference density, the relative density here may exceed 100%.
(5.製法)
次に、本発明に係るIZOターゲットの製造方法の好適な例を順を追って説明する。
(5. Manufacturing method)
Next, a preferred example of the method for manufacturing an IZO target according to the present invention will be described step by step.
(5−1 ITO粉の準備)
まず、Sn、In、O及び不可避不純物で構成された酸化物焼結体の粉末(ITO粉)の準備を行う。ITO粉は公知の方法によりITO焼結体を製造し、これを粉砕することで得ることができる。もしくは、粉砕を容易にするため、In2O3とSnO2の混合粉を焼結し(仮焼と称する)、粉砕することにより、作ることもできる。
(5-1 Preparation of ITO powder)
First, a powder (ITO powder) of an oxide sintered body composed of Sn, In, O and unavoidable impurities is prepared. The ITO powder can be obtained by producing an ITO sintered body by a known method and pulverizing it. Alternatively, in order to facilitate the pulverization, the mixed powder of In 2 O 3 and SnO 2 may be sintered (called calcination) and then pulverized.
ITO粉は最終的に焼結体中で先述したSn偏析粒の原料である。ITO粉を構成する各粒子の組成については、導電性を向上させるという理由により、InとSnの原子比が6≦In/Snであることが好ましく、7≦In/Snであることがより好ましく、9≦In/Snであることが更により好ましい。また、ITO粉は、Snの量が少なすぎても導電性が低下することから、InとSnの原子比がIn/Sn≦36であることが好ましく、In/Sn≦25であることがより好ましく、In/Sn≦15であることが更により好ましい。 ITO powder is finally the raw material of the Sn segregated particles described above in the sintered body. Regarding the composition of each particle constituting the ITO powder, the atomic ratio of In to Sn is preferably 6 ≦ In / Sn, more preferably 7 ≦ In / Sn, for improving the conductivity. , 9 ≦ In / Sn. In addition, since the conductivity of the ITO powder decreases even if the amount of Sn is too small, the atomic ratio of In to Sn is preferably In / Sn ≦ 36, and more preferably In / Sn ≦ 25. It is still more preferable that In / Sn ≦ 15.
ITO焼結体はSnO2粉及びIn2O3粉を所定の配合比で粉砕混合した後に焼結することで製造可能である。原料となるSnO2粉及びIn2O3粉は高純度のもの、例えば純度99質量%以上、更には99.9質量%以上のものを使用することが予期せぬ不良を防止する観点で好ましい。原料粉の平均粒径は例えば0.5μm〜2.5μmとすることができる。ここで、本明細書において粉末の平均粒径について言及するときは、レーザー回折・散乱法により体積基準で粒度の累積分布を求めたときの、メジアン径(D50)を指す。粉砕混合方法には様々な方法があるが、ビーズミル等の湿式媒体攪拌ミルを使用する湿式粉砕混合を好適に使用することができる。湿式粉砕混合の場合、適宜、分散剤を添加することでスラリーの均一性を上げることも出来る。その他の方法でも原料の均一混合という趣旨を実現できる方法であれば構わない。 The ITO sintered body can be manufactured by pulverizing and mixing SnO 2 powder and In 2 O 3 powder at a predetermined compounding ratio and then sintering. It is preferable to use SnO 2 powder and In 2 O 3 powder as raw materials having a high purity, for example, a purity of 99% by mass or more, and more preferably 99.9% by mass or more from the viewpoint of preventing unexpected defects. . The average particle size of the raw material powder can be, for example, 0.5 μm to 2.5 μm. Here, when referring to the average particle diameter of the powder in this specification, it refers to the median diameter (D50) when the cumulative distribution of the particle diameter is obtained on a volume basis by a laser diffraction / scattering method. There are various pulverization and mixing methods, and wet pulverization and mixing using a wet medium stirring mill such as a bead mill can be suitably used. In the case of wet pulverization and mixing, the uniformity of the slurry can be improved by adding a dispersant as appropriate. Other methods may be used as long as the purpose of uniform mixing of the raw materials can be realized.
粉砕混合後により得られた混合粉に対しては、プレス成形を行う。プレス成形は、混合粉を金型に充填し、例えば30〜60MPaの圧力を、1〜3分間保持することにより行う。プレス成形前に、必要に応じて造粒を実施してもよい。造粒により粉体の流動性を向上させることで、次工程のプレス成形時に粉体を均一に金型へ充填し、均質な成形体を得ることができる。造粒には様々な方式があるが、プレス成形に適した造粒粉を得る方法の一つに、噴霧式乾燥装置(スプレードライヤー)を用いる方法がある。また、スラリー中にポリビニルアルコール(PVA)等のバインダーを添加し造粒粉中に含有させることで、成形体強度を向上させることが出来る。なお、プレス成型後に冷間静水圧加圧成形(CIP)をしてもよい。 Press molding is performed on the mixed powder obtained after the pulverization and mixing. The press molding is performed by filling the mixed powder into a mold and maintaining a pressure of, for example, 30 to 60 MPa for 1 to 3 minutes. Prior to press molding, granulation may be performed as necessary. By improving the fluidity of the powder by granulation, the powder can be uniformly filled in a mold at the time of press molding in the next step, and a homogeneous molded body can be obtained. There are various methods for granulation. One method for obtaining granulated powder suitable for press molding is a method using a spray-type drying device (spray dryer). Further, by adding a binder such as polyvinyl alcohol (PVA) to the slurry and including the binder in the granulated powder, the strength of the molded body can be improved. In addition, cold isostatic pressing (CIP) may be performed after press molding.
成形体の焼結は、電気炉を使用し、酸素雰囲気中で実施することができる。焼結温度は1300〜1600℃として焼結することが好ましい。高密度の焼結体を得る上では焼結温度が1300℃以上であることが好ましい。また、酸化錫の揮発により、焼結密度の低下や組成ずれが生じるのを予防する観点から、焼結温度は1600℃以下であることが好ましい。成形体がバインダーを含む場合、焼結温度までの昇温途中で、必要に応じて脱バインダー工程を導入しても良い。 The sintering of the compact can be performed in an oxygen atmosphere using an electric furnace. It is preferable that the sintering is performed at a sintering temperature of 1300 to 1600 ° C. In order to obtain a high-density sintered body, the sintering temperature is preferably 1300 ° C. or higher. In addition, the sintering temperature is preferably 1600 ° C. or less from the viewpoint of preventing a reduction in sintering density and a composition deviation due to volatilization of tin oxide. When the molded body contains a binder, a binder removal step may be introduced as needed during the heating up to the sintering temperature.
焼結温度における保持時間は成形体サイズにより適宜選択されるが、一般的に5時間より短いと、焼結が充分進まず、焼結体の密度が充分高くならなかったり、焼結体が反ってしまったりする。保持時間が30時間を越えても、不必要なエネルギーと時間を要する無駄が生じて生産上好ましくない。 The holding time at the sintering temperature is appropriately selected depending on the size of the compact, but generally less than 5 hours, the sintering does not proceed sufficiently, the density of the sintered body does not become sufficiently high, or the sintered body is warped. Or If the holding time exceeds 30 hours, unnecessary energy and time-consuming waste occurs, which is not preferable in production.
得られたITO焼結体を粉砕することでITO粉が得られる。粉砕方法としては、例えば、乳棒及び乳鉢の組み合わせ、ハンマーミル、並びにポッドミルが挙げられ、この中でも、生産性の観点からポッドミルが好ましい。また、湿式ビーズミル等により、さらに細かくすることがより好ましい。ITO粉の粗大粒を取り除くには、篩別を行う。篩は、例えば目開き150μm以下の物を用いることができる。篩別後のITO粉の平均粒径(D50)は、10μm以下とすることが好ましく、5μm以下とすることがより好ましい。また、In2O3粉及びZnO粉と混合する前のITO粉の平均粒径は、0.4μm以上とすることが好ましく、0.9μm以上とすることがより好ましい。 By grinding the obtained ITO sintered body, ITO powder is obtained. Examples of the pulverizing method include a combination of a pestle and a mortar, a hammer mill, and a pod mill. Among them, a pod mill is preferable from the viewpoint of productivity. Further, it is more preferable to further reduce the size by a wet bead mill or the like. To remove coarse particles of the ITO powder, sieving is performed. For example, a sieve having an opening of 150 μm or less can be used. The average particle size (D50) of the ITO powder after sieving is preferably 10 μm or less, more preferably 5 μm or less. The average particle size of the ITO powder before mixing with the In 2 O 3 powder and ZnO powder is preferably 0.4 μm or more, more preferably 0.9 μm or more.
(5−2 IZOターゲットの製造)
本発明に係るIZOターゲットは、In2O3粉、ZnO粉及び上記で得られたITO粉を、先述したZn/(In+Sn+Zn)及びSn/(In+Sn+Zn)が所定の原子比となるよう粉砕混合した後に、焼結することで製造可能である。また、必要に応じてB2O3粉を添加してもよい。焼結は仮焼後に行ってもよい。具体的な手順について例示的に説明する。まず、In2O3粉、ZnO粉、及び必要に応じてB2O3粉を所定の配合比で秤量後、微粉砕混合する。ITO粉は、できるだけ微粉砕せずに均一に混合させるため、In2O3粉、ZnO粉、及び必要に応じてB2O3粉の微粉砕混合停止の5〜10分前に、スラリーのまま混合することが好ましい。原料となるIn2O3粉、ZnO粉及び必要に応じて添加されるB2O3粉は高純度のもの、例えば純度99質量%以上、更には99.9質量%以上のものを使用することが予期せぬ不良を防止する観点で好ましい。混合方法としては、ビーズミル等の湿式媒体攪拌ミルを用いた湿式粉砕混合を行う方法が挙げられる。湿式粉砕混合の場合、適宜、分散剤を添加することでスラリーの均一性を上げることも出来る。その他の方法でも原料の均一混合という趣旨を実現できる方法であれば構わない。
(5-2 Production of IZO target)
The IZO target according to the present invention is obtained by pulverizing and mixing In 2 O 3 powder, ZnO powder, and the above-obtained ITO powder such that Zn / (In + Sn + Zn) and Sn / (In + Sn + Zn) have a predetermined atomic ratio. It can be manufactured later by sintering. Further, B 2 O 3 powder may be added as needed. Sintering may be performed after calcination. A specific procedure will be described as an example. First, In 2 O 3 powder, ZnO powder, and, if necessary, B 2 O 3 powder are weighed at a predetermined mixing ratio, and then finely pulverized and mixed. In order to mix the ITO powder uniformly without pulverization as much as possible, 5 to 10 minutes before stopping the pulverization and mixing of the In 2 O 3 powder, ZnO powder and, if necessary, the B 2 O 3 powder, It is preferable to mix as it is. The raw material In 2 O 3 powder, ZnO powder, and B 2 O 3 powder to be added as needed are of high purity, for example, those having a purity of 99% by mass or more, and more preferably 99.9% by mass or more. This is preferable from the viewpoint of preventing unexpected defects. Examples of the mixing method include a method of performing wet pulverization and mixing using a wet medium stirring mill such as a bead mill. In the case of wet pulverization and mixing, the uniformity of the slurry can be increased by adding a dispersant as appropriate. Other methods may be used as long as the purpose of uniform mixing of the raw materials can be realized.
微粉砕混合後の混合粉は、焼結性を向上させるため、平均粒径を2μm以下とすることが好ましく、1.5μm以下とすることがより好ましい。微粉砕混合後の混合粉の平均粒径は、粉砕しすぎることでビーズ等からのコンタミ量が増加するため、0.3μm以上とすることが好ましく、0.5μm以上とすることがより好ましい。なお、上記はITO粉を含んだ平均粒径である。 In order to improve the sinterability, the mixed powder after the fine pulverization and mixing preferably has an average particle size of 2 μm or less, more preferably 1.5 μm or less. The average particle size of the mixed powder after the fine pulverization and mixing is preferably 0.3 μm or more, more preferably 0.5 μm or more, since excessive pulverization increases the amount of contamination from beads and the like. The above is the average particle size including the ITO powder.
微粉砕混合後の混合粉に対しては、プレス成形を行う。プレス成形は、混合粉を金型に充填し、例えば30〜60MPaの圧力を、1〜3分間保持することにより行う。プレス成形によって得られた成形体は、さらに静水圧加圧装置(CIP)により140〜200MPaで加圧しても良い。これにより、さらに均一で密度の高い成形体を得ることが出来る。 Press molding is performed on the mixed powder after the pulverization and mixing. The press molding is performed by filling the mixed powder into a mold and maintaining a pressure of, for example, 30 to 60 MPa for 1 to 3 minutes. The compact obtained by press molding may be further pressed at 140 to 200 MPa by a hydrostatic press (CIP). Thereby, a more uniform and high-density molded article can be obtained.
プレス成形前に、必要に応じて造粒を実施してもよい。造粒により粉体の流動性を向上させることで、次工程のプレス成形時に粉体を均一に金型へ充填し、均質な成形体を得ることができる。造粒には様々な方式があるが、プレス成形に適した造粒粉を得る方法の一つに、噴霧式乾燥装置(スプレードライヤー)を用いる方法がある。また、スラリー中にポリビニルアルコール(PVA)等のバインダーを添加し造粒粉中に含有させることで、成形体強度を向上させることが出来る。 Prior to press molding, granulation may be performed as necessary. By improving the fluidity of the powder by granulation, the powder can be uniformly filled in a mold at the time of press molding in the next step, and a homogeneous molded body can be obtained. There are various methods for granulation. One method for obtaining granulated powder suitable for press molding is a method using a spray-type drying device (spray dryer). Further, by adding a binder such as polyvinyl alcohol (PVA) to the slurry and including the binder in the granulated powder, the strength of the molded body can be improved.
成形体の焼結は、電気炉を使用し、酸素雰囲気中で実施することができる。焼結温度は1300〜1500℃として焼結することが好ましい。高密度の焼結体を得る上では焼結温度が1300℃以上であることが好ましい。また、酸化亜鉛の揮発により、焼結密度の低下や組成ずれが生じるのを予防する観点から、焼結温度は1500℃以下であることが好ましい。成形体がバインダーを含む場合、焼結温度までの昇温途中で、必要に応じて脱バインダー工程を導入しても良い。 The sintering of the compact can be performed in an oxygen atmosphere using an electric furnace. The sintering temperature is preferably set to 1300 to 1500 ° C. for sintering. In order to obtain a high-density sintered body, the sintering temperature is preferably 1300 ° C. or higher. Further, the sintering temperature is preferably 1500 ° C. or less from the viewpoint of preventing a reduction in sintering density and a composition deviation due to volatilization of zinc oxide. When the molded body contains a binder, a binder removal step may be introduced as needed during the heating up to the sintering temperature.
焼結温度における保持時間は成形体サイズにより適宜選択されるが、5時間より短いと、焼結が充分進まず、焼結体の密度が充分高くならなかったり、焼結体が反ってしまったりする。保持時間が30時間を越えても、不必要なエネルギーと時間を要する無駄が生じて生産上好ましくない。 The holding time at the sintering temperature is appropriately selected depending on the size of the compact, but if it is shorter than 5 hours, the sintering does not proceed sufficiently, the density of the sintered body does not become sufficiently high, or the sintered body warps. I do. If the holding time exceeds 30 hours, unnecessary energy and time-consuming waste occurs, which is not preferable in production.
このようにして得られたIZO焼結体を平面研削機、円筒研削機、マシニング等の加工機で所望の形状に加工することにより、スパッタリングターゲットを作製できる。スパッタリングターゲットの形状には特に制約はない。例えば、円盤状、矩形状、円筒状などとすることができる。スパッタリングターゲットは必要に応じてバッキングプレートとボンディング材により接合して用いてもよい。 The obtained IZO sintered body is processed into a desired shape by a processing machine such as a surface grinder, a cylindrical grinder, and a machining machine, whereby a sputtering target can be manufactured. There is no particular limitation on the shape of the sputtering target. For example, the shape may be a disk, a rectangle, a cylinder, or the like. The sputtering target may be used by bonding with a backing plate and a bonding material as needed.
(6.成膜)
本発明は一側面において、本発明に係るIZOターゲットを用いてスパッタリングする工程を含む成膜方法を提供する。本発明に係るIZOターゲットは、スパッタ雰囲気中の酸素濃度の変化に対して得られる膜抵抗の変動が小さいという特性がある。このため、本発明に係るIZOターゲットを用いると、酸素濃度に関わらず安定した品質のスパッタ膜を得ることが可能となる。一実施形態においては、スパッタリング時の雰囲気ガス中の酸素濃度が2vol%以下である。別の一実施形態においては、スパッタリング時の雰囲気ガス中の酸素濃度が1vol%以下である。更に別の一実施形態においては、スパッタリング時の雰囲気ガス中の酸素濃度が0.5vol%以下である。更に別の一実施形態においては、スパッタリング時の雰囲気ガス中の酸素濃度が0.1vol%以下である。更に別の一実施形態においては、スパッタリング時の雰囲気ガス中の酸素濃度が0vol%である。スパッタリング時の雰囲気ガスとしてはArと酸素の混合ガスが挙げられる。
(6. Film formation)
In one aspect, the present invention provides a film forming method including a step of performing sputtering using the IZO target according to the present invention. The IZO target according to the present invention has a characteristic that a change in film resistance obtained with respect to a change in oxygen concentration in a sputtering atmosphere is small. Therefore, using the IZO target according to the present invention makes it possible to obtain a sputtered film of stable quality regardless of the oxygen concentration. In one embodiment, the oxygen concentration in the atmosphere gas at the time of sputtering is 2 vol% or less. In another embodiment, the oxygen concentration in the atmosphere gas at the time of sputtering is 1 vol% or less. In yet another embodiment, the oxygen concentration in the atmosphere gas at the time of sputtering is 0.5 vol% or less. In yet another embodiment, the oxygen concentration in the atmosphere gas at the time of sputtering is 0.1 vol% or less. In yet another embodiment, the oxygen concentration in the atmosphere gas at the time of sputtering is 0 vol%. An atmosphere gas at the time of sputtering may be a mixed gas of Ar and oxygen.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Hereinafter, Examples of the present invention are shown together with Comparative Examples, but these Examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
<1.ITO粉の準備>
SnO2粉及びIn2O3粉をSnO2:In2O3=10:90(但し、実施例16はSnO2:In2O3=15:80、実施例17はSnO2:In2O3=5:95)の質量比で配合した後、湿式微粉砕混合(ZrO2ビーズ使用)した。湿式微粉砕混合で得られたスラリーにバインダーとしてポリビニルアルコール(PVA)を添加することで造粒を行い、造粒粉を得た。造粒粉をΦ280mm×20mmtに30MPaでプレス成形し、酸素雰囲気の電気炉内で1500℃で20時間焼結することで、ITO焼結体を製造した。得られたITO焼結体を乳棒及び乳鉢により粉砕し、ポッドミルを用いて粉砕し、更にボールミルで湿式微粉砕し、目開き150μmの篩で篩別して、ITO粉を得た。試験番号に応じてITO粉の平均粒径を篩別調整した。
<1. Preparation of ITO powder>
SnO 2 powder and In 2 O 3 powder and SnO 2: In 2 O 3 = 10: 90 ( however, Example 16 SnO 2: In 2 O 3 = 15: 80, Example 17 SnO 2: an In 2 O 3 = 5: 95) and then wet-milled and mixed (using ZrO 2 beads). Granulation was performed by adding polyvinyl alcohol (PVA) as a binder to the slurry obtained by the wet pulverization and mixing to obtain a granulated powder. The granulated powder was press-formed at Φ280 mm × 20 mmt at 30 MPa, and sintered at 1500 ° C. for 20 hours in an electric furnace in an oxygen atmosphere to produce an ITO sintered body. The obtained ITO sintered body was pulverized with a pestle and a mortar, pulverized with a pod mill, further finely pulverized with a ball mill, and sieved with a sieve having an opening of 150 μm to obtain ITO powder. The average particle size of the ITO powder was sieved and adjusted according to the test number.
<2.焼結体の製造>
In2O3粉、ZnO粉、SnO2粉、B2O3粉を表1−1に記載の試験番号に応じて準備した。次に、これらを湿式微粉砕(ZrO2ビーズ使用)にて粉砕混合した。この粉砕混合停止の5分前に先に準備したITO粉を、最終的に表1−1に記載のメタル原子比となるように添加した。粉砕混合後のスラリー(混合紛)の平均粒径はいずれの試験例も0.3〜0.8μmの範囲であった。粉砕混合後のスラリーにPVAを添加することで造粒を行い、造粒粉を得た。但し、表中に「仮焼」が「あり」とされている試験例については、In2O3粉とZnO粉とITO粉を、表1−1に記載のメタル原子比となるように、微粉砕前に混合し、1300℃で5時間大気中で仮焼結し、得られた塊を、乳棒及び乳鉢で解砕し、ボールミルで平均粒径が0.3〜0.8μmの範囲に湿式微粉砕した。得られたスラリーにPVAを添加し、造粒して造粒粉とした。
<2. Production of sintered body>
In 2 O 3 powder, ZnO powder, SnO 2 powder, and B 2 O 3 powder were prepared according to the test numbers described in Table 1-1. Next, these were pulverized and mixed by wet pulverization (using ZrO 2 beads). Five minutes before the stop of the pulverization and mixing, the previously prepared ITO powder was added so that the metal atomic ratio finally becomes as shown in Table 1-1. The average particle size of the slurry (mixed powder) after the pulverization and mixing was in the range of 0.3 to 0.8 μm in each of the test examples. Granulation was performed by adding PVA to the slurry after the pulverization and mixing, and a granulated powder was obtained. However, in the test examples in which “calcination” is “present” in the table, In 2 O 3 powder, ZnO powder, and ITO powder were mixed such that the metal atomic ratios described in Table 1-1 were satisfied. Mix before pulverization, pre-sinter in air at 1300 ° C for 5 hours, crush the resulting mass with a pestle and mortar, and use a ball mill to reduce the average particle size to 0.3-0.8 μm. Wet pulverization. PVA was added to the obtained slurry and granulated to obtain granulated powder.
その後、各試験例において、造粒粉をΦ280mm×20mmtに30MPaでプレス成形し、140MPaで冷間静水圧加圧し、成形体としたのち、大気雰囲気の電気炉内で、温度1400℃で10時間焼結した。なお、焼結体の成分組成を分析した結果、原料粉末の配合比と同等になることを確認した。 Thereafter, in each test example, the granulated powder was press-molded at Φ280 mm × 20 mmt at 30 MPa, cold isostatically pressed at 140 MPa, and formed into a molded body. Sintered. In addition, as a result of analyzing the component composition of the sintered body, it was confirmed that the composition ratio was equivalent to the mixing ratio of the raw material powder.
粉末の平均粒径は株式会社堀場製作所製LA−960を用いてレーザー回折・散乱法により体積基準で粒度の累積分布を求めたときの、メジアン径(D50)を指す。 The average particle size of the powder refers to the median diameter (D50) when the cumulative distribution of the particle size is determined on a volume basis by a laser diffraction / scattering method using LA-960 manufactured by Horiba, Ltd.
<3.Sn偏析粒の平均粒径>
上記の製造方法で得られた各試験例に係る焼結体について、組織中に分散しているSn偏析粒の平均粒径を先述した方法で測定した。結果を表1−2に示す。
<3. Average particle size of Sn segregated particles>
The average particle size of the Sn segregated particles dispersed in the structure of the sintered body according to each test example obtained by the above manufacturing method was measured by the method described above. The results are shown in Table 1-2.
<4.Sn偏析粒の個数密度>
上記の製造方法で得られた各試験例に係る焼結体について、組織中に分散しているSn偏析粒の個数密度を先述した方法で測定した。結果を表1−2に示す。
<4. Number density of Sn segregated grains>
With respect to the sintered bodies according to the respective test examples obtained by the above manufacturing method, the number density of Sn segregated grains dispersed in the structure was measured by the method described above. The results are shown in Table 1-2.
<5.バルク抵抗率>
上記の製造方法で得られた各試験例に係る焼結体について、バルク抵抗率を以下の装置で四探針法により室温で測定した。
抵抗率測定器:型式FELL−TC−100−SB−Σ5+(エヌピイエス株式会社製)
測定治具:RG−5
結果を表1−2に示す。
<5. Bulk resistivity>
With respect to the sintered bodies according to the respective test examples obtained by the above-described production methods, the bulk resistivity was measured at room temperature by a four-probe method using the following apparatus.
Resistivity measuring device: Model FELL-TC-100-SB- # 5 + (manufactured by NPS Corporation)
Measuring jig: RG-5
The results are shown in Table 1-2.
<6.相対密度>
上記の製造方法で得られた各試験例に係る焼結体について、密度をアルキメデス法により測定し、組成によって定まる基準密度に対する割合(%)を求め、相対密度とした。
<6. Relative density>
The densities of the sintered bodies according to the respective test examples obtained by the above-described production methods were measured by the Archimedes method, and the ratio (%) to the reference density determined by the composition was determined, and the relative density was determined.
<7.スパッタリング試験>
上記の製造方法で得られた各試験例に係る焼結体を機械加工して直径8インチ、厚み5mmの円盤状スパッタリングターゲットに仕上げた。円筒形状については、円筒研削加工および旋盤加工により仕上げた。次に、このスパッタリングターゲットを使用して、スパッタリングを行った。スパッタ条件は以下とした。スパッタリング試験は雰囲気中の酸素濃度を変化させて二度行った。なお、スパッタ時の基板加熱やスパッタ後のアニールは行わなかった。
スパッタパワー:1W/cm2
ガス圧:0.5Pa(abs)
雰囲気:(1)酸素を0vol%含有するAr:ガス圧0.5Pa(abs)
(2)酸素を2vol%含有するAr:ガス圧0.5Pa(abs)
膜厚:1000Å
得られたスパッタ膜の膜抵抗率をエヌピイエス株式会社製型式FELL−TC−100−SB−Σ5+薄膜抵抗率測定器を用いて四探針法により測定した。結果を表1−2に示す。
<7. Sputtering test>
The sintered body according to each of the test examples obtained by the above-described manufacturing method was machined to finish a disk-shaped sputtering target having a diameter of 8 inches and a thickness of 5 mm. The cylindrical shape was finished by cylindrical grinding and lathing. Next, sputtering was performed using this sputtering target. The sputtering conditions were as follows. The sputtering test was performed twice while changing the oxygen concentration in the atmosphere. Note that heating of the substrate during sputtering and annealing after sputtering were not performed.
Sputter power: 1 W / cm 2
Gas pressure: 0.5 Pa (abs)
Atmosphere: (1) Ar containing 0 vol% oxygen: gas pressure 0.5 Pa (abs)
(2) Ar containing 2 vol% of oxygen: gas pressure 0.5 Pa (abs)
Film thickness: 1000Å
The film resistivity of the obtained sputtered film was measured by a four-probe method using a model FELL-TC-100-SB- # 5 + thin film resistivity meter manufactured by NPS Corporation. The results are shown in Table 1-2.
比較例4及び比較例5は原料中にSnO2及びITOの何れも添加していない例であり、スパッタ雰囲気中の酸素濃度の変化に対して膜抵抗が大きく変動した。
比較例1〜3は原料中にSnO2を添加した例である。スパッタ雰囲気中の酸素濃度の変化に対する膜抵抗の変動が大きく、バルク抵抗率も大きかった。SnO2の添加はバルク抵抗の低下に直結しないことが示された。
実施例1〜21は原料中にITOを添加した例である。組成及びターゲットの組織中に分散するSn偏析粒の大きさが適切であったことから、バルク抵抗率が低下した。また、スパッタ雰囲気中の酸素濃度の変化に対する膜抵抗率の変動も少なかった。
なお、実施例18はターゲットの組成全体に占めるSnの割合が大きいため、他の実施例に比べて相対密度が低くなり、バルク抵抗率が大きかった。また、実施例19はターゲットの組織中に分散するSn偏析粒の平均粒径が大きかったことから、他の実施例に比べてバルク抵抗率が大きかった。
Comparative Examples 4 and 5 are examples in which neither SnO 2 nor ITO was added to the raw material, and the film resistance varied greatly with changes in the oxygen concentration in the sputtering atmosphere.
Comparative Examples 1 to 3 are examples in which SnO 2 was added to the raw material. The film resistance varied greatly with changes in the oxygen concentration in the sputtering atmosphere, and the bulk resistivity was also large. It was shown that the addition of SnO 2 did not directly lead to a decrease in bulk resistance.
Examples 1 to 21 are examples in which ITO was added to the raw material. Since the composition and the size of the Sn segregated grains dispersed in the structure of the target were appropriate, the bulk resistivity was reduced. Further, there was little change in the film resistivity with respect to the change in the oxygen concentration in the sputtering atmosphere.
In Example 18, since the proportion of Sn in the entire composition of the target was large, the relative density was lower and the bulk resistivity was higher than in the other examples. In Example 19, since the average particle diameter of the Sn segregated particles dispersed in the structure of the target was large, the bulk resistivity was large as compared with the other examples.
Claims (15)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017227269A JP6637948B2 (en) | 2017-11-27 | 2017-11-27 | IZO target and method for manufacturing the same |
CN201811055653.4A CN109837512B (en) | 2017-11-27 | 2018-09-11 | IZO target and method for producing the same |
KR1020180108709A KR102164172B1 (en) | 2017-11-27 | 2018-09-12 | Izo target and manufacturing method of the same |
TW107132416A TWI683018B (en) | 2017-11-27 | 2018-09-14 | IZO target material and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017227269A JP6637948B2 (en) | 2017-11-27 | 2017-11-27 | IZO target and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019094550A JP2019094550A (en) | 2019-06-20 |
JP6637948B2 true JP6637948B2 (en) | 2020-01-29 |
Family
ID=66845055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017227269A Active JP6637948B2 (en) | 2017-11-27 | 2017-11-27 | IZO target and method for manufacturing the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6637948B2 (en) |
KR (1) | KR102164172B1 (en) |
CN (1) | CN109837512B (en) |
TW (1) | TWI683018B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022255266A1 (en) * | 2021-06-04 | 2022-12-08 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2695605B2 (en) | 1992-12-15 | 1998-01-14 | 出光興産株式会社 | Target and manufacturing method thereof |
JP2000068456A (en) | 1998-08-21 | 2000-03-03 | Nec Corp | Semiconductor device and manufacture of the same |
JP3721080B2 (en) * | 1999-05-10 | 2005-11-30 | 株式会社日鉱マテリアルズ | Sputtering target and manufacturing method thereof |
DE60041353D1 (en) * | 1999-11-25 | 2009-02-26 | Idemitsu Kosan Co | SPUTTERTARGET, TRANSPARENT CONDUCTIVE OXID AND PREPARATION PROCESS FOR SPUTTERTARGET |
DE60329638D1 (en) * | 2002-08-02 | 2009-11-19 | Idemitsu Kosan Co | Sputtering target, sintered body, conductive film formed therefrom, organic EL device and substrate used therefor |
JP2006249554A (en) * | 2005-03-14 | 2006-09-21 | Fuji Electric Holdings Co Ltd | Sputtering target, preparing method therefor and sputtering method |
KR101080527B1 (en) * | 2005-09-20 | 2011-11-04 | 이데미쓰 고산 가부시키가이샤 | Sputtering target, transparent conductive film and transparent electrode |
JP5690063B2 (en) * | 2009-11-18 | 2015-03-25 | 出光興産株式会社 | In-Ga-Zn-based oxide sintered sputtering target and thin film transistor |
KR102142845B1 (en) * | 2012-05-31 | 2020-08-10 | 이데미쓰 고산 가부시키가이샤 | Sputtering target |
WO2014010383A1 (en) * | 2012-07-13 | 2014-01-16 | Jx日鉱日石金属株式会社 | Sintered body and amorphous film |
JP2017014534A (en) * | 2013-10-09 | 2017-01-19 | 出光興産株式会社 | Sputtering target and production method thereof |
JP6159867B1 (en) * | 2016-12-22 | 2017-07-05 | Jx金属株式会社 | Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method |
-
2017
- 2017-11-27 JP JP2017227269A patent/JP6637948B2/en active Active
-
2018
- 2018-09-11 CN CN201811055653.4A patent/CN109837512B/en active Active
- 2018-09-12 KR KR1020180108709A patent/KR102164172B1/en active IP Right Grant
- 2018-09-14 TW TW107132416A patent/TWI683018B/en active
Also Published As
Publication number | Publication date |
---|---|
KR20190062155A (en) | 2019-06-05 |
JP2019094550A (en) | 2019-06-20 |
TW201925501A (en) | 2019-07-01 |
TWI683018B (en) | 2020-01-21 |
KR102164172B1 (en) | 2020-10-12 |
CN109837512A (en) | 2019-06-04 |
CN109837512B (en) | 2021-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100957733B1 (en) | Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film | |
JP6291593B2 (en) | ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film | |
JP4098345B2 (en) | Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film | |
KR101590429B1 (en) | Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film | |
JP6078189B1 (en) | IZO sintered compact sputtering target and manufacturing method thereof | |
EP2428500A1 (en) | Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film | |
EP2495224A1 (en) | Indium oxide sintered body and indium oxide transparent conductive film | |
JP5081959B2 (en) | Oxide sintered body and oxide semiconductor thin film | |
JPWO2016136611A1 (en) | Oxide sintered body and sputtering target comprising the oxide sintered body | |
JP5681590B2 (en) | Oxide sintered compact target for sputtering, method for producing the same, thin film forming method and thin film forming method using the target | |
JP5884001B1 (en) | Oxide sintered body and sputtering target comprising the oxide sintered body | |
JP6637948B2 (en) | IZO target and method for manufacturing the same | |
WO2010021274A1 (en) | Sintered complex oxide, method for producing sintered complex oxide, sputtering target, and method for producing thin film | |
JP5907086B2 (en) | Indium oxide-based oxide sintered body and method for producing the same | |
JPWO2019031105A1 (en) | Oxide sintered body and sputtering target | |
JP7203088B2 (en) | Oxide sintered body, sputtering target and transparent conductive film | |
JP2012054336A (en) | Oxide sintered compact and oxide semiconductor thin film | |
JP2019189473A (en) | Sn-Zn-O BASED OXIDE SINTERED BODY AND METHOD OF PRODUCING THE SAME | |
KR102188415B1 (en) | Sputtering target | |
WO2013042747A1 (en) | Oxide sintered body, method for producing same, and oxide transparent conductive film | |
EP4424867A1 (en) | Igzo sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6637948 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |