JP3555419B2 - Gallium nitride based compound semiconductor electrode forming method and device manufacturing method - Google Patents

Gallium nitride based compound semiconductor electrode forming method and device manufacturing method Download PDF

Info

Publication number
JP3555419B2
JP3555419B2 JP36512397A JP36512397A JP3555419B2 JP 3555419 B2 JP3555419 B2 JP 3555419B2 JP 36512397 A JP36512397 A JP 36512397A JP 36512397 A JP36512397 A JP 36512397A JP 3555419 B2 JP3555419 B2 JP 3555419B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
gallium nitride
based compound
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36512397A
Other languages
Japanese (ja)
Other versions
JPH11186605A (en
Inventor
直樹 柴田
俊也 上村
正紀 村上
康夫 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP36512397A priority Critical patent/JP3555419B2/en
Publication of JPH11186605A publication Critical patent/JPH11186605A/en
Application granted granted Critical
Publication of JP3555419B2 publication Critical patent/JP3555419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明はp型窒化ガリウム系化合物半導体に対する接合強度と表面の平滑度を改善した電極を形成する方法及びその電極を有した素子を製造する方法に関する。
【0002】
【従来の技術】
従来、特開平9−64337号公報に開示されているように、p型窒化ガリウムの電極として、第1層にNi、第2層にAuを用いて、加熱処理により窒化ガリウムへの侵入分布においてNiとAuとで反転させたものが知られている。この構成により、金属電極のオーミック性が改善されている。
【0003】
【発明が解決しようとする課題】
しかし、上記の構造の電極は、Auが接合金属となっているため接合強度が弱く、電極がはがれ易いという問題がある。又、表面の平滑性が悪く、その電極を発光ダイオードの光取り出しのための透光性電極とする場合に発光パターンが均一でないという問題がある。さらに、電極が2層構造であるため製造工程が複雑になる。薄い層の2層構造であることから厚さの制御が困難であり、製品素子の電極の厚さを均一とすることが困難である等の問題がある。
【0004】
そこで、本発明の目的は、p型窒化ガリウム系化合物半導体に対する接合強度が強く、且つ、表面が平滑で単純なプロセスで形成出来る電極を得ることである。
【0005】
【課題を解決するための手段】
第1の発明は、p型窒化ガリウム系化合物半導体の電極を形成する方法において、p型不純物の添加された窒化ガリウム系化合物半導体の上に白金(Pt)を形成し、少なくとも分圧100Pa以上の酸素を含むガス中において、熱処理することを特徴とする。
又、第3の発明は、p型窒化ガリウム系化合物半導体層と電極とを有する素子の製造方法において、p型不純物の添加された窒化ガリウム系化合物半導体層を形成し、この窒化ガリウム系化合物半導体層上に白金(Pt)から成る電極を形成し、電極の形成された窒化ガリウム系化合物半導体層を少なくとも分圧100Pa以上の酸素を含むガス中において、熱処理することを特徴とする。
さらに、第5の発明は、p型窒化ガリウム系化合物半導体層と、n型窒化ガリウム系化合物半導体層とそれぞれの層に対する電極を有する素子の製造方法において、p型不純物の添加された窒化ガリウム系化合物半導体層に白金(Pt)から成る第1電極を形成し、前記n型窒化ガリウム系化合物半導体層に第2電極を形成した後、少なくとも分圧100Pa以上の酸素を含むガス中において、熱処理することを特徴とする。
第2、第4、第6の発明は上記「少なくとも分圧100Pa以上の酸素を含むガス」を「0 . 01〜100%の酸素を含むガス」と置き換えたものである。
尚、窒化ガリウム系化合物半導体とは、GaN を基礎として、Gaの一部をIn、Al等の3族元素と置換した化合物である。一例として、一般式、(AlxGa1-x)yIn1-yN(0 ≦x ≦1,0 ≦y ≦1)の4元系の窒化ガリウム系化合物半導体で表すことができる。
【0006】
又、上記の全発明において、酸素を含むガスとしては、O、O、CO、CO、NO、NO 、NO、又は、HO の少なくとも1種又はこれらの混合ガスを用いることができる。又は、O、O、CO、CO、NO、NO 、NO、又は、HO の少なくとも1種と不活性ガスとの混合ガス、又は、O、O、CO、CO、NO、NO 、NO、又は、HO の混合ガスと不活性ガスとの混合ガスを用いることができる。要するに酸素を含むガスは、酸素原子、酸素原子を有する分子のガスの意味である。
【0007】
熱処理時の雰囲気の圧力は、熱処理温度において、窒化ガリウム系化合物半導体が熱分解しない圧力以上であれば良い。酸素を含むガスは、Oガスだけを用いた場合には、窒化ガリウム系化合物半導体の分解圧以上の圧力で導入すれば良く、他の不活性ガスと混合した状態で用いた場合には、全ガスを窒化ガリウム系化合物半導体の分解圧以上の圧力とし、Oガスは全ガスに対して10−6程度以上の割合を有しておれば十分である。要するに、酸素を含むガスは、極微量存在すれば十分である。尚、酸素を含むガスの導入量の上限値は、p型低抵抗化、電極合金化、接合強度の特性からは、特に、制限されるものではない。しかし、極微量存在することが、強接合強度化、平面の平滑化の特性の上で不可欠である。要は、酸素がp型不純物と結合した水素原子を触媒として解離させることでできれば、製造が可能である微量範囲まで使用できる。
【0008】
又、熱処理に関しては、最も望ましくは、500〜600℃である。後述するように、500℃以上の温度で、抵抗率が完全に飽和した低抵抗のp型窒化ガリウム系化合物半導体を得ることができる。又、600℃以下の温度において、電極の合金化処理を良好に行うことができる。
又、望ましい温度範囲は、450〜650℃、400〜600℃、400〜700℃である。温度が低い程、p型抵抗率が大きくなり、温度が高い程電極の特性が悪くなると共に結晶の熱劣化および操作時の劣化を生ずる可能性がある。
【0009】
Pt電極の厚さは、任意の範囲で形成でき、薄く透光性があるように形成すれば、発光ダイオードの光取り出し電極に用いることができる。又、厚く形成してフリップチップ型の電極とすることもできる。Pt電極の厚さは、5nm〜10μmが望ましく、その範囲で十分な接合強度が得られている。
【0010】
又、n型窒化ガリウム系化合物半導体層に対する第2電極は、アルミニウム(Al)、又は、アルミニウム合金から成ることが望ましい。これは、n型窒化ガリウム系化合物半導体に対する接触抵抗、オーミック性の点から選択された。
【0011】
【発明の作用及び効果】
上記の発明においては、p型不純物の添加された窒化ガリウム系化合物半導体の電極材料を白金(Pt)とし、熱処理の雰囲気ガスに、分圧100Pa以上の、又は0 . 01〜100%の酸素を含むガスを用いた結果、電極の接合強度が改善され、且つ、表面の平滑度を向上させることができた。又、特性の良好な電極の厚さの範囲が広いことから、透光性電極からフリップチップ型のバンプ電極まで用いることができる。又、層は1層で良く、厚さの制御が容易になるため、素子間で均一な厚さの電極を形成することができる。又、白金は酸化され難く、製造後に電極の透光性が劣化することがなく、発光パターンの経年変化を防止することができる。
【0012】
【発明の実施の形態】
以下、本発明を具体的な実施例に基づいて説明する。なお本発明は下記実施例に限定されるものではない。
図1は、本発明の白金電極を用いた発光素子の構造を示している。図1において、サファイア基板1の上にGaN 系化合物半導体で形成された発光素子100が形成されている。サファイア基板10の上に AlNから成るバッファ層12が設けられ、その上にシリコン(Si)ドープGaN から成る高キャリア濃度n層13が形成されている。この高キャリア濃度n層13の上に厚さシリコン(Si)ドープn型GaN から成るクラッド層14が形成されている。
【0013】
そして、クラッド層14の上に厚さ35ÅのGaN から成るバリア層151と厚さ35ÅのGa0.80In0.20N から成る井戸層152で構成された多重量子井戸構造(MQW)の発光層5が形成されている。バリア層151は6層、井戸層152は5層である。発光層15の上にはp型Al0.15Ga0.95N から成るクラッド層16が形成されている。さらに、クラッド層16の上にはp型GaN から成るコンタクト層17が形成されている。
【0014】
又、コンタクト層17の上には金属による透光性の電極18Aが、n層3の上に電極18Bが形成されている。透光性の電極18Aは、厚さ500Åの白金(Pt)で構成されている。電極18Bは厚さ200Åのバナジウム(V) と厚さ1.8μmのアルミニウム(Al)又はアルミニウム合金で構成されている。又、電極18Aの一部にはワイヤボンディングのための電極パッド20が形成されている。
【0015】
次に、この発光素子100の製造方法について説明する。
上記発光素子100は、有機金属気相成長法(以下MOVPE)による気相成長により製造された。
用いられたガスは、アンモニア(NH) 、キャリアガス(H,N) 、トリメチルガリウム(Ga(CH)(以下「TMG 」と記す)、トリメチルアルミニウム(Al(CH)(以下「TMA 」と記す)、トリメチルインジウム(In(CH)(以下「TMI 」と記す)、シラン(SiH)と、シクロペンタジエニルマグネシウム(Mg(C) (以下「CPMg 」と記す)である。
【0016】
まず、有機洗浄及び熱処理により洗浄したa面を主面とした単結晶のサファイア基板10をMOVPE装置の反応室に載置されたサセプタに装着する。次に、常圧でHを流速2liter/分で約30分間反応室に流しながら温度1100℃でサファイア基板10をベーキングした。
【0017】
次に、温度を400℃まで低下させて、Hを20liter/分、NHを10liter/分、TMA を1.8×10−5モル/分で約1分間供給してAlN のバッファ層12を約25nmの厚さに形成した。
次に、サファイア基板10の温度を1150℃に保持し、Hを20liter/分、NHを10liter/分、TMG を1.7×10−4モル/分、Hガスにより0.86ppmに希釈されたシランを20×10−8モル/分で40分間供給し、膜厚約4.0μm、電子濃度2×1018/cm、シリコン濃度4×1018/cmのGaN から成る高キャリア濃度n層13を形成した。
【0018】
次に、サファイア基板10の温度を1150℃に保持し、N又はHを10liter/分、NHを10liter/分、TMG を1.12×10−4モル/分、TMA を0.47×10−4モル/分、Hガスにより0.86ppmに希釈されたシランを5×10−9モル/分で60分間供給して、膜厚約0.5μm、電子濃度1×1018/cm、シリコン濃度2×1018/cmのGaN から成るクラッド層14を形成した。
【0019】
上記のクラッド層14を形成した後、続いて、N又はHを20liter/分、NHを10liter/分、TMG を2.0×10−4モル/分で1分間供給して、膜厚約35ÅのGaN から成るバリア層151を形成した。次に、N又はH、NHの供給量を一定として、TMG を7.2×10−5モル/分、TMI を0.19×10−4モル/分で1分間供給して、膜厚約35ÅのGa0.80In0.20N から成る井戸層152を形成した。さらに、バリア層151と井戸層152を同一条件で5周期形成し、その上にGaN から成るバリア層151を形成した。このようにして5周期のMQW構造の発光層15を形成した。
【0020】
次に、サファイア基板10の温度を1100℃に保持し、N又はHを10liter/分、NHを10liter/分、TMG を1.0×10−4モル/分、TMA を1.0×10−4モル/分、CPMg を2×10−5モル/分で3分間供給して、膜厚約50nm、マグネシウム(Mg)濃度5×1019/cmのマグネシウム(Mg)をドープしたp型Al0.15Ga0.85N から成るクラッド層16を形成した。
【0021】
次に、サファイア基板10の温度を1100℃に保持し、N又はHを20liter/分、NHを10liter/分、TMG を1.12×10−4モル/分、CPMg を2×10−5モル/分で30秒間供給して、膜厚約100nm、マグネシウム(Mg)濃度5×1019/cmのマグネシウム(Mg)をドープしたp型GaN から成るコンタクト層17を形成した。
【0022】
次に、コンタクト層17の上にSiOから成るエッチングマスクを形成し、所定領域のマスクを除去して、マスクで覆われていない部分のコンタクト層17、クラッド層16、発光層15、クラッド層14、n層13の一部を塩素を含むガスによる反応性イオンエッチングによりエッチングして、n層13の表面を露出させた。次に、以下の手順で、n層13に対する電極(第2電極)18Bとコンタクト層17に対する透光性の電極(第1電極)18Aを形成した。
【0023】
(1)SiOマスクを残した状態で、フォトレジストの塗布、フォトリソグラフにより所定領域に窓を形成して、10−6Torrオーダ以下の高真空にて厚さ200Åのバナジウム(V) と厚さ1.8μmのアルミニウム(Al)を蒸着した。次に、フォトレジスト及びSiOマスクを除去する。
(2) 次に、表面上にフォトレジスト19を一様に塗布して、フォトリソグラフィにより、コンタクト層17の上の電極形成部分のフォトレジスト19を除去して、図2に示すように窓部19Aを形成する。
(3) 蒸着装置にて、露出させたコンタクト層17の上に、10−6Torrオーダ以下の高真空に排気した後白金(Pt)から成る金属層81を500Å成膜した。
(4) 次に、試料を蒸着装置から取り出し、リフトオフ法によりフォトレジスト19上に堆積したPtを除去し、コンタクト層17に対する透光性の電極18Aを形成する。
(5) 次に、透光性の電極18A上の一部にボンディング用の電極パッド20を形成するために、フォトレジストを一様に塗布して、その電極パッドの形成部分のフォトレジストに窓を開ける。次に、白金(pt)もしくはコバルト(Co)もしくはニッケル(Ni)と金(Au)、アルミニウム(Al)、又は、それらの合金を膜厚1.5 μm程度に、蒸着により成膜させ、(4) の工程と同様に、リフトオフ法により、フォトレジスト上に蒸着により堆積したCoもしくはNiとAu、Al、又はそれらの合金から成る膜を除去して、電極パッド20を形成する。
(7) その後、試料雰囲気を真空ポンプで排気し、Oガスを供給して圧力100Paとし、その状態で雰囲気温度を約500℃にして、3分程度、加熱し、コンタクト層17、クラッド層16を低抵抗化すると共にコンタクト層17と電極18Aとの合金化処理と電極18Bとn層13との合金化処理を行った。
【0024】
この加熱処理は500〜600℃の範囲が最も望ましい。その温度範囲であれば、p型層は、抵抗値の十分低い飽和域にあり、且つ、上記の電極18A,18Bにおける合金化が最も良質に行われ、接合強度が極めて強くなり、表面が極めて平滑となる。又、透光性の電極18Aの酸化が防止され、発光パターンのむらがなく、発光パターンに関する経年変化をなくすることができる。尚、加熱処理は、400 ℃未満で熱処理されるとp型層の抵抗が低くならず、かつ電極はオーミック特性を示さず、700 ℃より高い温度で熱処理されるとp型層は十分低い抵抗値を示しているが、電極の接触抵抗が増加し、表面モフォロジーが悪化してしまい、後工程であるワイヤーボンディング不良の原因にもなる。このため、 400℃〜 700℃の範囲内で熱処理するのが望ましい。
【0025】
ガスに対して1%のOガスを含ませ、そのOガスの分圧を100Paとした雰囲気中での熱処理を行ったが同様な効果が得られた。純粋な酸素ガスの他、OにN,He,Ne,Ar,Krのうちの1種以上を加えたガスが利用可能である。Oの割合は、極微量で良く、例えば、10−4%程度以上あれば良い。特に、0.01〜100%の範囲で接合性が極めて強く、表面の平滑な電極が得られている。
【0026】
このようにして形成された発光素子100に対して20mAの電流を流したとき、3.5Vの駆動電圧が得られ、接触抵抗が十分に小さいことが確認された。又、透光性電極18Aはコンタクト層17上の全面に均一に形成され、接合強度が強く非常に平滑な表面が得られた。このため、製品の歩留りを向上させることができる共に発光パターンを一様且つ均質にすることができた。又、接触抵抗は十分に低く、良好なオーミック特性が得られた。
【0027】
尚、上記のコンタクト層17、クラッド層16に添加されているp型不純物のマグネシウム(Mg)は、これに代えて、ベリリウム(Be)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、亜鉛(Zn)、カドミウム(Cd)などの2族元素を用いてもよい。又、発光素子100の発光層15はMQW構造としたが、SQWやGa0.80In0.20N 等から成る単層、その他、任意の混晶の4元、3元系のAlInGaN としても良い。
【0028】
上記実施例は透光性電極を有する発光ダイオードについて説明したが、本発明はレーザダイオード(LD)、受光素子、その他の窒化ガリウム系化合物半導体素子の展開が予想される高温デバイスやパワーデバイス等の電子デバイスにも適用できる。
【図面の簡単な説明】
【図1】本発明の製造方法に係る発光素子の構成を示した断面図。
【図2】発光素子の電極形成方法を示した断面図。
【符号の説明】
11…サファイア基板
12…バッファ層
13…n
14…クラッド層
15…発光層
16…クラッド層
17…コンタクト層
18A、18B…電極
19A…窓部
81…金属層
100…発光素子
[0001]
[Industrial applications]
The present invention relates to a method for forming an electrode having improved bonding strength and surface smoothness to a p-type gallium nitride-based compound semiconductor, and a method for manufacturing an element having the electrode.
[0002]
[Prior art]
Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 9-64337, as a p-type gallium nitride electrode, Ni is used for a first layer and Au is used for a second layer. It is known that Ni and Au are inverted. With this configuration, the ohmic properties of the metal electrode are improved.
[0003]
[Problems to be solved by the invention]
However, the electrode having the above structure has a problem that the bonding strength is weak because Au is a bonding metal, and the electrode is easily peeled. In addition, there is a problem that the light emitting pattern is not uniform when the electrode has a poor surface smoothness and is used as a translucent electrode for extracting light from the light emitting diode. Furthermore, the manufacturing process is complicated because the electrodes have a two-layer structure. Since it has a two-layer structure of thin layers, it is difficult to control the thickness, and it is difficult to make the thickness of the electrodes of the product element uniform.
[0004]
Then, an object of the present invention is to obtain an electrode which has a strong bonding strength to a p-type gallium nitride-based compound semiconductor, has a smooth surface, and can be formed by a simple process.
[0005]
[Means for Solving the Problems]
A first invention is a method of forming an electrode of a p-type gallium nitride-based compound semiconductor, wherein platinum (Pt) is formed on a gallium nitride-based compound semiconductor to which a p-type impurity is added, and at least a partial pressure of 100 Pa or more. Heat treatment is performed in a gas containing oxygen.
According to a third aspect of the present invention, there is provided a method of manufacturing a device having a p-type gallium nitride-based compound semiconductor layer and an electrode, wherein the gallium nitride-based compound semiconductor layer doped with a p-type impurity is formed. An electrode made of platinum (Pt) is formed on the layer, and the gallium nitride-based compound semiconductor layer on which the electrode is formed is heat-treated in a gas containing oxygen at a partial pressure of at least 100 Pa or more .
Further, a fifth invention provides a method of manufacturing a device having a p-type gallium nitride-based compound semiconductor layer, an n-type gallium nitride-based compound semiconductor layer, and an electrode for each of the layers. After forming a first electrode made of platinum (Pt) on the compound semiconductor layer and forming a second electrode on the n-type gallium nitride-based compound semiconductor layer, heat treatment is performed in a gas containing at least a partial pressure of 100 Pa or more of oxygen. It is characterized by the following.
Second, fourth, sixth invention is the "gas containing at least a partial pressure 100Pa or more oxygen" are replaced with "0.01 to 100% of the gas containing oxygen."
The gallium nitride-based compound semiconductor is a compound in which part of Ga is replaced with a group 3 element such as In or Al based on GaN. As an example, it can be represented by a quaternary gallium nitride-based compound semiconductor represented by the general formula (Al x Ga 1-x ) y In 1-y N (0 ≦ x ≦ 1,0 ≦ y ≦ 1).
[0006]
In all of the above inventions, the oxygen-containing gas includes at least one of O 2 , O 3 , CO, CO 2 , NO, N 2 O, NO 2 , H 2 O, or a mixed gas thereof. Can be used. Or a mixed gas of at least one of O 2 , O 3 , CO, CO 2 , NO, N 2 O, NO 2 , or H 2 O and an inert gas, or O 2 , O 3 , CO, A mixed gas of CO 2 , NO, N 2 O, NO 2 , or a mixed gas of H 2 O and an inert gas can be used. In short, a gas containing oxygen means an oxygen atom or a gas of a molecule having an oxygen atom.
[0007]
The pressure of the atmosphere during the heat treatment may be at least the pressure at which the gallium nitride-based compound semiconductor does not thermally decompose at the heat treatment temperature. The gas containing oxygen may be introduced at a pressure equal to or higher than the decomposition pressure of the gallium nitride-based compound semiconductor when only O 2 gas is used, and when used in a state of being mixed with another inert gas, It suffices that all gases have a pressure equal to or higher than the decomposition pressure of the gallium nitride-based compound semiconductor, and that the O 2 gas has a ratio of about 10 −6 or more to all gases. In short, it is sufficient for the gas containing oxygen to be present in a very small amount. The upper limit of the amount of the gas containing oxygen is not particularly limited from the characteristics of p-type resistance reduction, electrode alloying, and bonding strength. However, the presence of an extremely small amount is indispensable for the characteristics of strong bonding strength and flattening of a plane. In short, as long as oxygen can be dissociated by using a hydrogen atom bonded to a p-type impurity as a catalyst, it can be used in a very small range where production is possible.
[0008]
As for the heat treatment, the temperature is most desirably 500 to 600 ° C. As described later, at a temperature of 500 ° C. or higher, a low-resistance p-type gallium nitride-based compound semiconductor whose resistivity is completely saturated can be obtained. Further, at a temperature of 600 ° C. or less, the alloying treatment of the electrode can be favorably performed.
Desirable temperature ranges are 450 to 650 ° C, 400 to 600 ° C, and 400 to 700 ° C. As the temperature is lower, the p-type resistivity is higher, and as the temperature is higher, the characteristics of the electrode are deteriorated, and there is a possibility that thermal deterioration of the crystal and deterioration during operation may occur.
[0009]
The thickness of the Pt electrode can be formed in an arbitrary range. If the Pt electrode is formed to be thin and translucent, it can be used as a light extraction electrode of a light emitting diode. In addition, a flip-chip type electrode can be formed thickly. The thickness of the Pt electrode is desirably 5 nm to 10 μm, and a sufficient bonding strength is obtained in this range.
[0010]
The second electrode for the n-type gallium nitride-based compound semiconductor layer is preferably made of aluminum (Al) or an aluminum alloy. This was selected from the viewpoint of the contact resistance to the n-type gallium nitride-based compound semiconductor and the ohmic property.
[0011]
Function and effect of the present invention
In the above invention, the electrode material of the gallium nitride-based compound semiconductor to which the p-type impurity is added is platinum (Pt), and oxygen having a partial pressure of 100 Pa or more or 0.01 to 100 % is supplied to the atmosphere gas for the heat treatment . As a result of using the gas containing, the bonding strength of the electrode was improved, and the surface smoothness was able to be improved. Further, since the thickness range of the electrode having good characteristics is wide, it can be used from a light-transmitting electrode to a flip-chip type bump electrode. In addition, since only one layer is required and the thickness can be easily controlled, an electrode having a uniform thickness can be formed between the elements. Further, platinum is not easily oxidized, and the translucency of the electrode is not deteriorated after the production, and it is possible to prevent the luminescence pattern from changing over time.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on specific examples. The present invention is not limited to the following examples.
FIG. 1 shows a structure of a light emitting device using the platinum electrode of the present invention. In FIG. 1, a light emitting element 100 made of a GaN-based compound semiconductor is formed on a sapphire substrate 1. A buffer layer 12 made of AlN is provided on a sapphire substrate 10, and a high carrier concentration n + layer 13 made of silicon (Si) doped GaN is formed thereon. On this high carrier concentration n + layer 13, a cladding layer 14 made of silicon (Si) doped n-type GaN is formed.
[0013]
Then, light emission of a multiple quantum well structure (MQW) composed of a barrier layer 151 made of GaN having a thickness of 35 ° and a well layer 152 made of Ga 0.80 In 0.20 N having a thickness of 35 ° is formed on the cladding layer. Layer 5 is formed. The barrier layer 151 has six layers, and the well layer 152 has five layers. On the light emitting layer 15, a clad layer 16 made of p-type Al 0.15 Ga 0.95 N is formed. Further, a contact layer 17 made of p-type GaN is formed on the cladding layer 16.
[0014]
A translucent electrode 18A made of metal is formed on the contact layer 17, and an electrode 18B is formed on the n + layer 3. The translucent electrode 18A is made of 500 ° thick platinum (Pt). The electrode 18B is made of vanadium (V) having a thickness of 200 ° and aluminum (Al) or an aluminum alloy having a thickness of 1.8 μm. An electrode pad 20 for wire bonding is formed on a part of the electrode 18A.
[0015]
Next, a method for manufacturing the light emitting device 100 will be described.
The light emitting device 100 was manufactured by vapor phase growth using metal organic chemical vapor deposition (hereinafter, MOVPE).
The gases used were ammonia (NH 3 ), carrier gas (H 2 , N 2 ), trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”), and trimethylaluminum (Al (CH 3 ) 3 ). ) (Hereinafter referred to as “TMA”), trimethylindium (In (CH 3 ) 3 ) (hereinafter referred to as “TMI”), silane (SiH 4 ), and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) ) (Hereinafter referred to as “CP 2 Mg”).
[0016]
First, a single-crystal sapphire substrate 10 having an a-plane as a main surface cleaned by organic cleaning and heat treatment is mounted on a susceptor placed in a reaction chamber of a MOVPE apparatus. Next, the sapphire substrate 10 was baked at a temperature of 1100 ° C. while flowing H 2 at normal pressure at a flow rate of 2 liter / min for about 30 minutes.
[0017]
Next, the temperature was lowered to 400 ° C., H 2 was supplied at 20 liter / min, NH 3 was supplied at 10 liter / min, and TMA was supplied at 1.8 × 10 −5 mol / min for about 1 minute to supply the AlN buffer layer 12. Was formed to a thickness of about 25 nm.
Next, the temperature of the sapphire substrate 10 was maintained at 1150 ° C., H 2 was 20 liter / min, NH 3 was 10 liter / min, TMG was 1.7 × 10 −4 mol / min, and H 2 gas was 0.86 ppm. The diluted silane was supplied at 20 × 10 −8 mol / min for 40 minutes, and a high GaN layer having a thickness of about 4.0 μm, an electron concentration of 2 × 10 18 / cm 3 and a silicon concentration of 4 × 10 18 / cm 3 was used. A carrier concentration n + layer 13 was formed.
[0018]
Next, the temperature of the sapphire substrate 10 was maintained at 1150 ° C., N 2 or H 2 was 10 liter / min, NH 3 was 10 liter / min, TMG was 1.12 × 10 −4 mol / min, and TMA was 0.47. × 10 -4 mol / min, supplying 60 minutes silane diluted to 0.86ppm with H 2 gas at 5 × 10 -9 mol / min, a film thickness of about 0.5 [mu] m, an electron concentration 1 × 10 18 / A cladding layer 14 made of GaN having a cm 3 and a silicon concentration of 2 × 10 18 / cm 3 was formed.
[0019]
After the formation of the cladding layer 14, N 2 or H 2 was supplied at 20 liter / min, NH 3 was supplied at 10 liter / min, and TMG was supplied at 2.0 × 10 −4 mol / min for 1 minute to form a film. A barrier layer 151 made of GaN having a thickness of about 35 ° was formed. Next, TMG was supplied at a rate of 7.2 × 10 −5 mol / min and TMI was supplied at a rate of 0.19 × 10 −4 mol / min for 1 minute while the supply amounts of N 2, H 2 and NH 3 were kept constant. A well layer 152 of Ga 0.80 In 0.20 N with a thickness of about 35 ° was formed. Further, a barrier layer 151 and a well layer 152 were formed under the same conditions for five periods, and a barrier layer 151 made of GaN was formed thereon. Thus, the light emitting layer 15 having the MQW structure having five periods was formed.
[0020]
Next, the temperature of the sapphire substrate 10 was maintained at 1100 ° C., N 2 or H 2 was 10 liter / min, NH 3 was 10 liter / min, TMG was 1.0 × 10 −4 mol / min, and TMA was 1.0 liter. Magnesium (Mg) having a thickness of about 50 nm and a magnesium (Mg) concentration of 5 × 10 19 / cm 3 was supplied by supplying × 10 −4 mol / min and CP 2 Mg at 2 × 10 −5 mol / min for 3 minutes. A cladding layer 16 made of doped p-type Al 0.15 Ga 0.85 N was formed.
[0021]
Next, the temperature of the sapphire substrate 10 is maintained at 1100 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 −4 mol / min, and CP 2 Mg is 2 A contact layer 17 made of p-type GaN doped with magnesium (Mg) having a thickness of about 100 nm and a magnesium (Mg) concentration of 5 × 10 19 / cm 3 was supplied at a rate of × 10 −5 mol / min for 30 seconds. .
[0022]
Next, an etching mask made of SiO 2 is formed on the contact layer 17, the mask in a predetermined region is removed, and portions of the contact layer 17, the cladding layer 16, the light emitting layer 15, and the cladding layer which are not covered with the mask are removed. 14. A part of the n + layer 13 was etched by reactive ion etching using a gas containing chlorine to expose the surface of the n + layer 13. Next, an electrode (second electrode) 18B for the n + layer 13 and a translucent electrode (first electrode) 18A for the contact layer 17 were formed in the following procedure.
[0023]
(1) With the SiO 2 mask left, a window is formed in a predetermined area by applying a photoresist and photolithography, and vanadium (V) having a thickness of 200 ° and a thickness of 200 ° C. is applied under a high vacuum of the order of 10 −6 Torr or less. Aluminum (Al) having a thickness of 1.8 μm was deposited. Next, the photoresist and the SiO 2 mask are removed.
(2) Next, a photoresist 19 is uniformly applied on the surface, and the photoresist 19 in an electrode forming portion on the contact layer 17 is removed by photolithography. Form 19A.
(3) After evacuation was performed to a high vacuum of the order of 10 −6 Torr or less on the exposed contact layer 17 using a vapor deposition apparatus, a metal layer 81 made of platinum (Pt) was formed to a thickness of 500 °.
(4) Next, the sample is taken out of the vapor deposition apparatus, Pt deposited on the photoresist 19 is removed by a lift-off method, and a translucent electrode 18A for the contact layer 17 is formed.
(5) Next, in order to form an electrode pad 20 for bonding on a part of the light-transmitting electrode 18A, a photoresist is uniformly applied, and a window is formed on the photoresist at a portion where the electrode pad is formed. Open. Next, platinum (pt), cobalt (Co), nickel (Ni), gold (Au), aluminum (Al), or an alloy thereof is deposited to a thickness of about 1.5 μm by vapor deposition. Similarly to step 4), the electrode pad 20 is formed by removing the film made of Co or Ni and Au, Al, or an alloy thereof deposited on the photoresist by vapor deposition by the lift-off method.
(7) Thereafter, the sample atmosphere is evacuated by a vacuum pump, and O 2 gas is supplied to a pressure of 100 Pa. In this state, the atmosphere temperature is set to about 500 ° C., and the heating is performed for about 3 minutes. The resistance of the contact layer 17 and the electrode 18A were alloyed, and the electrode 18B and the n + layer 13 were alloyed.
[0024]
This heat treatment is most desirably in the range of 500 to 600 ° C. Within this temperature range, the p-type layer is in a sufficiently low saturation region of the resistance value, and the above-mentioned electrodes 18A and 18B are alloyed with the highest quality, the bonding strength is extremely high, and the surface is extremely high. Becomes smooth. Further, the oxidation of the light-transmitting electrode 18A is prevented, the light emitting pattern is not uneven, and the light emitting pattern can be prevented from aging. In the heat treatment, if the heat treatment is performed at a temperature lower than 400 ° C., the resistance of the p-type layer does not decrease, and the electrode does not show ohmic characteristics. Although the value is shown, the contact resistance of the electrode is increased, the surface morphology is deteriorated, and this causes a wire bonding failure in a later process. Therefore, it is desirable to perform the heat treatment within the range of 400 ° C. to 700 ° C.
[0025]
Although a heat treatment was performed in an atmosphere in which 1% of O 2 gas was contained with respect to N 2 gas and the partial pressure of the O 2 gas was 100 Pa, the same effect was obtained. In addition to pure oxygen gas, a gas obtained by adding one or more of N 2 , He, Ne, Ar, and Kr to O 2 can be used. The proportion of O 2 may be very small, for example, about 10 −4 % or more. In particular, an electrode having extremely strong bonding properties and a smooth surface is obtained in the range of 0.01 to 100%.
[0026]
When a current of 20 mA was applied to the light emitting element 100 formed in this way, a driving voltage of 3.5 V was obtained, and it was confirmed that the contact resistance was sufficiently small. Further, the translucent electrode 18A was formed uniformly on the entire surface of the contact layer 17, and a very smooth surface having a high bonding strength was obtained. For this reason, the yield of the product could be improved, and the emission pattern could be made uniform and uniform. Also, the contact resistance was sufficiently low, and good ohmic characteristics were obtained.
[0027]
The p-type impurity magnesium (Mg) added to the contact layer 17 and the cladding layer 16 may be replaced with beryllium (Be), calcium (Ca), strontium (Sr), barium (Ba). , Zinc (Zn), cadmium (Cd) and the like. Further, the light emitting layer 15 of the light emitting element 100 has the MQW structure, but may be a single layer made of SQW, Ga 0.80 In 0.20 N, or any other mixed crystal quaternary or ternary AlInGaN. good.
[0028]
Although the above embodiment has described a light emitting diode having a translucent electrode, the present invention relates to a laser diode (LD), a light receiving element, and other high temperature devices and power devices expected to develop gallium nitride based compound semiconductor devices. Also applicable to electronic devices.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device according to a manufacturing method of the present invention.
FIG. 2 is a cross-sectional view illustrating a method for forming an electrode of a light-emitting element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Sapphire substrate 12 ... Buffer layer 13 ... n + layer 14 ... Cladding layer 15 ... Light emitting layer 16 ... Cladding layer 17 ... Contact layers 18A and 18B ... Electrode 19A ... Window part 81 ... Metal layer 100 ... Light emitting element

Claims (8)

p型窒化ガリウム系化合物半導体の電極を形成する方法において、
p型不純物の添加された窒化ガリウム系化合物半導体の上に白金(Pt)を形成し、少なくとも分圧100Pa以上の酸素を含むガス中において、熱処理することを特徴とする窒化ガリウム系化合物半導体の電極形成方法。
In a method for forming an electrode of a p-type gallium nitride-based compound semiconductor,
An electrode of a gallium nitride-based compound semiconductor, wherein platinum (Pt) is formed on a gallium nitride-based compound semiconductor to which a p-type impurity is added, and heat treatment is performed in a gas containing oxygen at least at a partial pressure of 100 Pa or more. Forming method.
p型窒化ガリウム系化合物半導体の電極を形成する方法において、
p型不純物の添加された窒化ガリウム系化合物半導体の上に白金(Pt)を形成し、 . 01〜100%の酸素を含むガス中において、熱処理することを特徴とする窒化ガリウム系化合物半導体の電極形成方法。
In a method for forming an electrode of a p-type gallium nitride-based compound semiconductor,
platinum (Pt) is formed on the added gallium nitride compound semiconductor of p-type impurity, 0. In gas containing 01 to 100 percent of oxygen, characterized that the gallium nitride compound semiconductor to a heat treatment Electrode formation method.
p型窒化ガリウム系化合物半導体層と電極とを有する素子の製造方法において、
p型不純物の添加された窒化ガリウム系化合物半導体層を形成し、
この窒化ガリウム系化合物半導体層上に白金(Pt)から成る電極を形成し、
前記電極の形成された窒化ガリウム系化合物半導体層を少なくとも分圧100Pa以上の酸素を含むガス中において、熱処理することを特徴とする窒化ガリウム系化合物半導体素子の製造方法。
In a method for manufacturing a device having a p-type gallium nitride-based compound semiconductor layer and an electrode,
forming a gallium nitride-based compound semiconductor layer to which a p-type impurity is added;
An electrode made of platinum (Pt) is formed on the gallium nitride-based compound semiconductor layer,
A method for manufacturing a gallium nitride-based compound semiconductor device, comprising: performing a heat treatment on the gallium nitride-based compound semiconductor layer on which the electrode is formed, in a gas containing at least a partial pressure of 100 Pa or more of oxygen.
p型窒化ガリウム系化合物半導体層と電極とを有する素子の製造方法において、
p型不純物の添加された窒化ガリウム系化合物半導体層を形成し、
この窒化ガリウム系化合物半導体層上に白金(Pt)から成る電極を形成し、
前記電極の形成された窒化ガリウム系化合物半導体層を . 01〜100%の酸素を含むガス中において、熱処理することを特徴とする窒化ガリウム系化合物半導体素子の製造方法。
In a method for manufacturing a device having a p-type gallium nitride-based compound semiconductor layer and an electrode,
forming a gallium nitride-based compound semiconductor layer to which a p-type impurity is added;
An electrode made of platinum (Pt) is formed on the gallium nitride-based compound semiconductor layer,
In 0. Gas containing 01 to 100 percent of the oxygen of gallium nitride-based compound semiconductor layer formed of the electrode, heat treatment method for producing a gallium nitride-based compound semiconductor device which is characterized in that.
p型窒化ガリウム系化合物半導体層と、n型窒化ガリウム系化合物半導体層とそれぞれの層に対する電極を有する素子の製造方法において、
前記p型不純物の添加された窒化ガリウム系化合物半導体層に白金(Pt)から成る第1電極を形成し、前記n型窒化ガリウム系化合物半導体層に第2電極を形成した後、
少なくとも分圧100Pa以上の酸素を含むガス中において、熱処理することを特徴とする窒化ガリウム系化合物半導体素子の製造方法。
In a method for manufacturing a device having a p-type gallium nitride-based compound semiconductor layer, an n-type gallium nitride-based compound semiconductor layer, and an electrode for each layer,
Forming a first electrode made of platinum (Pt) on the gallium nitride-based compound semiconductor layer to which the p-type impurity is added, and forming a second electrode on the n-type gallium nitride-based compound semiconductor layer;
A method for manufacturing a gallium nitride-based compound semiconductor device, comprising performing heat treatment in a gas containing oxygen having a partial pressure of at least 100 Pa or more .
p型窒化ガリウム系化合物半導体層と、n型窒化ガリウム系化合物半導体層とそれぞれの層に対する電極を有する素子の製造方法において、
前記p型不純物の添加された窒化ガリウム系化合物半導体層に白金(Pt)から成る第1電極を形成し、前記n型窒化ガリウム系化合物半導体層に第2電極を形成した後、
. 01〜100%の酸素を含むガス中において、熱処理することを特徴とする窒化ガリウム系化合物半導体素子の製造方法。
In a method for manufacturing a device having a p-type gallium nitride-based compound semiconductor layer, an n-type gallium nitride-based compound semiconductor layer, and an electrode for each layer,
Forming a first electrode made of platinum (Pt) on the gallium nitride-based compound semiconductor layer to which the p-type impurity is added, and forming a second electrode on the n-type gallium nitride-based compound semiconductor layer;
0. In gas containing 01-100% oxygen, the manufacturing method of a gallium nitride-based compound semiconductor device characterized by a heat treatment.
前記酸素を含むガスは、O2、O3、CO、CO2 、NO、N2O、NO2、又は、H2O の少なくとも1種又はこれらの混合ガス、又は、これらのガスと不活性ガスとの混合ガスであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の製造方法。The oxygen-containing gas is at least one of O 2 , O 3 , CO, CO 2 , NO, N 2 O, NO 2 , or H 2 O or a mixed gas thereof, or a mixture of these gases and an inert gas. The method according to any one of claims 1 to 6, wherein the gas is a mixed gas of 前記熱処理は400℃以上の温度で行われることを特徴とする請求項1乃至請求項7のいずれか1項に記載の製造方法。The method according to claim 1, wherein the heat treatment is performed at a temperature of 400 ° C. or higher.
JP36512397A 1997-12-18 1997-12-18 Gallium nitride based compound semiconductor electrode forming method and device manufacturing method Expired - Fee Related JP3555419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36512397A JP3555419B2 (en) 1997-12-18 1997-12-18 Gallium nitride based compound semiconductor electrode forming method and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36512397A JP3555419B2 (en) 1997-12-18 1997-12-18 Gallium nitride based compound semiconductor electrode forming method and device manufacturing method

Publications (2)

Publication Number Publication Date
JPH11186605A JPH11186605A (en) 1999-07-09
JP3555419B2 true JP3555419B2 (en) 2004-08-18

Family

ID=18483488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36512397A Expired - Fee Related JP3555419B2 (en) 1997-12-18 1997-12-18 Gallium nitride based compound semiconductor electrode forming method and device manufacturing method

Country Status (1)

Country Link
JP (1) JP3555419B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117150A1 (en) 2004-05-26 2005-12-08 Showa Denko K.K. Gallium nitride-based compound semiconductor light emitting device
JP4379208B2 (en) * 2004-06-03 2009-12-09 三菱電機株式会社 Manufacturing method of nitride semiconductor device
JP2006024913A (en) * 2004-06-09 2006-01-26 Showa Denko Kk Translucent positive electrode for compound semiconductor light-emitting device of gallium nitride series, and the light-emitting device
JP5037000B2 (en) * 2005-11-16 2012-09-26 シャープ株式会社 Method for annealing nitride semiconductor
JP4694395B2 (en) 2006-03-22 2011-06-08 日本オプネクスト株式会社 Nitride semiconductor light emitting device and manufacturing method thereof
JP2011146639A (en) 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd Group iii nitride-based semiconductor element
JP5749888B2 (en) 2010-01-18 2015-07-15 住友電気工業株式会社 Semiconductor device and method for manufacturing the semiconductor device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721403B2 (en) * 1989-09-19 1998-03-04 三菱電機株式会社 Method for manufacturing semiconductor device
JP2540791B2 (en) * 1991-11-08 1996-10-09 日亜化学工業株式会社 A method for manufacturing a p-type gallium nitride-based compound semiconductor.
JP2778349B2 (en) * 1992-04-10 1998-07-23 日亜化学工業株式会社 Gallium nitride based compound semiconductor electrodes
JPH06188455A (en) * 1992-12-18 1994-07-08 Daido Steel Co Ltd Ito film formation method for semiconductor photoelectric element
JP2783349B2 (en) * 1993-07-28 1998-08-06 日亜化学工業株式会社 Electrode of n-type gallium nitride-based compound semiconductor layer and method of forming the same
JP2836685B2 (en) * 1993-02-02 1998-12-14 日亜化学工業株式会社 Method for manufacturing p-type gallium nitride-based compound semiconductor
JPH0832115A (en) * 1994-07-19 1996-02-02 Sharp Corp Electrode structure and its manufacture
JP3620926B2 (en) * 1995-06-16 2005-02-16 豊田合成株式会社 P-conducting group III nitride semiconductor electrode, electrode forming method and device
JP2916424B2 (en) * 1995-11-09 1999-07-05 株式会社東芝 Semiconductor light emitting element, its electrode, and its manufacture
JP2856727B2 (en) * 1996-07-29 1999-02-10 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
JP4018177B2 (en) * 1996-09-06 2007-12-05 株式会社東芝 Gallium nitride compound semiconductor light emitting device
JP3499385B2 (en) * 1996-11-02 2004-02-23 豊田合成株式会社 Method for forming group III nitride semiconductor electrode
JP3309745B2 (en) * 1996-11-29 2002-07-29 豊田合成株式会社 GaN-based compound semiconductor light emitting device and method of manufacturing the same
JPH10341039A (en) * 1997-04-10 1998-12-22 Toshiba Corp Semiconductor light emitting element and fabrication thereof
JP3230463B2 (en) * 1997-07-22 2001-11-19 昭和電工株式会社 Method for manufacturing translucent electrode for light emitting semiconductor element
JP3509514B2 (en) * 1997-11-13 2004-03-22 豊田合成株式会社 Method of manufacturing gallium nitride based compound semiconductor
JPH11177134A (en) * 1997-12-15 1999-07-02 Sharp Corp Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element

Also Published As

Publication number Publication date
JPH11186605A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
JP3344257B2 (en) Gallium nitride based compound semiconductor and device manufacturing method
KR100436102B1 (en) Process for producing a GaN related compound semiconductor light-emitting device
JP3846150B2 (en) Group III nitride compound semiconductor device and electrode forming method
US6867058B2 (en) Transparent electrode film and group III nitride semiconductor device
JP3833848B2 (en) Group 3 nitride semiconductor device manufacturing method
JPH11220168A (en) Gallium nitride compound semiconductor device and manufacture thereof
JP2000286448A (en) Iii group nitride compound semiconductor luminous element
JP3612985B2 (en) Gallium nitride compound semiconductor device and manufacturing method thereof
JP3509514B2 (en) Method of manufacturing gallium nitride based compound semiconductor
US6365923B1 (en) Nitride semiconductor light-emitting element and process for production thereof
JP3557791B2 (en) Group III nitride semiconductor electrode and device having the electrode
JPH11177134A (en) Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element
US6562646B2 (en) Method for manufacturing light-emitting device using a group III nitride compound semiconductor
JP3555419B2 (en) Gallium nitride based compound semiconductor electrode forming method and device manufacturing method
JPH10229219A (en) Gallium nitride compound semiconductor element
JP3336855B2 (en) Group III nitride compound semiconductor light emitting device
JP3836245B2 (en) Gallium nitride compound semiconductor device
JP3703975B2 (en) Gallium nitride compound semiconductor light emitting device
JP3497790B2 (en) Method for manufacturing p-type gallium nitride based semiconductor and light emitting device using p-type gallium nitride based semiconductor
JP3522610B2 (en) Method for manufacturing p-type nitride semiconductor
JP3646502B2 (en) Method for manufacturing group 3 nitride semiconductor device
JPH10303458A (en) Gallium nitride compound semiconductor element
JP3642199B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2004363401A (en) Method for manufacturing semiconductor device
JP2003051613A (en) Gallium nitride based compound semiconductor and manufacturing method for element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees