KR100893131B1 - Method of fabricating nitride semiconductor and method of fabricating semiconductor device - Google Patents

Method of fabricating nitride semiconductor and method of fabricating semiconductor device Download PDF

Info

Publication number
KR100893131B1
KR100893131B1 KR1020020036832A KR20020036832A KR100893131B1 KR 100893131 B1 KR100893131 B1 KR 100893131B1 KR 1020020036832 A KR1020020036832 A KR 1020020036832A KR 20020036832 A KR20020036832 A KR 20020036832A KR 100893131 B1 KR100893131 B1 KR 100893131B1
Authority
KR
South Korea
Prior art keywords
nitride semiconductor
type
oxide film
semiconductor layer
type impurity
Prior art date
Application number
KR1020020036832A
Other languages
Korean (ko)
Other versions
KR20030004089A (en
Inventor
마쓰모토오사무
안사이신이치
기지마사토루
Original Assignee
소니 가부시끼 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 가부시끼 가이샤 filed Critical 소니 가부시끼 가이샤
Publication of KR20030004089A publication Critical patent/KR20030004089A/en
Application granted granted Critical
Publication of KR100893131B1 publication Critical patent/KR100893131B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3245Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Abstract

본 발명은, 전극과의 접촉 저항을 낮게할 수 있는 동시에, 특성의 안정성을 향상시킬 수 있는 질화물 반도체의 제조방법 및 이것을 이용한 반도자 소자의 제조 방법을 제공한다. p형 불순물을 첨가한 질화물 반도체를 제작한 후, 표면을 활성 산소를 포함하는 분위기중에서 처리하고, 표면에 존재하는 탄소를 제거하는 동시에, 산화막을 형성한다. 그 후, p형 불순물을 활성화하여 p형으로 한다. 표면의 탄소를 제거하고, 산화막을 형성하고 있으므로, 활성화 처리에 있어서 질화물 반도체의 표면이 변질되는 것을 방지할 수 있는 동시에, p형 불순물의 활성화율을 향상시킬 수 있다. 따라서, 전극과의 접촉 저항을 낮게할 수 있고, 특성의 불균일을 작게할 수 있다. The present invention provides a method for producing a nitride semiconductor and a method for manufacturing a semiconductor device using the same, which can lower the contact resistance with the electrode and improve the stability of the characteristics. After the nitride semiconductor to which the p-type impurity is added is produced, the surface is treated in an atmosphere containing active oxygen to remove carbon present on the surface, and an oxide film is formed. Thereafter, the p-type impurity is activated to be p-type. Since carbon on the surface is removed to form an oxide film, the surface of the nitride semiconductor can be prevented from deteriorating in the activation process, and the activation rate of the p-type impurity can be improved. Therefore, the contact resistance with an electrode can be made low and the nonuniformity of a characteristic can be made small.

질화물 반도체, 반도자 소자, p형 불순물, 제조방법.Nitride semiconductor, semiconductor element, p-type impurity, manufacturing method.

Description

질화물 반도체의 제조 방법 및 반도체소자의 제조 방법{METHOD OF FABRICATING NITRIDE SEMICONDUCTOR AND METHOD OF FABRICATING SEMICONDUCTOR DEVICE}METHODS OF FABRICATING NITRIDE SEMICONDUCTOR AND METHOD OF FABRICATING SEMICONDUCTOR DEVICE

도 1은 본 발명의 일 실시형태에 따른 질화물 반도체의 제조 방법을 나타낸 흐름도이다.1 is a flowchart illustrating a method of manufacturing a nitride semiconductor according to one embodiment of the present invention.

도 2는 본 발명의 일 실시형태에 따른 질화물 반도체의 제조 방법의 공정을 나타낸 단면도이다.2 is a cross-sectional view showing a process of a method of manufacturing a nitride semiconductor according to one embodiment of the present invention.

도 3은 본 발명의 일 실시형태에 따른 질화물 반도체의 제조 방법을 이용하여 제작하는 반도체레이저의 구성을 나타낸 단면도이다.3 is a cross-sectional view showing the structure of a semiconductor laser fabricated using the method for producing a nitride semiconductor according to one embodiment of the present invention.

도 4는 본 발명의 실시예 1에 따른 반도체레이저의 콘택트저항 및 전압을 나타낸 특성도이다.4 is a characteristic diagram showing a contact resistance and a voltage of a semiconductor laser according to Embodiment 1 of the present invention.

도 5는 본 발명의 실시예 1에 대한 비교예 1에 따른 반도체레이저의 콘택트저항 및 전압을 나타낸 특성도이다.5 is a characteristic diagram showing contact resistance and voltage of a semiconductor laser according to Comparative Example 1 with respect to Example 1 of the present invention.

본 발명은, p형 불순물을 활성화하는 공정을 포함하는 질화물 반도체의 제조 방법 및 이것을 이용한 반도체소자의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a nitride semiconductor including a step of activating a p-type impurity and a method for manufacturing a semiconductor device using the same.

GaN, AlGaN 혼정(混晶) 또는 AlInGaN 혼정 등의 질화물 반도체는, 가시영역으로부터 자외영역까지의 발광을 얻을 수 있는 발광 소자의 구성 재료로서, 또는 전자소자의 구성 재료로서 유망시되고 있다. 특히, 질화물 반도체를 사용한 발광다이오드(LEDs: Light Emitting Diodes)에 관해서는 이미 실용화가 도모되어 있고, 큰 주목을 모으고 있다. 또, 질화물 반도체를 사용한 반도체레이저(LDs; Laser Diodes)의 실현도 보고되어 있고, 광디스크장치의 광원을 처음으로 한 응용이 기대되고 있다.Nitride semiconductors such as GaN, AlGaN mixed crystals or AlInGaN mixed crystals are promising as constituent materials of light emitting devices capable of obtaining light emission from the visible region to the ultraviolet region or as constituent materials of electronic devices. Particularly, light emitting diodes (LEDs) using nitride semiconductors have already been put to practical use, and have attracted great attention. In addition, the realization of semiconductor lasers (LDs) using nitride semiconductors has also been reported, and application for the first time as a light source of an optical disk device is expected.

그런데, 이러한 소자에 있어서 우수한 특성을 얻기 위해서는, 반도체에 대하여 전극을 양호하게 오믹 접촉시키고, 접촉 저항을 낮게 하는 것이 중요하다. 예를 들면, n형 반도체에 관해서는, 규소(Si) 등의 n형 불순물을 첨가함으로써 비교적 높은 캐리어농도를 얻을 수 있어, 전극을 용이하게 오믹 접촉시킬 수 있다.By the way, in order to acquire the outstanding characteristic in such an element, it is important to make ohmic contact with an electrode favorable with respect to a semiconductor, and to make contact resistance low. For example, with respect to n-type semiconductors, by adding n-type impurities such as silicon (Si), a relatively high carrier concentration can be obtained, and the electrodes can be easily brought into ohmic contact.

그러나, p형 반도체에 관해서는, 마그네슘(Mg) 등의 p형 불순물을 첨가하더라도 수소(H)와 결합하고 있기 때문에 활성화율이 낮고, 1 ×1018cm-3정도의 캐리어농도밖에 얻어지지 않는다. 그 때문에, 전극을 양호하게 오믹 접촉시키는 것이 어렵고, 동작전압이 높아져 버려, 특성에도 불균일이 생기기 쉽다고 하는 문제가 있었다.However, in the case of the p-type semiconductor, even if p-type impurities such as magnesium (Mg) are added, since they bind with hydrogen (H), the activation rate is low and only a carrier concentration of about 1 x 10 18 cm -3 is obtained. . Therefore, it is difficult to make ohmic contact with an electrode satisfactorily, operation voltage becomes high, and there existed a problem that a nonuniformity tends to arise also in a characteristic.

본 발명은 이러한 문제점을 감안하여 이루어진 것으로, 그 목적은, 전극과의 접촉 저항을 낮게 할 수 있는 질화물 반도체의 제조 방법 및 이것을 이용한 반도체소자의 제조 방법을 제공함에 있다.The present invention has been made in view of the above problems, and an object thereof is to provide a method of manufacturing a nitride semiconductor capable of lowering a contact resistance with an electrode and a method of manufacturing a semiconductor device using the same.

본 발명의 제1 양태에 의한 질화물 반도체의 제조 방법은, p형 불순물을 첨가한 질화물 반도체를 제작하는 공정과, 제작한 질화물 반도체의 표면을 산화하여, 산화막을 형성하는 공정과, 산화막을 형성한 후, p형 불순물을 활성화하여, p형으로 하는 공정을 포함하는 것이다.The manufacturing method of the nitride semiconductor which concerns on the 1st aspect of this invention is a process of manufacturing the nitride semiconductor which added p-type impurity, the process of oxidizing the surface of the produced nitride semiconductor, and forming an oxide film, and forming the oxide film. Thereafter, the step of activating the p-type impurity to form the p-type.

본 발명의 제2 양태에 의한 다른 질화물 반도체의 제조 방법은, p형 불순물을 첨가한 질화물 반도체를 제작하는 공정과, 제작한 질화물 반도체층의 표면을, 활성산소를 포함하는 분위기 중에서 처리하는 공정과, 질화물 반도체의 표면을 처리한 후, p형 불순물을 활성화하여, p형으로 하는 공정을 포함하는 것이다.Another method for producing a nitride semiconductor according to the second aspect of the present invention includes the steps of producing a nitride semiconductor to which p-type impurities are added, and treating the surface of the produced nitride semiconductor layer in an atmosphere containing active oxygen; After the surface of the nitride semiconductor is treated, p-type impurities are activated to form p-type.

본 발명의 제3 양태에 의한 반도체소자의 제조 방법은, p형 불순물을 첨가한 질화물 반도체층을 성장시키는 공정과, 성장시킨 질화물 반도체의 표면을 산화하여, 산화막을 형성하는 공정과, 산화막을 형성한 후, p형 불순물을 활성화하여, p형으로 하는 공정을 포함하는 것이다.The semiconductor device manufacturing method according to the third aspect of the present invention includes the steps of growing a nitride semiconductor layer containing p-type impurities, oxidizing the surface of the grown nitride semiconductor to form an oxide film, and forming an oxide film. After that, a step of activating the p-type impurity to form the p-type is included.

본 발명의 제4 양태에 의한 다른 반도체소자의 제조 방법은, p형 불순물을 첨가한 질화물 반도체층을 성장시키는 공정과, 성장시킨 질화물 반도체층의 표면을, 활성산소를 포함하는 분위기 중에서 처리하는 공정과, 질화물 반도체층의 표면을 처리한 후, p형 불순물을 활성화하여, p형으로 하는 공정을 포함하는 것이다.In another method of manufacturing a semiconductor device according to the fourth aspect of the present invention, a step of growing a nitride semiconductor layer to which p-type impurities are added and a step of treating the surface of the grown nitride semiconductor layer in an atmosphere containing active oxygen And after treating the surface of the nitride semiconductor layer, p-type impurities are activated to form p-type.

본 발명에 의한 질화물 반도체의 제조 방법 및 반도체소자의 제조 방법에서 는, p형 불순물을 활성화하기 전에, 질화물 반도체의 표면을 산화하여 산화막을 형성하기 때문에, 또는, 질화물 반도체의 표면을 활성산소를 포함하는 분위기 중에서 처리하기 때문에, 활성화처리에서의 질화물 반도체의 표면의 변질이 방지된다.In the method of manufacturing the nitride semiconductor and the method of manufacturing the semiconductor device according to the present invention, since the surface of the nitride semiconductor is oxidized to form an oxide film before the p-type impurity is activated, or the surface of the nitride semiconductor contains active oxygen. Since the treatment is carried out in an atmosphere to prevent the deterioration of the surface of the nitride semiconductor in the activation treatment.

[발명의 실시형태]Embodiment of the Invention

이하, 본 발명의 실시형태에 대해, 도면을 참조하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail with reference to drawings.

도 1은 본 발명의 일 실시형태에 따른 질화물 반도체의 제조 방법을 나타낸 흐름도이며, 도 2는 질화물 반도체의 제조 방법을 공정순으로 나타낸 것이다. 또, 질화물 반도체라고 하는 것은, 갈륨(Ga), 알루미늄(Al), 인듐(ln) 및 붕소(B) 등으로 이루어지는 단주기형 주기표의 3B족 원소중의 최소한 1종과, 질소(N), 비소(As) 및 인(P) 등으로 이루어지는 단주기형 주기표의 5B족 원소중의 최소한 질소를 포함하는 것을 말한다.1 is a flowchart illustrating a method of manufacturing a nitride semiconductor according to an embodiment of the present invention, and FIG. 2 is a flowchart illustrating a method of manufacturing a nitride semiconductor. The nitride semiconductor is at least one of the Group 3B elements of the short-period periodic table composed of gallium (Ga), aluminum (Al), indium (ln), boron (B), and the like, nitrogen (N) and arsenic. It means that it contains at least nitrogen in group 5B element of short-period periodic table which consists of (As), phosphorus (P), etc.

먼저, 도 2 (A)에 나타낸 바와 같이, 예를 들면, 사파이어(α- Al2O3)로 이루어지는 기판(11)의 c면에, M0CVD(Metal 0rganic Chemica1, Vapor Deposition ; 유기금속 화학기상성장)법에 의해, 마그네슘 등의 p형 불순물을 첨가한 질화물 반도체(12)를 성장시켜 제작한다(스텝 S101). 이 질화물 반도체(12)에는 수소원자가 포함되어 있고, 이 수소와의 결합에 의해 p형 불순물은 활성화가 저해되어 있다.First, as shown in Fig. 2A, for example, M0CVD (Metal 0rganic Chemica1, Vapor Deposition; organometallic chemical vapor growth) on the c surface of the substrate 11 made of sapphire (α-Al 2 O 3 ). ), The nitride semiconductor 12 to which p-type impurities such as magnesium are added is grown and produced (step S101). The nitride semiconductor 12 contains a hydrogen atom, and activation of p-type impurities is inhibited by the bonding with hydrogen.

MOCVD를 행할 때의 원료로는, 갈륨의 원료가스로서 예를 들면 트리메틸갈륨((CH3)3Ga), 알루미늄의 원료가스로서 예를 들면 트리메틸알루미늄((CH3)3Al), 인듐의 원료가스로서 예를 들면 트리메틸인듐((CH3)3In), 붕소의 원료가스로서 예를 들면 트리메틸붕소((CH3) 3B), 질소의 원료가스로서 예를 들면 암모니아(NH3)를 각각 사용한다. 또, 마그네슘의 원료가스로서는 예를 들면 비스 = 사이클로펜타디에닐마그네슘((C5 H5)2Mg)을 사용한다.As a raw material for performing MOCVD, for example, trimethylgallium ((CH 3 ) 3 Ga) as a source gas of gallium, trimethylaluminum ((CH 3 ) 3 Al) as a source gas of aluminum, and a source of indium As the gas, for example, trimethylindium ((CH 3 ) 3 In), as the source gas of boron, for example trimethyl boron ((CH 3 ) 3 B), as the source gas of nitrogen, for example ammonia (NH 3 ) use. As the source gas of magnesium, for example, bis = cyclopentadienyl magnesium ((C 5 H 5 ) 2 Mg) is used.

이어서, 예를 들면, 필요에 따라 질화물 반도체(12)의 표면을 아세톤 등의 유기용제로 세정하여, 표면에 부착되어 있는 불순물을 제거한다(스텝 S102). 계속해서, 예를 들면, 질화물 반도체(12)의 표면을 산 및 알칼리중의 최소한 한 쪽에 의해 또 세정하도록 해도 된다(스텝 S103). 산으로서는 불산(HF)을 포함하는 것이 바람직하고, 알칼리로서는 수산화칼륨(KOH), 수산화나트륨(NaOH) 또는 수산화암모늄(NH4OH) 등을 포함하는 것이 바람직하다.Next, for example, if necessary, the surface of the nitride semiconductor 12 is washed with an organic solvent such as acetone to remove impurities adhering to the surface (step S102). Subsequently, for example, the surface of the nitride semiconductor 12 may be further cleaned by at least one of an acid and an alkali (step S103). The acid preferably contains hydrofluoric acid (HF), and the alkali preferably contains potassium hydroxide (KOH), sodium hydroxide (NaOH), ammonium hydroxide (NH 4 OH), or the like.

그 후, 도 2 (B)에 나타낸 바와 같이, 세정한 질화물 반도체(12)의 표면을, 오존(O3)을 포함하는 분위기 중에서 자외선을 조사(照射)함으로써 처리한다. 또는 세정한 질화물 반도체(12)의 표면을, 산소(O2)를 포함하는 분위기 중에서 플라즈마 방전시키는 산소 애셔(asher) 등, 산소를 포함하는 플라즈마분위기 중에서 처리한다. 즉, 질화물 반도체(12)의 표면을, 오존 또는 산소가 해리하여 생긴 원자상태의 활성산소를 포함하는 분위기중에 노출시킨다(스텝 S104). 이에 따라, 질화물 반도체(12)의 표면을 산화하여 산화막(13)을 형성하는 동시에, 질화물 반도체(12)의 표면에 존재하는 세정공정에서 제거되지 않은 탄소(C) 또는 유기물을 제거한다. 이것은, 후속의 p형 불순물을 활성화하는 처리에 있어서, 질화물 반도체(12)의 표면이 변질되는 것을 방지하기 위한 것이다.Thereafter, as shown in FIG. 2B, the cleaned surface of the nitride semiconductor 12 is treated by irradiating ultraviolet rays in an atmosphere containing ozone (O 3 ). Alternatively, the cleaned surface of the nitride semiconductor 12 is treated in a plasma atmosphere containing oxygen, such as an oxygen asher for plasma discharge in an atmosphere containing oxygen (O 2 ). That is, the surface of the nitride semiconductor 12 is exposed to an atmosphere containing atomic oxygen, which is formed by dissociation of ozone or oxygen (step S104). As a result, the surface of the nitride semiconductor 12 is oxidized to form the oxide film 13, and at the same time, carbon (C) or organic matter which is not removed in the cleaning process existing on the surface of the nitride semiconductor 12 is removed. This is to prevent the surface of the nitride semiconductor 12 from being deteriorated in a subsequent process of activating the p-type impurity.

특히, 질화물 반도체(12)의 표면을 오존함유분위기 중에서 자외선을 조사함으로써 처리하도록하면, 질화물 반도체(12)의 표면의 손상이 적기 때문에 바람직하다. 이 때, 이 처리는, 예를 들면, 실온 이상 있어서 1분 이상 행하는 것이 바람직하다. In particular, it is preferable to treat the surface of the nitride semiconductor 12 by irradiating ultraviolet rays in an ozone-containing atmosphere because the surface of the nitride semiconductor 12 is less damaged. At this time, it is preferable to perform this process for 1 minute or more in room temperature or more, for example.

또한, 형성하는 산화막(13)의 두께는, 5nm 이하로 하는 것이 바람직하다. 이 이상 두꺼우면, 후속의 p형 불순물을 활성화하는 처리에 있어서 활성화율이 감소하여 버리거나, 또는 후에 산화막(13)을 제거하는 처리의 곤란성이 증대하여 버리기 때문이다. 또, 이 산화막(13)이라고 하는 것은, 의도적으로 형성한 것을 가리키고, 공기중에 방치되는 것에 의해 형성되는 자연산화막을 의미하는 것은 아니다.In addition, the thickness of the oxide film 13 to be formed is preferably 5 nm or less. If the thickness is more than this, the activation rate decreases in the subsequent treatment of activating the p-type impurity, or the difficulty of the subsequent removal of the oxide film 13 increases. In addition, this oxide film 13 refers to what was intentionally formed, and does not mean the natural oxide film formed by being left in air.

산화막(13)을 형성한 후, 예를 들면, 질화물 반도체(12)를 400℃ 이상의 온도로 어닐링한다. 이에 따라, 수소를 방출시키고, 질화물 반도체(12)에 포함되는 p형 불순물을 활성화하여, p형으로 한다(스텝 S105). 본 실시형태에서는, 활성화처리 전에, 질화물 반도체(12)의 표면에 존재하는 탄소를 제거하는 동시에, 산화막(13)을 형성하고 있기 때문에, 활성화처리에서의 질화물 반도체(12)의 표면의 변질이 방지된다. 또, 산화막(13)에 의해 수소의 방출이 촉진되어, p형 불순물의 활성화율이 향상된다고 생각된다.After the oxide film 13 is formed, for example, the nitride semiconductor 12 is annealed at a temperature of 400 ° C or higher. As a result, hydrogen is released, and p-type impurities contained in the nitride semiconductor 12 are activated to be p-type (step S105). In the present embodiment, since the carbon present on the surface of the nitride semiconductor 12 is removed and the oxide film 13 is formed before the activation process, deterioration of the surface of the nitride semiconductor 12 in the activation process is prevented. do. In addition, it is thought that the release of hydrogen is promoted by the oxide film 13, and the activation rate of p-type impurities is improved.

p형 불순물의 활성화를 행한 후, 도 2 (C)에 나타낸 바와 같이, 예를 들면 필요에 따라, 질화물 반도체(12)의 표면을 산 및 알칼리중의 최소한 한 쪽에 의해 처리하고, 산화막(13)을 제거한다(스텝 S106). 산으로서는 불산을 포함하는 것이 바람직하고, 알칼리로서는 수산화칼륨, 수산화나트륨 또는 수산화암모늄 등을 3% 이상 포함하는 것이 바람직하다. 처리온도는 100℃ 이하로 하는 것이 바람직하다. 처리는 산 또는 알칼리 중 어느 한 쪽만이라도 좋지만, 양쪽 모두를 행하는 쪽이 바람직하다. 처리의 순서는 산 또는 알칼리의 어느 쪽이 앞서도 된다. After activation of the p-type impurity, as shown in Fig. 2C, for example, if necessary, the surface of the nitride semiconductor 12 is treated with at least one of an acid and an alkali, and the oxide film 13 Is removed (step S106). It is preferable to contain hydrofluoric acid as an acid, and it is preferable to contain 3% or more of potassium hydroxide, sodium hydroxide, ammonium hydroxide, etc. as an alkali. It is preferable to make processing temperature into 100 degrees C or less. The treatment may be either acid or alkali, but both are preferred. The order of treatment may be either acid or alkali.

이에 따라, 변질이 적은 양호한 계면을 가지고, p형 불순물의 활성화율이 높은 질화물 반도체가 얻어진다.As a result, a nitride semiconductor having a good interface with little deterioration and a high activation rate of p-type impurities is obtained.

다음에, 이 질화물 반도체의 제조 방법을 이용한 반도체소자의 제조 방법, 구체적으로는 반도체레이저의 제조 방법에 대하여 설명한다.Next, the manufacturing method of a semiconductor element using this manufacturing method of a nitride semiconductor, specifically, the manufacturing method of a semiconductor laser is demonstrated.

도 3은 본 실시형태에 따른 질화물 반도체의 제조 방법을 이용하여 제조하는 반도체레이저의 구성을 나타낸 것이다. 먼저, 예를 들면, 사파이어로 이루어지는 기판(21)을 준비하고, 이 기판(21)의 c 면상에, MOCVD 법에 의해 n형 질화물 반도체층인 각 층을 각각 성장시킨다. 즉, 예를 들면, n형 불순물인 규소를 첨가한 n형 GaN으로 이루어지는 n형 콘택트층(22), 규소를 첨가한 n형 AlGaN 혼정으로 이루어지는 n형 클래드층(23), 규소를 첨가한 n형 GaN으로 이루어지는 n형 가이드층(24)을 순차 성장시킨다.3 shows the configuration of a semiconductor laser manufactured using the method for producing a nitride semiconductor according to the present embodiment. First, for example, a substrate 21 made of sapphire is prepared, and each layer, which is an n-type nitride semiconductor layer, is grown on the c surface of the substrate 21 by MOCVD. That is, for example, an n-type contact layer 22 made of n-type GaN added with silicon as an n-type impurity, an n-type cladding layer 23 made of n-type AlGaN mixed crystal added with silicon, and n added with silicon The n type guide layer 24 made of type GaN is grown sequentially.

이어서, n형 질화물 반도체층 상에, 예를 들면, MOCVD 법에 의해 조성이 상이한 GaxIn1-xN(단, 1 ≥x ≥0) 혼정층을 적층한 다중 양자 웰구조를 가지는 활성층(25)을 성장시킨다.Subsequently, an active layer having a multi-quantum well structure in which a Ga x In 1-x N (wherein 1? X? 0) mixed crystal layer having a different composition is laminated on the n-type nitride semiconductor layer, for example, by MOCVD method ( 25) grow.

활성층(25)을 성장시킨 후, 활성층(25)상에, 예를 들면 MOCVD 법에 의해 p형 불순물을 첨가한 질화물 반도체층인 각 층을 각각 성장시킨다. 즉, 예를 들면, 마그네슘을 첨가한 AlGaN 혼정으로 이루어지는 전류블록층(26), 마그네슘을 첨가한 GaN으로 이루어지는 p형 가이드층(27), 마그네슘을 첨가한 AlGaN 혼정으로 이루어지는 p형 클래드층(28), 마그네슘을 첨가한 GaN으로 이루어지는 p형 콘택트층(29)을 순차 성장시킨다.After the active layer 25 is grown, each layer, which is a nitride semiconductor layer to which p-type impurities are added, for example, is grown on the active layer 25 by MOCVD. That is, for example, a current block layer 26 made of AlGaN mixed crystals containing magnesium, a p-type guide layer 27 made of GaN containing magnesium, and a p-type cladding layer 28 made of AlGaN mixed crystals containing magnesium. ), A p-type contact layer 29 made of GaN added with magnesium is sequentially grown.

이어서, 전번의 질화물 반도체의 제조 방법과 동일하게 하여, 필요에 따라 p형 콘택트층(29)의 표면을 유기용제로 세정하고(도 1; 스텝 S102 참조), 또한 산 및 알칼리중의 최소한 한 쪽에 의해 세정한 후(도 1; 스텝 S103 참조), 활성산소를 포함하는 분위기 중에서 처리하여 도 3에는 나타내지 않은 산화막을 형성한다(도 1; 스텝 S104 참조).Subsequently, the surface of the p-type contact layer 29 is washed with an organic solvent in the same manner as in the previous manufacturing method of the nitride semiconductor (FIG. 1; see step S102), and at least one of an acid and an alkali After washing (Fig. 1; see step S103), the resultant is treated in an atmosphere containing active oxygen to form an oxide film not shown in Fig. 3 (Fig. 1; see step S104).

산화막을 형성한 후, 앞서의 질화물 반도체의 제조 방법과 동일하게 하여, 전류블록층(26), p형 가이드층(27), p형 클래드층(28) 및 p형 콘택트층(29)에 포함되는 p형 불순물을 활성화하여, 그들 층을 p형으로 한다(도 1; 스텝 S105 참조). 본 실시형태에서는, 활성화처리 전에, 활성산소를 포함하는 분위기 중에서 처리하고, 산화막을 형성하고 있기 때문에, p형 콘택트층(29)의 표면의 변질이 방지되는 동시에, p형 콘택트층(29)의 캐리어농도가 높아진다.After the oxide film is formed, it is included in the current block layer 26, the p-type guide layer 27, the p-type cladding layer 28, and the p-type contact layer 29 in the same manner as the method for manufacturing the nitride semiconductor described above. The resulting p-type impurities are activated to make those layers p-type (Fig. 1; see step S105). In the present embodiment, the active film is treated in an atmosphere containing active oxygen to form an oxide film, so that the surface of the p-type contact layer 29 is prevented from being deteriorated and the p-type contact layer 29 Carrier concentration becomes high.

p형 불순물을 활성화한 후, 전번의 질화물 반도체의 제조 방법과 동일하게 하여, 필요에 따라 산 및 알칼리중의 최소한 한쪽으로 처리하여, 산화막을 제거한 다(도 1; 스텝 S106 참조). 이 처리는 행하지 않아도 되지만, 행한 쪽이, 후술하는 p측 전극(31)과 p형 콘택트층(29)과의 접촉 저항을보다 낮게 할 수 있기 때문에 바람직하다.After activating the p-type impurity, the oxide film is removed in the same manner as in the previous manufacturing method of the nitride semiconductor, by treatment with at least one of an acid and an alkali as necessary (Fig. 1; see step S106). Although this process does not need to be performed, it is preferable because the performed side can lower the contact resistance between the p-side electrode 31 and p-type contact layer 29 mentioned later.

산화막을 제거한 후, p형 콘택트층(29)상에 도시하지 않은 마스크층을 형성하고, 이 마스크층을 이용하여 예를 들면 RIE(Reactive lon Etching ; 반응성 이온 에칭)에 의해 p형 콘택트층(29) 및 p형 클래드층(28)의 일부를 선택적으로 제거하여, p형 클래드층(28)의 상부 및 p형 콘택트층(29)을 가는 밴드형(리지형)으로 한다. 그 후, 도시하지 않은 마스크층을 제거하고, 전체면(즉 p형 클래드층(28) 및 p형 콘택트층(29)의 위)에, 예를 들면 증착법에 의해 이산화규소(SiO2)로 이루어지는 절연막(3O)를 형성한다. 이어서, 예를 들면, 절연막(30)상에, 도시하지 않은 레지스트막을 도포형성하고, 이 레지스트막을 마스크로서, RlE에 의해, 절연막(30), p형 클래드층(28), p형가이드층(27), 전류블록층(26), 활성층(25), n형 가이드층(24) 및 n형 클래드층(23)의 일부를 순차 선택적으로 제거하여, n형 콘택트층(22)을 노출시킨다.After the oxide film is removed, a mask layer (not shown) is formed on the p-type contact layer 29, and the p-type contact layer 29 is formed using, for example, reactive ion etching (RIE) using the mask layer. ) And a portion of the p-type cladding layer 28 are selectively removed so that the upper portion of the p-type cladding layer 28 and the p-type contact layer 29 are thin band (ridge type). Subsequently, the mask layer (not shown) is removed, and the entire surface (that is, on the p-type cladding layer 28 and the p-type contact layer 29) is made of silicon dioxide (SiO 2 ), for example, by vapor deposition. An insulating film 30 is formed. Subsequently, for example, a resist film (not shown) is coated on the insulating film 30, and the insulating film 30, the p-type cladding layer 28, and the p-type guide layer are formed using RlE as a mask. 27), a portion of the current block layer 26, the active layer 25, the n-type guide layer 24 and the n-type cladding layer 23 is selectively removed to expose the n-type contact layer 22.

n형 콘택트층(22)을 노출시킨 후, 도시하지 않은 레지스트막을 제거하여, 전체면(즉 절연막(30) 및 n형 콘택트층(22)의 위)에 도시하지 않은 레지스트막을 도포형성하고, 이 레지스트막을 마스크로 하여 절연막(30)을 선택적으로 제거하여, p형 콘택트층(29)을 노출시킨다. 그 후, 전체면(즉 p형 콘택트층(29) 및 도시하지 않은 레지스트막의 위)에, 예를 들면, 팔라듐(Pd), 백금(Pt) 및 금(Au)을 선택적으 로 순차 증착하여, 도시하지 않은 레지스트막을 그 위에 적층된 금속과 함께 제거하여(리프트오프), p측 전극(31)을 형성한다. 본 실시형태에서는, p형 콘택트층(29)의 표면이 변질이 적은 양호한 상태이며, p형 콘택트층(29)의 캐리어농도가 향상되어 있기 때문에, p형 콘택트층(29)과 p측 전극(31)과의 접촉 저항이 낮아진다.After exposing the n-type contact layer 22, a resist film (not shown) is removed to form a resist film (not shown) on the entire surface (i.e., on the insulating film 30 and the n-type contact layer 22). Using the resist film as a mask, the insulating film 30 is selectively removed to expose the p-type contact layer 29. Thereafter, for example, palladium (Pd), platinum (Pt), and gold (Au) are selectively deposited sequentially on the entire surface (i.e., on the p-type contact layer 29 and a resist film not shown), The resist film (not shown) is removed together with the metal laminated thereon (liftoff) to form the p-side electrode 31. In this embodiment, since the surface of the p-type contact layer 29 is in a favorable state with little alteration, and the carrier concentration of the p-type contact layer 29 is improved, the p-type contact layer 29 and the p-side electrode ( 31) lowers the contact resistance.

p측 전극(31)을 형성한 후, 전체면(즉, n형 콘택트층(22), 절연막(30) 및 p측 전극(31)의 위)에, n형 콘택트층(22)에 대응하여 개구를 가지는 도시하지 않은 레지스트막을 도포형성한다. 그 후, 전체면(즉 n형 콘택트층(22) 및 도시하지 않은 레지스트막의 위)에, 예를 들면 진공증착법에 의해 티탄(Ti), 알루미늄 및 금을 순차 증착하고, 도시하지 않은 레지스트막을 그 위에 형성된 금속과 함께 제거하여(리프트오프), n측 전극(32)을 형성한다.After the p-side electrode 31 is formed, the entire surface (that is, on the n-type contact layer 22, the insulating film 30, and the p-side electrode 31) corresponds to the n-type contact layer 22. A resist film (not shown) having an opening is applied and formed. Thereafter, titanium (Ti), aluminum, and gold are sequentially deposited on the entire surface (i.e., on the n-type contact layer 22 and a resist film not shown), for example, by vacuum deposition. It is removed together with the metal formed above (liftoff) to form the n-side electrode 32.

이어서, 기판(21)을 예를 들면 80㎛ 정도의 두께로 되도록 연삭한 후, 기판(21)을 소정의 크기로 커팅하고, p측 전극(31)의 연장방향에 있어서 대향하는 한 쌍의 공진기 단면에 도시하지 않은 반사경막을 형성한다. 이에 따라, 도 3에 나타낸 반도체레이저가 완성된다.Subsequently, after grinding the substrate 21 to a thickness of, for example, about 80 μm, the substrate 21 is cut to a predetermined size, and a pair of resonators opposing each other in the extending direction of the p-side electrode 31 is formed. A reflective film not shown is formed in the cross section. Thereby, the semiconductor laser shown in FIG. 3 is completed.

이와 같이 본 실시형태에 의하면, p형 불순물을 활성화하기 전에, 질화물 반도체(12)의 표면을 활성산소를 포함하는 분위기 중에서 처리하여, 표면에 존재하는 탄소를 제거하는 동시에, 산화막(13)을 형성하도록 했기 때문에, 활성화처리에서의 질화물 반도체(12)의 표면의 변질을 방지할 수 있는 동시에, p형 불순물의 활성화율을 향상시킬 수 있다. As described above, according to the present embodiment, before activating the p-type impurity, the surface of the nitride semiconductor 12 is treated in an atmosphere containing active oxygen to remove carbon present on the surface and to form the oxide film 13. Since it is possible to prevent the deterioration of the surface of the nitride semiconductor 12 in the activation process, the activation rate of the p-type impurity can be improved.                     

따라서 이 방법을 이용하여 반도체레이저를 제작하면, p형 콘택트층(29)과 p측 전극(3l)과의 접촉 저항을 낮게 할 수 있어, 동작전압을 낮게 할 수 있는 동시에, 특성의 불균일를 작게 할 수 있다.Therefore, by fabricating a semiconductor laser using this method, the contact resistance between the p-type contact layer 29 and the p-side electrode 3l can be lowered, the operating voltage can be lowered, and the variation in characteristics can be reduced. Can be.

특히, p형 불순물을 활성화한 후, 산 및 알칼리중의 최소한 한 쪽에 의해 처리하고, 형성한 산화막을 제거하도록하면, p형 콘택트층(29)과 p측 전극(31)과의 접촉 저항을보다 낮게 할 수 있어, 동작전압을보다 작게 할 수 있다.Particularly, after activating the p-type impurity, treating with at least one of an acid and an alkali and removing the formed oxide film, the contact resistance between the p-type contact layer 29 and the p-side electrode 31 is better. It can be made low, and operation voltage can be made smaller.

[실시예]EXAMPLE

또한, 본 발명의 구체적인 실시예에 대해, 도 1 및 도 3을 참조하여 상세하게 설명한다.In addition, specific embodiments of the present invention will be described in detail with reference to FIGS. 1 and 3.

[실시예 1]Example 1

실시예 1로서, 복수의 기판(21)을 준비하고, 실시예에서 설명한 반도체소자의 제조 방법과 동일하게 하여, 도 3에 나타낸 반도체레이저를 각 기판(21)에 대해 복수개씩 제작했다.As Example 1, the some board | substrate 21 was prepared, and the semiconductor laser shown in FIG. 3 was produced with respect to each board | substrate 21 similarly to the manufacturing method of the semiconductor element demonstrated in Example.

그 때, p형 불순물을 활성화하기 전의 표면처리는, 오존을 포함하는 80℃의 분위기 중에서 자외선을 10분간 조사함으로써 행하였다(도 1; 스텝 S104 참조). 표면처리전의 세정(도 1; 스텝 S102 참조)은, 아세톤을 사용하여 초음파를 걸면서 5분간 행하고, 산 및 알칼리에 의한 세정은 행하지 않았다(도 1; 스텝 Sl02, S103참조). p형 불순물을 활성화한 후의 표면처리는, 수산화칼륨 수용액에 의해 60℃로 5분간 담근 후, 불산에 의해 50℃로 5분간 담그는 것에 의해 행하였다(도 1; 스텝 S106 참조). 또, 제조조건은 각 기판(21)에 모두 동일하게 하였다. In that case, the surface treatment before activating a p-type impurity was performed by irradiating an ultraviolet-ray for 10 minutes in 80 degreeC atmosphere containing ozone (FIG. 1; see step S104). Washing before surface treatment (FIG. 1; see step S102) was performed for 5 minutes, applying acetone using ultrasonic waves, and the washing | cleaning by acid and alkali was not performed (FIG. 1; see steps S10 and S103). The surface treatment after activating p-type impurity was performed by dipping for 5 minutes at 60 degreeC by the potassium hydroxide aqueous solution, and then immersing for 5 minutes at 50 degreeC with hydrofluoric acid (FIG. 1; see step S106). In addition, all manufacturing conditions were the same for each board | substrate 21. FIG.                     

제작한 반도체레이저에 대해, 각 기판(21)으로부터 5개씩 적절히 선택하고, 50mA의 정전류를 흘렸을 때의 p측 전극(31)의 콘택트저항 및 전압을 측정하여, 기판마다의 평균값을 구했다. 그 결과를 도 4에 나타낸다.With respect to the produced semiconductor laser, five pieces were appropriately selected from each of the substrates 21, and the contact resistance and voltage of the p-side electrode 31 when 50 mA of constant current flowed were measured, and the average value for each substrate was obtained. The result is shown in FIG.

본 실시예에 대한 비교예 1로서, p형 콘택트층(29)의 표면을 오존을 포함하는 분위기 중에서 자외선을 조사함으로써 처리하지 않은 것을 제외하고, 본 실시예와 동일하게 하여 복수의 기판에 각각 복수개씩 반도체레이저를 제작하여, 동일하게 하여 기판마다 콘택트저항 및 전압의 평균값을 구했다. 그 결과를 도 5에 나타낸다. 또, 비교예 1에서는 실시예 1과 별도의 기판을 준비했다.As Comparative Example 1 of the present embodiment, except that the surface of the p-type contact layer 29 was not treated by irradiating ultraviolet rays in an atmosphere containing ozone, a plurality of substrates were provided in the same manner as in this embodiment. The semiconductor lasers were produced one by one, and in the same manner, the average values of the contact resistance and the voltage were obtained for each substrate. The result is shown in FIG. Moreover, in the comparative example 1, the board | substrate separate from Example 1 was prepared.

[실시예 2]Example 2

또, 실시예 2로서, 또한 별도의 기판(21)을 2매 준비하고, 각 기판(21)의 반분측(half side)에, 실시예 1과 동일하게 하여 복수개씩 반도체레이저를 제작했다. 다른 반분측에는, 비교예 2로서, 활성산소를 포함하는 분위기중에 노출하지 않은 반도체레이저를 복수개씩 제작했다. 이들 실시예 2 및 비교예 2의 반도체레이저에 관해서도, 각 기판(21)으로부터 표 1에 나타낸 개수씩 적절한 선택하고, 50mA의 전류를 흘렸을 때의 p측 전극(31)의 콘택트저항 및 전압을 측정하여, 그들의 평균값 및 전압의 표준 불균일를 구했다. 얻어진 결과를 표 1에 나타낸다. In addition, as Example 2, two separate substrates 21 were prepared, and a plurality of semiconductor lasers were produced in the same manner as in Example 1 on the half side of each substrate 21. On the other half side, as Comparative Example 2, a plurality of semiconductor lasers which were not exposed in an atmosphere containing active oxygen were produced. Also regarding the semiconductor lasers of Examples 2 and 2, the contact resistance and voltage of the p-side electrode 31 at the time of passing a 50 mA current were appropriately selected by the number shown in Table 1 from each substrate 21. The standard nonuniformity of these average values and voltages was calculated | required. The obtained results are shown in Table 1.                     

[표 1]TABLE 1

기판의 번호  Number of boards 콘택트 저항 (Ω/㎝)   Contact Resistance (Ω / cm) 전압의 평균치 (V)  Average value of voltage (V) 전압의 표준편차  Standard deviation of voltage 측정수 (개)  Measure () 실시예 2   Example 2 S35 S 35 0.0140  0.0140 4.9   4.9 0.19   0.19 18   18 S36 S 36 0.0036  0.0036 4.9   4.9 0.07   0.07 25   25 비교예 2   Comparative Example 2 S35 S 35 0.0340  0.0340 5.8   5.8 0.11   0.11 14   14 S36 S 36 0.0370  0.0370 5.5   5.5 0.52   0.52 30   30

도 4로부터 알 수 있는 바와 같이, 실시예 1에 의하면, 콘택트저항 및 전압에 대해 모두 기판(21)의 차이에 의한 차이가 작았다. 이에 대하여, 도 5로부터 알 수 있는 바와 같이 비교예 1에서는, 콘택트저항 및 전압에 대해 모두 기판에 의한 차이가 컸다. 즉, p형 불순물을 활성화하기 전에, p형 콘택트층(29)의 표면을 활성산소를 포함하는 분위기 중에서 처리하도록하면, 특성의 불균일을 작게 하여 안정시킬 수 있는 것을 알 수 있었다.As can be seen from FIG. 4, according to the first embodiment, the difference due to the difference in the substrate 21 in both the contact resistance and the voltage was small. On the other hand, as can be seen from FIG. 5, in Comparative Example 1, the difference in contact with the contact resistance and the voltage was large by the substrate. In other words, it was found that if the surface of the p-type contact layer 29 was treated in an atmosphere containing active oxygen before activating the p-type impurity, the variation in characteristics could be reduced and stabilized.

또, 표 1로부터 알 수 있는 바와 같이, 실시예 2는 비교예 2에 비해, 콘택트저항 및 전압 모두 낮은 값이 얻어졌다. 즉, p형 불순물을 활성화하기 전에, p형 콘택트층(29)의 표면을 활성산소를 포함하는 분위기 중에서 처리하도록하면, p형 콘택트층(29)과 p측 전극(31)과의 접촉 저항을 낮게 할 수 있어, 동작전압을 낮출 수 있는 것을 알 수 있었다.As can be seen from Table 1, in Example 2, the contact resistance and the voltage were both lower than those in Comparative Example 2. In other words, if the surface of the p-type contact layer 29 is treated in an atmosphere containing active oxygen before activating the p-type impurity, the contact resistance between the p-type contact layer 29 and the p-side electrode 31 is reduced. It turned out that it can be made low and it turned out that operation voltage can be reduced.

이상, 실시형태 및 실시예를 들어 본 발명을 설명했지만, 본 발명은 상기 실시형태 및 실시예에 한정되는 것이 아니라, 여러 가지 변형가능하다. 예를 들면, 상기 실시형태 및 실시예에서는, 활성산소를 포함하는 분위기에서 처리함으로써 산화막을 형성하는 경우에 대하여 설명했지만, 다른 방법에 의해 산화막을 형성하도 록 할 수도 있다.As mentioned above, although this invention was described based on embodiment and an Example, this invention is not limited to the said embodiment and Example, A various deformation | transformation is possible. For example, in the above embodiments and examples, the case where the oxide film is formed by treatment in an atmosphere containing active oxygen has been described, but the oxide film may be formed by another method.

또, 상기 실시형태 및 실시예에서는, p형 불순물의 활성화을 행한 직후에 산화막을 제거하도록 했지만, p측 전극을 형성하기 전이면 산화막을 언제나 제거해도 되고, p측 전극을 형성하기 직전에 산화막을 제거하도록 하면, p형 콘택트층 표면의 오염이 적어 바람직하다.In the above embodiments and examples, the oxide film is removed immediately after activation of the p-type impurity. However, the oxide film may always be removed before forming the p-side electrode, and the oxide film is removed immediately before forming the p-side electrode. It is preferable that the contamination of the surface of the p-type contact layer is small.

또한, 상기 실시형태 및 실시예에서는, 반도체소자의 제조 방법으로서 반도체레이저의 제조 방법을 구체적인 예를 들어 설명했지만, 본 발명은 전계트랜지스터 등의 다른 반도체소자를 제조하는 경우에 관해서도 적용할 수 있다. 또, 상기 실시형태 및 실시예에서는, p형 불순물을 첨가한 질화물 반도체층인 p형 콘택트층에 p측 전극을 형성하는 경우에 대하여 설명했지만, 본 발명은, p형 불순물을 첨가한 질화물 반도체층에 오믹접촉시킬 필요가 있는 전극을 형성하는 경우에 넓리 적용할 수 있다.In the above embodiments and examples, a method of manufacturing a semiconductor laser has been described with a specific example as a method of manufacturing a semiconductor device, but the present invention can also be applied to the case of manufacturing other semiconductor devices such as an electric field transistor. In the above embodiments and examples, the case where the p-side electrode is formed in the p-type contact layer, which is the nitride semiconductor layer to which the p-type impurity is added, has been described. However, the present invention provides the nitride semiconductor layer to which the p-type impurity is added. The present invention can be widely applied in the case of forming an electrode which needs to be in ohmic contact.

또한, 상기 실시형태 및 실시예에서는, MOCVD 법에 의해 질화물 반도체를 형성하는 경우에 대하여 설명했지만, MBE(Molecular Beam Epitaxy ; 분자선 에피택시)법, 하이드라이드 기상성장법 또는 할라이드 기상성장법 등의 다른 방법에 의해 형성하도록 할 수도 있다. 또, 하이드라이드 기상성장법이란 하이드라이드(수소 화물)가 반응 또는 원료가스의 수송에 기여하는 기상성장법을 말하며, 할라이드 기상성장법이란 할라이드(할로겐화물)이 반응 또는 원료가스의 수송에 기여하는 기상성장법을 말한다.In the above embodiments and examples, the case where the nitride semiconductor is formed by the MOCVD method has been described, but other methods such as a molecular beam epitaxy (MBE) method, a hydride vapor phase growth method, or a halide vapor phase growth method, etc. It may also be formed by a method. The hydride vapor phase growth method refers to a vapor phase growth method in which hydride (hydrogen) contributes to the reaction or transportation of source gas. The halide vapor phase growth method refers to a method in which halide (halide) contributes to the reaction or transportation of source gas. Meteorological growth law.

또한, 상기 실시형태 및 실시예에서는, 사파이어로 이루어지는 기판을 이용 하도록 했지만, GaN 또는 SiC 등의 다른 재료로 이루어지는 기판을 사용하도록 할 수도 있다.In the above embodiments and examples, a substrate made of sapphire is used, but a substrate made of another material such as GaN or SiC may be used.

이상 설명한 바와 같이 본 발명의 질화물 반도체의 제조 방법, 또는 반도체소자의 제조 방법에 의하면, p형 불순물을 활성화하기 전에, 질화물 반도체의 표면을 산화하여, 산화막을 형성하도록, 또는, 질화물 반도체의 표면을 활성산소를 포함하는 분위기 중에서 처리하도록 했기 때문에, 활성화처리에서의 질화물 반도체의 표면의 변질을 방지할 수 있는 동시에, p형 불순물의 활성화율을 향상시킬 수 있다. 따라서 이 질화물 반도체에 대하여 전극을 오믹 접촉시키는 경우에, 접촉 저항을 낮게 할 수 있어, 동작전압을 낮게 할 수 있다.As described above, according to the method of manufacturing the nitride semiconductor of the present invention or the method of manufacturing the semiconductor device, the surface of the nitride semiconductor is formed by oxidizing the surface of the nitride semiconductor and forming an oxide film before activating the p-type impurity. Since the treatment is performed in an atmosphere containing active oxygen, it is possible to prevent deterioration of the surface of the nitride semiconductor in the activation treatment and to improve the activation rate of the p-type impurity. Therefore, when the electrode is in ohmic contact with the nitride semiconductor, the contact resistance can be lowered and the operating voltage can be lowered.

또한, 본 발명의 질화물 반도체의 제조 방법, 또는 반도체소자의 제조 방법에 의하면, p형 불순물을 활성화한 후, 산화막을 제거하도록, 또는 산 및 알칼리중의 최소한 한 쪽에 의해 처리하도록 했기 때문에, 접촉 저항을보다 낮게 할 수 있어, 동작전압을 보다 낮게 할 수 있다.In addition, according to the method of manufacturing the nitride semiconductor or the method of manufacturing the semiconductor device of the present invention, since the p-type impurity is activated, the oxide film is removed or treated by at least one of an acid and an alkali. Can be made lower than, and the operating voltage can be made lower.

이상 본 발명의 바람직한 실시예에 대하여 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않고, 이 기술 분야에서 숙련된 자는 본 발명의 사상 및 범위를 일탈하지 않는 범위 내에서 여러 가지 변형 및 변경을 가할 수 있음을 이해할 수 있을 것이다. 그리고, 그와 같은 변형 및 변경은 다음의 특허청구범위에 포함되는 것은 명백하다.      Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and those skilled in the art may add various modifications and changes without departing from the spirit and scope of the present invention. It will be appreciated. It is apparent that such modifications and variations are included in the following claims.

Claims (16)

삭제delete 삭제delete p형 불순물을 첨가한 질화물 반도체를 제작하는 공정과, manufacturing a nitride semiconductor to which p-type impurities are added; 제작한 질화물 반도체의 표면을 산화하여, 산화막을 형성하는 공정과,Oxidizing the surface of the produced nitride semiconductor to form an oxide film; 산화막을 형성한 후, p형 불순물을 활성화하여, p형으로 하는 공정Forming an oxide film and then activating the p-type impurity to form the p-type 을 포함하고,Including, 상기 p형 불순물의 활성화를 행한 후, 상기 산화막을 제거하는 공정을 더 포함하는, 질화물 반도체의 제조 방법.And activating the p-type impurity, followed by removing the oxide film. p형 불순물을 첨가한 질화물 반도체를 제작하는 공정과, manufacturing a nitride semiconductor to which p-type impurities are added; 제작한 질화물 반도체의 표면을 산화하여, 산화막을 형성하는 공정과,Oxidizing the surface of the produced nitride semiconductor to form an oxide film; 산화막을 형성한 후, p형 불순물을 활성화하여, p형으로 하는 공정Forming an oxide film and then activating the p-type impurity to form the p-type 을 포함하고,Including, 상기 질화물 반도체를 제작한 후, 그 표면에 산화막을 형성하기 전에, 상기 질화물 반도체의 표면을 유기용제로 세정하는 공정을 더 포함하는, 질화물 반도체의 제조 방법.After manufacturing the said nitride semiconductor and before forming an oxide film on the surface, the manufacturing method of the nitride semiconductor further includes the process of washing the surface of the said nitride semiconductor with an organic solvent. 삭제delete p형 불순물을 첨가한 질화물 반도체를 제작하는 공정과,manufacturing a nitride semiconductor to which p-type impurities are added; 제작한 질화물 반도체의 표면을, 활성산소를 포함하는 분위기 중에서 처리하는 공정과, A step of treating the surface of the produced nitride semiconductor in an atmosphere containing active oxygen, 상기 질화물 반도체의 표면을 처리한 후, p형 불순물을 활성화하여, p형으로 하는 공정Treating the surface of the nitride semiconductor and then activating the p-type impurity to make the p-type 을 포함하고,Including, p형 불순물을 활성화한 후, 상기 질화물 반도체의 표면을, 산 및 알칼리 중의 최소한 한 쪽에 의해 처리하는 공정을 더 포함하는, 질화물 반도체의 제조 방법.and activating the p-type impurity, and then treating the surface of the nitride semiconductor with at least one of an acid and an alkali. p형 불순물을 첨가한 질화물 반도체를 제작하는 공정과,manufacturing a nitride semiconductor to which p-type impurities are added; 제작한 질화물 반도체의 표면을, 활성산소를 포함하는 분위기 중에서 처리하는 공정과, A step of treating the surface of the produced nitride semiconductor in an atmosphere containing active oxygen, 상기 질화물 반도체의 표면을 처리한 후, p형 불순물을 활성화하여, p형으로 하는 공정Treating the surface of the nitride semiconductor and then activating the p-type impurity to make the p-type 을 포함하고,Including, 상기 질화물 반도체를 제작한 후, 활성산소를 포함하는 분위기 중에서 처리하기 전에, 상기 질화물 반도체의 표면을 유기용제로 세정하는 공정을 더 포함하는, 질화물 반도체의 제조 방법.After manufacturing the said nitride semiconductor, and before processing in the atmosphere containing active oxygen, the method of manufacturing the nitride semiconductor further includes the process of washing the surface of the said nitride semiconductor with an organic solvent. 삭제delete 삭제delete p형 불순물을 첨가한 질화물 반도체층을 성장시키는 공정과, growing a nitride semiconductor layer containing p-type impurities; 성장시킨 질화물 반도체층의 표면을 산화하여, 산화막을 형성하는 공정과,Oxidizing the surface of the grown nitride semiconductor layer to form an oxide film, 산화막을 형성한 후, p형 불순물을 활성화하여, p형으로 하는 공정Forming an oxide film and then activating the p-type impurity to form the p-type 을 포함하고,Including, p형 불순물의 활성화를 행한 후, 상기 산화막을 제거하는 공정을 더 포함하는, 반도체소자의 제조 방법.and activating the p-type impurity, and then removing the oxide film. 제10항에 있어서, The method of claim 10, 상기 산화막을 제거한 후, p형의 질화물 반도체층에 대하여 전극을 형성하는 공정을 더 포함하는, 반도체소자의 제조 방법.And removing the oxide film, and then forming an electrode with respect to the p-type nitride semiconductor layer. p형 불순물을 첨가한 질화물 반도체층을 성장시키는 공정과, growing a nitride semiconductor layer containing p-type impurities; 성장시킨 질화물 반도체층의 표면을 산화하여, 산화막을 형성하는 공정과,Oxidizing the surface of the grown nitride semiconductor layer to form an oxide film, 산화막을 형성한 후, p형 불순물을 활성화하여, p형으로 하는 공정Forming an oxide film and then activating the p-type impurity to form the p-type 을 포함하고,Including, 상기 질화물 반도체층을 성장시킨 후, 그 표면에 산화막을 형성하기 전에, 질화물 반도체층의 표면을 유기용제로 세정하는 공정을 더 포함하는, 반도체소자의 제조 방법.And growing the nitride semiconductor layer and then cleaning the surface of the nitride semiconductor layer with an organic solvent before forming an oxide film on the surface thereof. 삭제delete p형 불순물을 첨가한 질화물 반도체층을 성장시키는 공정과,growing a nitride semiconductor layer containing p-type impurities; 성장시킨 질화물 반도체층의 표면을, 활성산소를 포함하는 분위기 중에서 처리하는 공정과,Treating the surface of the grown nitride semiconductor layer in an atmosphere containing active oxygen, 상기 질화물 반도체층의 표면을 처리한 후, p형 불순물을 활성화하여, p형으로 하는 공정Treating the surface of the nitride semiconductor layer and then activating the p-type impurity to make the p-type 을 포함하고,Including, p형 불순물을 활성화한 후, 상기 질화물 반도체층의 표면을, 산 및 알칼리 중의 최소한 한 쪽에 의해 처리하는 공정을 더 포함하는, 반도체소자의 제조 방법.and after activating the p-type impurity, treating the surface of the nitride semiconductor layer with at least one of an acid and an alkali. 제14항에 있어서, The method of claim 14, 상기 질화물 반도체층의 표면을 산 및 알칼리 중의 최소한 한 쪽에 의해 처리한 후, p형의 질화물 반도체층에 대하여 전극을 형성하는 공정을 더 포함하는, 반도체소자의 제조 방법.And a step of forming an electrode for the p-type nitride semiconductor layer after treating the surface of the nitride semiconductor layer with at least one of an acid and an alkali. p형 불순물을 첨가한 질화물 반도체층을 성장시키는 공정과,growing a nitride semiconductor layer containing p-type impurities; 성장시킨 질화물 반도체층의 표면을, 활성산소를 포함하는 분위기 중에서 처리하는 공정과,Treating the surface of the grown nitride semiconductor layer in an atmosphere containing active oxygen, 상기 질화물 반도체층의 표면을 처리한 후, p형 불순물을 활성화하여, p형으로 하는 공정Treating the surface of the nitride semiconductor layer and then activating the p-type impurity to make the p-type 을 포함하고,Including, 상기 질화물 반도체층을 성장시킨 후, 활성산소를 포함하는 분위기 중에서 처리하기 전에, 상기 질화물 반도체층의 표면을 유기용제로 세정하는 공정을 더 포함하는, 반도체소자의 제조 방법.And growing the nitride semiconductor layer and then cleaning the surface of the nitride semiconductor layer with an organic solvent before treating it in an atmosphere containing active oxygen.
KR1020020036832A 2001-07-02 2002-06-28 Method of fabricating nitride semiconductor and method of fabricating semiconductor device KR100893131B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001200628A JP3622200B2 (en) 2001-07-02 2001-07-02 Nitride semiconductor manufacturing method and semiconductor device manufacturing method
JPJP-P-2001-00200628 2001-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020080115609A Division KR100952654B1 (en) 2001-07-02 2008-11-20 Method of fabricating nitride semiconductor device

Publications (2)

Publication Number Publication Date
KR20030004089A KR20030004089A (en) 2003-01-14
KR100893131B1 true KR100893131B1 (en) 2009-04-15

Family

ID=19037721

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020020036832A KR100893131B1 (en) 2001-07-02 2002-06-28 Method of fabricating nitride semiconductor and method of fabricating semiconductor device
KR1020080115609A KR100952654B1 (en) 2001-07-02 2008-11-20 Method of fabricating nitride semiconductor device
KR1020090110396A KR101224532B1 (en) 2001-07-02 2009-11-16 Method of fabricating nitride semiconductor device

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020080115609A KR100952654B1 (en) 2001-07-02 2008-11-20 Method of fabricating nitride semiconductor device
KR1020090110396A KR101224532B1 (en) 2001-07-02 2009-11-16 Method of fabricating nitride semiconductor device

Country Status (5)

Country Link
US (1) US6960482B2 (en)
JP (1) JP3622200B2 (en)
KR (3) KR100893131B1 (en)
CN (1) CN1203559C (en)
TW (1) TW546730B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040079506A (en) * 2003-03-07 2004-09-16 엘지전자 주식회사 Method for manufacturing of light emitting device with composed chemical semiconductor
US8089093B2 (en) * 2004-02-20 2012-01-03 Nichia Corporation Nitride semiconductor device including different concentrations of impurities
US7405441B2 (en) * 2005-03-11 2008-07-29 Infineon Technology Ag Semiconductor memory
JP4536568B2 (en) * 2005-03-31 2010-09-01 住友電工デバイス・イノベーション株式会社 Method for manufacturing FET
JP2006352075A (en) 2005-05-17 2006-12-28 Sumitomo Electric Ind Ltd Cleaning method and manufacturing method for nitride compound semiconductor, and compound semiconductor, and board
US20110018105A1 (en) * 2005-05-17 2011-01-27 Sumitomo Electric Industries, Ltd. Nitride-based compound semiconductor device, compound semiconductor device, and method of producing the devices
US8786793B2 (en) * 2007-07-27 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8399273B2 (en) * 2008-08-18 2013-03-19 Tsmc Solid State Lighting Ltd. Light-emitting diode with current-spreading region
US8986835B2 (en) * 2010-04-05 2015-03-24 Purdue Research Foundation Growth process for gallium nitride porous nanorods
TW201216503A (en) * 2010-10-12 2012-04-16 Tekcore Co Ltd Method for fabricating a vertical light-emitting diode with high brightness
CN102447020A (en) * 2010-10-12 2012-05-09 泰谷光电科技股份有限公司 Method for manufacturing high-brightness vertical light emitting diode
US8399367B2 (en) * 2011-06-28 2013-03-19 Nitride Solutions, Inc. Process for high-pressure nitrogen annealing of metal nitrides
CN109755356B (en) * 2017-11-07 2020-08-21 山东浪潮华光光电子股份有限公司 Method for improving built-in ohmic contact performance of GaN-based light emitting diode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183189A (en) * 1991-11-08 1993-07-23 Nichia Chem Ind Ltd Manufacture of p-type gallium nitride based compound semiconductor
JPH0864866A (en) * 1994-08-22 1996-03-08 Rohm Co Ltd Manufacture of semiconductor light emitting device
KR20000011914A (en) * 1998-07-23 2000-02-25 이데이 노부유끼 Light emitting device and process for producing the same
JP2000091637A (en) * 1998-09-07 2000-03-31 Rohm Co Ltd Manufacture of semiconductor light emitting element

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120885A (en) 1989-10-04 1991-05-23 Seiko Epson Corp Manufacture of semiconductor laser
JP3688843B2 (en) * 1996-09-06 2005-08-31 株式会社東芝 Nitride semiconductor device manufacturing method
US6291840B1 (en) * 1996-11-29 2001-09-18 Toyoda Gosei Co., Ltd. GaN related compound semiconductor light-emitting device
JP3097597B2 (en) * 1997-05-09 2000-10-10 昭和電工株式会社 Method of forming group III nitride semiconductor
US5902130A (en) * 1997-07-17 1999-05-11 Motorola, Inc. Thermal processing of oxide-compound semiconductor structures
JP3457511B2 (en) * 1997-07-30 2003-10-20 株式会社東芝 Semiconductor device and manufacturing method thereof
JPH11219919A (en) * 1998-02-02 1999-08-10 Sony Corp Method for forming metal film and semiconductor device, and manufacture of the same
JP3425357B2 (en) * 1998-03-19 2003-07-14 株式会社東芝 Method for manufacturing p-type gallium nitride-based compound semiconductor layer
JPH11274168A (en) * 1998-03-20 1999-10-08 Toshiba Corp Manufacture of heterojuction bipolar transistor
JPH11274227A (en) * 1998-03-20 1999-10-08 Hitachi Ltd Method and device for mounting semiconductor chip
JP3794876B2 (en) * 1998-09-09 2006-07-12 松下電器産業株式会社 Manufacturing method of semiconductor device
JP2000101134A (en) * 1998-09-18 2000-04-07 Stanley Electric Co Ltd Nitride semiconductor element and manufacture thereof
TW386286B (en) * 1998-10-26 2000-04-01 Ind Tech Res Inst An ohmic contact of semiconductor and the manufacturing method
JP2000244010A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Manufacture of gallium nitride compound semiconductor light emitting element
JP4357022B2 (en) * 1999-02-24 2009-11-04 三洋電機株式会社 Manufacturing method of semiconductor light emitting device
JP3658756B2 (en) * 1999-03-01 2005-06-08 住友電気工業株式会社 Method for producing compound semiconductor
JP3723374B2 (en) * 1999-03-19 2005-12-07 ローム株式会社 Manufacturing method of semiconductor light emitting device
US6093952A (en) * 1999-03-31 2000-07-25 California Institute Of Technology Higher power gallium nitride schottky rectifier
JP2001267555A (en) * 2000-03-22 2001-09-28 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US6586328B1 (en) * 2000-06-05 2003-07-01 The Board Of Trustees Of The University Of Illinois Method to metallize ohmic electrodes to P-type group III nitrides
US20020004254A1 (en) * 2000-07-10 2002-01-10 Showa Denko Kabushiki Kaisha Method for producing p-type gallium nitride-based compound semiconductor, method for producing gallium nitride-based compound semiconductor light-emitting device, and gallium nitride-based compound semiconductor light-emitting device
JP4581198B2 (en) * 2000-08-10 2010-11-17 ソニー株式会社 Heat treatment method for nitride compound semiconductor layer and method for manufacturing semiconductor device
JP3785970B2 (en) * 2001-09-03 2006-06-14 日本電気株式会社 Method for manufacturing group III nitride semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183189A (en) * 1991-11-08 1993-07-23 Nichia Chem Ind Ltd Manufacture of p-type gallium nitride based compound semiconductor
JPH0864866A (en) * 1994-08-22 1996-03-08 Rohm Co Ltd Manufacture of semiconductor light emitting device
KR20000011914A (en) * 1998-07-23 2000-02-25 이데이 노부유끼 Light emitting device and process for producing the same
JP2000091637A (en) * 1998-09-07 2000-03-31 Rohm Co Ltd Manufacture of semiconductor light emitting element

Also Published As

Publication number Publication date
KR20030004089A (en) 2003-01-14
US6960482B2 (en) 2005-11-01
KR20090126228A (en) 2009-12-08
CN1203559C (en) 2005-05-25
JP3622200B2 (en) 2005-02-23
KR20080103501A (en) 2008-11-27
US20030082893A1 (en) 2003-05-01
JP2003017810A (en) 2003-01-17
TW546730B (en) 2003-08-11
KR101224532B1 (en) 2013-01-21
CN1395322A (en) 2003-02-05
KR100952654B1 (en) 2010-04-13

Similar Documents

Publication Publication Date Title
KR100952654B1 (en) Method of fabricating nitride semiconductor device
JP3160914B2 (en) Gallium nitride based compound semiconductor laser diode
JP2001298214A (en) Semiconductor light-emitting element and method of manufacturing the same
JP4581198B2 (en) Heat treatment method for nitride compound semiconductor layer and method for manufacturing semiconductor device
JP2002057161A5 (en)
KR100440705B1 (en) Method for manufacturing semiconductor devices
JP4537549B2 (en) Method for manufacturing compound semiconductor device
JP3555419B2 (en) Gallium nitride based compound semiconductor electrode forming method and device manufacturing method
JP3403665B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH10303458A (en) Gallium nitride compound semiconductor element
JP3642199B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
US20070196938A1 (en) Nitride semiconductor device and method for fabricating the same
JPH09260289A (en) Growth method of compound semiconductor single crystal
JPH11346035A (en) Manufacture of gallium nitride family compound semiconductor light emitting device
JP3792003B2 (en) Semiconductor light emitting device
JP2002374002A (en) Gallium nitride-based compound semiconductor light- emitting device and manufacturing method therefor
JPH07297496A (en) Manufacture of group iii nitride semiconductor laser
JPH08316571A (en) Semiconductor laser and manufacture thereof
JP2737053B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2001177190A (en) Gallium nitride-based compound semiconductor light emitting element
TW468285B (en) GaN LED grown by MBE to have high hole concentration without thermal annealing
JP2007251119A (en) Nitride semiconductor device and method for manufacturing the same
JP2001177188A (en) Gallium nitride-base compound semiconductor light emitting element
JP2007173854A (en) Method of heat treating nitride compound semiconductor layer, and method of manufacturing semiconductor element
JP2001177185A (en) Manufacturing method for gallium nitride-based compound semiconductor light emitting element

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
A107 Divisional application of patent
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120402

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160328

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee