JP3425357B2 - Method for manufacturing p-type gallium nitride-based compound semiconductor layer - Google Patents

Method for manufacturing p-type gallium nitride-based compound semiconductor layer

Info

Publication number
JP3425357B2
JP3425357B2 JP07024298A JP7024298A JP3425357B2 JP 3425357 B2 JP3425357 B2 JP 3425357B2 JP 07024298 A JP07024298 A JP 07024298A JP 7024298 A JP7024298 A JP 7024298A JP 3425357 B2 JP3425357 B2 JP 3425357B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
gallium nitride
compound semiconductor
based compound
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07024298A
Other languages
Japanese (ja)
Other versions
JPH11274557A (en
Inventor
彰博 八幡
譲司 西尾
英俊 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP07024298A priority Critical patent/JP3425357B2/en
Publication of JPH11274557A publication Critical patent/JPH11274557A/en
Application granted granted Critical
Publication of JP3425357B2 publication Critical patent/JP3425357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、紫外・青色発光ダ
イオード,紫外・青色レーザダイオード等の発光デバイ
スの製造技術に係わり、特に気相成長法によってp型窒
化ガリウム系化合物半導体層を形成するためのp型窒化
ガリウム系化合物半導体層の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing technique of a light emitting device such as an ultraviolet / blue light emitting diode or an ultraviolet / blue laser diode, and particularly for forming a p-type gallium nitride compound semiconductor layer by a vapor phase growth method. Of the p-type gallium nitride compound semiconductor layer.

【0002】[0002]

【従来の技術】従来より青色発光デバイス用の半導体材
料として、ZnSe,SiC,GaNなどに関し、多く
の研究が成されてきた。その中で最近、窒化ガリウム系
化合物半導体層(Gax Al1-x N(0≦x≦1))
が、常温で強い青色発光を示すことが注目されている
(特開平5−183189号公報)。
2. Description of the Related Art Conventionally, much research has been conducted on ZnSe, SiC, GaN and the like as semiconductor materials for blue light emitting devices. Among them, recently, gallium nitride-based compound semiconductor layers (Ga x Al 1-x N (0 ≦ x ≦ 1))
However, it has been noted that it exhibits strong blue light emission at room temperature (Japanese Patent Laid-Open No. 5-183189).

【0003】窒化ガリウム系化合物半導体層の主な成長
方法としては、トリメチル・ガリウム(TMG),トリ
メチル・アルミニウム(TMA),アンモニア等を原料
ガスとして用いる有機金属化学気相成長法(MOCVD
法)が用いられている。ドナー不純物としてはSi、ア
クセプタ不純物としてはZn,Cd,Be,Mg,C
a,Ba等が用いられる。このとき、窒化ガリウム系化
合物半導体層に格子整合する良い基板がないため、通常
サファイア基板上に600℃程度の低温で、AlN,G
aN等からなるバッファ層を成長した後、温度を900
〜1100℃に昇温し、n型層,p型層を順次積層して
発光デバイスを作成する。
The main growth method for the gallium nitride compound semiconductor layer is metal organic chemical vapor deposition (MOCVD) using trimethyl gallium (TMG), trimethyl aluminum (TMA), ammonia, etc. as a source gas.
Method) is used. Si as a donor impurity and Zn, Cd, Be, Mg, C as an acceptor impurity
a, Ba, etc. are used. At this time, since there is no good substrate that is lattice-matched with the gallium nitride-based compound semiconductor layer, AlN and G
After growing the buffer layer made of aN or the like, the temperature is set to 900
The temperature is raised to ˜1100 ° C., and an n-type layer and a p-type layer are sequentially laminated to form a light emitting device.

【0004】ところが、アクセプタ不純物を高濃度ドー
プして低抵抗p型層を成長しようとしても、成長後に何
らかのプロセスを加えないとアクセプタを活性化できな
いため、比抵抗が108 Ωcm以上のi層しか得られな
かった。この理由は、MOCVD法による成長中に反応
ガス、或いは雰囲気ガス中から水素が結晶中に入り込
み、アクセプタ不純物を不活性化するものと考えられて
いる。
However, even if an attempt is made to grow a low resistance p-type layer by heavily doping an acceptor impurity, the acceptor cannot be activated unless some process is added after the growth, so that only the i layer having a specific resistance of 10 8 Ωcm or more can be obtained. I couldn't get it. The reason for this is considered to be that hydrogen is introduced into the crystal from the reaction gas or the atmosphere gas during the growth by the MOCVD method and inactivates the acceptor impurities.

【0005】そこで、雰囲気が真空中、或いはN2 ,H
e,Ar単独、若しくはそれらの混合ガス中で、400
℃以上でアニールし、水素を結晶中から蒸発することで
p型窒化ガリウム系半導体層を低抵抗化することが行わ
れていた(特開平5−183189号公報)。
Therefore, the atmosphere is vacuum or N 2 , H.
e, Ar alone or in a mixed gas thereof, 400
The p-type gallium nitride based semiconductor layer has been made to have a low resistance by annealing at a temperature of not less than 0 ° C. and evaporating hydrogen from the crystal (Japanese Patent Laid-Open No. 183189/1993).

【0006】しかしながら、上記の方法でpn接合を持
つ発光デバイス用基板をアニールする場合、本来アニー
ルが必要でないn型窒化ガリウム系化合物半導体層まで
昇温してしまうため、n型層が劣化する問題が発生す
る。即ち、温度が比較的高温の場合、n型層からNの蒸
発が起こり、N空孔を含む非発光中心が生成する。この
ため、n型層の内部量子効率が低下し、発光デバイスと
しての特性が著しく劣化する。
However, when the substrate for a light emitting device having a pn junction is annealed by the above method, the temperature of the n-type gallium nitride-based compound semiconductor layer, which is not originally required to be annealed, is raised, so that the n-type layer is deteriorated. Occurs. That is, when the temperature is relatively high, N is evaporated from the n-type layer, and non-emission centers including N vacancies are generated. Therefore, the internal quantum efficiency of the n-type layer is lowered, and the characteristics as a light emitting device are significantly deteriorated.

【0007】また、温度が比較的低温の場合、高抵抗化
の原因となっているp型結晶内の水素の、結晶表面から
の蒸発があまり進まないため、低抵抗化するために必要
な時間が長くなるだけでなく、表面から遠いpn接合近
傍のp型層が完全に低抵抗化されなくなる。このため、
n型層への正孔の注入効率が低下し、発光デバイスの特
性が劣化する。
Further, when the temperature is relatively low, the evaporation of hydrogen in the p-type crystal, which is the cause of the high resistance, from the crystal surface does not proceed so much, so the time required for lowering the resistance Not only becomes longer, but also the p-type layer near the pn junction far from the surface is not completely lowered in resistance. For this reason,
The efficiency of injecting holes into the n-type layer decreases, and the characteristics of the light emitting device deteriorate.

【0008】[0008]

【発明が解決しようとする課題】このように従来、青色
発光デバイス等の製造においては、p型窒化ガリウム系
化合物半導体層を低抵抗化するためには、400℃を超
える温度でアニールして結晶中から水素を蒸発させる必
要があるが、このような温度では下地のn型窒化ガリウ
ム系化合物半導体層の劣化を招く問題があった。
As described above, in the conventional manufacturing of a blue light emitting device or the like, in order to reduce the resistance of the p-type gallium nitride compound semiconductor layer, the p-type gallium nitride compound semiconductor layer is annealed at a temperature higher than 400 ° C. to be crystallized. Although it is necessary to evaporate hydrogen from the inside, at such a temperature, there is a problem that the underlying n-type gallium nitride-based compound semiconductor layer is deteriorated.

【0009】本発明は、上記事情を考慮して成されたも
ので、その目的とするところは、アニール中に下層のn
型窒化ガリウム系化合物半導体層の劣化を招くことな
く、p型窒化ガリウム系化合物半導体層を短時間に、厚
さ方向に均一に低抵抗化できるp型窒化ガリウム系化合
物半導体層の製造方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to make the n layer of the lower layer during annealing.
Provided is a method for manufacturing a p-type gallium nitride compound semiconductor layer, which can reduce the resistance of the p-type gallium nitride compound semiconductor layer uniformly in the thickness direction in a short time without deteriorating the p-type gallium nitride compound semiconductor layer. To do.

【0010】[0010]

【課題を解決するための手段】(構成)上記課題を解決
するために本発明は、次のような構成を採用している。
即ち本発明は、p型窒化ガリウム系化合物半導体層の製
造方法において、n型窒化ガリウム系化合物半導体層上
に気相成長法によってp型不純物をドープした窒化ガリ
ウム系化合物半導体層を成長する工程と、窒素ガスを流
しながら20〜1000パスカルの減圧下で、前記成長
した窒化ガリウム系化合物半導体層に該半導体層の禁制
帯幅以上のエネルギーの光を照射しながら、該半導体層
を200〜400℃の温度でアニールする工程とを含む
ことを特徴とする。
(Structure) In order to solve the above problems, the present invention adopts the following structure.
That is, the present invention relates to a method of manufacturing a p-type gallium nitride-based compound semiconductor layer, which comprises a step of growing a p-type impurity-doped gallium nitride-based compound semiconductor layer on a n-type gallium nitride-based compound semiconductor layer by vapor phase epitaxy. While irradiating the grown gallium nitride-based compound semiconductor layer with light having an energy equal to or more than the forbidden band width of the semiconductor layer under a reduced pressure of 20 to 1000 Pascal while flowing a nitrogen gas, the semiconductor layer is heated to 200 to 400 ° C. And annealing at the temperature of.

【0011】ここで、本発明の望ましい実施態様として
は次のものがあげられる。 (1) n型窒化ガリウム系化合物半導体層上に成長した窒
化ガリウム系化合物半導体層を光照射と共にアニールす
る前に、該半導体層上に光に対して実質的に透明である
キャップ層を形成すること。 (2) 窒化ガリウム系化合物半導体層として、Gax Al
1-x N(0≦x≦1)を用いること。 (3) 気相成長法として、MOCVD法を用いること。
The following are preferred embodiments of the present invention. (1) Before annealing a gallium nitride compound semiconductor layer grown on an n-type gallium nitride compound semiconductor layer with light irradiation, a cap layer that is substantially transparent to light is formed on the semiconductor layer thing. (2) As a gallium nitride-based compound semiconductor layer, Ga x Al
Use 1-x N (0 ≦ x ≦ 1). (3) Use the MOCVD method as the vapor phase growth method.

【0012】(作用)本発明では、気相成長法によりp
型不純物をドープした窒化ガリウム系化合物半導体層を
成長した後、窒素ガスを流しながら20から1000パ
スカルの減圧下で、成長した窒化ガリウム系化合物半導
体層の禁制帯幅以上のエネルギーの光を該半導体層に照
射しながら、200〜400℃の温度でアニールを行
う。
(Operation) In the present invention, p
After growing a gallium nitride-based compound semiconductor layer doped with a type impurity, a light having an energy equal to or more than the forbidden band width of the grown gallium nitride-based compound semiconductor layer is applied under a reduced pressure of 20 to 1000 Pascal while flowing a nitrogen gas. Annealing is performed at a temperature of 200-400 ° C. while irradiating the layer.

【0013】ここで、窒素ガスの圧力が20パスカルよ
り低くなると窒化ガリウム系化合物半導体層からのNの
蒸発を防ぐことができず、また1000パスカルより高
くなると水素の蒸発が抑えられるので、この範囲が望ま
しい。この方法によって、結晶からの窒素の蒸発を防ぐ
と同時に、結晶からの水素の蒸発を加速することができ
る。
Here, if the pressure of nitrogen gas is lower than 20 Pascal, the vaporization of N from the gallium nitride-based compound semiconductor layer cannot be prevented, and if it is higher than 1000 Pascal, the vaporization of hydrogen is suppressed. Is desirable. By this method, it is possible to prevent the evaporation of nitrogen from the crystal and to accelerate the evaporation of hydrogen from the crystal.

【0014】また本発明では、アニール時にp型窒化ガ
リウム系化合物半導体層の禁制帯幅以上のエネルギーの
光を該半導体に照射する理由は、p型層のみに光エネル
ギーを与えるためである。p型層のみに選択的に与えら
れた熱エネルギーは、結晶欠陥で再結合し、それによっ
て放出されたフォノンが水素の結晶内移動を助け、外へ
蒸発することを可能にする。
Further, in the present invention, the reason for irradiating the semiconductor with light having an energy equal to or more than the forbidden band width of the p-type gallium nitride based compound semiconductor layer at the time of annealing is to give light energy only to the p-type layer. The thermal energy selectively applied only to the p-type layer recombines at the crystal defects, thereby allowing the released phonons to assist in the migration of hydrogen in the crystal and evaporate out.

【0015】アニール温度を200〜400℃に設定し
た理由は、200℃未満の温度であると水素の蒸発が起
こらず、低抵抗化しないためであり、400℃以上の温
度であると、カーボン,ナトリウムなどの低抵抗化する
のに有害な元素がGaN表面に付着するからである。
The reason why the annealing temperature is set to 200 to 400 ° C. is that hydrogen does not evaporate at a temperature lower than 200 ° C. and resistance is not lowered, and if the temperature is 400 ° C. or higher, carbon, This is because a harmful element such as sodium that reduces resistance is attached to the GaN surface.

【0016】また本発明では、窒化ガリウム系化合物半
導体層からの窒素の分解,蒸発を十分に防ぐことができ
るが、p型窒化ガリウム系化合物半導体層上に光に対し
て実質的に透明なキャップ層を設ければ、窒化ガリウム
系化合物半導体層からの窒素の蒸発をさらに防ぐことが
可能となる。
Further, in the present invention, decomposition and evaporation of nitrogen from the gallium nitride-based compound semiconductor layer can be sufficiently prevented, but a cap that is substantially transparent to light is provided on the p-type gallium nitride-based compound semiconductor layer. By providing the layer, it becomes possible to further prevent evaporation of nitrogen from the gallium nitride-based compound semiconductor layer.

【0017】[0017]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。図1は、本発明の一実施形態方
法を適用する窒化ガリウム系化合物半導体の積層構造を
示す断面図である。
DETAILED DESCRIPTION OF THE INVENTION The details of the present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a cross-sectional view showing a laminated structure of a gallium nitride-based compound semiconductor to which the method of one embodiment of the present invention is applied.

【0018】まず、CVDチャンバ内に収容したサファ
イア基板11に対し、TMG,TMA,アンモニアを原
料ガスとして用いるMOCVD法で、GaNバッファ層
12を介してSiドープn型GaN層13を20μm成
長し、さらにその上にMgドープp型GaN層14を2
0μm成長した。このウェハを二分割し、その一つに
は、波長337nm,エネルギー密度2000W/cm
2 の窒素レーザを照射しつつ、窒素を流しながら300
パスカルの減圧下で、350℃で30分間のアニールを
施した。他の一つには、常圧の窒素を流しながら、80
0℃で15分間のアニールを施した。
First, on the sapphire substrate 11 housed in the CVD chamber, the Si-doped n-type GaN layer 13 is grown to 20 μm through the GaN buffer layer 12 by the MOCVD method using TMG, TMA and ammonia as source gases. On top of that, a Mg-doped p-type GaN layer 14 is further provided.
It grew to 0 μm. This wafer is divided into two, one of which has a wavelength of 337 nm and an energy density of 2000 W / cm.
While irradiating the nitrogen laser of 2 , while flowing nitrogen, 300
Annealing was performed at 350 ° C. for 30 minutes under a reduced pressure of Pascal. For the other one, while flowing nitrogen at atmospheric pressure,
Annealing was performed at 0 ° C. for 15 minutes.

【0019】両者のウェハをCVDチャンバから取り出
した後、電極を付け、発光ダイオードを作成した。駆動
電流30mAの両者の発光スペクトルを、図2に示す。
実線1は前者の試料であり、破線2は後者の試料であ
る。前者のバンド端発光は大変強かったが、後者のバン
ド端発光は弱く、しかも深い順位に起因する発光が観察
された。前者のウェハをアニールするときに、p型Ga
N層14上にSiO2 からなるキャップ層を100nm
付けておくと、付けないものよりもさらにバンド端発光
は強くなった。
After taking out both wafers from the CVD chamber, electrodes were attached to form a light emitting diode. The emission spectra of both with a driving current of 30 mA are shown in FIG.
The solid line 1 is the former sample, and the broken line 2 is the latter sample. The band-edge emission of the former was very strong, but the band-edge emission of the latter was weak, and the emission due to the deep order was observed. When annealing the former wafer, p-type Ga
A cap layer made of SiO 2 having a thickness of 100 nm is formed on the N layer 14.
When attached, the band-edge emission was even stronger than that without.

【0020】このように本実施形態によれば、p型Ga
N層14をアニールする際に、光を照射すると共に、窒
素ガスの圧力及びアニール温度を最適化することによ
り、n型GaN層13を劣化させずに、p型GaN層1
4を短時間に、且つ厚み方向に均一に低抵抗化すること
ができる。また、p型GaN層14のみに集中的に熱エ
ネルギーを与えることができ、アニール温度を低くする
ことができる。しかも、III族とV族の化学量論比が
1:1となる結晶を得ることができる。従って、発光ダ
イオードはもとより青色発光デバイスの製造に極めて有
効である。
As described above, according to this embodiment, p-type Ga is used.
When the N layer 14 is annealed, light is irradiated and the pressure of nitrogen gas and the annealing temperature are optimized so that the p-type GaN layer 1 is not deteriorated.
4 can reduce the resistance evenly in the thickness direction in a short time. Further, thermal energy can be concentratedly applied only to the p-type GaN layer 14, and the annealing temperature can be lowered. Moreover, it is possible to obtain a crystal in which the stoichiometric ratio of group III to group V is 1: 1. Therefore, it is very effective not only for light emitting diodes but also for manufacturing blue light emitting devices.

【0021】また、p型GaN層14上にアニール時の
照射光に対して透明なキャップ層を設けることにより、
GaN層13,14からのNの蒸発をさらに防ぐことが
可能となる。
Further, by providing a cap layer transparent to the irradiation light at the time of annealing on the p-type GaN layer 14,
It is possible to further prevent the evaporation of N from the GaN layers 13 and 14.

【0022】なお、本発明は上述した実施形態に限定さ
れるものではない。実施形態では、GaNの製造につい
て説明したが、これに限らずGaAlNに適用すること
ができ、さらに各種の窒化ガリウム系化合物半導体の製
造に適用することが可能である。
The present invention is not limited to the above embodiment. In the embodiment, the manufacturing of GaN has been described, but the present invention is not limited to this, and can be applied to GaAlN, and further to the manufacturing of various gallium nitride-based compound semiconductors.

【0023】また、アニール時の窒素ガスの圧力は、3
00パスカル程度に何ら限定されるものではなく、結晶
からの窒素の蒸発を防ぐと同時に、結晶からの水素の蒸
発を加速する減圧条件であればよい。具体的には、窒素
ガスの圧力が20パスカルより低くなると窒化ガリウム
系化合物半導体層からのNの蒸発を防ぐことができない
ので、20パスカル以上とすればよい。さらに、窒素ガ
スの圧力が1000パスカルより高くなると、水素の蒸
発が抑えられるので、1000パスカル以下とすればよ
い。
The pressure of nitrogen gas during annealing is 3
The pressure is not limited to about 00 Pascal, and any depressurization condition that prevents evaporation of nitrogen from the crystal and accelerates evaporation of hydrogen from the crystal can be used. Specifically, if the pressure of the nitrogen gas is lower than 20 Pascal, the evaporation of N from the gallium nitride-based compound semiconductor layer cannot be prevented, so the pressure may be 20 Pascal or higher. Further, when the pressure of the nitrogen gas is higher than 1000 Pascal, the evaporation of hydrogen is suppressed, so the pressure may be 1000 Pascal or less.

【0024】また本発明では、アニール時に照射する光
は、p型窒化ガリウム系化合物半導体層で十分吸収され
るものであればよく、該半導体層の禁制帯幅以上のエネ
ルギーを有する波長であればよい。
Further, in the present invention, the light to be irradiated at the time of annealing may be one that is sufficiently absorbed by the p-type gallium nitride compound semiconductor layer, and has a wavelength having an energy not less than the band gap of the semiconductor layer. Good.

【0025】また、アニール温度は350℃程度に何ら
限定されるものではなく、仕様に応じて適宜変更可能で
ある。但し、アニール温度が200℃未満の温度である
と水素の蒸発が起こらず低抵抗化しないため、アニール
温度は200℃以上が望ましい。さらに、アニール温度
が400℃を越えるとカーボン,ナトリウムなどの低抵
抗化するのに有害な元素が窒化ガリウム系化合物半導体
層の表面に付着するので、アニール温度は400℃以下
が望ましい。その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施することができる。
Further, the annealing temperature is not limited to about 350 ° C., and can be appropriately changed according to the specifications. However, if the annealing temperature is less than 200 ° C., hydrogen does not evaporate and the resistance does not decrease, so the annealing temperature is preferably 200 ° C. or higher. Further, when the annealing temperature exceeds 400 ° C., elements such as carbon and sodium, which are harmful to lower the resistance, adhere to the surface of the gallium nitride-based compound semiconductor layer, so the annealing temperature is preferably 400 ° C. or lower. In addition, various modifications can be made without departing from the scope of the present invention.

【0026】[0026]

【発明の効果】以上詳述したように本発明によれば、気
相成長法によってn型窒化ガリウム系化合物半導体層上
にp型不純物をドープした窒化ガリウム系化合物半導体
を成長した後、窒素ガスを流しながら20から1000
パスカルの減圧下で、p型窒化ガリウム系化合物半導体
の禁制帯幅以上のエネルギーの光を該半導体に照射しな
がら、200〜400℃の温度でアニールすることによ
り、窒素の結晶からの蒸発を防ぐと同時に、水素の蒸発
を加速するとができ、これによりアニール中にn型層の
劣化が発生せず、p型窒化ガリウム系化合物半導体を短
時間に、厚さ方向に均一に低抵抗化することが可能とな
る。
As described in detail above, according to the present invention, a gallium nitride-based compound semiconductor doped with a p-type impurity is grown on an n-type gallium nitride-based compound semiconductor layer by a vapor phase growth method, and then a nitrogen gas is used. 20 to 1000 while running
The evaporation of nitrogen from the crystal is prevented by annealing at 200 to 400 ° C. under a reduced pressure of Pascal while irradiating the semiconductor with light having energy higher than the band gap of the p-type gallium nitride compound semiconductor. At the same time, it is possible to accelerate the evaporation of hydrogen, so that the deterioration of the n-type layer does not occur during annealing, and the resistance of the p-type gallium nitride-based compound semiconductor is uniformly reduced in the thickness direction in a short time. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態で作成した半導体構造を示す断面図。FIG. 1 is a cross-sectional view showing a semiconductor structure created in an embodiment.

【図2】実施形態における窒化ガリウム系発光ダイオー
ドの発光スペクトルを従来例と比較して示す図。
FIG. 2 is a diagram showing an emission spectrum of a gallium nitride-based light emitting diode according to an embodiment in comparison with a conventional example.

【符号の説明】[Explanation of symbols]

11…サファイア基板 12…GaNバッファ層 13…n型GaN層(n型窒化ガリウム系化合物半導体
層) 14…p型GaN層(p型窒化ガリウム系化合物半導体
層)
11 ... Sapphire substrate 12 ... GaN buffer layer 13 ... n-type GaN layer (n-type gallium nitride compound semiconductor layer) 14 ... p-type GaN layer (p-type gallium nitride compound semiconductor layer)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−266218(JP,A) 特開 平9−266352(JP,A) 特開 平8−222797(JP,A) 特開 平8−153933(JP,A) 特開 平11−126758(JP,A) 特開 平11−186174(JP,A) 特開 平11−238692(JP,A) 特開 平10−178213(JP,A) 特開 平10−313133(JP,A) 特開 平11−219904(JP,A) 特開 平11−177135(JP,A) 特開 平9−295890(JP,A) 特開 平9−191160(JP,A) 国際公開97/26680(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01L 21/205 H01L 21/268 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-9-266218 (JP, A) JP-A-9-266352 (JP, A) JP-A-8-222797 (JP, A) JP-A-8- 153933 (JP, A) JP 11-126758 (JP, A) JP 11-186174 (JP, A) JP 11-238692 (JP, A) JP 10-178213 (JP, A) JP-A-10-313133 (JP, A) JP-A-11-219904 (JP, A) JP-A-11-177135 (JP, A) JP-A-9-295890 (JP, A) JP-A-9-191160 (JP, A) International Publication 97/26680 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 33/00 H01L 21/205 H01L 21/268

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】n型窒化ガリウム系化合物半導体層上に気
相成長法によってp型不純物をドープした窒化ガリウム
系化合物半導体層を成長する工程と、窒素ガスを流しな
がら20〜1000パスカルの減圧下で、前記成長した
窒化ガリウム系化合物半導体層に該半導体層の禁制帯幅
以上のエネルギーの光を照射しながら、該半導体層を2
00〜400℃の温度でアニールする工程とを含むこと
を特徴とするp型窒化ガリウム系化合物半導体層の製造
方法。
1. A step of growing a gallium nitride-based compound semiconductor layer doped with a p-type impurity on an n-type gallium nitride-based compound semiconductor layer by a vapor deposition method, and a reduced pressure of 20 to 1000 Pascal while flowing a nitrogen gas. While irradiating the grown gallium nitride-based compound semiconductor layer with light having an energy equal to or more than the forbidden band width of the semiconductor layer,
And a step of annealing at a temperature of 00 to 400 ° C., the method for manufacturing a p-type gallium nitride based compound semiconductor layer.
【請求項2】前記成長した窒化ガリウム系化合物半導体
層をアニールする前に、該半導体層上に前記光に対して
実質的に透明であるキャップ層を形成することを特徴と
する請求項1記載のp型窒化ガリウム系化合物半導体層
の製造方法。
2. A cap layer that is substantially transparent to the light is formed on the semiconductor layer before annealing the grown gallium nitride-based compound semiconductor layer. 2. A method for manufacturing a p-type gallium nitride-based compound semiconductor layer according to 1.
JP07024298A 1998-03-19 1998-03-19 Method for manufacturing p-type gallium nitride-based compound semiconductor layer Expired - Fee Related JP3425357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07024298A JP3425357B2 (en) 1998-03-19 1998-03-19 Method for manufacturing p-type gallium nitride-based compound semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07024298A JP3425357B2 (en) 1998-03-19 1998-03-19 Method for manufacturing p-type gallium nitride-based compound semiconductor layer

Publications (2)

Publication Number Publication Date
JPH11274557A JPH11274557A (en) 1999-10-08
JP3425357B2 true JP3425357B2 (en) 2003-07-14

Family

ID=13425913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07024298A Expired - Fee Related JP3425357B2 (en) 1998-03-19 1998-03-19 Method for manufacturing p-type gallium nitride-based compound semiconductor layer

Country Status (1)

Country Link
JP (1) JP3425357B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581198B2 (en) * 2000-08-10 2010-11-17 ソニー株式会社 Heat treatment method for nitride compound semiconductor layer and method for manufacturing semiconductor device
JP3622200B2 (en) * 2001-07-02 2005-02-23 ソニー株式会社 Nitride semiconductor manufacturing method and semiconductor device manufacturing method
EP1333478A1 (en) * 2002-01-23 2003-08-06 Shiro Sakai Method for manufacturing gallium nitride compound semiconductor element and gallium nitride compound semiconductor element
JP4451811B2 (en) * 2005-05-09 2010-04-14 ローム株式会社 Manufacturing method of nitride semiconductor device
JP2007173854A (en) * 2007-01-29 2007-07-05 Sony Corp Method of heat treating nitride compound semiconductor layer, and method of manufacturing semiconductor element
KR100982993B1 (en) 2008-10-14 2010-09-17 삼성엘이디 주식회사 Surface treatment method of group Ⅲ nitride semiconductor, group Ⅲ nitride semiconductor and manufacturing method thereof, group Ⅲ nitride semiconductor structure
JP6183310B2 (en) * 2014-07-14 2017-08-23 豊田合成株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11274557A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP2540791B2 (en) A method for manufacturing a p-type gallium nitride-based compound semiconductor.
JP3209096B2 (en) Group III nitride compound semiconductor light emitting device
US5432808A (en) Compound semicondutor light-emitting device
USRE38805E1 (en) Semiconductor device and method of fabricating the same
JP2872096B2 (en) Vapor phase growth method of low resistance p-type gallium nitride based compound semiconductor
US7718450B2 (en) Method for manufacturing nitride semiconductor device
JP3408413B2 (en) Semiconductor manufacturing method and semiconductor device
US7041519B2 (en) Method for producing p-type group III nitride compound semiconductor
JP3425357B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor layer
JPH09255496A (en) Method for growing gallium nitride crystal
JP3209233B2 (en) Blue light emitting diode and method of manufacturing the same
JP2812375B2 (en) Gallium nitride based compound semiconductor growth method
JPH05243613A (en) Light-emitting device and its manufacture
JPH09298311A (en) Gallium nitride compd. semiconductor light emitting element
JP4285337B2 (en) Method for producing gallium nitride compound semiconductor wafer
JP3180710B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JPH08213656A (en) Gallium nitride based compound semiconductor light emitting element
JP7540714B2 (en) Method for manufacturing semiconductor device structures
JPH05198841A (en) Forming method for p-type of gallium nitride compound semiconductor
JP3301345B2 (en) Method for forming p-type gallium nitride-based compound semiconductor layer
JPH088460A (en) Method of manufacturing p-type algan semiconductor
JP3505167B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JP3735601B2 (en) Method for manufacturing compound semiconductor device
JP3884717B2 (en) Method for producing gallium nitride compound semiconductor
JP3298454B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees