KR100840034B1 - 측광 분석계 - Google Patents

측광 분석계 Download PDF

Info

Publication number
KR100840034B1
KR100840034B1 KR1020060072585A KR20060072585A KR100840034B1 KR 100840034 B1 KR100840034 B1 KR 100840034B1 KR 1020060072585 A KR1020060072585 A KR 1020060072585A KR 20060072585 A KR20060072585 A KR 20060072585A KR 100840034 B1 KR100840034 B1 KR 100840034B1
Authority
KR
South Korea
Prior art keywords
phase
distance
cylindrical body
signal
measurement sample
Prior art date
Application number
KR1020060072585A
Other languages
English (en)
Other versions
KR20070015892A (ko
Inventor
요시히로 타루이
히로시 후지이
Original Assignee
가부시키가이샤 호리바 세이샤쿠쇼
가부시키가이샤 호리바 어드밴스트 테크노
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 호리바 세이샤쿠쇼, 가부시키가이샤 호리바 어드밴스트 테크노 filed Critical 가부시키가이샤 호리바 세이샤쿠쇼
Priority to KR1020060072585A priority Critical patent/KR100840034B1/ko
Publication of KR20070015892A publication Critical patent/KR20070015892A/ko
Application granted granted Critical
Publication of KR100840034B1 publication Critical patent/KR100840034B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/605Specific applications or type of materials phases

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은, 광원을 내부에 갖는 제1 통형상체와, 상기 광원으로부터의 빛을 검출하는 광검출기를 내부에 갖는 제2 통형상체를 측정 시료 내에서 이간하여 배치하고, 적어도 한쪽의 통형상체를 회전시켜 상기 2개의 통형상체의 대향면간의 거리를 주기적으로 확장 수축하고, 그 대향면간에 개재하는 측정 시료를 분석하는 측광 분석계로서, 상기 제1 및 제2 통형상체의 회전 위상을 검출하는 위상 검출부; 상기 대향면간의 거리가 최소로 될 때의 위상과 상기 대향면간의 거리가 최대로 될 때의 위상 사이에서, 상기 광검출기로부터의 광강도 신호를 샘플링하는 위상을 변경 가능하게 설정하는 위상 설정부; 상기 위상 검출부로부터의 위상 검출 신호에 근거하여 상기 위상 설정부에 의해 설정된 위상에서의 광강도 신호를 받아들이는 신호 접수부; 및 상기 신호 접수부가 받아들인 각 위상에서의 광강도 신호를 비교하는 것에 의해 상기 측정 시료를 분석하는 비교 분석부를 구비하고 있는 측광 분석계에 관한 것이다.

Description

측광 분석계{Photometry Analyzer}
도 1은 본 발명의 제1 실시형태에 관한 측광 분석계의 개략 구성도이다.
도 2는 동 실시형태에서의 통형상체의 편심 회전 및 그 때의 광강도 신호 및 대향면간의 거리 변화를 나타내는 도면이다.
도 3은 동 실시형태에서의 정보처리 장치의 기기 구성도이다.
도 4는 동 실시형태에서의 정보처리 장치의 기능 구성도이다.
도 5는 동 실시형태에서의 샘플링 포인트인 위상의 설정 범위를 나타내는 도면이다.
도 6은 본 발명의 제2 실시형태에 관한 측광 분석계의 정보처리 장치의 기능 구성도이다.
부호의 설명
1 ; 측광 분석계, 2 ; 광원,
3 ; 광검출기, W ; 측정 시료,
21,31 ; 통형상체(제1 통형상체, 제2 통형상체),
21A,31A ; 대향면, L ; 대향면 간의 거리,
62 ; 위상 검출부, θ ; 위상,
θs ; 샘플링 포인트인 위상, 63 ; 위상 설정부,
64 ; 신호 접수부, 66 ; 비교 분석부,
51 ; 스테핑 모터
본 발명은 공장 배수나 하천 등에 포함되는 유기성 물질의 흡광도 등을 측정하는 측광 분석계에 관한 것으로서, 특히 간단하고 신속하게 셀 길이를 변경할 수 있으며, 동기 회로를 사용하지 않고 연속 측정을 할 수 있는 측광 분석계에 관한 것이다.
이 측광 분석계에 관하여, 본 발명자들은 일본국 특개 소56-10233호 공보에 개시된 바와 같이, 2개의 통형상체를 측정 시료 내에 이간시켜서 평행하게 배치하고, 적어도 1개의 통형상체를 회전시킴으로써 2개의 통형상체의 대향면간의 거리를 주기적으로 가변으로 하고, 대향면간에 개재하는 측정 시료의 흡광도를 측정하는 발명을 하고 있다. 상기 발명은 대향면간의 거리가 최단 거리 및 최장 거리인 경우를 이용하여, 그들 2점의 광강도 신호를 비교함으로써 측정 시료의 흡광도를 측정하는 것이다.
그러나, 이와 같은 것에서는 대향면간의 가변 폭, 즉 최장 거리와 최단 거리와의 차이가 일정하기 때문에, 측광 분석계의 측정 범위가 일의(一意)적으로 정해 져 버려, 그 범위를 넘은 저농도로부터 고농도의 측정 시료에서는 농도에 따라서 충분한 측정 결과를 얻을 수 없다고 하는 문제점이 있다. 그리고, 종래에는 이를 해결하기 위하여, 상기 가변 폭이 물리적으로 다른 복수 종류의 장치를 준비해야만 하는 실정이다.
따라서, 본 발명은 상기 문제점을 일거에 해결하기 위해 이루어진 것으로서, 물리적인 변경을 하지 않고 무리없이 측정 범위를 넓히고, 저농도의 측정 시료로부터 고농도의 측정 시료까지 측정할 수 있는 측광 분석계를 제공하는 것을 그 주된 소기 과제로 하는 것이다.
즉, 본 발명에 관한 측광 분석계는, 광원을 내부에 갖는 제1 통형상체와, 상기 광원으로부터의 빛을 검출하는 광검출기를 내부에 갖는 제2 통형상체를 측정 시료 내에서 이간하여 배치하고, 적어도 한쪽의 통형상체를 회전시켜 상기 2개의 통형상체의 대향면간의 거리를 주기적으로 확장 수축하고, 그 대향면간에 개재하는 측정 시료를 분석하는 측광 분석계로서, 상기 제1 및 제2 통형상체의 회전 위상을 검출하는 위상 검출부; 상기 대향면간의 거리가 최소로 될 때의 위상과 상기 대향면간의 거리가 최대로 될 때의 위상 사이에서, 상기 광검출기로부터의 광강도 신호를 샘플링하는 위상을 변경 가능하게 설정하는 위상 설정부; 상기 위상 검출부로부터의 위상 검출 신호에 근거하여 상기 위상 설정부에 의해 설정된 위상에서의 광강도 신호를 받아들이는 신호 접수부; 및 상기 신호 접수부가 받아들인 각 위상에서의 광강도 신호를 비교하는 것에 의해 상기 측정 시료를 분석하는 비교 분석부를 구비하고 있는 것을 특징으로 한다. 여기서, 대향면간의 거리가 최소로 될 때의 위상과 상기 대향면간의 거리가 최대로 될 때의 위상 사이라는 것은, 대향면간의 거리가 최소로 될 때의 위상, 및 대향면간의 거리가 최대로 될 때의 위상도 그 범위 내에 포함하는 것이다.
이와 같은 것이라면, 대향면간의 거리가 최소로 될 때의 위상과 대향면간의 거리가 최대로 될 때의 위상 사이에서, 상기 광검출기로부터의 광강도 신호를 샘플링하는 위상을 변경 가능하게 설정할 수 있으므로, 물리적인 변경을 하지 않고 측정 범위를 넓힐 수 있으며, 저농도의 측정 시료로부터 고농도의 측정 시료까지 측정할 수 있는 측광 분석계를 제공할 수 있다.
구체적인 실시형태로는 상기 통형상체가 스테핑 모터에 의해 회전하는 것이고, 상기 위상 검출부가 상기 스테핑 모터에의 펄스열 입력 신호를 사용하여 상기 통형상체의 회전 위상을 검출하는 것이 바람직하다.
이와 같은 것이라면, 스테핑 모터를 사용하고 있으므로, 유도 전동기(induction motor)와 같이 전원 주파수의 영향을 받지 않고 회전 속도를 정확하게 할 수 있으며, 측정 정밀도를 확보할 수 있다.
스테핑 모터 이외에, 회전수의 제어가 가능한 다른 모터를 사용해도 된다.
그 외에는, 상기 위상 검출부가 인코더로부터의 신호를 사용하여 상기 통형상체의 회전 위상을 검출하는 것을 생각할 수 있다.
발명을 실시하기 위한 바람직한 형태
<제1 실시형태>
이하, 본 발명의 측광 분석계의 제1 실시형태에 대해 도면을 참조하여 설명한다.
본 실시형태에 관한 측광 분석계(1)는 측정 시료(배수)(W) 중의 유기성 오탁 물질을 측정하기 위한 것으로서, 도 1에 도시된 바와 같이, 광원(2)을 내부에 갖는 제1 통형상체(21)와, 상기 광원(2)으로부터의 빛을 검출하는 광검출기(3)를 내부에 갖는 제2 통형상체(31)와, 이들 2개의 통형상체(21,31)가 평행하게 이간하여 배치되고 측정 시료(W)를 수용하는 분석조(分析漕)(4)와, 해당 분석조(4) 내에서 2개의 통형상체(21,31)의 대향면(21A,31A)간의 거리(L)를 주기적으로 확장 수축시키는 구동부(5)와, 광검출기(3)로부터 광강도 신호를 받아들여 소정의 연산을 수행하는 측정 시료(W)를 분석하는 정보처리 장치(6)로 이루어진다.
각 부분을 설명하면 아래와 같다.
제1 통형상체(21) 및 제2 통형상체(31)는 측정 시료(W) 내에 평행하게 이간하여 배치되는 바닥이 있는 원통 형상을 이루는 것이다. 그 측 둘레 벽은 측정 파장 투과 재료에 의해 형성되고, 본 실시형태에서는 투과율이 좋은 석영을 사용하고 있다.
제1 통형상체(21) 내에는 그 통형상체(21)의 중심축으로부터 편심(偏心)한 위치에 광원(2)을 설치하고 있으며, 본 실시형태에서는 광원(2)으로 저압 수은 방전관을 사용하고 있다. 제2 통형상체(31) 내에는 그 통형상체(31)의 중심축으로부터 편심한 위치에 2개의 광검출기(3a,3b)를 중심축을 따라 배치하고 있으며, 본 실 시형태에서는 광검출기(3a,3b)로 실리콘 포토다이오드를 사용하고 있다.
그리고, 각각의 광검출기(3a,3b)를 자외선 검출용 및 가시광선 검출용으로 하기 위하여, 광검출기(3a,3b)의 광원(2)측 전방에는 각각 자외선 검출용 간섭 필터(254 nm)(7a) 및 가시광선 검출용 간섭 필터(546 nm)(7b)를 설치하고 있다.
제1 통형상체(21) 및 제2 통형상체(31)의 외부에는 그 외주면을 세정하기 위한 세정 기구를 설치하고 있다. 이 세정 기구는 제1 통형상체 및 제2 통형상체의 대향면(21A,31A)의 반대측 외주면에 슬라이딩하는 와이퍼(22,32)와, 이 와이퍼(22,32)를 통형상체(21,31)의 편심 회전에 추종시켜서 왕복운동 시키는 와이퍼 설치판(221,321)으로 구성된다.
구동부(5)는 통형상체(21,31)를 회전 구동시키기 위한 모터(51)와, 제1 통형상체(21)의 상단부에 연장설치되며 광원(2)의 동심축 상에 있는 제1 회전축(52)과, 제2 통형상체(31)의 상단부에 연장설치되며 광검출기(3a,3b)의 동심축 상에 있는 제2 회전축(53)과, 모터(51)의 회전운동을 2개의 통형상체(21,31)에 전달하고, 제1 통형상체(21)를 그 중심축선으로부터 편심한 회전축을 중심으로 편심 회전시키며, 제2 통형상체(31)를 그 중심축선으로부터 편심한 회전축을 중심으로 편심 회전시키는 기어(54)로 이루어진다. 또한, 본 실시형태에서는 제1 통형상체(21)의 회전축 상에 광원(2)을 배치하고, 이 광원(2)을 중심으로 편심 회전시키고, 제2 통형상체의 회전축 상에 광검출기(3a,3b)를 배치하고, 이 광검출기(3a,3b)를 중심으로 편심 회전시키도록 하고 있다.
모터(51)를 구동시킴으로써, 도 2에 도시된 바와 같이, 제1 통형상체(21) 및 제2 통형상체(31)가 편심 회전을 하고, 광검출기(3a,3b)가 검출하는 광강도 신호 및 대향면(21A,31A)간의 거리가 주기적으로 변화한다. 모터(51)는 48 스텝에서 일회전하는 스테핑 모터이다. 그리고, 스테핑 모터(51)의 회전 위치(위상 θ51), 즉 제1 통형상체(21)와 제2 통형상체(31)와의 대향면(21A,31A)간의 거리(L)와 광검출기(3a,3b)가 수광하는 광강도 신호의 샘플링을 동기시킬 필요가 있기 때문에 원점 검출부인 포토인터럽터(8)를 제2 회전축(53)에 설치하고 있다. 또한, 포토인터럽터(8)를 제1 회전축(52)에 설치해도 된다.
정보처리 장치(6)는 스테핑 모터(51)를 제어하는 동시에 광검출기(3a,3b)로부터 광강도 신호를 받아들이고, 소정의 연산을 수행하여 측정 시료(W)를 분석하는 것이다. 그 기기 구성은, 도 3에 도시된 바와 같이, CPU(601), 내부 메모리(602), 입출력 인터페이스(603), AD 변환기(604) 등으로 이루어진 범용 또는 전용의 컴퓨터이며, 상기 내부 메모리(6O2)의 소정 영역에 저장되어 있는 프로그램에 기초하여 CPU(601)나 그 주변 기기 등이 작동함으로써, 도 4에 도시된 바와 같이, 모터 제어부(61), 위상 검출부(62), 위상 설정부(63), 신호 접수부(64), 거리 산출부(65), 비교 분석부(66) 등으로서 기능한다.
이하에 각 부분 61~66에 대해 설명한다.
모터 제어부(61)는 스테핑 모터(51)에 펄스열 신호를 출력함으로써 스테핑 모터(51)를 회전시키는 것이다. 또, 회전 오차가 발생하지 않도록 원점 검출부(8)로부터 원점 검출 신호를 접수하여 스테핑 모터(51)의 회전 위상을 제어한다. 또 한, 스테핑 모터(51)에 출력하는 펄스열 신호를 위상 검출부(62)에도 출력한다.
위상 검출부(62)는 제1 통형상체(21) 및 제2 통형상체(31)의 위상(θ2131)을 검출하는 것이다. 본 실시형태에서는 스테핑 모터(51)의 회전에 의해 제1 통형상체(21) 및 제2 통형상체(31)가 기어(54)에 의해 연동하여 회전하므로, 스테핑 모터(51)의 회전 위상(θ51)을 알 수 있게 되면 제1 통형상체(21) 및 제2 통형상체(31)의 회전 위상(θ2131)을 검출할 수 있다. 그러므로, 위상 검출부(62)는 모터 제어부(61)로부터 스테핑 모터(51)의 펄스열 신호를 받아들이고, 그 펄스열 신호에 근거하여 스테핑 모터(51)의 위상(θ51)을 검출하는 것이다.
위상 설정부(63)는 제1 통형상체(21)와 제2 통형상체(31)와의 대향면(21A,31A)간의 거리(L)가 최소로 될 때의 위상(θ2131)과 대향면(21A,31A)간의 거리(L)가 최대로 될 때의 위상(θ2131) 사이에서, 광검출기로부터의 광강도 신호를 샘플링하는 복수의 위상, 즉 복수의 샘플링 포인트인 위상(θS)을 변경 가능하게 설정하고, 그 설정 신호를 신호 접수부(64)에 출력하는 것이다.
구체적으로, 본 실시형태에서는, 도 5에 도시된 바와 같이, 대향면(21A,31A)간의 거리(L)가 최소로 될 때의 스테핑 모터(51)의 회전 위상(θ51)과, 대향면(21A,31A)간의 거리(L)가 최대로 될 때의 스테핑 모터(51)의 회전 위상(θ51) 사이에 복수(도 5에서는 2개)의 샘플링 포인트인 위상(θS)을 변경 가능하게 설정하는 것이다. 또한, 대향면(21A,31A) 사이의 거리(L)가 최소로 될 때의 위상(θ51)과 상기 대향면(21A,31A)간의 거리(L)가 최대로 될 때의 위상(θ51) 사이라는 것은, 대향면(21A,31A)간의 거리(L)가 최소로 될 때의 위상(θ51), 및 대향면(21A,31A)간의 거리(L)가 최대로 될 때의 위상(θ51)도 그 범위 내에 포함하는 것이다.
여기서 샘플링 포인트인 위상(θS)이라는 것은, 후술하는 신호 접수부(64)가 광검출기(3a,3b)로부터 광강도 신호를 받아들일 때의 통형상체(21,31)의 회전 위상(θ2131)(본 실시형태에서는 스테핑 모터(51)의 위상(θ51))이다.
위상 설정부(63)는 오퍼레이터로부터의 입력 신호에 근거하여 복수의 샘플링 포인트인 위상(θs)을 설정할 수 있도록 해도 된다.
또, 그 밖에 선택 가능한 복수의 샘플링 포인트인 위상(θs)에 대하여 연산에 의해 농도를 구하고 복합적으로 처리하는 것도 가능하다.
신호 접수부(64)는 위상 검출부(62)로부터의 위상 검출 신호가 나타내는 스테핑 모터(51)의 위상(θ51)이 위상 설정부(63)가 설정한 각 위상 θS와 동일할 때 광검출기(3a,3b)로부터 광강도 신호를 받아들이고, 그 광강도 신호를 비교 분석부(66)에 출력하는 것이다.
거리 산출부(65)는 위상 설정부(63)가 설정한 2개의 위상(θs)에서의 통형상체(21,31)의 대향면(21A,31A)간의 거리(L)를 그 위상(θs)에 근거하여 산출하는 것 이다.
비교 분석부(66)는 신호 접수부(64)가 자외선 검출용 광검출기(3a)로부터 받아들인 광강도 신호를 수신하고, 또한 거리산출부(65)가 산출한 거리(L)에 근거하여 측정 시료(W)의 자외선 흡광도를 산출하는 것이다. 또, 신호 접수부(64)가 가시광선 검출용 광검출기(3b)로부터 받아들인 광강도 신호를 수신하고, 또한 거리 산출부가 산출한 거리(L)에 근거하여 측정 시료(W)의 가시광선 흡광도를 산출하는 것이다. 또한, 산출한 자외선 흡광도 및 가시광선 흡광도를 사용하여, COD(화학적 산소 요구량)를 산출하는 것이다.
구체적인 흡광도의 산출 방법에 대해 이하에 설명한다.
일반적으로, 측정 시료(W)의 흡광도, 광원(2)으로부터의 발광량 및 광검출기(3a,3b)의 수광량과의 관계는 하기 수학식 1이 된다.
Log[Io/Ic] = Ac*Cc*L = 흡광도(Abs.)
여기서, Io는 광원(2)의 발광량이며, 그 빛의 흡수가 없는 경우의 수광량은 동일하다. Ic는 광검출기(3a,3b)가 수광한 광량이다. Ac는 대향면(21A,31A)간의 거리(L)의 계수이며, 대향면(21A,31A)간의 거리(L)가 정해지면 결정한다. Cc는 측정 시료(W)의 흡수 물질의 농도이다. L은 통형상체(21,31)의 대향면(21A,31A)간의 거리이다.
본 실시형태에 관한 측광 분석계는 대향면(21A,31A)간의 거리(L)가 주기적으 로 변화하고 있으므로, 어느 위상(θ51)에서의 상태(샘플링 포인트인 위상(θs))를 n을 사용하여 나타내면 하기 수학식 2가 된다.
Log[Io/Ic(n)] = Ac*Cc*L(n) = 흡광도(Abs.)
여기서, 대향면(21A,31A)간의 거리(L)가 변화하더라도, 광원(2)의 강도, 측정 시료(W)의 농도 및 대향면(21A,31A)간의 거리(L)의 계수가 변하지 않는 것으로 한다.
다음으로, n=1의 경우와, n=2의 경우의 Ic(1), Ic(2)를 측정하여 차이를 취하면 하기 수학식 3이 된다.
LogIc(2)-LogIc(1) = Ac*Cc*(L(1) - L(2))
이 결과에 의하면, Io의 항이 없어지고, 흡광도가 광원(2)의 발광량과는 관계가 없어지는 것을 알 수 있다.
따라서, 대향면(21A,31A)간의 거리(L)가 예를 들어 10 ㎜일 때의 흡광도(Ac*Cc*10)는 하기 수학식 4가 된다.
Ac*Cc*10 = 10*(LogIc(2) - LogIc(1))/(L(1) - L(2))
즉, 대향면(21A,31A)간의 거리(L)가 10 ㎜일 때의 흡광도는 2개의 샘플링 포인트인 위상(θs)에서의 대향면(21A,31A)간의 거리(L)와 광검출기(3a,31b)의 수광 강도에 의해 측정할 수 있다.
다음으로, 본 실시형태의 측광 분석계(1)의 동작에 대해 설명한다.
측정 시료(W)를 분석조에 수용하고 제1 통형상체(21) 및 제2 통형상체(31)를 측정 시료(W) 내에 침지시킨다.
그리고, 스테핑 모터(51)를 구동시킴으로써 제1 통형상체(21)와 제2 통형상체(31)를 편심 회전시켜, 대향면(21A,31A)간의 거리를 주기적으로 변화시킨다. 이 때, 광검출기(3a,3b)가 대향면(21A,31A)간에 개재하는 측정 시료(W)를 투과한 투과광을 검출하고 있다. 여기서, 신호 접수부(64)가 광검출기(3a,3b)로부터 광강도 신호를 받아들이는 샘프링 포인트인 위상(θs)은 측정전에 오퍼레이터가 미리 정한 것으로 한다.
샘플링 포인트인 위상(θs)에서 신호 접수부(64)가 광강도 신호를 받아들여서 비교 분석부(66)에 출력한다. 신호 접수부(64)로부터 광강도 신호를 받아들인 비교 분석부는 2개의 샘플링 포인트인 위상(θs)에서의 광강도 신호 및 거리 산출부(65)가 산출한 대향면(21A,31A)간의 거리(L)를 사용하여 자외선 흡광도 및 가시광선 흡광도를 산출한다. 또한, 이들 흡광도로부터 측정 시료(W)의 COD(화학적 산소 요구량)를 산출한다.
이와 같이 구성한 본 실시형태의 측광 분석계(1)에 의하면, 대향면(21A,31 A)간의 거리(L)가 최소로 될 때의 위상(θ51)과 대향면(21A,31A)간의 거리(L)가 최 대로 될 때의 위상(θ51) 사이에서 광강도 신호를 샘플링하는 위상(θs)을 변경 가능하게 설정할 수 있으므로, 물리적인 변경을 하지 않고 저렴하게 측정 범위를 넓힐 수 있으며, 저농도의 측정 시료(W)로부터 고농도의 측정 시료(W)까지 측정할 수 있다.
또, 구동부(5)의 모터(51)로 스테핑 모터를 사용하고 있으므로, 각도 오차가 작으므로 높은 측정 정밀도를 확보할 수 있다.
<제2 실시형태>
다음으로, 본 발명의 측광 분석계의 제2 실시형태에 대해 도면을 참조하여 설명한다. 또한, 상기 제1 실시형태에 대응하는 것에 동일한 부호를 부여하고 있다.
본 실시형태에 관한 측광 분석계(11)와 상기 제1 실시형태는 상이하며, 정보처리 장치(6)의 기능 구성이 다르다. 즉, 본 실시형태에 관한 정보처리 장치(6)는, 도 6에 도시된 바와 같이, 모터 제어부(61), 위상 검출부(62), 위상 설정부(63), 신호 접수부(64), 계수 산출부(67), 비교 분석부(66) 등으로서 기능한다.
위상 설정부(63)는 제1 통형상체(21)와 제2 통형상체(31)와의 대향면(21A,31A)간의 거리(L)가 최소로 될 때의 위상(θ2131)과, 대향면(21A,31A)간의 거리(L)가 최대로 될 때의 위상(θ2131) 사이에서, 광검출기로부터의 광강도 신호를 샘플링하는 복수의 샘플링 포인트인 위상(θs)을 변경 가능하게 설정하고, 그 설정 신호를 신호 접수부(4)에 출력하는 동시에 계수 산출부(67)에 출력하는 것 이다.
계수 산출부(67)는 위상 설정부(63)가 미리 설정한 위상(θs)에서, 농도가 기존의 측정 시료(예를 들면, 교정액)(W)를 측정한 결과를 수신하고, 그 측정 결과로부터 대향면(21A,31A)간의 거리(L)를 산출하고, 또한 2개의 샘플링 포인트인 위상(θs)에서의 산출한 대향면(21A,31A)간의 거리(L)를 사용하여 상기 제1 실시형태의 (수학식 4)에서의 계수 K(= 10/(L(1) - L(2)))를 산출하는 것이다.
비교 분석부(66)는 신호 접수부(64)가 광검출기(3a,3b)로부터 받아들인 광강도 신호를 수신하고, 또한 계수 산출부(67)가 산출한 계수 K에 근거하여 상기 제1 실시형태의 수학식 4에 의해 측정 시료(W)의 자외선 흡광도, 가시광선 흡광도 및 COD를 산출하는 것이다.
다음으로, 본 실시형태의 측광 분석계(1)의 동작에 대해 설명한다.
우선, 분석조(4)에 농도가 기존의 측정 시료(예를 들면, 교정액)(W)를 수용 하고, 제1 통형상체(21) 및 제2 통형상체를 측정 시료(W) 내에 침지시킨다. 그리고, 상기 제1 실시형태와 마찬가지로, 위상 설정부(63)가 미리 설정한 위상(θs)에서 흡광도를 측정한다. 그 측정 결과에 기초하여 계수 산출부(67)가 계수 K를 산출한다.
그 후, 분석조(4)로부터 교정액(W)을 제거하고, 농도가 미지인 측정 시료를 수용하여, 제1 통형상체(21) 및 제2 통형상체를 측정 시료(W) 내에 침지시킨다.
그리고, 상기 제1 실시형태와 동일하게 하여, 신호 접수부(64)가 샘플링 포 인트인 위상(θs)에서 광강도 신호를 받아들이고, 비교 분석부(66)에 출력한다. 비교 분석부(66)는 2개의 샘플링 위상(θs)에서의 광강도 신호 및 계수 산출부(67)가 산출한 계수 K를 사용하여 자외선 흡광도 및 가시광선 흡광도를 산출한다. 또한, 이들 흡광도로부터 측정 시료(W)의 COD(화학적 산소 요구량)를 산출한다.
이와 같이 구성한 본 실시형태에 의하면, 상기 제1 실시형태와 마찬가지로 물리적인 변경을 가하지 않고 염가로 측정 범위를 넓힐 수 있으며, 저농도의 측정 시료(W)로부터 고농도의 측정 시료(W)까지 측정할 수 있다.
또한, 본 발명은 상기 실시형태에 한정되는 것이 아니다.
예를 들면, 상기 실시형태에서는 구동부의 모터로 스테핑 모터를 사용하였으나, 스테핑 모터 이외의 모터, 예를 들면 AC 모터를 사용해도 된다. 이 경우에는, 인코더를 사용하여 AC 모터의 회전 위상을 검출한다.
또, 다른 모터더라도 위상과의 관계를 알 수 있는 것이라면 사용할 수 있다.
또, 스테핑 모터의 펄스열 신호를 사용하여 위상을 검출하였으나, 각각의 통형상체의 위상을 개별적으로 검출하도록 해도 된다.
또한, 상기 실시형태에서는 제 l 통형상체 및 제2 통형상체를 편심 회전시킴으로써 대향면간의 거리를 주기적으로 변화시키도록 하고 있으나, 한쪽의 통형상체를 편심 회전시키고 다른 한쪽의 통형상체를 고정시켜서 대향면간의 거리를 주기적으로 변화시키도록 해도 된다.
상기 실시형태에서는 대향면간이 최장이 되는 위상(θ=180°)과, 최단이 되 는 위상(θ=O°) 사이에서 2개의 샘플링 포인트(θs)를 취하도록 하고 있으나, 장치의 기계적인 성능을 고려하면 어느 한쪽의 샘플링 포인트(θs)를 대향면간이 최장으로 될 때의 위상(θ=180°) 또는 최단으로 될 때의 위상(θ=0°)에 고정하고, 다른 한쪽의 샘플링 포인트를 최장으로 될 때의 위상(θ=180°) 및 최단으로 될 때의 위상(θ=0°) 사이에서 취하도록 하는 것이 바람직하다.
게다가, 상기 실시형태의 통형상체는 원통 형상이지만, 타원통 형상 등이어도 된다.
덧붙여서, 상기 실시형태에서는 광검출기를 자외선 검출용 및 가시광선 검출용의 2개를 사용하였으나, 하나의 광검출기를 사용하여 자외선 및 가시광선을 검출하도록 해도 된다. 이 경우에는, 자외선 검출용 간섭 필터와 가시광선 검출용 간섭 필터를 번갈아 교환함으로써 자외선 및 가시광선을 검출한다.
그 외, 전술한 각 실시형태나 변형 실시형태의 일부 또는 전부를 적절히 조합해도 된다. 본 발명은 상기 각 실시형태에 한정되지 않으며, 그 취지를 일탈하지 않는 범위에서 여러 가지의 변형이 가능한 것은 말할 것도 없다.
이와 같이, 본 발명에 의하면 대향면간의 거리가 최소로 될 때의 위상과 대향면간의 거리가 최대로 될 때의 위상 사이에서 상기 광검출기로부터의 광강도 신호를 샘플링하는 위상을 변경 가능하게 설정할 수 있으므로, 대향면간의 최장 거리와 최단 거리의 물리적인 변경을 하지 않고 측정 범위를 넓힐 수 있으며, 저농도의 측정 시료로부터 고농도의 측정 시료까지 측정할 수 있는 측광 분석계를 제공할 수 있다.

Claims (3)

  1. 광원을 내부에 갖는 제1 통형상체와, 상기 광원으로부터의 빛을 검출하는 광검출기를 내부에 갖는 제2 통형상체를 측정 시료 내에서 이간하여 배치하고, 적어도 한쪽의 통형상체를 회전시켜 상기 2개의 통형상체의 대향면간의 거리를 주기적으로 확장 수축하고, 그 대향면간에 개재하는 측정 시료를 분석하는 측광 분석계로서,
    상기 제1 및 제2 통형상체의 회전 위상을 검출하는 위상 검출부,
    상기 대향면간의 거리가 최소로 될 때의 위상과 상기 대향면간의 거리가 최대로 될 때의 위상 사이에서, 상기 광검출기로부터의 광강도 신호를 샘플링하는 위상을 변경 가능하게 설정하는 위상 설정부,
    상기 위상 검출부로부터의 위상 검출 신호에 근거하여 상기 위상 설정부에 의해 설정된 위상에서의 광강도 신호를 받아들이는 신호 접수부, 및
    상기 신호 접수부가 받아들인 각 위상에서의 광강도 신호를 비교하는 것에 의해 상기 측정 시료를 분석하는 비교 분석부를 구비하고 있는 측광 분석계.
  2. 제1항에 있어서,
    상기 제1 및 제2 통형상체가 스테핑 모터에 의해 회전하는 것이고,
    상기 위상 검출부가 상기 스테핑 모터로의 펄스열 신호를 사용하여, 상기 제1 및 제2 통형상체의 회전 위상을 검출하는 측광 분석계.
  3. 제1항에 있어서,
    상기 위상 검출부가 인코더로부터의 신호를 사용하여, 상기 제1 및 제2 통형상체의 회전 위상을 검출하는 측광 분석계.
KR1020060072585A 2005-08-01 2006-08-01 측광 분석계 KR100840034B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060072585A KR100840034B1 (ko) 2005-08-01 2006-08-01 측광 분석계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00244975 2005-08-01
KR1020060072585A KR100840034B1 (ko) 2005-08-01 2006-08-01 측광 분석계

Publications (2)

Publication Number Publication Date
KR20070015892A KR20070015892A (ko) 2007-02-06
KR100840034B1 true KR100840034B1 (ko) 2008-06-19

Family

ID=43650211

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060072585A KR100840034B1 (ko) 2005-08-01 2006-08-01 측광 분석계

Country Status (1)

Country Link
KR (1) KR100840034B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998929A (ja) 1982-11-29 1984-06-07 Kawasaki Heavy Ind Ltd 振動装置
JPH0246996A (ja) * 1988-08-05 1990-02-16 Ishikawajima Harima Heavy Ind Co Ltd 複動プレスのブランクソルダ駆動方法
JP2004085225A (ja) 2002-08-23 2004-03-18 Honda Motor Co Ltd 物体検知装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998929A (ja) 1982-11-29 1984-06-07 Kawasaki Heavy Ind Ltd 振動装置
JPH0246996A (ja) * 1988-08-05 1990-02-16 Ishikawajima Harima Heavy Ind Co Ltd 複動プレスのブランクソルダ駆動方法
JP2004085225A (ja) 2002-08-23 2004-03-18 Honda Motor Co Ltd 物体検知装置

Also Published As

Publication number Publication date
KR20070015892A (ko) 2007-02-06

Similar Documents

Publication Publication Date Title
CN106461539A (zh) 具有可变光学路径长度池的分光光度计
EP3483599A8 (en) Methods for measuring the concentration of an analyte in solution and for calibrating the measurement as well as handheld devices therefor
JP2007040814A (ja) 吸光度測定用センサ及び吸光度測定方法
EP2110645B1 (en) Absolute position length measurement type encoder
US8902427B2 (en) System for measuring properties of test samples in fluid
JP3578470B2 (ja) 混酸の濃度測定装置
JP4627022B2 (ja) 測光分析計
KR100840034B1 (ko) 측광 분석계
WO2017121688A1 (en) Wide range gas detection using an infrared gas detector
JP4048139B2 (ja) 濃度測定装置
JP3242500B2 (ja) 吸光光度計の自己診断方法
JP2009162719A (ja) 自動分析装置
FI89412B (fi) Foerfarande och polarimeter foer maetning av vidning av polarisationsplanet i socker- eller annan loesning
JP4793413B2 (ja) 示差屈折率検出器
CN209372694U (zh) 一种污水监测系统
JP2010249726A (ja) ガス分析装置
CN115280120A (zh) 细菌内毒素读取器验证板和使用方法
KR100760005B1 (ko) 용액의 농도 측정장치
RU42320U1 (ru) Поточный измеритель концентрации взвешенной фазы в жидкой среде
KR200230292Y1 (ko) 고농도 및 저농도 오존의 동시측정 센서
KR101413998B1 (ko) 액정 위상지연기를 이용한 편광간 위상변화 검출방법
JP3117245U (ja) 示差屈折率検出器
RU2238540C2 (ru) Оптический газоанализатор
JP2005345173A (ja) 医用光度計
JPS59107223A (ja) 分光分析装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150518

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee