WO2014010383A1 - Sintered body and amorphous film - Google Patents

Sintered body and amorphous film Download PDF

Info

Publication number
WO2014010383A1
WO2014010383A1 PCT/JP2013/066833 JP2013066833W WO2014010383A1 WO 2014010383 A1 WO2014010383 A1 WO 2014010383A1 JP 2013066833 W JP2013066833 W JP 2013066833W WO 2014010383 A1 WO2014010383 A1 WO 2014010383A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
film
sintered body
mgf
mol
Prior art date
Application number
PCT/JP2013/066833
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 奈良
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020147003260A priority Critical patent/KR101485305B1/en
Priority to CN201380002959.2A priority patent/CN104487402B/en
Priority to JP2013555698A priority patent/JP5695221B2/en
Publication of WO2014010383A1 publication Critical patent/WO2014010383A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • the present invention relates to a sintered body capable of obtaining a transparent conductive film having good visible light transmittance and conductivity, and an amorphous film having a low refractive index and produced using the sintered body.
  • a transparent conductive film a film in which tin is added to indium oxide, that is, an ITO (Indium-Tin-oxide) film is transparent and excellent in electrical conductivity, and is used in a wide range of applications such as various displays.
  • ITO Indium-Tin-oxide
  • this ITO has a problem that the manufacturing cost is inferior because indium which is a main component is expensive.
  • the material when using visible light in a display or the like, the material needs to be transparent, and it is particularly preferable that the material has a high transmittance in the entire visible light region.
  • the refractive index is high, the optical loss increases and the viewing angle dependency of the display deteriorates. Therefore, the refractive index is low, and the film is an amorphous film to improve the film cracking and etching performance. It is also desirable.
  • the amorphous film Since the amorphous film has low stress, cracks are unlikely to occur compared to the crystalline film, and it is considered that the amorphous film will be required for display applications toward flexible use.
  • the above ITO needs to be crystallized in order to improve the resistance value and transmittance, and if it is amorphous, it absorbs in the short wavelength region and does not become a transparent film. Not suitable for.
  • IZO indium oxide-zinc oxide
  • GZO gallium oxide-zinc oxide
  • AZO aluminum oxide-zinc oxide
  • IZO can be a low-resistance amorphous film, it has a problem that it has absorption in a short wavelength region and has a high refractive index.
  • GZO and AZO are likely to become crystallized films due to the ease of ZnO c-axis orientation, and such crystallized films have problems such as film peeling and film cracking because stress increases.
  • Patent Document 4 discloses a light-transmitting conductive material that realizes a wide range of refractive index, mainly composed of ZnO and an alkaline earth metal fluoride compound. However, this is a crystallized film, and the effect of the amorphous film as in the present invention described later cannot be obtained.
  • Patent Document 5 discloses a transparent conductive film that has a low refractive index and a low specific resistance and is amorphous. However, the composition system differs from the present invention, and the refractive index and the resistance value are disclosed. Cannot be adjusted together.
  • An object of the present invention is to provide a transparent conductive film capable of maintaining good visible light transmittance and conductivity, in particular, a sintered body capable of obtaining an amorphous film having a low refractive index. Since this thin film has high transmittance and excellent mechanical properties, it is useful as a transparent conductive film for displays and a protective film for optical displays. Accordingly, it is an object to improve the characteristics of the optical device, reduce the equipment cost, and greatly improve the film forming characteristics.
  • the present inventors have conducted intensive research. As a result, by replacing the conventional transparent conductive film such as ITO with the material system shown below, the resistivity and the refractive index can be arbitrarily set. It is possible to adjust to the above, ensuring optical characteristics equal to or higher than conventional, stable film formation using a sputtering method or on-plating method, and further by using an amorphous film, We obtained the knowledge that it is possible to improve the characteristics and productivity of optical devices with thin films.
  • a sintered body containing zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), oxygen (O), and the total content of Sn and / or In is SnO 2 And / or 10 to 90 mol% in terms of In 2 O 3 , and when the ratio of the number of Sn and / or In to the number of Zn atoms is 1 or less, the Mg content is 15 to 50 mol% in terms of MgF 2 , An oxide sintered body characterized in that when the ratio of the number of Sn and / or In to the number of Zn atoms is 1 or more, the Mg content is 1 to 40 mol% in terms of MgF 2 ; 2) Further containing gallium (Ga), aluminum (Al) and / or boron (B), the total content of Ga and / or B is 0.1 to 5 in terms of Ga 2 O 3 and
  • the present invention also provides: 5) A thin film containing zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), oxygen (O), wherein the total content of Sn and / or In is SnO 2 and / or Or, when the ratio of the number of Sn and / or In to the number of Zn atoms is 1 or less in terms of In 2 O 3 , Mg content is 15 to 50 mol% in terms of MgF 2 A thin film characterized in that when the ratio of the number of Sn and / or In to the number of atoms is 1 or more, the Mg content is 1 to 40 mol% in terms of MgF 2 and is amorphous; 6) Further, gallium (Ga), aluminum (Al) and / or boron (B) is contained, and the total content of Ga and / or B is 0.1 to 5 in terms of Ga 2 O 3 and / or B 2 O 3
  • an amorphous film can be formed by sputtering or ion plating, and there is an effect that film cracking due to stress is small and occurrence of film peeling can be suppressed. Further, it is possible to provide a sintered material useful for a thin film having an excellent characteristic of low refractive index, particularly an optical thin film for forming a protective layer of an optical information recording medium, a thin film for an organic EL television, and a thin film for a transparent electrode.
  • the oxide sintered body of the present invention is a sintered body containing zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), oxygen (O), and Sn and / or
  • the Mg content is MgF 15 ⁇ 50 mol% in 2 terms
  • the content of Mg is a 1 ⁇ 40 mol% in MgF 2 terms
  • the balance is adjusted so that the total is 100 mol% with the balance being ZnO. Therefore, the Zn content can be determined from the remaining ZnO equivalent.
  • the amorphous film of a low refractive index can be formed and the said effect of this invention is acquired.
  • content of each metal in a sintered compact is prescribed
  • each metal in a sintered compact exists in part or all as complex oxide.
  • each content is measured not as an oxide but as a metal.
  • the present invention is characterized in that magnesium fluoride (MgF 2 ) is added to form an amorphous film having a low refractive index.
  • Mg content is 15 to 50 mol% in terms of MgF 2 when the ratio of Sn and / or In atoms to Zn atoms is 1 or less, and the ratio of Sn and / or In atoms to Zn atoms is When the ratio is 1 or more, an amorphous and low refractive index film can be formed by adjusting the MgF 2 content to 1 to 40 mol%. Thereby, the generation
  • an oxide of gallium (Ga) and / or boron (B) can be added in order to impart conductivity to the film. Since conductivity is reduced by the addition of magnesium fluoride, it is preferable to add an oxide of Ga or B depending on the amount of magnesium fluoride added. When the amount of magnesium fluoride added is small, desired conductivity can be obtained without adding Ga or B oxides. In the present invention, desired conductivity can be obtained by setting the total content of at least Ga and / or B to 0.1 to 10 mol% in terms of Ga 2 O 3 and / or B 2 O 3 .
  • a film formed by sputtering a target obtained by machining the sintered body of the present invention or a film formed by the ion plating may have a refractive index of 2.0 or less at a wavelength of 550 nm.
  • Magnesium fluoride (MgF 2 ), gallium oxide (Ga 2 O 3 ), and boron oxide (B 2 O 3 ) are materials having a lower refractive index than zinc oxide, tin oxide, or indium oxide.
  • a film having a low refractive index can be obtained by adding a fluoride or oxide.
  • zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), oxygen (O) is contained, and the total content of Sn and / or In is SnO 2 and / Or 10 to 90 mol% in terms of In 2 O 3 , and the Mg content is 15 to 50 mol in terms of MgF 2 when the ratio of the number of Sn and / or In atoms to the number of Zn atoms is 1 or less.
  • % When the ratio of Sn and / or In atoms to Zn atoms is 1 or more, it is 1 to 40 mol% in terms of MgF 2 , and an amorphous thin film can be produced.
  • the thin film of the present invention When the thin film of the present invention is used for organic EL televisions, transparent electrodes, and the like, it is desirable to have a refractive index and a conductivity suitable for these applications.
  • the refractive index is more preferably 2.0 or less at a wavelength of 550 nm
  • the conductivity is more preferably 1 m ⁇ ⁇ cm or more and 1,000,000 (1M) ⁇ ⁇ cm or less.
  • Example 1 3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent.
  • the powder material was hot-press sintered at a temperature of 850 ° C.
  • the refractive index of the film reached 1.87 (wavelength 550 nm).
  • Example 2 3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent.
  • the powder material was hot-press sintered at a temperature of 850 ° C.
  • the refractive index of the film reached 1.87 (wavelength 550 nm).
  • Example 3 ZnO powder with 3N equivalent and 5 ⁇ m or less, 3N equivalent and In 2 O 3 powder with average particle size of 5 ⁇ m or less, 3F and MgF 2 powder with average particle size of 5 ⁇ m or less, 3N equivalent with 5 ⁇ m or less Ga 2 O 3 powder did.
  • the refractive index of the film reached 1.85 (wavelength 550 nm).
  • Example 4 ZnO powder of 3N equivalent to 5 ⁇ m or less, 3N equivalent of In 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of MgF 2 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of B 2 O 3 powder of 5 ⁇ m or less did.
  • the refractive index of the film reached 1.90 (wavelength 550 nm).
  • Example 5 ZnO powder of 3N equivalent to 5 ⁇ m or less, 3N equivalent of In 2 O 3 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of MgF 2 powder with an average particle size of 5 ⁇ m or less, 3N equivalent of B 2 O 3 powder of 5 ⁇ m or less did.
  • the refractive index of the film reached 1.70 (wavelength 550 nm).
  • Example 6 3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent.
  • the powder material was hot-press sintered at a temperature of 850 ° C.
  • the refractive index of the film reached 1.80 (wavelength 550 nm).
  • Example 7 3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent.
  • the powder material was hot-press sintered at a temperature of 850 ° C.
  • the refractive index of the film reached 1.98 (wavelength 550 nm).
  • Example 8 ZnO powder with 3N equivalent and 5 ⁇ m or less, SnO 2 powder with 3N equivalent and average particle size of 5 ⁇ m or less, MgF 2 powder with 3N equivalent and average particle size of 5 ⁇ m or less, AlN 2 O 3 powder with 3N equivalent and 5 ⁇ m or less, 3N equivalent A B 2 O 3 powder having an average particle size of 5 ⁇ m or less was prepared.
  • the ZnO powder and SnO 2 and MgF 2 powder and Al 2 O 3 powder and B 2 O 3 powder, ZnO: SnO 2: MgF 2 : Al 2 O 3: B 2 O 3 68.2: 14.
  • the powder material was hot-press sintered in vacuum at a temperature of 1100 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, the sintered body was machined to finish a sputtering target shape. As a result of measuring the bulk resistance and relative density of the obtained target, the relative density reached 98.2%, the bulk resistance was 3.1 m ⁇ ⁇ cm, and stable DC sputtering was possible. Next, sputtering was performed using the above-finished target.
  • the sputtering conditions were DC sputtering, sputtering power 500 W, Ar gas pressure 0.5 Pa containing 2 vol%, and a film thickness of 1500 to 7000 mm. It was confirmed that the produced thin film was an amorphous film.
  • the refractive index of the film reached 1.94 (wavelength 550 nm).
  • the powder material is hot-press sintered at a temperature of 1100 ° C. and a pressure of 250 kgf / cm 2 in a vacuum. did. Thereafter, the sintered body was machined to finish a sputtering target shape. As a result of measuring the bulk resistance and relative density of the obtained target, the relative density reached 99.1%, the bulk resistance became 3.2 m ⁇ ⁇ cm, and stable DC sputtering was possible. Next, sputtering was performed using the above-finished target.
  • the sputtering conditions were DC sputtering, sputtering power 500 W, Ar gas pressure 0.5 Pa containing 2 vol%, and a film thickness of 1500 to 7000 mm. It was confirmed that the produced thin film was an amorphous film.
  • the refractive index of the film reached 1.94 (wavelength 550 nm).
  • 3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent.
  • the powder material was hot-press sintered at a temperature of 850 ° C.
  • 3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent.
  • the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, the produced film was not an amorphous film.
  • 3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent.
  • the powder material was hot-press sintered at a temperature of 850 ° C.
  • 3N corresponds at 5 [mu] m following ZnO powders were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent.
  • the powder material was hot-press sintered at a temperature of 850 ° C.
  • the sintered body of the present invention can be used as a sputtering target or an ion plating material, and a thin film formed using these sputtering target or ion plating material can protect a transparent conductive film and an optical disk in various displays.
  • a film there is an effect that it has extremely excellent characteristics in terms of transmittance, refractive index, and conductivity. Further, the present invention has an excellent effect that the film can be remarkably improved in cracking and etching performance due to the amorphous film.
  • the sputtering target using the sintered body of the present invention has a low bulk resistance value and a high relative density of 90% or more, and thus enables stable DC sputtering. And there is a remarkable effect that the controllability of sputtering, which is a feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved.
  • RF sputtering is performed as necessary, but even in this case, the film formation rate is improved.
  • particles (dust generation) and nodules generated during sputtering during film formation can be reduced, and quality variation can be reduced and mass productivity can be improved.
  • the ion plating material using the sintered body of the present invention can form an amorphous film having a low refractive index, it is possible to suppress the occurrence of cracks and cracks due to film stress, and film peeling. It has the effect.
  • Such an amorphous film is particularly useful for an optical thin film for forming a protective layer of an optical information recording medium, a thin film for an organic EL television, and a thin film for a transparent electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

This sintered body, which contains zinc (Zn), tin (Sn) and/or indium (In), magnesium (Mg), and oxygen (O), is an oxide sintered body characterized by having a total content of Sn and/or In in terms of SnO2 and/or In2O3 of 10-90 mol%, having an Mg content in terms of MgF2 of 15-50 mol% when the ratio of the number of Sn and/or In atoms to the number of Zn atoms is no greater than 1, and having an Mg content in terms of MgF2 of 1-40 mol% when the ratio of the number of Sn and/or In atoms to the number of Zn atoms is at least 1. The sintered body can form an amorphous film by means of a sputtering method or an ion plating method, and so has a superior effect in being able to suppress the occurrence of cracking or peeling of the film resulting from membrane stress. The thin film of the present invention is particularly useful as an optical thin film forming a protective layer for an optical information recording medium, an organic EL television thin film, and a transparent electrode thin film.

Description

焼結体及びアモルファス膜Sintered body and amorphous film
 本発明は良好な可視光の透過率と導電性を備えた透明導電膜を得ることが可能な焼結体及び該焼結体を用いて作製した低屈折率を有するアモルファス膜に関する。 The present invention relates to a sintered body capable of obtaining a transparent conductive film having good visible light transmittance and conductivity, and an amorphous film having a low refractive index and produced using the sintered body.
 従来、透明導電膜として、酸化インジウムにスズを添加した膜、すなわち、ITO(Indium-Tin-oxide)膜が透明かつ導電性に優れており、各種ディスプレイ等広範囲な用途に使用されている。しかし、このITOは主成分であるインジウムが高価であるために、製造コストの面で劣るという問題がある。 Conventionally, as a transparent conductive film, a film in which tin is added to indium oxide, that is, an ITO (Indium-Tin-oxide) film is transparent and excellent in electrical conductivity, and is used in a wide range of applications such as various displays. However, this ITO has a problem that the manufacturing cost is inferior because indium which is a main component is expensive.
 このようなことから、ITOの代替品として、例えば、酸化亜鉛(ZnO)を用いた膜を用いる提案がなされている。酸化亜鉛を主成分とする膜であるため、価格が安いという利点がある。このような膜は、主成分であるZnOの酸素欠損により導電性が増す現象が知られており、導電性と光透過性という膜特性がITOに近似すれば、このような材料の利用が増大する可能性がある。 For this reason, for example, a proposal using a film using zinc oxide (ZnO) as an alternative to ITO has been made. Since the film is mainly composed of zinc oxide, there is an advantage that the price is low. Such a film is known to increase in conductivity due to oxygen vacancies in ZnO, which is the main component, and if the film properties of conductivity and light transmission are similar to those of ITO, the use of such materials will increase. there's a possibility that.
 ところで、ディスプレイ等において可視光を利用する場合、その材料が透明である必要があり、特に、可視光領域の全域において高透過率であることが好ましい。また、屈折率が高いと光損失が大きくなったり、ディスプレイの視野角依存性を悪化したりすることから低屈折率であることや、膜のクラックやエッチング性能を向上させるためにアモルファス膜であることも望まれる。 By the way, when using visible light in a display or the like, the material needs to be transparent, and it is particularly preferable that the material has a high transmittance in the entire visible light region. In addition, if the refractive index is high, the optical loss increases and the viewing angle dependency of the display deteriorates. Therefore, the refractive index is low, and the film is an amorphous film to improve the film cracking and etching performance. It is also desirable.
 アモルファス膜は応力が小さいため、結晶膜に比べてクラックが起こりにくく、今後、フレキシブル化に向かうディスプレイ用途ではアモルファス膜であることが求められると考えられる。なお、先のITOでは、抵抗値や透過率を向上するために、結晶化する必要があり、また、アモルファスとすると、短波長域に吸収を持ち、透明膜にはならないため、このような用途には適していない。 Since the amorphous film has low stress, cracks are unlikely to occur compared to the crystalline film, and it is considered that the amorphous film will be required for display applications toward flexible use. The above ITO needs to be crystallized in order to improve the resistance value and transmittance, and if it is amorphous, it absorbs in the short wavelength region and does not become a transparent film. Not suitable for.
 酸化亜鉛を用いた材料として、IZO(酸化インジウム-酸化亜鉛)、GZO(酸化ガリウム-酸化亜鉛)、AZO(酸化アルミニウム-酸化亜鉛)などが知られている(特許文献1~3)。しかし、IZOは低抵抗のアモルファス膜とすることができるが、短波長域に吸収も持ち、屈折率が高いという問題がある。また、GZO、AZOは、ZnOのc軸配向のし易さにより、結晶化膜になりやすく、このような結晶化膜は応力が大きくなるため、膜剥がれや膜割れ等の問題がある。 As materials using zinc oxide, IZO (indium oxide-zinc oxide), GZO (gallium oxide-zinc oxide), AZO (aluminum oxide-zinc oxide) and the like are known (Patent Documents 1 to 3). However, although IZO can be a low-resistance amorphous film, it has a problem that it has absorption in a short wavelength region and has a high refractive index. Further, GZO and AZO are likely to become crystallized films due to the ease of ZnO c-axis orientation, and such crystallized films have problems such as film peeling and film cracking because stress increases.
 また、特許文献4には、ZnOとフッ化アルカリ土類金属化合物を主成分とする幅広い屈折率を実現した透光性導電性材料が開示されている。しかし、これは結晶化膜であって、後述する本発明のようなアモルファス膜の効果は得られない。また、特許文献5には、屈折率が小さく、かつ、比抵抗が小さく、さらには非晶質の透明導電膜が開示されているが、本発明とは組成系が異なり、屈折率と抵抗値とを共に調整できないという問題がある。 In addition, Patent Document 4 discloses a light-transmitting conductive material that realizes a wide range of refractive index, mainly composed of ZnO and an alkaline earth metal fluoride compound. However, this is a crystallized film, and the effect of the amorphous film as in the present invention described later cannot be obtained. Patent Document 5 discloses a transparent conductive film that has a low refractive index and a low specific resistance and is amorphous. However, the composition system differs from the present invention, and the refractive index and the resistance value are disclosed. Cannot be adjusted together.
特開2007-008780号公報JP 2007-008780 A 特開2009-184876号公報JP 2009-184876 A 特開2007-238375号公報JP 2007-238375 A 特開2005-219982号公報Japanese Patent Laid-Open No. 2005-219982 特開2007-035342号公報JP 2007-035342 A
 本発明は、良好な可視光の透過率と導電性を維持できる透明導電膜、特には、低屈折率のアモルファス膜を得ることが可能な焼結体を提供することを課題とする。この薄膜は、透過率が高く、且つ、機械特性に優れているため、ディスプレイの透明導電膜や光ディスの保護膜に有用である。これによって、光デバイスの特性の向上、設備コストの低減化、成膜の特性を大幅に改善することを目的とする。 An object of the present invention is to provide a transparent conductive film capable of maintaining good visible light transmittance and conductivity, in particular, a sintered body capable of obtaining an amorphous film having a low refractive index. Since this thin film has high transmittance and excellent mechanical properties, it is useful as a transparent conductive film for displays and a protective film for optical displays. Accordingly, it is an object to improve the characteristics of the optical device, reduce the equipment cost, and greatly improve the film forming characteristics.
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、従来のITOなどの透明導電膜を下記に提示する材料系へと置き換えることで、抵抗率と屈折率とを任意に調整することが可能となり、従来と同等又はそれ以上の光学特性を確保すると共に、スパッタリング法或いはオンプレーティング法を用いた安定的な成膜が可能であり、さらにアモルファス膜とすることで、該薄膜を備える光デバイスの特性改善、生産性向上が可能であるとの知見を得た。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, by replacing the conventional transparent conductive film such as ITO with the material system shown below, the resistivity and the refractive index can be arbitrarily set. It is possible to adjust to the above, ensuring optical characteristics equal to or higher than conventional, stable film formation using a sputtering method or on-plating method, and further by using an amorphous film, We obtained the knowledge that it is possible to improve the characteristics and productivity of optical devices with thin films.
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、次の発明を提供するものである。
 1)亜鉛(Zn)、錫(Sn)及び/又はインジウム(In)、マグネシウム(Mg)、酸素(O)を含有する焼結体であって、Sn及び/又はInの総含有量がSnO及び/又はIn換算で10~90mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以下であるとき、Mgの含有量がMgF換算で15~50mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以上であるとき、Mgの含有量がMgF換算で1~40mol%、であることを特徴とする酸化物焼結体、
 2)さらにガリウム(Ga)、アルミニウム(Al)及び/又はホウ素(B)を含有し、Ga及び/又はBの総含有量がGa及び/又はB換算で0.1~10mol%であることを特徴とする上記1)記載の酸化物焼結体、
 3)上記1)又は上記2)記載の酸化物焼結体を用いることを特徴とするスパッタリングターゲット、
 4)上記1)又は上記2)記載の酸化物焼結体を用いることを特徴とするイオンプレーティング材、提供する。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and provide the following invention.
1) A sintered body containing zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), oxygen (O), and the total content of Sn and / or In is SnO 2 And / or 10 to 90 mol% in terms of In 2 O 3 , and when the ratio of the number of Sn and / or In to the number of Zn atoms is 1 or less, the Mg content is 15 to 50 mol% in terms of MgF 2 , An oxide sintered body characterized in that when the ratio of the number of Sn and / or In to the number of Zn atoms is 1 or more, the Mg content is 1 to 40 mol% in terms of MgF 2 ;
2) Further containing gallium (Ga), aluminum (Al) and / or boron (B), the total content of Ga and / or B is 0.1 to 5 in terms of Ga 2 O 3 and / or B 2 O 3 The oxide sintered body according to 1) above, which is 10 mol%,
3) A sputtering target using the oxide sintered body according to 1) or 2) above,
4) An ion plating material characterized by using the oxide sintered body described in 1) or 2) above is provided.
 また、本発明は、
 5)亜鉛(Zn)、錫(Sn)及び/又はインジウム(In)、マグネシウム(Mg)、酸素(O)を含有する薄膜であって、Sn及び/又はInの総含有量がSnO及び/又はIn換算で10~90mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以下であるとき、Mgの含有量がMgF換算で15~50mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以上であるとき、Mgの含有量がMgF換算で1~40mol%、非晶質であることを特徴とする薄膜、
 6)さらにガリウム(Ga)、アルミニウム(Al)及び/又はホウ素(B)を含有し、Ga及び/又はBの総含有量がGa及び/又はB換算で0.1~10mol%であることを特徴とする上記5)記載の薄膜、
 7)波長550nmにおける屈折率が2.0以下であることを特徴とする上記5)又は6)記載の薄膜、
 8)比抵抗が1mΩ・cm~1MΩ・cmであることを特徴とする上記5)~7)のいずれか一に記載の薄膜、を提供する。
The present invention also provides:
5) A thin film containing zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), oxygen (O), wherein the total content of Sn and / or In is SnO 2 and / or Or, when the ratio of the number of Sn and / or In to the number of Zn atoms is 1 or less in terms of In 2 O 3 , Mg content is 15 to 50 mol% in terms of MgF 2 A thin film characterized in that when the ratio of the number of Sn and / or In to the number of atoms is 1 or more, the Mg content is 1 to 40 mol% in terms of MgF 2 and is amorphous;
6) Further, gallium (Ga), aluminum (Al) and / or boron (B) is contained, and the total content of Ga and / or B is 0.1 to 5 in terms of Ga 2 O 3 and / or B 2 O 3 The thin film according to 5) above, which is 10 mol%,
7) The thin film according to 5) or 6) above, wherein the refractive index at a wavelength of 550 nm is 2.0 or less,
8) The thin film according to any one of 5) to 7) above, which has a specific resistance of 1 mΩ · cm to 1 MΩ · cm.
 本発明によれば、スパッタリング法やイオンプレーティング法によって、非晶質膜を成膜することができ、応力による膜割れが少なく、膜剥離の発生を抑制することができるという効果を有する。また、低屈折率という優れた特性を持つ薄膜、特に光情報記録媒体の保護層を形成する光学薄膜、有機ELテレビ用薄膜、透明電極用薄膜に有用である焼結体材料を提供できる。 に よ According to the present invention, an amorphous film can be formed by sputtering or ion plating, and there is an effect that film cracking due to stress is small and occurrence of film peeling can be suppressed. Further, it is possible to provide a sintered material useful for a thin film having an excellent characteristic of low refractive index, particularly an optical thin film for forming a protective layer of an optical information recording medium, a thin film for an organic EL television, and a thin film for a transparent electrode.
 本発明の酸化物焼結体は、亜鉛(Zn)、錫(Sn)及び/又はインジウム(In)、マグネシウム(Mg)、酸素(O)を含有する焼結体であって、Sn及び/又はInの総含有量がSnO及び/又はIn換算で10~90mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以下であるとき、Mgの含有量がMgF換算で15~50mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以上であるとき、Mgの含有量がMgF換算で1~40mol%であって、スパッタリング法やイオンプレーティング法によって、非晶質の膜を形成できることを特徴とする。 The oxide sintered body of the present invention is a sintered body containing zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), oxygen (O), and Sn and / or When the total content of In is 10 to 90 mol% in terms of SnO 2 and / or In 2 O 3 and the ratio of the number of Sn and / or In to the number of Zn atoms is 1 or less, the Mg content is MgF 15 ~ 50 mol% in 2 terms, when the ratio of Sn and / or in the number of atoms to the number of atoms of Zn is 1 or more, the content of Mg is a 1 ~ 40 mol% in MgF 2 terms, Ya sputtering An amorphous film can be formed by an ion plating method.
 原料の調整の際に、残部をZnOとして各酸化物の比率をその合計が100mol%の組成となるように調整する。そのため、Znの含有量は、このような残部のZnO換算から求めることができる。このような組成とすることで、低屈折率のアモルファス膜を形成することができ、本発明の上記効果が得られる。
 なお、本発明では、焼結体中の各金属の含有量を酸化物換算で規定しているが、焼結体中の各金属はその一部又は全てが複合酸化物として存在している。また、通常用いられる焼結体の成分分析では、酸化物ではなく、金属として、それぞれの含有量が測定される。
At the time of adjusting the raw materials, the balance is adjusted so that the total is 100 mol% with the balance being ZnO. Therefore, the Zn content can be determined from the remaining ZnO equivalent. By setting it as such a composition, the amorphous film of a low refractive index can be formed and the said effect of this invention is acquired.
In addition, in this invention, although content of each metal in a sintered compact is prescribed | regulated in conversion of an oxide, each metal in a sintered compact exists in part or all as complex oxide. Moreover, in the component analysis of the sintered body normally used, each content is measured not as an oxide but as a metal.
 本発明は、非晶質かつ低屈折率の膜を成膜するためにフッ化マグネシウム(MgF)を添加することを特徴とする。Mgの含有量は、Zn原子数に対するSn及び/又はIn原子数の比が1以下であるとき、MgF換算で15~50mol%とし、Zn原子数に対するSn及び/又はIn原子数の比が1以上であるとき、MgF換算で1~40mol%とすることで、非晶質かつ低屈折率の膜を成膜することができる。これにより、膜のクラックや割れの発生を低減することができ、また、膜の剥離を抑制することができる。 The present invention is characterized in that magnesium fluoride (MgF 2 ) is added to form an amorphous film having a low refractive index. The Mg content is 15 to 50 mol% in terms of MgF 2 when the ratio of Sn and / or In atoms to Zn atoms is 1 or less, and the ratio of Sn and / or In atoms to Zn atoms is When the ratio is 1 or more, an amorphous and low refractive index film can be formed by adjusting the MgF 2 content to 1 to 40 mol%. Thereby, the generation | occurrence | production of the crack of a film | membrane and a crack can be reduced, and peeling of a film | membrane can be suppressed.
 本発明の酸化物焼結体は、膜に導電性を付与するためにガリウム(Ga)及び/又はホウ素(B)の酸化物を添加することができる。フッ化マグネシウムの添加により導電性が低下するため、フッ化マグネシウムの添加量に応じてGaやBの酸化物を添加するのが好ましい。フッ化マグネシウムの添加量が少ない場合には、GaやBの酸化物を添加しなくとも所望の導電性を得ることができる。本発明において、少なくともGa及び/又はBの総含有量を、Ga及び/又はB換算で0.1~10mol%とすることで、所望の導電性を得ることができる。 In the oxide sintered body of the present invention, an oxide of gallium (Ga) and / or boron (B) can be added in order to impart conductivity to the film. Since conductivity is reduced by the addition of magnesium fluoride, it is preferable to add an oxide of Ga or B depending on the amount of magnesium fluoride added. When the amount of magnesium fluoride added is small, desired conductivity can be obtained without adding Ga or B oxides. In the present invention, desired conductivity can be obtained by setting the total content of at least Ga and / or B to 0.1 to 10 mol% in terms of Ga 2 O 3 and / or B 2 O 3 .
 また、本発明は、スパッタリングターゲット法やイオンプレーティング法を用いて、非晶質の薄膜を形成できることが特に重要である。ZnOを成分とする薄膜は膜応力が大きいため、結晶化膜であるとクラックや割れが発生し、さらには、膜の剥離等の問題が生じる。この薄膜を非晶質膜とすることにより、膜応力による割れやクラック等の問題を回避することができるという優れた効果を有する。なお、得られた膜が非晶質膜であるかは、例えば、X線回折法を用いて、ZnOの(002)面のピークが現れる2θ=34.4°付近の回折強度を観察することで判断することができる。 In addition, it is particularly important for the present invention that an amorphous thin film can be formed using a sputtering target method or an ion plating method. Since a thin film containing ZnO has a large film stress, if it is a crystallized film, cracks and cracks occur, and further problems such as film peeling occur. By making this thin film an amorphous film, there is an excellent effect that problems such as cracks and cracks due to film stress can be avoided. Whether the obtained film is an amorphous film is determined by, for example, observing the diffraction intensity in the vicinity of 2θ = 34.4 ° where the peak of the (002) plane of ZnO appears by using an X-ray diffraction method. Can be judged.
 また、本発明の焼結体を機械加工して得られるターゲットをスパッタして形成した膜、又は上記イオンプレーティングにより形成された膜は、波長550nmにおける屈折率が2.0以下であることが好ましい。フッ化マグネシウム(MgF)、さらには、酸化ガリウム(Ga)や酸化ホウ素(B)は、酸化亜鉛、酸化錫あるいは酸化インジウムよりも屈折率の低い材料であるため、これらのフッ化物や酸化物の添加によって、低屈折率の膜を得ることができる。 Further, a film formed by sputtering a target obtained by machining the sintered body of the present invention or a film formed by the ion plating may have a refractive index of 2.0 or less at a wavelength of 550 nm. preferable. Magnesium fluoride (MgF 2 ), gallium oxide (Ga 2 O 3 ), and boron oxide (B 2 O 3 ) are materials having a lower refractive index than zinc oxide, tin oxide, or indium oxide. A film having a low refractive index can be obtained by adding a fluoride or oxide.
 本発明によれば、亜鉛(Zn)、錫(Sn)及び/又はインジウム(In)、マグネシウム(Mg)、酸素(O)を含有し、Sn及び/又はInの総含有量が、SnO及び/又はIn換算で10~90mol%であり、Mgの含有量が、Znの原子数に対するSn及び/又はInの原子数の比が1以下であるとき、MgF換算で15~50mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以上であるとき、MgF換算で1~40mol%であって、非晶質(アモルファス)薄膜を作製することができる。
 本発明の薄膜は、有機ELテレビ、透明電極等を用途とする場合には、これらの用途の適した屈折率や導線性を備えることが望ましい。屈折率については、波長550nmにおいて2.0以下とするのがより好ましく、導電性については、比抵抗1mΩ・cm以上、1,000,000(1M)Ω・cm以下とするのがより好ましい。
According to the present invention, zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), oxygen (O) is contained, and the total content of Sn and / or In is SnO 2 and / Or 10 to 90 mol% in terms of In 2 O 3 , and the Mg content is 15 to 50 mol in terms of MgF 2 when the ratio of the number of Sn and / or In atoms to the number of Zn atoms is 1 or less. %, When the ratio of Sn and / or In atoms to Zn atoms is 1 or more, it is 1 to 40 mol% in terms of MgF 2 , and an amorphous thin film can be produced.
When the thin film of the present invention is used for organic EL televisions, transparent electrodes, and the like, it is desirable to have a refractive index and a conductivity suitable for these applications. The refractive index is more preferably 2.0 or less at a wavelength of 550 nm, and the conductivity is more preferably 1 mΩ · cm or more and 1,000,000 (1M) Ω · cm or less.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のSnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のGa粉を準備した。次に、ZnO粉とSnO粉とMgF粉とGa粉を、ZnO:SnO:MgF:Ga=45.5:30.4:22.9:1.25mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、安定したイオンプレーティングができ、作製した膜は非晶質膜であることが確認された。また、その膜の屈折率は1.87(波長550nm)に達した。
(Example 1)
3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent. Next, ZnO powder, SnO 2 powder, MgF 2 powder, and Ga 2 O 3 powder were changed to ZnO: SnO 2 : MgF 2 : Ga 2 O 3 = 45.5: 30.4: 22.9: 1.25 mol%. Then, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, stable ion plating was achieved, and it was confirmed that the produced film was an amorphous film. The refractive index of the film reached 1.87 (wavelength 550 nm).
(実施例2)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のSnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のGa粉を準備した。次に、ZnO粉とSnO粉とMgF粉とGa粉を、ZnO:SnO:MgF:Ga=68.21:11.76:18.24:1.79mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、安定したイオンプレーティングができ、作製した膜は非晶質膜であることが確認された。また、その膜の屈折率は1.87(波長550nm)に達した。
(Example 2)
3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent. Next, ZnO powder, SnO 2 powder, MgF 2 powder, and Ga 2 O 3 powder were changed to ZnO: SnO 2 : MgF 2 : Ga 2 O 3 = 68.21: 11.76: 18.24: 1.79 mol%. Then, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, stable ion plating was achieved, and it was confirmed that the produced film was an amorphous film. The refractive index of the film reached 1.87 (wavelength 550 nm).
(実施例3)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のIn粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のGa粉を準備した。次に、ZnO粉とIn粉とMgF粉とGa粉を、ZnO:In:MgF:Ga=66.7:21.3:14.9:8.3mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、安定したイオンプレーティングができ、作製した膜は非晶質膜であることが確認された。また、その膜の屈折率は1.85(波長550nm)に達した。
(Example 3)
ZnO powder with 3N equivalent and 5 μm or less, 3N equivalent and In 2 O 3 powder with average particle size of 5 μm or less, 3F and MgF 2 powder with average particle size of 5 μm or less, 3N equivalent with 5 μm or less Ga 2 O 3 powder did. Next, ZnO powder, In 2 O 3 powder, MgF 2 powder, and Ga 2 O 3 powder were changed to ZnO: In 2 O 3 : MgF 2 : Ga 2 O 3 = 66.7: 21.3: 14.9: After blending to a blending ratio of 8.3 mol% and mixing this, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, stable ion plating was achieved, and it was confirmed that the produced film was an amorphous film. The refractive index of the film reached 1.85 (wavelength 550 nm).
(実施例4)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のIn粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のB粉を準備した。次に、ZnO粉とIn粉とMgF粉とB粉を、ZnO:In:MgF:B=15.4:37.7:46.3:0.5mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、安定したイオンプレーティングができ、作製した膜は非晶質膜であることが確認された。また、その膜の屈折率は1.90(波長550nm)に達した。
Example 4
ZnO powder of 3N equivalent to 5 μm or less, 3N equivalent of In 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of MgF 2 powder with an average particle size of 5 μm or less, 3N equivalent of B 2 O 3 powder of 5 μm or less did. Next, ZnO powder, In 2 O 3 powder, MgF 2 powder and B 2 O 3 powder were changed to ZnO: In 2 O 3 : MgF 2 : B 2 O 3 = 15.4: 37.7: 46.3: After blending to a mixing ratio of 0.5 mol% and mixing this, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, stable ion plating was achieved, and it was confirmed that the produced film was an amorphous film. The refractive index of the film reached 1.90 (wavelength 550 nm).
(実施例5)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のIn粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のB粉を準備した。次に、ZnO粉とIn粉とMgF粉とB粉を、ZnO:In:MgF:B=41.1:12.1:45.8:1.0mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、安定したイオンプレーティングができ、作製した膜は非晶質膜であることが確認された。また、その膜の屈折率は1.70(波長550nm)に達した。
(Example 5)
ZnO powder of 3N equivalent to 5 μm or less, 3N equivalent of In 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of MgF 2 powder with an average particle size of 5 μm or less, 3N equivalent of B 2 O 3 powder of 5 μm or less did. Next, ZnO powder, In 2 O 3 powder, MgF 2 powder, and B 2 O 3 powder were changed to ZnO: In 2 O 3 : MgF 2 : B 2 O 3 = 41.1: 12.1: 45.8: After blending to a mixing ratio of 1.0 mol% and mixing this, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, stable ion plating was achieved, and it was confirmed that the produced film was an amorphous film. The refractive index of the film reached 1.70 (wavelength 550 nm).
(実施例6)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のSnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のGa粉を準備した。次に、ZnO粉とSnO粉とMgF粉とGa粉を、ZnO:SnO:MgF:Ga=25.4:38.1:25.4:3.0mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、安定したイオンプレーティングができ、作製した膜は非晶質膜であることが確認された。また、その膜の屈折率は1.80(波長550nm)に達した。
(Example 6)
3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent. Next, ZnO powder, SnO 2 powder, MgF 2 powder, and Ga 2 O 3 powder were changed to ZnO: SnO 2 : MgF 2 : Ga 2 O 3 = 25.4: 38.1: 25.4: 3.0 mol%. Then, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, stable ion plating was achieved, and it was confirmed that the produced film was an amorphous film. The refractive index of the film reached 1.80 (wavelength 550 nm).
(実施例7)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のSnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のGa粉を準備した。次に、ZnO粉とSnO粉とMgF粉とGa粉を、ZnO:SnO:MgF:Ga=31.1:57.8:8.0:3.0mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、安定したイオンプレーティングができ、作製した膜は非晶質膜であることが確認された。また、その膜の屈折率は1.98(波長550nm)に達した。
(Example 7)
3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent. Next, ZnO powder, SnO 2 powder, MgF 2 powder, and Ga 2 O 3 powder were changed to ZnO: SnO 2 : MgF 2 : Ga 2 O 3 = 31.1: 57.8: 8.0: 3.0 mol%. Then, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, stable ion plating was achieved, and it was confirmed that the produced film was an amorphous film. The refractive index of the film reached 1.98 (wavelength 550 nm).
(実施例8)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のSnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のAl粉、3N相当で平均粒径5μm以下のB粉を準備した。次に、ZnO粉とSnOとMgF粉とAl粉とB粉を、ZnO:SnO:MgF:Al:B=68.2:14.2:15.3:1.8:0.5mol%の配合比に調合し、これを混合した後、粉末材料を真空中、温度1100℃、圧力250kgf/cmでホットプレス焼結した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した結果、相対密度は98.2%に達し、バルク抵抗は3.1mΩ・cmとなり、安定したDCスパッタが可能であった。
 次に、上記仕上げ加工したターゲットを使用して、スパッタリングを行った。スパッタ条件は、DCスパッタ、スパッタパワー500W、O2を2vol%含有するArガス圧0.5Paとし、膜厚1500~7000Åに成膜した。作製した薄膜は非晶質膜であることが確認された。また、その膜の屈折率は1.94(波長550nm)に達した。
(Example 8)
ZnO powder with 3N equivalent and 5 μm or less, SnO 2 powder with 3N equivalent and average particle size of 5 μm or less, MgF 2 powder with 3N equivalent and average particle size of 5 μm or less, AlN 2 O 3 powder with 3N equivalent and 5 μm or less, 3N equivalent A B 2 O 3 powder having an average particle size of 5 μm or less was prepared. Next, the ZnO powder and SnO 2 and MgF 2 powder and Al 2 O 3 powder and B 2 O 3 powder, ZnO: SnO 2: MgF 2 : Al 2 O 3: B 2 O 3 = 68.2: 14. After blending to a blending ratio of 2: 15.3: 1.8: 0.5 mol% and mixing this, the powder material was hot-press sintered in vacuum at a temperature of 1100 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, the sintered body was machined to finish a sputtering target shape. As a result of measuring the bulk resistance and relative density of the obtained target, the relative density reached 98.2%, the bulk resistance was 3.1 mΩ · cm, and stable DC sputtering was possible.
Next, sputtering was performed using the above-finished target. The sputtering conditions were DC sputtering, sputtering power 500 W, Ar gas pressure 0.5 Pa containing 2 vol%, and a film thickness of 1500 to 7000 mm. It was confirmed that the produced thin film was an amorphous film. The refractive index of the film reached 1.94 (wavelength 550 nm).
(実施例9)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のIn粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のAl粉、3N相当で平均粒径5μm以下のB粉を準備した。次に、ZnO粉とIn粉とMgF粉とAl粉とB粉を、ZnO:In:MgF:Al:B=56:37.3:5.0:1.3:0.5mol%の配合比に調合し、これを混合した後、粉末材料を真空中、温度1100℃、圧力250kgf/cmでホットプレス焼結した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した結果、相対密度は99.1%に達し、バルク抵抗は3.2mΩ・cmとなり、安定したDCスパッタが可能であった。
 次に、上記仕上げ加工したターゲットを使用して、スパッタリングを行った。スパッタ条件は、DCスパッタ、スパッタパワー500W、O2を2vol%含有するArガス圧0.5Paとし、膜厚1500~7000Åに成膜した。作製した薄膜は非晶質膜であることが確認された。また、その膜の屈折率は1.94(波長550nm)に達した。
Example 9
3N equivalent ZnO powder of 5 μm or less, 3N equivalent of In 2 O 3 powder with an average particle size of 5 μm or less, 3N equivalent of MgF 2 powder with an average particle size of 5 μm or less, 3N equivalent of 5 μm or less Al 2 O 3 powder, 3N A B 2 O 3 powder having an average particle size of 5 μm or less was prepared. Next, ZnO powder, In 2 O 3 powder, MgF 2 powder, Al 2 O 3 powder, and B 2 O 3 powder were changed to ZnO: In 2 O 3 : MgF 2 : Al 2 O 3 : B 2 O 3 = 56. : 37.3: 5.0: 1.3: After mixing to 0.5 mol% and mixing this, the powder material is hot-press sintered at a temperature of 1100 ° C. and a pressure of 250 kgf / cm 2 in a vacuum. did. Thereafter, the sintered body was machined to finish a sputtering target shape. As a result of measuring the bulk resistance and relative density of the obtained target, the relative density reached 99.1%, the bulk resistance became 3.2 mΩ · cm, and stable DC sputtering was possible.
Next, sputtering was performed using the above-finished target. The sputtering conditions were DC sputtering, sputtering power 500 W, Ar gas pressure 0.5 Pa containing 2 vol%, and a film thickness of 1500 to 7000 mm. It was confirmed that the produced thin film was an amorphous film. The refractive index of the film reached 1.94 (wavelength 550 nm).
(比較例1)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のSnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のGa粉を準備した。次に、ZnO粉とSnO粉とMgF粉とGa粉を、ZnO:SnO:MgF:Ga=21.2:31.8:45.0:2.0mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、作製した膜は非晶質膜であることが確認されたが、その膜の比抵抗が1MΩ・cm超となり、導電性の劣るものとなった。
(Comparative Example 1)
3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent. Next, ZnO powder, SnO 2 powder, MgF 2 powder, and Ga 2 O 3 powder were changed to ZnO: SnO 2 : MgF 2 : Ga 2 O 3 = 21.2: 31.8: 45.0: 2.0 mol%. Then, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, it was confirmed that the produced film was an amorphous film, but the specific resistance of the film exceeded 1 MΩ · cm, and the conductivity was inferior. It became.
(比較例2)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のSnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のGa粉を準備した。次に、ZnO粉とSnO粉とMgF粉とGa粉を、ZnO:SnO:MgF:Ga=79.2:8.8:10.0:2.0mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、作製した膜は非晶質膜とはならなかった。
(Comparative Example 2)
3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent. Next, ZnO powder, SnO 2 powder, MgF 2 powder, and Ga 2 O 3 powder were changed to ZnO: SnO 2 : MgF 2 : Ga 2 O 3 = 79.2: 8.8: 10.0: 2.0 mol%. Then, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, the produced film was not an amorphous film.
(比較例3)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のSnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のGa粉を準備した。次に、ZnO粉とSnO粉とMgF粉とGa粉を、ZnO:SnO:MgF:Ga=26.6:11.4:60.0:2.0mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、作製した膜は非晶質膜であることが確認されたが、その膜の比抵抗が1MΩ・cm超となり、導電性の劣るものとなった。
(Comparative Example 3)
3N corresponds with 5 [mu] m or less of ZnO powder were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent. Next, ZnO powder, SnO 2 powder, MgF 2 powder, and Ga 2 O 3 powder were changed to ZnO: SnO 2 : MgF 2 : Ga 2 O 3 = 26.6: 11.4: 60.0: 2.0 mol%. Then, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, it was confirmed that the produced film was an amorphous film, but the specific resistance of the film exceeded 1 MΩ · cm, and the conductivity was inferior. It became.
(比較例4)
 3N相当で5μm以下のZnO粉、3N相当で平均粒径5μm以下のSnO粉、3N相当で平均粒径5μm以下のMgF粉、3N相当で5μm以下のGa粉を準備した。次に、ZnO粉とSnO粉とMgF粉とGa粉を、ZnO:SnO:MgF:Ga=13.2:26.4:55.0:1.0mol%の配合比に調合し、これを混合した後、粉末材料を温度850℃、圧力250kgf/cmでホットプレス焼結してイオンプレーティング用焼結体とした。この焼結体を用いて、イオンプレーティングを実施した結果、作製した膜は非晶質膜であることが確認されたが、その膜の比抵抗が1MΩ・cm超となり、導電性の劣るものとなった。
(Comparative Example 4)
3N corresponds at 5 [mu] m following ZnO powders were prepared an average particle size 5 [mu] m or less of SnO 2 powder, 3N average particle size 5 [mu] m or less of MgF 2 powder with equivalent, 5 [mu] m following Ga 2 O 3 powder with 3N corresponds with 3N equivalent. Next, ZnO powder, SnO 2 powder, MgF 2 powder, and Ga 2 O 3 powder were changed to ZnO: SnO 2 : MgF 2 : Ga 2 O 3 = 13.2: 26.4: 55.0: 1.0 mol%. Then, the powder material was hot-press sintered at a temperature of 850 ° C. and a pressure of 250 kgf / cm 2 to obtain a sintered body for ion plating. As a result of ion plating using this sintered body, it was confirmed that the produced film was an amorphous film, but the specific resistance of the film exceeded 1 MΩ · cm, and the conductivity was inferior. It became.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の焼結体は、スパッタリングターゲット又はイオンプレーティング材とすることができ、これらのスパッタリングターゲット又はイオンプレーティング材を使用して形成された薄膜は、各種ディスプレイにおける透明導電膜や光ディスクの保護膜として、透過率、屈折率、導電性において、極めて優れた特性を有するという効果がある。また本発明は、その大きな特徴として、アモルファス膜であることによって、膜のクラックやエッチング性能を格段に向上させることができるという優れた効果を有する。 The sintered body of the present invention can be used as a sputtering target or an ion plating material, and a thin film formed using these sputtering target or ion plating material can protect a transparent conductive film and an optical disk in various displays. As a film, there is an effect that it has extremely excellent characteristics in terms of transmittance, refractive index, and conductivity. Further, the present invention has an excellent effect that the film can be remarkably improved in cracking and etching performance due to the amorphous film.
 本発明の焼結体を用いたスパッタリングターゲットは、バルク抵抗値が低く、相対密度が90%以上と高密度であることから、安定したDCスパッタを可能とする。そして、このDCスパッタリングの特徴であるスパッタの制御性を容易にし、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。必要に応じてRFスパッタを実施するが、その場合でも成膜速度の向上が見られる。また、成膜の際にスパッタ時に発生するパーティクル(発塵)やノジュールを低減し、品質のばらつきが少なく量産性を向上させることができる。 The sputtering target using the sintered body of the present invention has a low bulk resistance value and a high relative density of 90% or more, and thus enables stable DC sputtering. And there is a remarkable effect that the controllability of sputtering, which is a feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. RF sputtering is performed as necessary, but even in this case, the film formation rate is improved. In addition, particles (dust generation) and nodules generated during sputtering during film formation can be reduced, and quality variation can be reduced and mass productivity can be improved.
 また、本発明の焼結体を用いたイオンプレーティング材は、低屈折率のアモルファス膜を成膜することができるので、膜応力によるクラックや割れ、膜の剥離の発生を抑制することができるという効果を有する。このようなアモルファス膜は、特に、光情報記録媒体の保護層を形成する光学薄膜、有機ELテレビ用薄膜、透明電極用薄膜に有用である。
 
Moreover, since the ion plating material using the sintered body of the present invention can form an amorphous film having a low refractive index, it is possible to suppress the occurrence of cracks and cracks due to film stress, and film peeling. It has the effect. Such an amorphous film is particularly useful for an optical thin film for forming a protective layer of an optical information recording medium, a thin film for an organic EL television, and a thin film for a transparent electrode.

Claims (8)

  1.  亜鉛(Zn)、錫(Sn)及び/又はインジウム(In)、マグネシウム(Mg)、酸素(O)を含有する焼結体であって、Sn及び/又はInの総含有量がSnO及び/又はIn換算で10~90mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以下であるとき、Mgの含有量がMgF換算で15~50mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以上であるとき、Mgの含有量がMgF換算で1~40mol%であることを特徴とする酸化物焼結体。 A sintered body containing zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), and oxygen (O), wherein the total content of Sn and / or In is SnO 2 and / or Or, when the ratio of the number of Sn and / or In to the number of Zn atoms is 1 or less in terms of In 2 O 3 , Mg content is 15 to 50 mol% in terms of MgF 2 An oxide sintered body characterized in that when the ratio of the number of Sn and / or In to the number of atoms is 1 or more, the Mg content is 1 to 40 mol% in terms of MgF 2 .
  2.  さらにガリウム(Ga)、アルミニウム(Al)及び/又はホウ素(B)を含有し、Ga及び/又はBの総含有量がGa及び/又はB換算で0.1~10mol%であることを特徴とする請求項1記載の酸化物焼結体。 Furthermore, it contains gallium (Ga), aluminum (Al) and / or boron (B), and the total content of Ga and / or B is 0.1 to 10 mol% in terms of Ga 2 O 3 and / or B 2 O 3. The oxide sintered body according to claim 1, wherein:
  3.  請求項1又は2記載の酸化物焼結体を用いることを特徴とするスパッタリングターゲット。 A sputtering target using the oxide sintered body according to claim 1 or 2.
  4.  請求項1又は2記載の酸化物焼結体を用いることを特徴とするイオンプレーティング材。 An ion plating material using the oxide sintered body according to claim 1 or 2.
  5.  亜鉛(Zn)、錫(Sn)及び/又はインジウム(In)、マグネシウム(Mg)、酸素(O)を含有する薄膜であって、Sn及び/又はInの総含有量がSnO及び/又はIn換算で10~90mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以下であるとき、Mgの含有量がMgF換算で15~50mol%、Znの原子数に対するSn及び/又はInの原子数の比が1以上であるとき、Mgの含有量がMgF換算で1~40mol%であって、非晶質であることを特徴とする薄膜。 A thin film containing zinc (Zn), tin (Sn) and / or indium (In), magnesium (Mg), oxygen (O), and the total content of Sn and / or In is SnO 2 and / or In When the ratio of the number of Sn and / or In atoms to the number of Zn atoms is 1 or less in terms of 2 O 3 , the content of Mg is 15 to 50 mol% in terms of MgF 2 , and the number of Zn atoms A thin film characterized in that when the ratio of the number of Sn and / or In atoms to 1 is 1 or more, the Mg content is 1 to 40 mol% in terms of MgF 2 and is amorphous.
  6.  さらにガリウム(Ga)、アルミニウム(Al)及び/又はホウ素(B)を含有し、Ga及び/又はBの総含有量がGa及び/又はB換算で0.1~10mol%であることを特徴とする請求項5記載の薄膜。 Furthermore, it contains gallium (Ga), aluminum (Al) and / or boron (B), and the total content of Ga and / or B is 0.1 to 10 mol% in terms of Ga 2 O 3 and / or B 2 O 3. The thin film according to claim 5, wherein:
  7.  波長550nmにおける屈折率が2.0以下であることを特徴とする請求項5又は6記載の薄膜。 7. The thin film according to claim 5, wherein the refractive index at a long wavelength of 550 nm is 2.0 or less.
  8.  比抵抗が1mΩ・cm~1MΩ・cmであることを特徴とする請求項5~7のいずれか一項に記載の薄膜。
     
    The thin film according to any one of claims 5 to 7, wherein the specific resistance is 1 mΩ · cm to 1 MΩ · cm.
PCT/JP2013/066833 2012-07-13 2013-06-19 Sintered body and amorphous film WO2014010383A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147003260A KR101485305B1 (en) 2012-07-13 2013-06-19 Sintered body and amorphous film
CN201380002959.2A CN104487402B (en) 2012-07-13 2013-06-19 Sintered body and amorphous film
JP2013555698A JP5695221B2 (en) 2012-07-13 2013-06-19 Sintered body and amorphous film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-157716 2012-07-13
JP2012157716 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010383A1 true WO2014010383A1 (en) 2014-01-16

Family

ID=49915851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066833 WO2014010383A1 (en) 2012-07-13 2013-06-19 Sintered body and amorphous film

Country Status (5)

Country Link
JP (1) JP5695221B2 (en)
KR (1) KR101485305B1 (en)
CN (1) CN104487402B (en)
TW (1) TWI549924B (en)
WO (1) WO2014010383A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212362A1 (en) * 2016-06-10 2017-12-14 株式会社半導体エネルギー研究所 Sputtering target and method for producing sputtering target
WO2018011645A1 (en) * 2016-07-11 2018-01-18 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637948B2 (en) * 2017-11-27 2020-01-29 Jx金属株式会社 IZO target and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219982A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Translucent conductive material
JP2013144818A (en) * 2012-01-13 2013-07-25 Jx Nippon Mining & Metals Corp Ion plating material for forming low refractive index film, and low refractive index film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460651B (en) * 2006-06-08 2011-04-06 旭硝子株式会社 Transparent conductive film, method for producing same, and sputtering target for producing same
CN101460425B (en) 2006-06-08 2012-10-24 住友金属矿山株式会社 Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base
WO2009147969A1 (en) * 2008-06-03 2009-12-10 日鉱金属株式会社 Sputtering target and non-crystalline optical thin film
CN102089455A (en) 2008-07-08 2011-06-08 贝卡尔特先进涂层公司 A method to manufacture an oxide sputter target comprising a first and second phase
WO2010058533A1 (en) * 2008-11-20 2010-05-27 出光興産株式会社 ZnO-SnO2-In2O3 BASED SINTERED OXIDE AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM
CN102560391A (en) * 2010-12-24 2012-07-11 海洋王照明科技股份有限公司 Conducting film, and preparation method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219982A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Translucent conductive material
JP2013144818A (en) * 2012-01-13 2013-07-25 Jx Nippon Mining & Metals Corp Ion plating material for forming low refractive index film, and low refractive index film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.FERRANTE: "Very-High-Transmittance ITO-MgF2 Films with Tailorable Conductivity", 39TH ANNUAL TECHNICAL CONFERENCE PROCEEDINGS, vol. 39, 1996, pages 222 - 225 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212362A1 (en) * 2016-06-10 2017-12-14 株式会社半導体エネルギー研究所 Sputtering target and method for producing sputtering target
WO2018011645A1 (en) * 2016-07-11 2018-01-18 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
CN109477206A (en) * 2016-07-11 2019-03-15 株式会社半导体能源研究所 Sputtering target and method for manufacturing same
US11081326B2 (en) 2016-07-11 2021-08-03 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
US11735403B2 (en) 2016-07-11 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same

Also Published As

Publication number Publication date
TWI549924B (en) 2016-09-21
JPWO2014010383A1 (en) 2016-06-20
JP5695221B2 (en) 2015-04-01
CN104487402B (en) 2016-05-18
KR101485305B1 (en) 2015-01-21
CN104487402A (en) 2015-04-01
KR20140037948A (en) 2014-03-27
TW201410637A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP5770323B2 (en) Sintered body and amorphous film
TW201609603A (en) Oxide sintered body, method for manufacturing sputtering target and thin film and oxide sintered body
TW201627226A (en) Oxide sintered compact sputtering target and oxide thin film
JP5695221B2 (en) Sintered body and amorphous film
TWI631579B (en) Sintered body and amorphous film
JP5837183B2 (en) Sintered body for forming low refractive index film and method for producing the same
JP2016074579A (en) Oxide sintered body, oxide sputtering target and conductive oxide thin membrane and manufacturing method of oxide sintered body
JP5913523B2 (en) Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body
JP5690982B1 (en) Sintered body and amorphous film
JP6134368B2 (en) Sintered body, sputtering target comprising the sintered body, and thin film formed using the sputtering target
JP5866024B2 (en) Sintered body for producing low refractive index amorphous transparent conductive film and low refractive index amorphous transparent conductive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013555698

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147003260

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817317

Country of ref document: EP

Kind code of ref document: A1