KR100942214B1 - 프로브 신호에 기초한 액세스 포인트에 대한 안테나스티어링 - Google Patents

프로브 신호에 기초한 액세스 포인트에 대한 안테나스티어링 Download PDF

Info

Publication number
KR100942214B1
KR100942214B1 KR1020077012789A KR20077012789A KR100942214B1 KR 100942214 B1 KR100942214 B1 KR 100942214B1 KR 1020077012789 A KR1020077012789 A KR 1020077012789A KR 20077012789 A KR20077012789 A KR 20077012789A KR 100942214 B1 KR100942214 B1 KR 100942214B1
Authority
KR
South Korea
Prior art keywords
access point
remote station
antenna
signal
angle
Prior art date
Application number
KR1020077012789A
Other languages
English (en)
Other versions
KR20070068476A (ko
Inventor
존 이 호프만
케빈 피 존슨
조지 로드니 쥬니어 넬슨
존 에이 레그니어
Original Assignee
아이피알 라이센싱, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이피알 라이센싱, 인코포레이티드 filed Critical 아이피알 라이센싱, 인코포레이티드
Publication of KR20070068476A publication Critical patent/KR20070068476A/ko
Application granted granted Critical
Publication of KR100942214B1 publication Critical patent/KR100942214B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 근거리 통신망(WLAN) 내에서 액세스 포인트를 동작시키는 방법이 제공된다. 액세스 포인트는 복수의 원격 스테이션과 통신하는 하나의 지향성 안테나를 포함하고, 이 지향성 안테나는 무지향 각도 및 복수의 지향 각도를 포함한다. 이 방법은 복수의 원격 스테이션으로부터 하나의 원격 스테이션을 선택하는 단계, 제1 프로브 신호를 지향성 안테나의 무지향 각도를 통해 선택된 원격 스테이션으로 송신하는 단계, 및 제1 프로브 신호에 응답하는 선택된 원격 스테이션으로부터 무지향 각도를 통해 수신된 제1 프로브 응답 신호를 측정하는 단계를 포함한다. 각각의 제2 프로브 신호는 지향성 안테나의 복수의 지향 각도의 각각의 지향 각도를 통해 선택된 원격 스테이션으로 송신되고, 각각의 제2 프로브 신호에 응답하는 선택된 원격 스테이션으로부터 각각의 지향 각도를 통해 수신된 제2 프로브 응답 신호가 측정된다. 선택된 원격 스테이션으로부터의 측정된 제1 프로브 응답 신호 및 각각의 측정된 제2 프로브 응답 신호는 안테나 데이터베이스 내에 저장된다.

Description

프로브 신호에 기초한 액세스 포인트에 대한 안테나 스티어링{ANTENNA STEERING FOR AN ACCESS POINT BASED UPON PROBE SIGNALS}
도 1a는 본 발명의 원리를 이용하는 WLAN의 개략도.
도 1b는 안테나 스캐닝을 실행하는 도 1a의 WLAN 내의 액세스 포인트의 개략도.
도 2a는 외부 지향성 안테나 어레이를 갖는 도 1a의 액세스 포인트를 도시한 도면.
도 2b는 내부 PCMCIA 카드 내에 통합된 지향성 안테나 어레이를 갖는 도 2a의 액세스 포인트를 도시한 도면.
도 3a는 도 2a의 지향성 안테나 어레이를 도시한 도면.
도 3b는 도 3a의 지향성 안테나의 안테나 소자의 상태를 선택하기 위해 사용된 스위치의 개략도.
도 4는 본 발명의 원리에 따른 서브시스템, 계층 및 안테나 스티어링 프로세스를 이용하는 도 1a의 액세스 포인트의 블록도.
도 5a는 도 4의 안테나 스티어링 프로세스에 의해 선택적으로 사용된 신호도.
도 5b는 도 4의 안테나 스티어링 프로세스에 의해 선택적으로 사용된 대체 신호도.
도 6은 안테나 다이버시티 회로가 이용되는 도 4의 대체 블록도.
도 7은 도 4의 안테나 스티어링 프로세스에 의해 선택적으로 사용된 히든 노드 기술을 사용하는 신호도.
도 8은 양방향 시그널링을 갖는 도 1의 네트워크의 상면도.
도 9는 안테나 빔의 표시를 갖는 도 1의 네트워크의 상면도.
도 10은 본 발명에 따라 공간 다이버시티에 기초하여 WLAN 내의 액세스 포인트를 동작시키는 방법의 플로우차트.
도 11은 본 발명에 따라 프로브 신호에 기초하여 WLAN 내의 액세스 포인트를 동작시키는 방법의 플로우차트.
도 12 및 13은 각각 본 발명에 따라 순방향 링크 및 역방향 링크의 제어 프레임에 기초하여 WLAN 내의 액세스 포인트를 동작시키는 방법의 플로우차트.
도 14는 본 발명에 따라 히든 노드 인식에 기초하여 WLAN 내의 액세스 포인트를 동작시키는 방법의 플로우차트.
본 발명은 무선 근거리 통신망(wireless local area network: WLAN)에 관한 것으로, 더욱 구체적으로 WLAN 내에서 동작하는 액세스 포인트에 대한 안테나 스티어링 알고리즘에 관한 것이다.
여러가지 표준들은 휴대용 컴퓨터와 같은 원격 스테이션(remote station)이 WLAN 내에서 이동될 수 있게 하고, 유선 통신망에 접속되는 액세스 포인트(access point: AP)에 RF(radio frequency) 송신을 통해 접속한다. 유선 통신망은 흔히 분산 시스템이라 한다. 여러가지 표준들은 IEEE 802.11 표준, 및 예를 들어 802.11b 및 802.11g와 같은 그것의 대응하는 문서 개정안을 포함한다.
원격 스테이션 및 액세스 포인트 내의 물리 계층은 원격 스테이션 및 액세스 포인트가 통신하는 낮은 레벨 송신을 제공한다. 물리 계층 위에는 매체 액세스 제어(media access control: MAC) 계층이 있는데, 이 MAC 계층은, 예를 들어 인증, 인증해제, 프라이버시(privacy), 결합(association) 및 결합해제(disassociation)와 같은 서비스를 제공한다.
동작시, 원격 스테이션이 온라인 상태로 되면, 접속은 먼저 원격 스테이션과 액세스 포인트 내의 물리 계층들 사이에서 설정된다. 그 다음, MAC 계층들이 접속할 수 있다. 전형적으로, 원격 스테이션 및 액세스 포인트에 있어서, 물리 계층 RF 신호는 단극(monopole) 안테나를 사용하여 송수신된다.
단극 안테나는, 일반적으로 수직 방향 소자의 수평면 내에서 모든 방향으로 방사한다. 단극 안테나는 사이에 끼어드는 장애물에 의해 야기된 전파 신호의 반사 또는 회절과 같이, 원격 스테이션과 액세스 포인트 사이의 통신 품질을 저하시키는 현상에 영향받기 쉽다. 장애물은, 예를 들어 벽, 책상 및 사람들을 포함한다. 이들 장애물은 다중 경로(multi-path), 정상 통계 페이딩(normal statistical fading), 레일레이(Rayleigh) 페이딩 등등을 만들어낸다. 그 결과, 이들 현상에 의해 야기된 신호 감쇠를 완화시키기 위한 노력들이 있어 왔다.
RF 신호의 저하를 없애는 한가지 기술은 다이버시티(diversity)를 제공하기 위해 2개의 안테나를 사용하는 것이다. 2개의 안테나는 원격 스테이션과 액세스 포인트 중의 하나 또는 둘다의 안테나 다이버시티 스위치에 연결된다. 안테나 다이버시티를 위해 2개의 안테나를 사용하는 이론의 배후는 어떤 주어진 시간에, 안테나들 중의 최소한 하나는 다중 경로의 현상을 겪지 않는 신호를 수신할 수 있을 것이라는 것이다. 따라서, 이 안테나는 신호를 송/수신하기 위해 안테나 다이버시티 스위치를 통해 원격 스테이션 또는 액세스 포인트가 선택하는 안테나이다. 그럼에도 불구하고, 여전히 WLAN 내에서 원격 스테이션과 액세스 포인트 사이의 RF 신호의 저하에 대처할 필요성이 있다.
상술한 배경 기술의 관점에서, 본 발명의 목적은 WLAN 내에서 액세스 포인트와 원격 스테이션 사이의 통신을 개선하기 위한 것이다.
단순한 다이버시티보다 우수한 개선은 WLAN 내에서 사용된 액세스 포인트(즉, 무선 게이트웨이)에 대한 안테나 스티어링 프로세스를 통해 제공된다. 지향성 안테나는 네트워크의 처리율을 개선시키고, 액세스 포인트와 원격 스테이션(즉, 무선 사용자 장치) 사이의 범위를 증가시킨다. 지향성 안테나는 대부분의 경우에 무지향성 안테나보다 더 높은 신호 대 잡음비를 제공하므로, 링크가 더 높은 데이터 레이트로 동작할 수 있게 한다.
안테나 스티어링 프로세스는 액세스 포인트의 매체 액세스 제어(MAC) 계층 내에 상주하게 될 수 있고, 원격 스테이션으로부터 신호를 수신할 때 물리 계층으로부터 이용가능한 신호 품질 메트릭에 기초하여 최상의 또는 양호한 방향의 안테나 패턴을 선택한다.
본 발명의 원리에 따르면, 액세스 포인트와 선택된 원격 스테이션 사이에서의 등록, 인증 또는 후속되는 데이터 교환과 같은 프로세스 동안에, 스티어링된 액세스 포인트 안테나에 대한 양호한 방향이 결정된다. 한 실시예에서, 액세스 포인트에서 동작하는 소프트웨어 또는 펌웨어가 이러한 결정을 한다. 액세스 포인트 안테나 제어 소프트웨어/펌웨어는 최적 통신 성능을 달성하기 위해 원격 스테이션의 ID(identity) 및 그 원격 스테이션과 관련된 안테나 방향을 포함하는 데이터베이스를 형성한다.
하드웨어는 양호한 방향의 안테나 각도를 선택하기 위해 전형적인 802.11 장치 내의 고유 다이버시티 선택 회로와 함께 동작하도록 이용될 수 있다. 액세스 포인트는 원격 스테이션이 프로브 응답 신호를 송신할 수 있게 하기 위해 시그널링(signaling)을 사용할 수 있는데, 액세스 포인트는 프로브 응답 신호의 신호 품질을 측정한다. 액세스 포인트는 새로운 안테나 스캐닝이 실행되어야 하는지 판정하기 위해 무지향성 모드의 원격 스테이션으로부터 수신된 신호에 대응하는 메트릭에 대해 한 방향 안테나 모드의 원격 스테이션으로부터 수신된 신호에 대응하는 메트릭을 비교할 수 있다. 액세스 포인트는 히든 노드(hidden node)가 존재한다고 판정하면, 예를 들어 802.11 표준에 정해진 바와 같이 송신요청/송신가능(request- to-send/clear-to-send: RTS/CTS) 메시징을 사용하여 방어 메카니즘을 호출할 수 있다.
하나의 지향성 안테나를 갖는 액세스 포인트를 증가시키는 이점은 2 가지인데: 개별 원격 스테이션에 대한 개선된 처리율 및 네트워크 내에서 더 많은 사용자를 지원할 수 있는 능력이다. 대부분의 RF 환경에서, 원격 스테이션에서 수신된 신호 레벨은 액세스 포인트가 그 스테이션의 방향으로 향한 성형 안테나 빔을 사용하여 송신함으로써 개선될 수 있다. 성형 안테나 빔은 전형적으로 액세스 포인트와 함께 배치된 무지향성 안테나보다, 예를 들어, 3-5 dB 이득 장점을 제공할 수 있다. 증가된 신호 레벨은 액세스 포인트와 원격 스테이션 사이의 링크가 특히 통신가능 구역의 외부 대역에서 더 높은 데이터 레이트로 동작할 수 있게 한다. 지향성 안테나 스티어링 프로세스는 원격 스테이션과의 동작을 지원하기 위해 액세스 포인트 내에 상주하게 된다.
더욱 구체적으로, 본 발명은 WLAN 내에서 액세스 포인트를 동작시키는 방법에 관한 것으로, 액세스 포인트는 복수의 원격 스테이션과 통신하기 위한 하나의 지향성 안테나를 포함한다. 지향성 안테나는 무지향 각도 및 복수의 지향 각도를 포함한다. 이 방법은 복수의 원격 스테이션으로부터 하나의 원격 스테이션을 선택하는 단계, 제1 프로브 신호를 지향성 안테나의 무지향 각도를 통해 선택된 원격 스테이션으로 송신하는 단계, 및 제1 프로브 신호에 응답하는 선택된 원격 스테이션으로부터 무지향 각도를 통해 수신된 제1 프로브 응답 신호를 측정하는 단계를 포함한다.
본 방법은 지향성 안테나의 복수의 지향 각도의 각각의 지향 각도를 통해 선택된 원격 스테이션으로 각각의 제2 프로브 신호를 송신하는 단계, 및 각각의 제2 프로브 신호에 응답하는 선택된 원격 스테이션으로부터 각각의 지향 각도를 통해 수신된 제2 프로브 응답 신호를 측정하는 단계를 더 포함한다. 선택된 원격 스테이션으로부터의 측정된 제1 프로브 응답 신호 및 각각의 측정된 제2 프로브 응답 신호는 안테나 데이터베이스 내에 저장된다.
본 방법은 측정된 제2 프로브 응답 신호에 기초하여 선택된 원격 스테이션을 위한 양호한 지향 각도를 선택하는 단계, 및 무지향 각도로부터의 측정된 제1 프로브 응답 신호를 양호한 지향 각도로부터의 측정된 제2 프로브 응답 신호와 비교하는 단계를 더 포함할 수 있다. 무지향 각도 또는 양호한 지향 각도는 선택된 원격 스테이션과의 통신을 계속하기 위해 비교 단계에 기초하여 선택될 수 있다. 양호한 지향 각도는 양호한 지향 각도와 관련된 측정된 신호가 무지향 각도와 관련된 측정된 신호를 선정된 임계치만큼 초과하는 경우에 선택될 수 있다.
본 방법은 복수의 원격 스테이션으로부터 다음 원격 스테이션을 선택하는 단계, 및 다음으로 선택된 원격 스테이션으로의 제1 및 제2 프로브 신호의 송신 및 다음으로 선택된 원격 스테이션으로부터 수신된 제1 및 제2 프로브 응답 신호의 측정을 반복하는 단계를 더 포함할 수 있다. 다음으로 선택된 원격 스테이션으로부터의 측정된 제1 프로브 응답 신호 및 각각의 측정된 제2 프로브 응답 신호는 안테나 데이터베이스 내에 저장된다. 선택 단계, 송신 단계 및 저장 단계는 나머지 원격 스테이션의 각각에 대해 반복된다.
제1 프로브 신호는 송신 요청(RTS) 메시지를 포함하고, 제1 프로브 응답 신호는 송신 가능(CTS) 메시지를 포함할 수 있다. 이와 마찬가지로, 제2 프로브 신호는 RTS 메시지를 포함하고, 제2 프로브 응답 신호는 CTS 메시지를 포함할 수 있다.
측정 단계는 수신된 신호 강도 표시, 반송파 대 간섭비, 비트 당 에너지 비, 신호 대 잡음비 중의 최소한 하나를 결정하는 단계를 포함할 수 있다. 무지향 각도의 선택 및 복수의 지향 각도를 통한 스캐닝은 액세스 포인트의 매체 액세스 제어(MAC) 계층에서 실행될 수 있다.
본 방법은 소정의 기간동안 액세스 포인트와 선택된 원격 스테이션 사이에서 통신이 없으면 선택된 원격 스테이션에 대한 안테나 데이터베이스를 갱신하는 단계를 더 포함할 수 있다. 갱신 단계는 선택된 원격 스테이션으로의 제1 및 제2 프로브 신호의 송신, 및 선택된 원격 스테이션으로부터 수신된 제1 및 제2 프로브 응답 신호의 측정을 반복하는 단계를 포함할 수 있다.
액세스 포인트는 IEEE 802.11 표준 또는 IEEE 802.16 표준에 기초하여 동작하게 될 수 있다. 지향성 안테나는 최소한 하나의 능동 소자 및 복수의 수동 소자를 포함할 수 있다. 본 발명의 다른 실시양상은 무지향 각도 및 복수의 지향 각도를 포함하는 지향성 안테나, 및 지향성 안테나를 제어하기 위해 지향성 안테나에 접속된 제어기를 포함하는 액세스 포인트에 관한 것이다.
제어기는 복수의 원격 스테이션으로부터 하나의 원격 스테이션을 선택하고, 제1 프로브 신호를 지향성 안테나의 무지향 각도를 통해 선택된 원격 스테이션으로 송신하며, 제1 프로브 신호에 응답하는 선택된 원격 스테이션으로부터 무지향 각도를 통해 수신된 제1 프로브 응답 신호를 측정한다. 제어기는 또한 각각의 제2 프로브 신호를 지향성 안테나의 복수의 지향 각도의 각각의 지향 각도를 통해 선택된 원격 스테이션으로 송신하고, 각각의 제2 프로브 신호에 응답하는 선택된 원격 스테이션으로부터 각각의 지향 각도를 통해 수신된 제2 프로브 응답 신호를 측정하며, 선택된 원격 스테이션으로부터의 측정된 제1 프로브 응답 신호 및 각각의 측정된 제2 프로브 응답 신호를 안테나 데이터베이스 내에 저장한다.
본 발명은 이후 본 발명의 양호한 실시예가 도시된 첨부 도면을 참조하여 더욱 상세하게 설명될 것이다. 그러나, 본 발명은 많은 다른 형태로도 구현될 수 있으므로, 여기에서 설명된 실시예들에 제한되는 것으로 해석되어서는 안되고; 오히려, 이들 실시예가 제공됨으로써, 이 명세서가 철저하고 완전하게 될 수 있으며, 본 분야에 숙련된 기술자들에게 본 발명의 범위를 충분히 잘 전달할 수 있을 것이다. 유사한 번호는 유사한 구성요소를 나타내고, 프라임(') 표시는 대안적인 실시예에서 유사한 소자를 나타내기 위해 사용된다.
먼저 도 1a를 참조하면, 분산 시스템(105)을 갖는 WLAN(100)이 먼저 설명될 것이다. 액세스 포인트(110a, 110b 및 110c)는 유선 데이터 네트워크 접속과 같은 유선 접속을 통해 분산 시스템(105)에 접속된다. 액세스 포인트(110a, 110b 및 110c)의 각각은 원격 스테이션(120a, 120b 및 120c)과 RF 신호를 통해 통신할 수 있는 각각의 구역(115a, 115b, 115c)을 갖는다. 원격 스테이션(120a, 120b, 120c)은 분산 시스템(105)을 액세스하기 위한 WLAN 하드웨어 및 소프트웨어가 지원된다. 다음 설명에서, 액세스 포인트, 원격 스테이션 및 구역에 대해 일반적인 참조가 이루어질 때, 각각의 참조번호(110, 120 및 115)가 사용될 수 있다.
본 기술은 액세스 포인트(110) 및 원격 스테이션(120)에 안테나 다이버시티를 제공한다. 안테나 다이버시티는 액세스 포인트(110) 및 원격 스테이션(120)이, 수신되는 신호의 품질에 기초하여 송수신 듀티를 제공하기 위해 2개의 안테나 중에서 하나를 선택할 수 있게 한다. 다른 안테나보다 하나의 안테나를 선택하는 한가지 이유는 다중-경로 페이딩의 경우에 발생하는데, 이 경우에 2개의 서로 다른 경로를 취하는 한 신호는 신호 소거가 한 안테나에서는 발생하게 하지만, 다른 안테나에서는 발생하게 하지 않는다. 다른 예는 동일한 안테나에서 수신된 2개의 서로다른 신호에 의해 간섭이 일어나는 경우이다. 2개의 안테나 중에서 하나를 선택하는 또 다른 이유는 화살표(125)로 표시된 바와 같이 원격 스테이션(120c)이 제3 구역(115c)에서 제1 또는 제2 구역(115a, 115b)으로 이동되는 경우와 같이 변화하는 환경때문이다.
도 1b는 도 1a에 도시된 네트워크(100)의 서브셋을 도시한 블록도로, 여기에서는 본 발명의 원리를 이용하는 액세스 포인트(110b)가 지향성 안테나 로브(lobe)(130a-130i)와 관련하여 더욱 상세하게 된다. 지향성 안테나 로브(130a-130i)는 또한 일반적으로 참조번호(130)으로 표시될 것이다. 액세스 포인트(110b)는 양호한 안테나 방향을 결정하기 위해 그 환경을 스캐닝하는 동안에 안테나 로브(130)를 차례로 전부 살펴본다.
스캐닝 동안에, 액세스 포인트(110b)는 원격 스테이션(120b)에 의해 송신된 RF 신호의 검색시에 스캐닝하기 위해, 도 2a 및 2B에 더욱 상세하게 도시된 바와 같이, 하나의 지향성 안테나를 사용한다. 각각의 스캐닝 방향(즉, 각도 또는 안테나 패턴)에서, 액세스 포인트(110b)는 신호 또는 프로브 응답을 측정하고, 그 스캐닝 각도에 대한 각각의 메트릭을 계산한다. 메트릭의 예로는 수신된 신호 또는 신호 환경의 품질에 관한, 수신된 신호 강도 표시(RSSI), 반송파 대 간섭비(C/I), 비트 당 에너지비(Eb/No), 또는 신호 대 잡음비(SNR)와 같은 다른 적합한 측정치를 포함한다. 이들 측정치의 조합은 또한 본 분야에 숙련된 기술자들에게 쉽게 이해될 수 있는 바와 같이, 최상의 또는 양호한 안테나 패턴을 결정하기 위해 이루어질 수 있다. 측정된 신호 품질 메트릭에 기초하여, 액세스 포인트(110b)는 원격 스테이션(120b)과 통신하기 위한 양호한 안테나 각도 또는 방향을 결정한다.
스캐닝은 원격 스테이션(110b)이 인증되어 분산 시스템(105)과 관련되기 전 또는 후에 발생할 수 있다. 그러므로, 초기 안테나 스캐닝은 MAC 계층 내에서 달성될 수 있다. 대안적으로, 초기 스캐닝은 MAC 계층의 외부에서 달성될 수도 있다. 이와 마찬가지로, 원격 스테이션(110b)이 인증되어 분산 시스템(105)과 관련된 후에 발생하는 스캐닝은 MAC 계층 내에서, 또는 MAC 계층 외부에서 발생하는 프로세스에 의해 달성될 수 있다.
도 2a는 외부 지향성 안테나 어레이(200a)를 사용하는 액세스 포인트(110)의 도면이다. 지향성 안테나 어레이(200a)는 5개의 단극 수동 안테나 소자(205a, 205b, 205c, 205d 및 205e) 및 하나의 단극 능동 안테나 소자(206)를 포함한다. 수동 안테나 소자(205a, 205b, 205c, 205d 및 205e)는 이후 일반적으로 참조번 호(205)로 표시된다. 지향성 안테나 소자(200a)는 USB(universal serial bus) 포트(215)를 통해 액세스 포인트(110)에 접속된다. 지향성 안테나 어레이(200a)와 액세스 포인트(110) 사이의 다른 유형의 접속도 기꺼이 받아들일 수 있다.
지향성 안테나 어레이(200a) 내의 수동 안테나 소자(205)는 스캐닝을 할 수 있도록 하기 위해 능동 안테나 소자(206)에 기생적으로 결합된다. 스캐닝에 의해, 지향성 안테나 어레이(200a)의 최소한 하나의 안테나 빔은 수동 안테나 소자(205)의 수와 관련된 증가시에 선택적으로 360도 회전될 수 있게 된다.
지향성 안테나 어레이(200a)에 관한 상세한 설명은 그 전체 내용이 여기에서 참조로 사용되고 본 발명의 현재의 양수인에게 양도된, "Adaptive Antenna For Use In Wireless Communications System"이라는 명칭으로 2002년 1월 24일자로 공개된 미합중국 특허 공개 공보 제2002/0008672호에 제공된다. 지향성 안테나 어레이(200a)에 의해 수신되거나 송신된 신호에 기초하여 안테나 방향을 최적화하기 위한 예시적인 방법도 또한 거기에서 설명된다.
지향성 안테나 어레이(200a)는 또한 무지향성 안테나 패턴을 제공하기 위해 무지향 모드에서 사용될 수 있다. 액세스 포인트(110)는 송신 또는 수신을 위해 무지향 패턴을 사용할 수 있다. 액세스 포인트(110)는 또한 원격 스테이션(120)으로/으로부터 송수신할 때 선택된 방향의 안테나를 사용할 수 있다.
도 2b는 내부 지향성 안테나(220b)를 갖는 액세스 포인트(110)의 등척도이다. 이 실시예에서, 지향성 안테나 어레이(200b)는 PCMCIA 카드(220) 상에 있다. PCMCIA 카드(220)는 액세스 포인트(110)에 의해 휴대되고, 프로세서(도시되지 않 음)에 접속된다. 지향성 안테나 어레이(200b)는 도 2a에 도시된 지향성 안테나 어레이(200a)와 동일한 기능을 제공한다.
다양한 다른 형태의 지향성 안테나 어레이가 사용될 수 있다는 것을 알기 바란다. 예로는 "Adaptive Antenna For Use In Wireless Communication Systems"라는 발명의 명칭으로 2003년 2월 4일자로 특허된 미합중국 특허 제6,515,635호 및 "Adaptive Antenna For Use In Wireless Communication Systems"라는 발명의 명칭으로 2002년 3월 28일자로 공개된 미합중국 특허 공개 공보 제2002/0036586호를 포함하는데, 이들의 전체적인 교시내용은 여기에서 참조로 사용되고, 이들은 본 발명의 현재의 양수인에게 양도되었다.
도 3a는 상술된 바와 같이 수동 안테나 소자(205) 및 능동 안테나 소자(206)를 포함하는 지향성 안테나 어레이(200a)의 상세도이다. 지향성 안테나 어레이(200a)는 또한, 도 3b를 참조하여 후술되는 바와 같이, 수동 안테나 소자가 전기적으로 결합되는 접지면(ground plane)(330)을 포함한다.
도 3a를 여전히 참조하면, 지향성 안테나 어레이(200a)는 안테나 소자(205a 및 205e)로부터 먼쪽으로 기울어진 지향성 안테나 로브(300)를 제공한다. 이것은 안테나 소자(205a 및 205e)가 반사 모드이고, 안테나 소자(205b, 205c 및 205d)가 투과 모드라는 표시이다. 즉, 능동 안테나 소자(206)와 수동 안테나 소자(205) 간의 상호 결합은 지향성 안테나 어레이(200a)가 지향성 안테나 로브(300)를 스캐닝할 수 있게 하는데, 이 경우에 지향성 안테나 로브(300)는 수동 소자(205)가 설정되는 모드의 결과로 표시된 바와 같이 향하게 된다. 수동 안테나 소자(205)의 상 이한 모드 조합은 본 분야에 숙련된 기술자들이 용이하게 알 수 있는 바와 같이, 상이한 안테나 로브(300) 패턴 및 각도를 초래한다.
도 3b는 수동 안테나 소자(205)를 반사 또는 투과 모드로 설정하기 위해 사용될 수 있는 예시적인 회로의 개략도이다. 반사 모드는 대표적인 긴 점선(305)으로 표시되고, 투과 모드는 짧은 점선(310)으로 표시된다. 대표적인 모드(305 및 310)는 각각 유도성 소자(320) 또는 용량성 소자(325)를 통해 접지면(330)에 결합함으로써 야기된다. 유도성 소자(320) 또는 용량성 소자(325)를 통한 수동 안테나 소자(205a)의 결합은 스위치(315)를 통해 실행된다. 스위치(315)는 수동 안테나 소자(205a)를 접지면(330)에 결합시킬 수 있는 기계적 또는 전기적 스위치일 수 있다. 스위치(315)는 제어 신호(335)를 통해 설정된다.
인덕터(320)를 통해 접지면(330)에 결합된 것은 더 긴 대표적인 점선(305)으로 표시된 바와 같이 효과적으로 길어지는 수동 안테나 소자(205a)이다. 이것은 능동 안테나 소자(206)와의 상호 결합을 통해 수동 안테나 소자(205a)에 결합된 RF 신호에 "백보드(backboard)를 제공하는 것으로 보여질 수 있다. 도 3a의 경우에, 2개의 수동 안테나 소자(205a 및 205e)는 각각의 유도성 소자(320)를 통해 접지면(330)에 접속된다. 이와 동시에, 도 3a의 예에서, 그외 다른 수동 안테나 소자(205b, 205c 및 205d)는 각각의 용량성 소자(325)를 통해 접지면(330)에 전기적으로 접속된다.
용량성 결합은 더 짧은 대표적인 점선(310)으로 나타낸 바와 같이 수동 안테나 소자를 효과적으로 짧게 한다. 모든 수동 소자(325)를 용량성 결합하는 것은 효과적으로 지향성 안테나 어레이(200a)를 무지향성 안테나로 만든다. 대안적인 결합 기술은 또한, 예를 들어 지연선 및 집중(lumped) 임피던스와 같이, 수동 안테나 소자(205)와 접지면(330) 사이에서 사용될 수 있다는 것을 알기 바란다.
도 9로 건너뛰면, 지향성 안테나 어레이(200a 또는 200b)의 사용을 통해 무지향성 안테나 패턴(905) 및 한 방향 안테나 패턴(910)을 발생시키는 액세스 포인트(110b)의 상면도가 제공된다. 액세스 포인트(110b)는 복수의 스테이션(120a-120d)과 통신한다. 액세스 포인트(110)는 (예를 들어, 벽 또는 천장의 높은 곳으로) 반사기를 움직이거나 또는 가까이에서 방해받지 않고 멀리 떨어져 설치되기 때문에, 양호한 안테나 패턴 방향의 선택은 주어진 원격 스테이션(120)과의 접속을 완전히 변경시키려고 할 것 같지는 않다.
도시된 액세스 포인트(110b)는 선택된 원격 스테이션(120C)으로 송신된 다운링크 데이터 프레임을 위해 지향성 안테나(200a)를 사용할 수 있다. 대부분의 방송 및 제어 프레임의 경우, 액세스 포인트는 무지향성 안테나 패턴(905) 및 최저 이용가능 데이터 레이트를 사용하여, 모든 원격 스테이션(120)이 그들을 확실하게 수신할 수 있게 한다. 지향성 안테나(200a)는 네트워크(100)의 통신가능 구역을 증가시킬 수는 없지만, 원격 스테이션(120)으로 보낸 데이터 프레임을 위한 데이터 레이트를 증가시킬 수는 있다. 증가된 다운링크 속도는 네트워크(100)를 통해 송신된 대부분의 데이터가 (예를 들어, 웹 페이지 액세스, 파일 송신시) 다운링크 상에 나타나기 때문에 유용하다. 한가지 옵션은 액세스 포인트(110b)가 무지향 모드로 수신하도록 요구될 때 스위치드 공간 다이버시티를 사용하는 것이다. 5 dB의 잠재적 추가 링크 마진은 예를 들어, 300%의 처리율 증가를 제공한다.
경합 기간(CP)중 선택된 원격 스테이션(120c)에서 액세스 포인트(110b)로 보낸 업링크 데이터 프레임은 임의의 원격 스테이션이 프레임을 송신했을 수 있기 때문에 무지향성 안테나 패턴을 사용하여 수신된다. 큰 프레임의 경우, 네트워크 구성은 무선 매체를 확보해두기 위해 원격 스테이션에게 송신요청/송신가능(request-to-send/clear-to-send: RTS/CTS) 메카니즘을 사용하도록 요구할 수 있다. 이 경우에, 액세스 포인트(110b)는 업링크 상의 데이터 레이트를 증가시키기 위해 한 지향 모드로 수신할 수 있다. 이것은 원격 스테이션(120c)에서 구현된 데이터 레이트 선택 알고리즘에 다소 의존적이다.
다운링크 송신의 경우, 액세스 포인트(110b)는 무지향 패턴 및 낮은 데이터 레이트를 사용하여 경합 기간중 작은 패킷을 송신하도록 결정할 수 있다. 이러한 이유는 (원격 스테이션(120e)과 같이) 통신가능 구역의 "다른"측 상에 있는 원격 스테이션이 거기에서 먼쪽으로 향해 있는 지향성 안테나 패턴(910)으로부터의 액세스 포인트 송신을 받을 수 없기 때문이다. 이것은 친숙한 "히든 노드" 문제점인데, 이 경우 2개의 원격 스테이션(120)은 서로 받지 못하고, 결국 동시에 송신하게 된다. 이 경우에, 2개의 원격 스테이션은 120c 및 120e이다. 이러한 문제를 피하기 위해, 특별히 큰 데이터 프레임에 대해, 도 7을 참조하여 이하에 설명된다.
그러므로, 액세스 포인트(110)에서의 지향성 안테나 패턴은 네트워크 트래픽의 대부분인 원격 스테이션(120)과의 다운링크 및 업링크 데이터 프레임 교환을 위해 더 높은 데이터 레이트를 제공할 수 있다. 네트워크 접속성은 액세스 포인 트(110)의 무지향성 안테나의 공칭 이득으로 유지된다. 즉, 원격 스테이션(120)은 액세스 포인트(110)와 결합하여, 지향성 안테나(200a)를 사용하지 않고 접속을 유지할 수 있다.
표 1에 제공된 규칙 세트는 지향성 안테나(200a)의 무지향 및 지향 특성을 이용하여 정해질 수 있다. 표 1은 액세스 포인트와 현재 관련된 원격 스테이션(120)의 주소 및 그들의 현재 안테나 방향 선택을 포함한다. 표 1은 802.11 표준( 그 안의 표 21 및 22)으로부터의 프레임 시퀀스에 기초하여 예시적인 안테나 방향 선택을 나타낼 수 있다. 표 1에서, "Dir"은 방향을 나타내고, "UL"은 업링크를 나타내며, "DL"은 다운링크를 나타낸다.
예시적인 안테나 선택 규칙
시퀀스 Dir 안테나 선택
비컨 DL 무지향
데이터 DL 방향 도 5a 참조
RTS-CTS-데이터 UL 무지향/방향 도 5b 참조
프로세스는 무지향 패턴을 선택하기 위한 때 및 한 지향 패턴을 선택하기 위한 때를 결정하는 규칙 세트에 설명될 수 있다. 예를 들어, 액세스 포인트(110)는 단일 원격 스테이션(120)으로/으로부터 송신 또는 수신하고 있는 기간 중에 하나의 지향 패턴을 선택할 수 있다.
액세스 포인트(110)의 인터페이스를 나타내는 블록도가 도 4에 도시된다. 도시된 액세스 포인트(110)는 다양한 서브시스템 및 계층을 포함한다. 안테나 서브시스템(405)은 지향성 안테나(200b), 및 지향성 안테나를 동작시키기 위한 지원 회로, 버스 및 소프트웨어를 포함할 수 있다. 안테나 서브시스템(405)은 물리 계층(410)에 인터페이스하여, 거기에 RF 신호(412)를 제공한다.
물리 계층(410)은 RF 신호(412)를 프로세스하여, 안테나 스티어링 프로세스(420)로의 신호 품질 측정치(417)를 결정한다. 물리 계층(410)은 RF 신호(412)에 기초하여 프로세스된 신호를 MAC 계층(415)에 보낸다. MAC 계층(415)은 요구시에 안테나를 무지향 모드 또는 지향 모드로 스위칭하기 위해 또한 안테나 스티어링 프로세스(420)에 보내지는 타이밍 제어 메시지(422)를 발생시킨다.
MAC 계층(415)은 또한 데이터 프레임(429)을 기타 프로세스(도시되지 않음)로 보낸다. 도시된 물리 계층(410), MAC 계층(415) 및 안테나 스티어링 프로세스(420)는 제어기(400) 내에 상주할 수 있다. 안테나 스티어링 프로세스(420)는, 예를 들어 독립형 메모리 또는 프로세서 내에 내장된 메모리일 수 있는 메모리 내에 저장될 수 있다.
안테나 스티어링 프로세스(420)는 "안테나 테이블 또는 데이터베이스" 또는 "방향 테이블 또는 데이터베이스"(425)를 각각의 원격 스테이션(120)의 안테나 스캐닝동안에 이루어진 수신된 신호 품질 측정치(417)의 함수로서 유지한다. 예를 들어, 방향 테이블(425)은 스테이션 ID, 및 원격 스테이션(120)과 방향성 통신을 위한 대응하는 안테나 방향(A, B, C)을 저장할 수 있다. 방향 테이블(425) 내의 안테나 방향이 결정되었으면, 안테나 스티어링 프로세스(420)는 지향성 안테나 제어(427)를 안테나 서브시스템(405)에 제공하기 위해 사용된다. 신호 품질 측정치(417)가, 최소 데이터 레이트가 무지향 모드로 지원될 수 있다는 것을 나타내는 선정된 임계치 이상이면, 안테나 방향은 무지향(O) 모드로 유지될 수 있다.
다음 단락은 지향성 안테나(220b)를 액세스 포인트(110)에서 원격 스테이션(120)으로 향하게 하기 위한 양호한 방향을 결정하는 본 발명에 따른 여러가지 기술을 설명한다. 첫번째 기술은 공간 다이버시티 선택 메카니즘을 이용한다. 두번째 기술은 액세스 포인트(110)와 원격 스테이션(120) 사이에서 교환된 일련의 프로브 신호를 사용한다. 세번째 기술은 액세스 포인트(110)에서 수신된 안테나 방향의 신호 품질 측정을 하기 위해 제어 메시지(예를 들어, ACK 또는 CTS)를 사용한다. 세번째 기술은 순방향 및 역방향 링크 둘다에서 이용가능하다.
첫번째 기술은 현재의 802.11 장치가 안테나 스위치드 다이버시티 스캐닝/제어를 사용하고, 802.11a/802.11g/802.11n과 같은 장래의 802.11 장치가 또한 스위치드 다이버시티를 지원할 것으로 추정한다. 첫번째 기술은 원격 스테이션(120)이 인증되어 그 자신이 네트워크와 결합된 후에 이용가능하다. 초기 안테나 스캐닝은 MAC/네트워크 계층 프로토콜 내에서 달성되는 것으로 추정된다. 지향성 또는 다중-소자 안테나(220a)를 가지고, 첫번째 기술은 갱신된 안테나 위치/선택을 유지하기 위해 다이버시티 프로토콜을 사용할 수 있다.
이제 도 6을 참조하면, 첫번째 기술은 다음과 같이 기능한다. 도시된 액세스 포인트(110')는 안테나 서브시스템(405')에 접속된 제어기(600')를 포함한다. 제어기(600')는 안테나 제어 신호로의 액세스가 주어지는 물리 계층(410'), 및 MAC 계층(도 4)을 포함한다. MAC 계층은 안테나 선택을 레지스터A(605a') 및 레지스터B(605b') 내로 기입한다. 레지스터A(605a')는 선택된 안테나 위치를 포함하고, 레지스터B(605b')는 후보 안테나 위치를 포함한다. 물리 계층(410')은 또한 멀티플렉서(610')와 통신한다. 물리 계층(410')은 다이버시티 선택 스위치 제어 신호(607')를 전형적인 다이버시티 선택 제어 방식으로 멀티플렉서(610')에 보내지만, 이 경우에 다이버시티 선택 스위치 제어 신호는 레지스터A(605a') 또는 레지스터B(605b')의 내용이 사용되는 지를 제어한다.
선택된 안테나 위치는 네트워크 인증/결합 프로토콜 동안에 초기에 선택된다. 후보 안테나 위치는 임의의 다른 안테나 위치(무지향성 모드를 포함)이다. 후보 안테나 위치는 유효한 패킷이 수신된 후 또는 선정된 기간동안 어떤 패킷도 수신하지 못한 후, 선정된 순서로 변경된다.
패킷을 성공적으로 수신한 후, 물리 계층(410')은 두개의 안테나 위치들에 대한 수신된 신호 품질 메트릭(신호 강도, 신호 대 잡음비, 다중-경로/등화기 메트릭 등)을 MAC 계층에 보낸다. 패킷 수신 동안에, 물리 계층(410')은 현재 802.11에서 하는 것처럼; 즉 2개의 안테나 위치들 사이에서 스위칭하고, 패킷 수신을 위한 최상의 안테나 위치를 사용하기 위해 기능한다. 물리 계층(410')에 의한 유효 패킷 수신후, 2개의 안테나 위치에 대한 신호 품질 메트릭은 MAC 계층으로 보내진다. MAC 계층은 선택된 안테나 위치 및 후보 안테나 위치를 갱신한다. 선택된 안테나 위치는 물리 계층(410')으로부터 수신된 데이터에 기초하여 최상의 위치로 대체된다. 필터링/히스테리시스(filtering/hysteresis)는 2개의 안테나 위치들 사이에서의 "핑퐁"을 하지 못하도록 하기 위해 사용될 수 있다.
앞에서 설명된 바와 같이, 이 기술은 현재의 802.11 안테나 스위치드 다이버시티 방법을 이용한다. 이 첫번째 기술은 하드웨어, 소프트웨어/펌웨어 또는 그 조합을 포함할 수 있다는 것을 알기 바란다.
이제 도 10을 참조하여, 공간 다이버시티에 기초하여 WLAN(100) 내의 액세스 포인트(110)를 동작시키는 상술된 방법의 플로우차트가 설명될 것이다. 시작(블록(1000))에서 출발하여, 방법은 지향성 안테나(220b)의 현재의 각도를 사용하여 원격 스테이션(120)과 통신하는 단계(블록(1010))를 포함한다. 프리앰블 동안에 원격 스테이션(120)과 통신하기 위한 지향성 안테나(220b)의 복수의 대체 각도를 통한 스캐닝이 실행된다(블록(1020)) . 현재의 각도 및 복수의 대체 각도를 통해 원격 스테이션(120)으로부터 수신된 각각의 신호가 측정된다(블록(1030)). 프리앰블 동안에, 현재의 각도, 또는 복수의 대체 각도 중의 하나는 원격 스테이션(120)과 계속 통신하기 위해 측정된 신호에 기초하여 하나의 양호한 각도로서 선택된다(블록(1040)). 방법은 종료된다(블록1050)).
두번째 기술은 원격 스테이션(120)으로의 RTS 메시지의 액세스 포인트(110)에 의한 송신, 및 원격 스테이션에 의한 응답시에 송신된 액세스 포인트로의 CTS 메시지의 수신에 기초한다. 802.11 표준은 또한 다른 스테이션(120)으로의 링크의 품질을 결정하기 위해 원격 스테이션(120)에 의해 전형적으로 사용되는 프로브 요청/프로브 응답 교환을 정의한다.
도 8에 도시된 바와 같이, 선택된 원격 스테이션(120)으로의 양호한 지정 방향을 결정하기 위해 액세스 포인트(110)에 의해 사용될 때, 액세스 포인트(110)는 무지향 패턴 및 각각의 잠재적인 지향 패턴(130)으로 프로브 요청 신호(805)를 송신하고, 각각의 패턴으로 동작하는 동안에 원격 스테이션(110)으로부터 다시 보내진 프로브 응답 신호(810)의 신호 품질을 측정한다.
이들 응답 프레임(810)의 측정은 이것을 상술된 다이버시티 선택 기술보다 더욱 신뢰성있는 기술로 만든다. 이 두번째 기술은 최소한 일단 원격 스테이션(120)이 액세트 포인트(110)와 결합된 직후에 양호하게 이용된다. 그러나, 추가적인 프로브 요청/프로브 응답 신호의 사용으로 네트워크 효율에 미치는 영향이 있지만, 이들 교환은 아주 드물게 일어날 수 있다.
이제 도 11을 참조하여, 프로브 신호에 기초하여 WLAN(100) 내의 액세스 포인트(110)를 동작시키는 상술된 방법의 플로우차트가 설명될 것이다. 시작(블록(1100))에서 출발하여, 방법은 원격 스테이션(120)을 선택하는 단계(블록(1110)), 지향성 안테나(220b)의 무지향 각도를 통해 선택된 원격 스테이션으로 제1 프로브 신호를 송신하는 단계(블록(1120)), 및 제1 프로브 신호에 응답하는 선택된 원격 스테이션으로부터 무지향 각도를 통해 수신된 제1 프로브 응답 신호를 측정하는 단계(블록(1130))를 포함한다.
각각의 제2 프로브 신호는 지향성 안테나(220b)의 복수의 지향 각도 중의 각각의 지향 각도를 통해 선택된 원격 스테이션(120)으로 송신되고(블록(1140)), 각각의 제2 프로브 신호에 응답하는 선택된 원격 스테이션으로부터 각각의 지향 각도를 통해 수신된 제2 프로브 응답 신호가 측정된다(블록(1150)). 선택된 원격 스테이션(120)으로부터의 측정된 제1 프로브 응답 신호 및 각각의 측정된 제2 프로브 응답 신호는 안테나 데이터베이스 내에 저장된다(블록(1160)).
선택된 원격 스테이션(120)을 위한 양호한 지향 각도는 측정된 제2 프로브 응답 신호에 기초하여 선택된다(블록(1170)). 무지향 각도로부터의 측정된 제1 프로브 응답 신호는 양호한 지향 각도로부터의 측정된 제2 프로브 응답 신호와 비교된다(블록(1180)). 제1 프로브 신호는 RTS(request-to-send) 메시지를 포함하고, 제1 프로브 응답 신호는 CTS(clear-to-send) 메시지를 포함한다. 이와 마찬가지로, 제2 프로브 신호는 RTS 메시지를 포함하고, 제2 프로브 응답 신호는 CTS 메시지를 포함한다. 무지향 각도 또는 양호한 지향 각도는 선택된 원격 스테이션(120)과 통신을 계속하기 위해 비교에 기초하여 선택된다(블록(1190). 방법이 종료된다(블록(1195)).
세번째 기술은 액세스 포인트(110)와 원격 스테이션(120) 사이의 정상 데이터 교환시에 사용된 제어 프레임을 이용한다. 이 기술은 순방향 링크 통신 및 역방향 링크 통신에서 사용될 수 있다. CTS 및 ACK(acknowledge) 메시지가 낮은 데이터 레이트로 보내지기 때문에, 액세스 포인트(110)는 무지향 패턴(905)을 현재 선택된 지향 패턴(130)과 비교하기 위해 이들 메시지를 사용할 수 있다. 이것은 도 5a에서 안테나 선택 타이밍 상의 점선으로 표시된다. 이것은 현재 선택된 방향(130)이 무지향 패턴(905)보다 자신의 장점을 유지하고 있는 지의 여부를 판정하기 위한 방법으로서 사용될 수 있다. 이 장점은 전형적으로, 유사한 신호 품질 메트릭을 갖고 있는 2개의 안테나 패턴들 사이의 빈번한 스위칭을 방지하기 위해 선정된 임계치에 기초하고 있다.
예를 들어, CTS 메시지 동안에, 무지향 패턴 모드는 제1 신호 품질 측정치를 계산하기 위해 이 메시지를 수신하는데 사용될 수 있다. ACK 메시지 동안에, 테스트 안테나 방향은 제2 신호 품질 측정치를 계산하기 위해 이 메시지를 수신하는데 사용될 수 있다. 제1과 제2 신호 품질 측정치의 비교가 실행되고, 테스트 안테나 방향이 저장되어야 하는 지의 여부에 관한 판정이 이루어진다. 즉, 지향 모드가 무지향 모드보다 높은 이득을 제공하는 지의 여부에 관한 판정이 이루어진다. 비교는 또한 2개의 서로 다른 지향성 안테나 방향들 사이에서 실행될 수 있다.
동일한 유형의 측정 및 비교는 도 5b에 도시된 바와 같이, 역방향 링크 데이터 송신 중에도 행해질 수 있다. ACK 메시지 동안에, 액세스 포인트(110)는 신호 품질 측정치를 계산하여, 그것을 무지향 모드 측정치 또는 다른 지향 모드 측정치와 비교할 수 있다. 비교는 상이한 안테나 방향을 스캐닝하기 전에 선택된 원격 스테이션(110)과 몇가지 통신을 통해 행해질 수 있다.
도 4의 방향 테이블(425)은 무지향 및 선택된 지향성 안테나 패턴에 대해 상술된 프로세스 또는 프로세스들로부터 신호 품질 측정치가 증가될 수 있다. 이점이 선정된 임계치 이하로 떨어지면, 액세스 포인트(110)는 다시 무지향 선택으로 되돌아가서, 상술된 처음 2개의 기술 중 하나를 사용하여 안테나 검색을 실행한다.
원격 스테이션(120)이 절전 모드로 되거나, 또는 데이터 송신이 없는 오랜 유휴 기간을 가지는 경우에, 액세스 포인트(110)는 다시 무지향 패턴 선택으로 되돌아간다. 원격 스테이션(120)이 다시 활성상태로 되면, 액세스 포인트(110)는 다른 안테나 검색을 실행할 수 있다.
이제 도 12 및 13을 참조하여, 순방향 및 역방향 링크의 제어 프레임에 기초하여 WLAN(100) 내의 액세스 포인트(120)를 동작시키는 방법의 각각의 플로우차트가 설명될 것이다. 시작(블록(1200))에서 출발하여, 방법은 원격 스테이션(120)으로부터 지향성 안테나(220b)의 제1 안테나 패턴을 통해 제1 제어 프레임을 순방향 링크로 수신하는 단계(블록(1210)), 제1 데이터 프레임을 원격 스테이션으로 송신하는 단계(블록(1220)), 및 원격 스테이션으로부터 지향성 안테나의 제2 안테나 패턴을 통해 제2 제어 프레임을 수신하는 단계(블록(1230))를 포함한다. 제1 안테나 패턴을 통해 수신된 제1 제어 프레임의 신호 품질 및 제2 안테나 패턴을 통해 수신된 제2 제어 프레임의 신호 품질이 측정된다(블록(1240)). 제1 및 제2 안테나 패턴과 관련된 각각의 측정된 신호 품질이 비교된다(블록(1250)). 제2 데이터 프레임을 원격 스테이션(120)으로 송신하는 제2 안테나 패턴은 제2 안테나 패턴과 관련된 측정된 신호 품질이 제1 안테나 패턴과 관련된 측정된 신호 품질을 선정된 임계치만큼 초과한 경우에 선택된다(블록(1260)). 수신된 제1 제어 프레임은 CTS 메시지를 포함하고, 수신된 제2 제어 프레임은 ACK 메시지를 포함한다. 방법이 종료된다(블록(1270)).
역방향 링크의 제어 프레임에 기초하여 WLAN(100) 내의 액세스 포인트(120)를 동작시키는 방법은 시작 단계(블록(1300)), 원격 스테이션으로부터 지향성 안테나(220b)의 제1 안테나 패턴을 통해 제1 제어 프레임을 수신하는 단계(블록(1310)), 제2 제어 프레임을 원격 스테이션으로 송신하는 단계(블록(1320)), 및 원격 스테이션으로부터 지향성 안테나의 제2 안테나 패턴을 통해 제1 데이터 프레임을 수신하는 단계(블록(1330))를 포함한다. 제1 안테나 패턴을 통해 수신된 제1 제어 프레임의 신호 품질 및 제2 안테나 패턴을 통해 수신된 제1 데이터 프레임의 신호 품질이 측정된다(블록(1340)). 제1 및 제2 안테나 패턴과 관련된 각각의 측정된 신호 품질이 비교된다(블록(1350)). 제2 데이터 프레임을 액세스 포인트(110)에 의해 원격 스테이션(120)으로 송신하는 제2 안테나 패턴은 제2 안테나 패턴과 관련된 측정된 신호 품질이 제1 안테나 패턴과 관련된 측정된 신호 품질을 선정된 임계치만큼 초과하는 경우에 선택된다(블록(1360)). 수신된 제1 제어 프레임은 RTS 메시지를 포함하고, 송신된 제2 제어 프레임은 CTS 메시지를 포함한다. 방법이 종료된다(블록(1370)).
네번째 기술은 히든 노드의 발생을 줄이거나 없애기 위해 액세스 포인트(110)에서 지향성 안테나(220b)를 이용할 때 방지 메카니즘을 제공하는 히든 노드 방지 기술이다. 히든 노드는 네트워크(100) 내의 원격 스테이션(120)들 모두가 액세스 포인트(110)와 선택된 원격 스테이션(120) 사이의 통신을 받을 수 있는 경우가 아닐 때 발생하므로, 통신을 받을 수 없는 노드들은 매체가 사용중일 때 송신할 수 있다. 이것은 특히 액세스 포인트(110)에서 충돌을 야기한다.
액세스 포인트(110)가 원격 스테이션(120)으로 송신하기 위한 데이터를 가질 때, 제어 프로세스는 도 4의 방향 테이블(425)을 스캐닝함으로써 선택된 안테나 방향을 설정하여, 잠재적인 히든 노드가 있는지 판정한다. 예를 들어, 액세스 포인트(110)는 선택된 안테나 방향으로부터 반대 방향으로 원격 스테이션(120)을 찾을 수 있다.
도 7의 타이밍도를 참조하면, 제어 소프트웨어가 히든 노드가 존재할 가능성이 있다고 판정하면, 액세스 포인트(110)는 먼저 안테나(220a)의 무지향 모드를 사용하여 CTS 메시지를 공지된 미사용 MAC 주소로 송신한다. 이 프로세스는 네트워크 내의 모든 원격 스테이션(120)에게 교환이 발생할 것이고 교환이 끝나기까지는 송신하지 않을 것이라는 것을 알려주는 일을 한다. 그 다음, 액세스 포인트(110)는 예정된 원격 스테이션(120)을 위한 선택된 안테나 방향으로 스위칭하고, 통신이 진행된다. 히든 노드 문제를 방지하는 다른 방식은 원하는 원격 스테이션(120)과의 4중(four-way) 프레임 교환 프로토콜(RTS, CTS, 데이터 및 ACK)을 실행하는 것이다.
제어 소프트웨어가 히든 노드가 존재할 가능성이 없다고 판정하면, 액세스 포인트(110)는 CTS 메시지를 보내지 않을 것이고, 통신은 적절한 방향으로 설정된 액세스 포인트(110) 안테나와 즉시 시작될 수 있다. 네트워크 프로토콜에 의해 요구된 경우, 도 5a에 도시된 바와 같이, RTS 메시지는 예정된 수신기로 보내져서, CTS 메시지가 ACK로서 액세스 포인트(110)로 다시 보내질 수 있게 한다.
도 7과 관련하여 설명된 프로세스에서는, 원격 스테이션(120)이 송신을 멈추게 하기 위해 필요한 모든 것이 CTS 메시지이기 때문에 RTS 메시지가 액세스 포인트(110)에 의해 송신되지 않으므로 효율이 향상된다는 것을 알기 바란다. 표준 802.11 프로토콜 헤더의 ID 섹션에 표시된 원격 스테이션(120)은 특정된 원격 스테이션이 데이터 프레임을 수신하는 것을 보장한다.
이제 도 14를 참조하여, 히든 노드 인식에 기초하여 WLAN(100) 내의 액세스 포인트(120)를 동작시키는 플로우차트가 설명될 것이다. 시작(블록(1400))에서 출발하여, 방법은 복수의 안테나 패턴에 대응하는 각각의 측정된 신호 품질을 액세스 포인트(110)와 각각의 원격 스테이션(120) 사이에서 관련시킴으로써 안테나 데이터베이스를 작성하는 단계(블록(1410))를 포함한다. 각각의 측정된 신호 품질은 각각의 원격 스테이션(120)과의 통신에 기초하여 액세스 포인트(110)에 의해 결정된다. 각각의 원격 스테이션(120)에 대해, 안테나 데이터베이스에 기초하여 양호한 안테나 패턴이 결정되고(블록(1420)), 원격 스테이션, 및 이 원격 스테이션과 통신하기 위한 대응하는 양호한 안테나 패턴이 선택된다(블록(1430)). 안테나 데이터베이스에 기초하여, 선택된 원격 스테이션과 통신하기 이전에, 블록(1440)에서, 임의의 비선택 원격 스테이션이 그러한 통신이 실제로 발생할 때 모르고 있을 가능성이 있는지 판정된다. 이것은 선택된 원격 스테이션에 대한 양호한 안테나 패턴과 관련된 측정된 신호 품질을, 동일한 양호한 안테나 패턴을 사용할 때 비선택된 원격 스테이션과 관련된 각각의 신호 품질과 비교함으로써 판정된다.
히든 노드의 가능성이 있으면 , 액세스 포인트(110)와 선택된 원격 스테이션(120)이 서로 통신할 것이라는 것을 나타내는 메시지가 방송된다(블록(1450)). 상술된 바와 같이, 이 방송은 무지향성 안테나 패턴을 통한 원격 스테이션(120)으로의 요청하지 않은 CTS 메시지의 형태로 될 수 있다. CTS는 임의의 원격 스테이션(120)에 대응하지 않는 미사용 주소를 갖는다. 대안적으로, 4중 프레임 교환 프로토콜(RTS, CTS, 데이터 및 ACK)은 히든 노드 문제를 방지하기 위해 선택된 원격 스테이션(120)과 함께 실행된다. 방법은 종료된다(블록(1460)).
본 발명은 양호한 실시예를 참조하여 구체적으로 도시되고 설명되었지만, 본 분야에 숙련된 기술자들이라면, 첨부된 청구범위에 의해 망라된 본 발명의 범위를 벗어나지 않고서 형태 및 상세에 있어서 여러가지 변경이 이루어질 수 있다는 것을 알 수 있을 것이다. 예를 들어, 액세스 포인트는 IEEE 802.11 표준에 제한되지 않는다. 상술된 바와 같은 액세스 포인트에 대한 안테나 알고리즘은 본 분야에 숙련된 기술자들이라면 쉽게 알 수 있는 바와 같이, IEEE 802.16 표준에 의해 정의된 것과 같은 다른 유형의 LAN에 이용가능하다.
본 발명에 의하면 WLAN 내에서 액세스 포인트와 원격 스테이션 사이의 통신을 개선할 수 있다.

Claims (18)

  1. 복수의 원격 스테이션을 포함하는 무선 네트워크에서 액세스 포인트 - 상기 액세스 포인트는 무지향 각도 및 복수의 지향 각도를 포함하는 지향성 안테나를 포함함 - 를 동작시키는 방법에 있어서,
    적어도 하나의 원격 스테이션을 상기 액세스 포인트와 관련시키고,
    상기 지향성 안테나의 상기 무지향 각도를 통해 상기 액세스 포인트와 관련된 상기 적어도 하나의 원격 스테이션으로 제1 신호를 송신하고,
    상기 액세스 포인트와 관련된 상기 적어도 하나의 원격 스테이션으로부터 상기 무지향 각도를 통해 수신된 제1 응답 신호를 측정하고,
    상기 지향성 안테나의 복수의 지향 각도 각각을 통해 상기 액세스 포인트와 관련된 상기 적어도 하나의 원격 스테이션으로 각각의 제2 신호를 송신하고,
    상기 액세스 포인트와 관련된 상기 적어도 하나의 원격 스테이션으로부터 각각의 지향 각도를 통해 수신된 제2 응답 신호를 측정하고,
    상기 측정된 제2 응답 신호에 기초하여 상기 액세스 포인트와 관련된 적어도 하나의 원격 스테이션을 위한 원하는 지향 각도를 선택하고,
    상기 무지향 각도로부터의 상기 측정된 제1 응답 신호와, 상기 원하는 지향 각도로부터의 상기 측정된 제2 응답 신호를 비교하고,
    상기 액세스 포인트와 관련된 상기 적어도 하나의 원격 스테이션과의 통신을 계속하기 위해 상기 비교 결과에 기초하여 상기 무지향 각도 또는 상기 원하는 지향 각도를 선택하는 것
    을 포함하는 액세스 포인트의 동작 방법.
  2. 제1항에 있어서, 상기 액세스 포인트와 관련된 상기 적어도 하나의 원격 스테이션으로부터의 상기 측정된 제1 응답 신호 및 각각의 상기 측정된 제2 응답 신호를 안테나 데이터베이스 내에 저장하는 것을 더 포함하는 액세스 포인트의 동작 방법.
  3. 제1항에 있어서, 상기 원하는 지향 각도는, 상기 원하는 지향 각도와 관련된 상기 측정된 신호가 상기 무지향 각도와 관련된 상기 측정된 신호를 미리결정된 문턱값 만큼 초과하는 경우에 선택되는 것인 액세스 포인트의 동작 방법.
  4. 제2항에 있어서,
    상기 액세스 포인트와 다음 원격 스테이션을 관련시키고,
    상기 액세스 포인트와 관련된 상기 다음 원격 스테이션으로 상기 제1 및 제2 신호들을 전송하고 상기 액세스 포인트와 관련된 상기 다음 원격 스테이션으로부터 수신된 제1 및 제2 응답 신호들을 측정하는 것을 반복하고,
    상기 액세스 포인트와 관련된 상기 다음 원격 스테이션으로부터의 상기 측정된 제1 응답 신호 및 각각의 상기 측정된 제2 응답 신호들을 상기 안테나 데이터베이스에 저장하는 것을 더 포함하는 액세스 포인트의 동작 방법.
  5. 제1항에 있어서, 상기 제1 신호는 송신 요청(request-to-send: RTS) 메시지를 포함하고, 상기 제1 응답 신호는 송신 가능(clear-to-send: CTS) 메시지를 포함하며, 상기 제2 신호는 RTS 메시지를 포함하고, 상기 제2 응답 신호는 CTS 메시지를 포함하는 것인 액세스 포인트의 동작 방법.
  6. 제1항에 있어서, 상기 측정은 수신된 신호 강도 표시, 반송파 대 간섭비, 비트 당 에너지 비, 신호 대 잡음비 중 적어도 하나를 결정하는 것을 포함하는 것인 액세스 포인트의 동작 방법.
  7. 제1항에 있어서, 상기 무지향 각도의 선택 및 상기 복수의 지향 각도를 통한 스캐닝이, 상기 액세스 포인트의 매체 액세스 제어(MAC) 계층에서 수행되는 것인 액세스 포인트의 동작 방법.
  8. 제1항에 있어서, 특정 기간동안 상기 액세스 포인트와의 통신이 없으면 상기 액세스 포인트와 관련된 상기 적어도 하나의 원격 스테이션에 대한 상기 안테나 데이터베이스를 갱신하는 것을 더 포함하고,
    상기 갱신은 상기 액세스 포인트와 관련된 상기 적어도 하나의 원격 스테이션으로 제1 신호 및 제2 신호를 송신하고 상기 액세스 포인트와 관련된 상기 적어도 하나의 원격 스테이션으로부터 수신된 제1 응답 신호 및 제2 응답 신호를 측정하는 것을 반복하는 것을 더 포함하는 것인 액세스 포인트의 동작 방법.
  9. 제1항에 있어서, 상기 액세스 포인트는 IEEE 802.11 표준 및 IEEE 802.16 표준 중 적어도 하나에 기초하여 동작하는 것인 액세스 포인트의 동작 방법.
  10. 제1항에 있어서, 상기 지향성 안테나는 적어도 하나의 능동 소자 및 복수의 수동 소자를 포함하는 것인 액세스 포인트의 동작 방법.
  11. 무선 네트워크를 위한 액세스 포인트에 있어서,
    무지향 각도 및 복수의 지향 각도를 포함하는 지향성 안테나; 및
    상기 지향성 안테나에 접속되어 상기 지향성 안테나를 제어하기 위한 제어기를 포함하며,
    상기 제어기는,
    상기 지향성 안테나의 무지향 각도를 통해 상기 액세스 포인트와 관련된 원격 스테이션으로 제1 신호를 송신하고,
    상기 액세스 포인트와 관련된 원격 스테이션으로부터 상기 무지향 각도를 통해 수신된 제1 응답 신호를 측정하고,
    상기 지향성 안테나의 복수의 지향 각도 각각을 통해 상기 액세스 포인트와 관련된 원격 스테이션으로 각각의 제2 신호를 송신하고,
    상기 액세스 포인트와 관련된 상기 원격 스테이션으로부터 각각의 지향 각도를 통해 수신된 제2 응답 신호를 측정하며,
    상기 측정된 제2 응답 신호에 기초하여 상기 액세스 포인트와 관련된 상기 원격 스테이션을 위한 원하는 지향 각도를 선택하고,
    상기 무지향 각도로부터의 상기 측정된 제1 응답 신호와, 상기 원하는 지향 각도로부터의 상기 측정된 제2 응답 신호를 비교하고,
    상기 액세스 포인트와 관련된 상기 원격 스테이션과의 통신을 계속하기 위해 상기 비교 결과에 기초하여 상기 무지향 각도 또는 상기 원하는 지향 각도를 선택하는 것인, 액세스 포인트.
  12. 제11항에 있어서, 상기 지향성 안테나는 적어도 하나의 능동 소자 및 복수의 수동 소자를 포함하는 것인 액세스 포인트.
  13. 제11항에 있어서, 상기 제어기는 물리 계층 및 매체 액세스 제어(MAC) 계층을 포함하고, 상기 무지향 각도의 선택 및 상기 복수의 지향 각도를 통한 스캐닝이 상기 MAC 계층에서 수행되는 것인 액세스 포인트.
  14. 제11항에 있어서, 상기 제어기는 상기 액세스 포인트와 관련된 상기 원격 스테이션으로부터의 상기 측정된 제1 응답 신호 및 각각의 상기 측정된 제2 응답 신호를 안테나 데이터베이스 내에 저장하는 것인 액세스 포인트.
  15. 제11항에 있어서, 상기 원하는 지향 각도는, 상기 원하는 지향 각도와 관련된 측정 신호가 상기 무지향 각도와 관련된 측정 신호를 미리 결정된 문턱값만큼 초과하는 경우에 선택되는 것인 액세스 포인트.
  16. 제14항에 있어서, 상기 제어기는,
    상기 액세스 포인트와 관련된 다음 원격 스테이션으로 제1 신호 및 제2 신호를 송신하고 상기 액세스 포인트와 관련된 상기 다음 원격 스테이션으로부터 수신된 제1 응답 신호 및 제2 응답 신호들을 측정하는 것을 반복하고;
    상기 액세스 포인트와 관련된 상기 다음 원격 스테이션으로부터의 상기 측정된 제1 응답 신호 및 각각의 상기 측정된 제2 응답 신호들을 상기 안테나 데이터베이스 내에 저장하는 것을 더 수행하는 것인 액세스 포인트.
  17. 제11항에 있어서, 상기 제1 신호는 송신 요청(RTS) 메시지를 포함하고, 상기 제1 응답 신호는 송신 가능(CTS) 메시지를 포함하며, 상기 제2 신호는 RTS 메시지를 포함하고, 상기 제2 응답 신호는 CTS 메시지를 포함하는 것인 액세스 포인트.
  18. 제14항에 있어서, 상기 제어기는 특정 기간동안 상기 원격 스테이션과의 통신이 없으면 상기 액세스 포인트와 관련된 상기 원격 스테이션에 대한 상기 안테나 데이터베이스를 갱신하고, 상기 갱신은, 상기 액세스 포인트와 관련된 원격 스테이션으로 제1 신호 및 제2 신호를 송신하고 상기 액세스 포인트와 관련된 원격 스테이션으로부터 수신된 제1 응답 신호 및 제2 응답 신호를 측정하는 것을 반복하는 것을 포함하는 것인 액세스 포인트.
KR1020077012789A 2003-06-19 2004-06-18 프로브 신호에 기초한 액세스 포인트에 대한 안테나스티어링 KR100942214B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US47970103P 2003-06-19 2003-06-19
US60/479,701 2003-06-19
US10/870,696 US7047046B2 (en) 2003-06-19 2004-06-17 Antenna steering for an access point based upon probe signals
US10/870,696 2004-06-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020057024372A Division KR100770233B1 (ko) 2003-06-19 2004-06-18 프로브 신호에 기초한 액세스 포인트에 대한 안테나스티어링

Publications (2)

Publication Number Publication Date
KR20070068476A KR20070068476A (ko) 2007-06-29
KR100942214B1 true KR100942214B1 (ko) 2010-02-11

Family

ID=33544409

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020077012789A KR100942214B1 (ko) 2003-06-19 2004-06-18 프로브 신호에 기초한 액세스 포인트에 대한 안테나스티어링
KR1020057024372A KR100770233B1 (ko) 2003-06-19 2004-06-18 프로브 신호에 기초한 액세스 포인트에 대한 안테나스티어링

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020057024372A KR100770233B1 (ko) 2003-06-19 2004-06-18 프로브 신호에 기초한 액세스 포인트에 대한 안테나스티어링

Country Status (12)

Country Link
US (1) US7047046B2 (ko)
EP (1) EP1634381A4 (ko)
JP (1) JP2007525066A (ko)
KR (2) KR100942214B1 (ko)
BR (1) BRPI0411493A (ko)
CA (1) CA2529425C (ko)
HK (1) HK1090191A1 (ko)
IL (1) IL172399A0 (ko)
MX (1) MXPA05013812A (ko)
NO (1) NO20060265L (ko)
TW (1) TWI238610B (ko)
WO (1) WO2004114460A2 (ko)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973314B2 (en) * 2001-09-28 2005-12-06 Arraycomm Llc. System and related methods for clustering multi-point communication targets
US20030206532A1 (en) 2002-05-06 2003-11-06 Extricom Ltd. Collaboration between wireless lan access points
WO2003096560A1 (en) * 2002-05-07 2003-11-20 Ipr Licensing, Inc. Antenna adaptation in a time division duplexing system
US20060209771A1 (en) * 2005-03-03 2006-09-21 Extricom Ltd. Wireless LAN with contention avoidance
US20050195786A1 (en) * 2002-08-07 2005-09-08 Extricom Ltd. Spatial reuse of frequency channels in a WLAN
CN1906858A (zh) * 2003-06-19 2007-01-31 美商智慧财产权授权股份有限公司 802.11站台天线操控方法
WO2005027265A1 (en) * 2003-09-15 2005-03-24 Lg Telecom, Ltd Beam switching antenna system and method and apparatus for controlling the same
US20050219142A1 (en) * 2004-04-05 2005-10-06 Nagy Louis L Self-structuring hybrid antenna system
US20050232206A1 (en) * 2004-04-15 2005-10-20 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Intelligent wireless switch (IWS) and intelligent radio coverage (IRC) for mobile applications
US7366464B2 (en) * 2004-06-04 2008-04-29 Interdigital Technology Corporation Access point operating with a smart antenna in a WLAN and associated methods
GB2432800B (en) 2004-08-07 2010-09-29 Waters Investments Ltd Passive column pre-heater with sample band spreading reduction feature
KR100689421B1 (ko) * 2004-12-31 2007-03-08 삼성전자주식회사 무선 통신 시스템에서 이동국 방향을 추정하는 기지국안테나 시스템 및 방법
US8396431B2 (en) * 2005-02-17 2013-03-12 Kyocera Corporation Mobile station traffic state antenna tuning systems and methods
US7577411B2 (en) * 2005-02-17 2009-08-18 Kyocera Corporation Mobile station access and idle state antenna tuning systems and methods
US9306657B2 (en) * 2005-04-08 2016-04-05 The Boeing Company Soft handoff method and apparatus for mobile vehicles using directional antennas
US7813738B2 (en) * 2005-08-11 2010-10-12 Extricom Ltd. WLAN operating on multiple adjacent bands
US20070054639A1 (en) * 2005-09-06 2007-03-08 Bauman Mark A Apparatus and method for improving the reception of an information signal
US20070223402A1 (en) * 2006-03-21 2007-09-27 Shai Waxman Device, system and method of extended-range wireless communication
US7680518B2 (en) * 2006-03-31 2010-03-16 Interdigital Technology Corporation Deviation based antenna control algorithm for an access point
US8175532B2 (en) * 2006-06-06 2012-05-08 Qualcomm Incorporated Apparatus and method for wireless communication via at least one of directional and omni-direction antennas
US8019287B2 (en) * 2006-08-07 2011-09-13 Motorola Mobility, Inc. On demand antenna feedback
JP5034369B2 (ja) * 2006-08-18 2012-09-26 富士通株式会社 無線通信制御方法
US9078140B2 (en) 2006-12-18 2015-07-07 Koninklijke Philips N.V. Method and system of beacon transmission and reception using directional antennas
JP2009081569A (ja) * 2007-09-25 2009-04-16 Oki Electric Ind Co Ltd 無線伝送装置および無線伝送方法
US8145161B2 (en) * 2007-11-02 2012-03-27 Broadcom Corporation Receive configuration adaptation for wireless transceivers
CN101221232B (zh) * 2008-01-23 2010-12-15 中国电子科技集团公司第三十研究所 一种分布式电台网络用户方位确定方法
EP2111068B1 (en) * 2008-04-14 2014-01-01 Alcatel Lucent A picocell base station for wireless telecommunications providing radio coverage lobes as well as a method of identifying which subset of the lobes covers a user terminal
US8179845B2 (en) * 2008-08-21 2012-05-15 Motorola Solutions, Inc. Antenna-aware method for transmitting packets in a wireless communication network
US20100113006A1 (en) * 2008-11-04 2010-05-06 2Wire, Inc. Cell calibration
US8427984B2 (en) 2009-01-12 2013-04-23 Sparkmotion Inc. Method and system for antenna switching
US9178593B1 (en) 2009-04-21 2015-11-03 Marvell International Ltd. Directional channel measurement and interference avoidance
JP5244704B2 (ja) * 2009-05-26 2013-07-24 京セラ株式会社 無線基地局及び通信制御方法
US8548385B2 (en) * 2009-12-16 2013-10-01 Intel Corporation Device, system and method of wireless communication via multiple antenna assemblies
CN102918879B (zh) * 2010-05-14 2017-04-19 皇家飞利浦电子股份有限公司 用于无线设备的确定性定向发现的方法和设备
US8588844B2 (en) 2010-11-04 2013-11-19 Extricom Ltd. MIMO search over multiple access points
WO2012067554A1 (en) 2010-11-16 2012-05-24 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for probing of alternative antenna configurations in a communication network system
JP5864722B2 (ja) * 2012-03-15 2016-02-17 京セラ株式会社 無線端末および無線通信方法
EP2736285A1 (en) * 2012-11-21 2014-05-28 Thomson Licensing Method for optimizing a wireless network connection
TWI514786B (zh) 2013-11-29 2015-12-21 Wistron Neweb Corp 無線電子裝置及其無線傳輸方法
TWI540851B (zh) * 2013-12-27 2016-07-01 啟碁科技股份有限公司 射頻訊號處理方法及無線通訊裝置
WO2015105358A1 (ko) * 2014-01-09 2015-07-16 (주)휴맥스 홀딩스 무선랜 데이터 전송 시스템 및 방법
US10218478B2 (en) 2014-08-24 2019-02-26 Lg Electronics Inc. Method for determining weight for beamforming in wireless communication system and apparatus therefor
US10567032B2 (en) 2015-11-10 2020-02-18 Lg Electronics Inc. Method and device for transmitting/receiving signals related to change of TX/RX capability in FDR system
US9788217B2 (en) 2015-11-13 2017-10-10 Cable Television Laboratories, Inc. Communications when encountering aggressive communication systems
CN107889277A (zh) * 2016-09-30 2018-04-06 李明璋 无线局域网路通信装置
US10374685B2 (en) * 2017-02-14 2019-08-06 Arris Enterprises Llc Dynamic Selection of a receive antenna pattern

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486832B1 (en) * 2000-11-10 2002-11-26 Am Group Direction-agile antenna system for wireless communications
KR100365303B1 (ko) * 1994-11-18 2003-04-10 주식회사 하이닉스반도체 적응지향성안테나를이용한통신용송수신기

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2196527B1 (ko) 1972-08-16 1977-01-14 Materiel Telephonique
US5903826A (en) 1996-12-06 1999-05-11 Northern Telecom Limited Extremely high frequency multipoint fixed-access wireless communication system
US6301238B1 (en) * 1997-01-28 2001-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Directional-beam generative apparatus and associated method
US5905473A (en) 1997-03-31 1999-05-18 Resound Corporation Adjustable array antenna
US6052594A (en) * 1997-04-30 2000-04-18 At&T Corp. System and method for dynamically assigning channels for wireless packet communications
US6009124A (en) 1997-09-22 1999-12-28 Intel Corporation High data rate communications network employing an adaptive sectored antenna
JP2000101495A (ja) 1998-09-18 2000-04-07 Sony Corp 通信制御方法及び伝送装置
US6989797B2 (en) 1998-09-21 2006-01-24 Ipr Licensing, Inc. Adaptive antenna for use in wireless communication systems
US6600456B2 (en) 1998-09-21 2003-07-29 Tantivy Communications, Inc. Adaptive antenna for use in wireless communication systems
US6229480B1 (en) 1999-03-31 2001-05-08 Sony Corporation System and method for aligning an antenna
GB2350750B (en) * 1999-06-01 2003-08-13 Motorola Ireland Ltd Interference in a cellular communications system
US7411921B2 (en) 1999-10-21 2008-08-12 Rf Technologies, Inc. Method and apparatus for integrating wireless communication and asset location
US6490261B1 (en) * 1999-10-28 2002-12-03 Ericsson Inc. Overlapping slot transmission using phased arrays
FI111113B (fi) * 1999-11-18 2003-05-30 Nokia Corp Mittaustiedon välittäminen tiedonsiirtojärjestelmässä
US6804521B2 (en) * 2000-01-18 2004-10-12 Nortel Networks Limited Multi-beam antenna system for high speed data
FI20001133A (fi) * 2000-05-12 2001-11-13 Nokia Corp Menetelmä päätelaitteiden ja yhteysaseman välisen tiedonsiirron järjestämiseksi tiedonsiirtojärjestelmässä
US6531985B1 (en) 2000-08-14 2003-03-11 3Com Corporation Integrated laptop antenna using two or more antennas
US6445688B1 (en) 2000-08-31 2002-09-03 Ricochet Networks, Inc. Method and apparatus for selecting a directional antenna in a wireless communication system
US20020036586A1 (en) 2000-09-22 2002-03-28 Tantivy Communications, Inc. Adaptive antenna for use in wireless communication systems
US6515635B2 (en) 2000-09-22 2003-02-04 Tantivy Communications, Inc. Adaptive antenna for use in wireless communication systems
DE60107797T2 (de) 2000-10-31 2005-06-09 Kabushiki Kaisha Toshiba Drahtloses Kommunikationssystem, Anordnung für Gewichtungssteuerung, und Erzeugungsverfahren des Gewichtsvektors
FI20002822A (fi) 2000-12-21 2002-06-22 Nokia Corp Osoitteen jakaminen
US6611231B2 (en) 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7224685B2 (en) 2001-09-13 2007-05-29 Ipr Licensing, Inc. Method of detection of signals using an adaptive antenna in a peer-to-peer network
US6640087B2 (en) 2001-12-12 2003-10-28 Motorola, Inc. Method and apparatus for increasing service efficacy in an ad-hoc mesh network
US6888504B2 (en) 2002-02-01 2005-05-03 Ipr Licensing, Inc. Aperiodic array antenna
US7075902B2 (en) 2002-02-11 2006-07-11 Hrl Laboratories, Llc Apparatus, method, and computer program product for wireless networking using directional signaling
AU2003217895A1 (en) 2002-03-01 2003-09-16 Ipr Licensing, Inc. Intelligent interface for adaptive antenna array
US7227907B2 (en) 2002-03-08 2007-06-05 Ipr Licensing, Inc. Antenna adaptation comparison method for high mobility
WO2003094285A2 (en) 2002-05-02 2003-11-13 Ipr Licensing, Inc. Adaptive pointing for directional antennas
US20030228857A1 (en) 2002-06-06 2003-12-11 Hitachi, Ltd. Optimum scan for fixed-wireless smart antennas
EP1522124A2 (en) * 2002-06-17 2005-04-13 IPR Licensing, Inc. Antenna steering scheduler for mobile station in wireless local area network
US7212499B2 (en) 2002-09-30 2007-05-01 Ipr Licensing, Inc. Method and apparatus for antenna steering for WLAN
EP1574082A2 (en) 2002-09-30 2005-09-14 IPR Licensing, Inc. Directional antenna physical layer steering for wlan
US7057555B2 (en) 2002-11-27 2006-06-06 Cisco Technology, Inc. Wireless LAN with distributed access points for space management
US7177644B2 (en) 2003-02-12 2007-02-13 Nortel Networks Limited Distributed multi-beam wireless system
US7200376B2 (en) * 2004-03-17 2007-04-03 Interdigital Technology Corporation Method for steering smart antenna beams for a WLAN using MAC layer functions
US7366464B2 (en) * 2004-06-04 2008-04-29 Interdigital Technology Corporation Access point operating with a smart antenna in a WLAN and associated methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365303B1 (ko) * 1994-11-18 2003-04-10 주식회사 하이닉스반도체 적응지향성안테나를이용한통신용송수신기
US6486832B1 (en) * 2000-11-10 2002-11-26 Am Group Direction-agile antenna system for wireless communications

Also Published As

Publication number Publication date
US7047046B2 (en) 2006-05-16
EP1634381A2 (en) 2006-03-15
US20050075141A1 (en) 2005-04-07
MXPA05013812A (es) 2006-03-13
HK1090191A1 (en) 2006-12-15
WO2004114460A2 (en) 2004-12-29
CA2529425A1 (en) 2004-12-29
KR20060029620A (ko) 2006-04-06
TWI238610B (en) 2005-08-21
CA2529425C (en) 2010-04-13
KR20070068476A (ko) 2007-06-29
WO2004114460A3 (en) 2005-02-17
IL172399A0 (en) 2006-04-10
EP1634381A4 (en) 2006-06-28
KR100770233B1 (ko) 2007-10-26
JP2007525066A (ja) 2007-08-30
NO20060265L (no) 2006-03-27
TW200516889A (en) 2005-05-16
BRPI0411493A (pt) 2006-07-18

Similar Documents

Publication Publication Date Title
KR100942214B1 (ko) 프로브 신호에 기초한 액세스 포인트에 대한 안테나스티어링
KR100763868B1 (ko) 무선 근거리 통신망에서의 액세스 포인트 동작 방법 및무선 근거리 통신망용 액세스 포인트
KR100773799B1 (ko) 제어 프레임들에 기초한 액세스 포인트를 위한 안테나 조종
JP4469849B2 (ja) 空間ダイバーシティに基づくアクセスポイントのためのアンテナステアリング
US20050037822A1 (en) Antenna steering method and apparatus for an 802.11 station

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130117

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140120

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160201

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee