KR100802896B1 - 파라핀계 전기절연유 및 이의 제조방법 - Google Patents

파라핀계 전기절연유 및 이의 제조방법 Download PDF

Info

Publication number
KR100802896B1
KR100802896B1 KR1020060113705A KR20060113705A KR100802896B1 KR 100802896 B1 KR100802896 B1 KR 100802896B1 KR 1020060113705 A KR1020060113705 A KR 1020060113705A KR 20060113705 A KR20060113705 A KR 20060113705A KR 100802896 B1 KR100802896 B1 KR 100802896B1
Authority
KR
South Korea
Prior art keywords
oil
paraffinic
insulating oil
hydrocarbon
electrical insulating
Prior art date
Application number
KR1020060113705A
Other languages
English (en)
Inventor
조용래
전정식
안지애
Original Assignee
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이에너지 주식회사 filed Critical 에스케이에너지 주식회사
Priority to KR1020060113705A priority Critical patent/KR100802896B1/ko
Application granted granted Critical
Publication of KR100802896B1 publication Critical patent/KR100802896B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • H01B3/22Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lubricants (AREA)
  • Organic Insulating Materials (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명은 변압기, 서킷 브레이크, 스위치 박스 등의 전기적 장치의 절연체 역할을 하는 전기절연유의 제조방법에 관한 것이다. 좀 더 구체적으로는 감압가스유를 경질연료유로 전환하는 연료유 수소화 분해공정에서 부산되는 미전환유를 감압분류하는 단계; 분류된 유분을 각기 촉매탈랍시키는 단계; 탈랍된 유분을 수소첨가 마무리 반응하는 단계; 및 경질 탄화수소 분별증류하는 단계를 거쳐 얻어지며, 10% 증류점 내지 90% 증류점에 상응하는 탄화수소의 탄소수가 15~27이고, 40℃에서의 동점도가 7~13 센티스톡스이며, 비중이 0.82~0.84이고, 유동점이 -27.5℃ 이하이며, 파라핀계 탄화수소가 60% 이상인 것을 특징으로 하는 파라핀계 전기절연유 및 이의 제조방법에 관한 것이다. 상기 파라핀계 전기절연유에 가스흡습성 개선제로 알킬 나프탈렌계 방향족 혼합물을 더욱 포함하는 경우에는 우수한 전기적 특성 및 산화안정성을 유지하면서 사용 중 가스방출에 의한 전기 설비의 폭발 위험성을 제거할 수 있으며, 종래의 납센계 원유에 비하여 풍부한 원료공급이 가능한 파라핀 원유를 활용함으로써 저유동점의 파라핀계 전기절연유를 경제적으로 제조할 수 있다.
미전환유, 저유동점, 파라핀계 전기절연유,

Description

파라핀계 전기절연유 및 이의 제조방법 {Paraffin-based electric insulating oil and method for preparing the same}
도 1은 본 발명에 따른 연료유 수소화 분해공정에서 부산된 미전환유를 이용하여 고도의 탈랍공정을 통해 저유동점의 파라핀계 전기절연유를 제조하는 공정을 나타내는 개략도이다.
도 2는 본 발명에 따라 제조된 파라핀계 전기절연유의 가스흡습성을 개선하기 위해 적용된 방향족계 탄화수소 화합물의 투여량에 따른 가스흡습성 변화를 나타내는 그래프이다.
< 도면의 주요부분에 대한 부호의 설명 >
AR : 상압잔사유 VGO : 감압가스유
UCO1 : 리사이클 모드 미전환유 UCO2 : 일방향 모드 미전환유
V1 : 상압잔사유 감압증류공정 V2 : 미전환유 감압증류공정
R1 : VGO 수소화 처리 반응공정 R2 : VGO 수소화 분해 반응공정
FS1 : 1차 분별증류공정 FS2 : 2차 분별증류공정
CDW : 촉매탈랍공정 (8A족 희토류 금속원소의 이성화 반응 촉매)
HDT : 수소첨가 마무리공정 (8A족 희토류 금속원소의 수첨 촉매)
본 발명은 변압기, 서킷 브레이크, 스위치 박스 등의 전기적 장치의 절연체 역할을 하는 전기절연유의 제조방법에 관한 것으로, 보다 구체적으로는 절연 매체로서 전기적 장치의 전기절연기능, 냉각기능 및 내부부속물의 청결유지 기능을 지니며, 석유로부터 얻어진 파라핀계 탄화수소 화합물을 주성분으로 하는 저유동점의 파라핀계 전기절연유 및 이의 제조방법에 관한 것이다.
본 발명에 있어서, "미전환유"는 연료유 수소화 분해공정에서 연료유로 전환되지 않고 남은 중질유분을 의미하고, "파라핀계 전기절연유"라 함은 석유로부터 고도로 정제한 탄소수 15 이상 27 이하, 40℃에서의 동점도 7센티스톡스 이상 13센티스톡스 이하, 비중 0.82 이상 0.84 이하, 파라핀계 탄화수소 60% 이상, 유동점 -27.5℃ 이하의 성상과 조성을 지니는 것을 특징으로 하는 광유계 오일을 말한다.
전통적으로 광유계 전기절연체로는 납센계 원유를 정제하여 얻은 납센 윤활기유를 근간으로 한 납센계 전기절연유가 사용되고 있는데, 이는 납센계 탄화수가 본질적으로 지니는 저온에서의 우수한 유동성과 우수한 용해력에 기인한다. 변압기와 같은 전기설비 내에 충진된 전기절연유는 절연기능을 수행하는 이외에도, 발생되는 열을 분산시키는 냉각기능을 수행하는데, 통상적으로 절연유는 자연대류에 의해 열을 외부로 전달한다. 따라서, 외기온도가 오일의 유동점 보다 낮은 조건에서는 오일이 응고되어 유동성이 상실되므로, 오일이 열전달 매체로서의 기능을 발휘하지 못하여 설비 고장을 초래하게 된다. 또한, 고전압(110 KV 이상)의 변압기 와 같은 설비의 경우에는 내부 방전에 의해 탄화수소로 이루어진 오일이 분해되어 수소와 같은 폭발성 가스가 발생되게 되는데, 납센 오일의 우수한 용해력은 이러한 내부 방전에 의해 발생된 가스를 흡수하여 설비의 안전성을 유지시키므로 납센계 탄화수소 함량이 많은 납센 오일을 근간으로 전기절연유를 제조하고 있다. 이러한 오일을 확보하기 위해서는 일반적으로 원유 자체에 납센계 탄화수소 성분이 풍부한 납센 원유를 원료로 하여, 산화안정성을 향상시키기 위해 방향족계 탄화수소를 제거하고, 수소첨가 마무리 공정을 통해 산성물질이나 자외선에 불안정한 물질을 제거함으로써, 절연성능이 더욱 개선된 오일을 확보하게 되는데, 이러한 과정으로 제조된 전기절연유는 납센계 탄화수소의 본질적 특성으로 인하여, 유동점이 -27.5℃이하로 매우 낮고 용해력이 우수하여 전기절연유로서 유용하게 사용될 수 있다.
종래 기술에 따른 전기절연유는 결국 납센 원유로부터 얻어지는 것이므로, 최초 원료 물질인 원유의 경제적 확보 여부와 원유의 성상에 따라 경제성과 전기절연유의 성능이 결정된다. 현재 납센 원유 매장량은 전세계 석유 원유 매장량의 2~3%에 불과하며, 지리적 위치 또한 베네수엘라, 미국(텍사스, 캘리포니아, 루이지애나, 아칸사스), 영국 북해지역, 중국(발해만, 가랍마의, 요하, 대항) 등으로 제한적이어서 납센 원유의 조달이 갈수록 원활하지 못한 실정이다. 이로 인해, 지난 15년간 세계 유수의 석유회사인 Exxon, Sun, Chevron, Texaco, Shell 등은 납센 윤활기유 공장을 폐쇄하였다. 이와 같이, 납센 오일을 근간으로 하는 납센 전기절연유를 경제적으로 확보하기 어려워지고, 전기절연유용 기초유의 원활한 공급이 이루어지지 않음으로 인하여 전기절연유의 가격이 상승하고 있는 추세이다.
전기절연유로서 갖추어야 할 특성은 다음과 같다.
1) 전기적 특성 (절연 성능)이 우수할 것.
2) 냉각 성능이 우수할 것.
3) 내구성 (산화안정성)이 우수할 것.
4) 저온 유동성이 우수할 것.
5) 고압에서의 안정성 및 가스 흡습성이 우수할 것.
6) 부식성이 없을 것.
7) 화재의 위험이 낮을 것.
전세계 석유 원유의 97~98%를 차지할 정도로 납센 전기절연유에 비하여 풍부한 원료 조달이 가능한 파라핀계 오일로 제조된 전기절연유는 파라핀계 탄화수소가 지니는 본질적인 특성으로 인하여 상기 요구성능 중 다음과 같은 문제를 안고 있다.
1) 유동점이 통상적으로 -15℃정도로 상대적으로 높으므로, 외기온도가 낮은 지역에서는 오일의 유동성이 낮아 열전달 기능이 저하되어 전기설비의 냉각성능에 영향을 줌. (KS 규격 경우, 고전압 대용량 변압기용 절연유의 유동점은 -27.5℃이하로 요구됨)
2) 용해도가 낮아 고압에서 발생된 수소가스를 흡수하지 못하고 방출하여 설비의 폭발 및 화재의 위험성이 있음.
그러나 파라핀계 전기절연유는 풍부한 원료를 바탕으로 경제적으로 확보가 가능하며 산화안정성이 우수하고, 휘발성이 낮으며, 발암성 물질의 전구체인 다환 방향족 화합물의 함량이 납센계 오일에 비하여 낮은 장점을 갖는다.
이에 본 발명에서는 원천적으로 원료 조달이 용이한 파라핀계 원유로부터 전기절연유를 경제적으로 확보하기 위해 파라핀계 오일이 근원적으로 지니는 전기절연유로서의 문제점을 해결하기 위해 예의 연구한 결과, 파라핀계 원유를 상압에서 증류하여 남는 상압잔사유를 고부가 연료유로 전환하는 고도화 정제설비인 연료유 수소화 분해 공정에서 부산되는 미전환유를 공급원료로 하여 파라핀계 절연유용 기초유를 제조하는 과정에서 이성화법에 의한 촉매탈랍 공정으로 통해 파라핀계 오일의 유동점이 -27.5℃이하로 제조되는 우수한 방법을 개발하는 한편, 최적의 가스흡습성 개선제를 첨가함으로써 파라핀계 오일이 지니는 용해력 부족의 문제점을 개선할 수 있음을 발견하였다.
따라서 본 발명의 목적은 연료유 수소화 분해공정에서 부산되는 미전환유를 공급원료로 하여 파라핀계 전기절연유 용도의 기초유로서 적합한 저유동점의 산화안정성이 우수한 파라핀계 오일을 확보하고, 여기에 최적의 가스흡습성 개선제 유형과 투여량을 설정함에 따라, 원료가 원천적으로 풍부한 파라핀계 석유 원유로부터 우수한 성능을 지닌 저유동점의 파라핀계 전기절연유를 경제적으로 제공하는데 있다.
상기 목적을 달성하기 위한 본 발명의 파라핀계 전기절연유는 10% 증류점 내지 90% 증류점에 상응하는 탄화수소의 탄소수가 15~27이고, 40℃에서의 동점도가 7~13 센티스톡스이며, 비중이 0.82~0.84이고, 유동점이 -27.5℃ 이하이며, 파라핀 계 탄화수소가 60% 이상인 조성으로 구성된다.
또한 본 발명의 파라핀계 전기절연유는 0.5~4.0 중량%의 알킬 나프탈렌계 방향족 혼합물을 더욱 포함한다.
본 발명의 다른 목적을 달성하기 위한 상기 파라핀계 전기절연유의 제조방법은 감압가스유를 경질연료유로 전환하는 연료유 수소화 분해공정에서 부산되는 미전환유를 감압분류하는 단계; 분류된 유분을 각기 촉매탈랍시키는 단계; 탈랍된 유분을 수소첨가 마무리 반응하는 단계; 및 경질 탄화수소 분별증류하는 단계로 이루어진다.
이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.
본 발명에 따른 저유동점의 파라핀계 전기절연유 용도 기초유를 제조하기 위해서는 도 1에 나타난 바와 같이, 종래의 상압잔사유 감압 증류공정(V1), 감압가스유 수소화 전처리 반응공정(R1), 감압가스유 수소화 분해 반응공정(R2) 및 분별 증류공정(FS1)에서 부산된 미전환유를 저유황 중질연료유 제품탱크로 보내는 일방향 모드 또는 수소화 반응 분해공정(R2)으로 재순환 시키는 리사이클 모드의 연료유 수소화 분해 반응공정에 있어서, 상기 미전환유의 일부 또는 전부를 별도의 감압 증류공정(V2)으로 보내어 전기절연유 용도 오일로서 적합한 점도 및 분자량 분포를 지니는, 상세하게는 냉각성능 향상을 위해 충분히 점도가 낮으면서도 휘발성이 낮은 물질들에 의한 화재의 위험성을 최소화하기 위해 10% 증류점 내지 90% 증류점의 탄소수가 15이상 25이하 및 20이상 27이하의 분포를 지니는 소정의 점도 등급으로 감압 분류한 다음에, 납센계 오일과 동등한 수준의 저온 유동성을 확보하기 위해 유동성을 저하시키는 왁스와 같은 직쇄형 파라핀계 탄화수소 화합물을 백금계 촉매를 충진한 이성화 반응법에 의한 탈랍공정(CDW)으로 보내어 이소파라핀으로 전환함으로써, 유동점이 -27.5℃ 이하, 더욱 바람직하게는 -45℃이하의 유동점을 지니며, 산화안정성을 확보하도록 파라핀계 탄화수소가 60% 이상 더욱 바람직하게는 70% 이상 함유토록 하였으며, 산성물질 및 기타 불순물을 제거하여 절연성능을 향상시키고 열이나 자외선에 대한 안정성을 향상시키기 위해 팔라듐계 촉매를 충진한 수소첨가 마무리 공정(HDT)을 통하여 다환 방향족 화합물과 헤테로(황, 질소, 산소 등) 화합물 등을 극도로 제거하고 휘발성을 낮추어 화재의 위험성을 향상시키기 위해 분별 증류공정(FS2)을 통하여 경질유분을 제거하여 얻게 되는 파라핀계 기초유는 전기절연유로서 직접 적용이 가능한 우수한 성상과 조성을 지니게 된다.
제조된 전기절연유용 기초유에 파라핀계 탄화수소가 지니는 근원적인 용해력 부족을 개선하여 전기절연유로서 사용 중에 발생되는 고압에 의한 전기설비 내부방전으로 생성되는 수소가스를 흡수하여 폭발의 위험성을 제거할 수 있도록 알킬 나프탈렌계 방향족 탄화수소 혼합물의 가스흡습성 개선제를 0.5~4.0wt% 첨가하였다.
이하 제조예, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명하지만 하기 예에 본 발명의 범주가 한정되는 것은 아니다.
< 제조예 1>
하기 표 1에 나타난 성상을 지닌 감압가스유(VGO)를 감압가스유 수소화 처리공정(R1)에서 저액공간속도(LHSV) 2.37/hr, 압력 2,494 psig, 온도 375.5℃, HC-K 촉매(Nippon Ketjen사 제품)을 이용하여 수소 유입속도 5,570 SCF/Bbl의 조건으로 처리한 후, 후술하는 재순환되는 미전환유와 함께 LHSV 1.40/hr, 압력 2,466 psig, 온도 381.9℃, HC-22 촉매(UOP사 제품)를 이용하여 수소 유입속도 7,480 SCF/Bbl의 조건으로 감압가스유 수소화 분해 반응공정(R2)에서 처리하여 재순환 시킴으로써 총괄전환율이 85%일 때에 부산되는 리사이클 모드의 미전환유(UCO1)와 미전환유를 재순환시키지 않음으로써 전환율이 65%인 경우에 부산되는 미전환유(UCO2)를 얻었으며, 이 경우 통상의 분리기 및 여러 개의 분별 증류공정을 거쳐 비점이 380℃ 이하인 경유 및 경질 연료유분을 회수함과 동시에 표 1에 나타낸 성상을 지닌 미전환유(UCO) 2종을 얻었다.
VGO 및 UCO의 성상
VGO UCO 1 UCO 2
비중(15℃) 0.922 0.835 0.865
동점도(40℃), cSt 49.9 19.3 21.1
유동점, ℃ 32.5 40.0 37.5
아닐린점, ℃ 78 118 107
증류성상, ℃ 초류점 10% off 50% off 90% off 종류점 260 372 444 516 547 350 385 435 496 536 327 375 436 500 550
황함량, ppm 800 14 23
탄화수소 포화도, wt% 31 98 89
상기 미전환유를 공급원료로 하여 제조한 파라핀계 전기절연유의 성상 및 성능 시험결과를 하기 실시예 및 비교예에 나타내었으며 이에 수행된 시험은 하기와 같은 방법으로 하였다.
1) 비중은 KS M 2002 에 준하여 실시하였다.
2) 점도는 KS M 2014에 준하여 실시하였다.
3) 인화점은 KS M 2010에 준하여 실시하였다.
4) 유동점은 KS M 2016에 준하여 실시하였다.
5) 황함량은 ANTEK 장비를 이용하여 KS M 2027에 따라 실시하였다.
6) 아닐린점은 KS M 2053에 준하여 실시하였다.
7) 증류성상 및 탄소수분포 시험은 KS M 2031에 준하여 실시하였다.
8) 탄화수소 조성은 ASTM D 2140에 준하여 실시하였다.
9) 탄화수소 포화도는 ASTM D 2549에 준하여 실시하였다.
10) 다환방향족 함량은 IP 346에 준하여 실시하였다.
11) 수분함량은 KS M 2058에 준하여 실시하였다.
12) 증발량, 비부식성 유황, 절연파괴전압, 유전정접, 부피저항률, 산화안정성 등의 전기절연유 성능시험은 KS C 2101에 준하여 실시하였다.
13) 가스흡습성 시험은 ASTM D 2300B에 준하여 실시하였다.
< 실시예 1>
도 1에 나타난 바와 같이 미전환유(UCO1)를 감압증류공정(V2)에 주입하여 탑정압력 75 mmHg, 탑정온도 80℃ 및 탑저압력 150 mmHg, 탑저온도 325℃로 감압 증류하여 추출물 60D 27.5 LV%, 70D 33.0 LV%, 90D 8.3 LV%와 중간 추출물(MD: middle distillate) 17.2 LV%(60D 제조시) 또는 11.7LV%(70D 제조시) 그리고 탑저 제품인 180D 47.0LV%를 얻었으며 이중에 전기절연유용 오일로서 적합한 점도와 탄소수 분포를 지니는 유분인 60D, 70D를 각각의 중간제품 저장탱크에 저장하고 중간 추출물은 감압가스유 수소화 분해공정으로 리사이클 시켰다(LV%: 액상부피비(Liquid Volume%), 60D: 점도값이 60인 증류유분, 70D: 점도값이 70인 증류유분).
60D, 70D 각각은 유동점을 낮추고 산화안정성을 증대시키기에 충분한 양의 파라핀계 탄화수소 화합물이 함유토록 촉매 탈랍, 더욱 바람직하게는 이성화 반응에 의한 탈랍을 수행하는 백금이 함유된 촉매(MSDW-2, ExxonMobil사 제품) 및 수소 유입하에 저액공간속도 0.5~2.0/hr, 압력 1,400~2,500psig 바람직하게는 1,900~2,200psig, 온도 280~380℃의 조건으로 처리하여 원하는 유동점에 도달하게 한 다음에, 처리된 유분은 전기적 특성을 향상시키고 자외선 안정성을 부여하기 위해 수소첨가 마무리 공정, 바람직하게는 팔라듐이 함유된 촉매(MASSAT, ExxonMobil사 제품) 및 수소유입 하에 저액공간속도 0.5~2.0/hr, 압력 1,400~2,500psig 바람직하게는 1,900~2,200psig, 온도 180~320℃, 바람직하게는 220~280℃의 조건으로 산성물질이나 잔여 불순물들을 처리한 다음 분별증류(FS2)하여 인화점을 향상시키기 위해 경질유분을 제거한 결과, 하기 표 2에 기재한 바와 같이 파라핀계 오일이지만 낮은 유동점을 지니며, 열, 산화 및 자외선에 불안정한 물질 즉, 방향족 화합물 및 산성물질이 적고 탄화수소 분포가 전기절연유로서 적합한 60N, 70N급 점도의 제품이 얻어졌으며, 고전압 대용량 변압기용 광유계 전기절연유 KS규격 1종 4호를 충족하였다. 70N급 제품은 동일 원료 유분을 활용하여 이성화 탈랍 공정에서의 반응온도를 323℃와 337℃로 각각 달리하여 유동점이 -27.5℃인 70N(1)과 유동점이 -45.0℃인 70N(2)를 얻었다.
실시예 1 - 파라핀계 전기절연유용 오일의 성상과 조성
60N 70N(1) 70N(2) 전기절연유 KS 규격 (1종4호)
비중(15/4℃) 0.822 0.833 0.837 0.91 이하
동점도(40℃), cSt 7.2 12.4 12.8 13 이하
동점도(100℃), cSt 2.1 3.1 3.2 6 이하
인화점(밀폐식), ℃ 152 174 170 140 이상
유동점, ℃ -47.5 -27.5 -45.0 -27.5 이하
전산가, mgKOH/g <0.01 <0.01 <0.01 0.02 이하
아닐린점, ℃ 100.8 108.5 108.9 -
증류성상, ℃ 초류점 10% off 50% off 90% off 종류점 242.0 273.0 352.0 404.0 442.0 280.0 348.0 397.0 427.0 461.0 276.0 346.0 397.0 428.0 464.0 - - - - -
탄소수 분포(10%~90% off) 15~25 20~27 20~27 -
황함량, ppm <1 <1 <1 -
탄화수소 조성,% 파라핀계 탄화수소(Cp) 나프텐계 탄화수소(Cn) 방향족계 탄화수소(Ca) 72 28 0 78 22 0 77 23 0 - - -
증발량(98℃/5시간), % 0.25 0.14 0.16 0.4 이하
다환방향족 함량, wt% 0 0 0 3 이하
다환방향족 함량 규격은 IEC(국제전기협회) 규격 요구치.
미국 석유협회의 파라핀오일 분류기준: Cp함량 60% 이상
상기 실시예 1에서 연료유 수소화 분해공정의 미전환유를 공급원료로 하여 전기절연유로서의 냉각성능을 유지하면서 화재의 위험성이 없도록 최적의 점도 및 탄소수 분포를 확보하기 위해 감압증류공정에서 10% 및 90% 증류점을 기준으로 탄소수 15에서 27의 분포를 지니는 60D, 70D의 중간 제품을 얻었으며, 이들을 백금(원소주기율표 상의 8A족에 속하는 희토류 금속)이 함유된 촉매로 이성화 반응법에 의한 촉매탈랍을 수행한 결과 유동점이 -27.5℃이하이며 파라핀계 탄화수소가 70% 이상으로 매우 높고, 팔라듐(원소주기율표 상의 8A족에 속하는 희토류 금속)이 함유된 촉매로 수소첨가 마무리 반응 공정을 수행한 결과 다환 방향족 화합물과 산성물질인 헤테로 화합물이 극도로 제거되어 열안정성 및 자외선 안정성이 우수하고 발암성 물질의 전구체인 다환방향족 화합물이 없는 저유동점의 파라핀계 전기절연유용 기초유인 60N, 70N 점도 등급의 제품 확보가 가능함을 알 수 있다. 종래의 기술에 의한 납센 원유로부터 정제하여 얻은 납센계 전기절연유용 기초유와 본 발명에 따른 파라핀계 전기절연유용 기초유의 성상을 하기 표 3를 통하여 비교하였다.
탄화수소 유형별 전기절연유용 기초유의 성상비교
납센계 70N 파라핀계 70N(2) 전기절연유 KS 규격 (1종4호)
비중(15/4℃) 0.882 0.837 0.91 이하
동점도(40℃), cSt 11.9 12.8 13 이하
동점도(100℃), cSt 2.8 3.2 6 이하
인화점 밀폐식, ℃ 148 170 140 이상
유동점, ℃ -45.0 -45.0 -27.5 이하
전산가, mgKOH/g 0.01 <0.01 0.02 이하
아닐린점, ℃ 79.0 108.9 -
증류성상, ℃ 초류점 10% off 50% off 90% off 종류점 258.0 330.0 378.0 411.0 463.0 276.0 346.0 397.0 428.0 464.0 - - - - -
탄소수 분포(10%~90% off) 19~26 20~27 -
황함량, ppm 93 <1 -
탄화수소 조성,% 파라핀계 탄화수소(Cp) 나프텐계 탄화수소(Cn) 방향족계 탄화수소(Ca) 48 48 4 77 23 0 - - -
증발량(98℃/5시간), % 0.28 0.16 0.4 이하
다환방향족 함량, wt% 2.6 0 3 이하
본 발명에 따른 파라핀계 절연유용 오일은 파라핀계 탄화수소를 구성하는 탄소수가 백분율로 70~78%로 미국 석유협회의 파라핀계 오일의 분류 기준인 Cp함량인 60%를 상회하고, 파라핀계 탄화수소가 지니는 고유의 특성으로 인하여 높은 인화점과 낮은 휘발성을 나타냄을 알 수 있으며, 파라핀계 오일임에도 낮은 유동점을 확보하여, 종래의 납센계 오일 적용 전기절연유와 동일하게 KS 절연유 규격 중에 고전압 대용량 변압기용 광유계 전기절연유 규격인 1종 4호를 만족하는 품질의 확보가 가능함을 알 수 있다. 또한 발암성 물질의 전구체로서 오일 중 총함량이 3% 이하로 규제되는 다환방향족 화합물이 본 발명에 의해 제조된 오일에는 전혀 함유되어 있지 않아 납센계 오일에 비하여 상대적으로 친환경적이다.
< 실시예 2>
실시예 1에서 제조된 60N급 파라핀계 절기절연유용 오일을 최종적인 전기절연유로서의 성능을 확보하도록 전기적 성능에 영향을 주는 수분과 미세입자를 제거하기 위해 시료의 온도를 30~40℃로 유지한 다음 감압 휠터링하여 최종 제품을 얻었으며, 하기 표4에 본 발명에 따른 전기절연유의 성능시험결과를 납센계 전기절연유와 비교하여 나타내었다.
실시예 2 - 납센 및 파라핀계 전기절연유의 성능비교
납센계 60N 파라핀계 60N 전기절연유 KS 규격 (1종4호)
비중(15/4℃) 0.882 0.822 0.91 이하
동점도(40℃), cSt 8.1 7.2 13 이하
동점도(100℃), cSt 2.0 2.3 6 이하
인화점 밀폐식, ℃ 143 152 140 이상
유동점, ℃ <-50 -47.5 -27.5 이하
전산가, mgKOH/g 0.01 <0.01 0.02 이하
증발량(98℃/5시간), % 0.38 0.25 0.4 이하
수분함량, ppm 9 10 30 이하
부식성 유황 합격 합격 비부식성
절연파괴전압(2.5mm), kV 60.1 62.5 40 이상
유전정접(60Hz/80℃), % 0.002 0.002 0.1 이하
부피저항(80℃), Ω·cm 1.3 x 1015 1.6 x 1015 5 x 1013 이상
산화안정성(120℃/75h) 슬러지, % 전산가, mgKOH/g 0.32 0.45 0.25 0.28 0.4 이하 0.6 이하
가스흡습성, ㎕/min -22 +34 +30 이하
* 가스흡습성 규격은 ASTM D 3487 규격치임.
본 발명에 따른 파라핀계 전기절연유는 종래의 납센계 전기절연유 대비 동등 이상의 전기적 성능 및 내구성(산화안정성)을 나타내지만 고압에서 전기설비 내부의 방전에 의해 탄화수소계 오일이 분해되어 형성되는 가스류(90% 이상이 수소임)를 오일이 자체적으로 흡수하여 폭발 위험성을 제거해 주어야 하는데 이를 평가하는 가스흡습성 시험에서 가스를 흡수(-수치)하지 못하고 방출(+수치)하였으며 그 수치 또한 ASTM 규격치를 상회하는 단점을 보였다.
< 실시예 3 >
실시예 2에서 나타난 파라핀계 오일의 가스흡습성 열세를 개선하기 위하여, 표 5에 나타낸 바와 같이, 1-메틸 나프탈렌과 2-메틸 나프탈렌이 주성분인 석유계 방향족 화합물 (석유계 용제 제품, SK(주) 상품명: Kocosol-200S)을 0.5~4.0wt% 첨가하여, 가스흡습성 시험을 수행하여 그 결과를 표 6에 나타내었다.
가스흡습성 개선용 방향족 용제의 성상 및 조성
방향족 용제의 성상
비중(15/4℃) 인화점, ℃ 아닐린점, ℃ 증류성상, ℃ 초류점 5% off 50% off 95% off 종류점 0.986 87 13 228 231 233 235 252
방향족 용제의 조성, wt %
1-메틸 나프탈렌 2-메틸 나프탈렌 1,3,4-트리메틸-2-에틸벤젠 1-에틸 나프탈렌 기타 나프탈렌 유도체 42 22 5 4 27
실시예 3 - 방향족 용제의 혼합비에 따른 가스흡습성 성능변화
방향족 용제의 혼합비 규격치
파라핀계 오일 60N, wt% 방향족 용제, wt% 100 0.0 99.5 0.5 99.0 1.0 98.0 2.0 97.0 3.0 96.0 4.0
가스흡습성 변화
가스흡습성, ㎕/min +34 +16 -18 -23 -31 -35 + 30이하
고전계하에서의 변압기, 켄덴서, 케이블 등에서는 절연유의 과열, 유침 고체절연물의 가열, 유침 고체절연물의 방전 등의 현상에 의해 전기절연유가 일시적으로 분해되어 수소, 메탄, 에탄, 에틸렌, 일산화탄소 등 다양한 종류의 가스가 발생되게 된다. 이 가스의 약 90%는 수소가스이고, 오일의 관점에서 가스발생을 보면, 납센계 탄화수소 및 방향족 탄화수소는 비교적 분해가스의 발생이 적고 안정하지만, 파라핀계 탄화수소는 많은 분해가스를 발생시키는 것으로 알려져 있다. 또한, 납센 및 방향족 탄화수소는 가스 발생 측면에서 안정할 뿐 아니라 수소가스가 공존하게 되면 이것을 흡수한다. 그러나, 고도로 정제된 파라핀계 오일은 파라핀계 탄화수소가 지니는 고유의 특성으로 인하여 비교적 열악한 가스흡습성을 갖는다.
이러한 파라핀 오일의 가스흡습성을 개선하기 위해 다양한 알킬벤젠, 중질 방향족 화합물, 알킬 나프탈렌 등의 적용시험을 한 결과 상기 실시예 3과 같이 상용화된 석유계 용제 제품인 알킬 나프탈렌의 혼합물(SK(주), Kocosol-200S)을 0.5~4.0wt% 투여하였을 경우에 가스흡습성이 개선되는 것을 알 수 있었다. 0.5wt%를 투여한 경우에도 가스흡습성이 ASTM 규격치를 총족하기는 하나, 여전히 가스를 방출하는 양(+)의 수치를 나타내므로, 더욱 바람직하게는 1.0wt% 이상 투여가 유용한 것으로 나타났다. Kocosol-200S는 탄소수 10 ~ 13의 방향족계 용제이며, 유기용제로 널리 사용되는 제품으로, 주로 탄소수 10개로 구성된 나프탈렌(Naphthalene)에 알킬기(Akyl Group)가 붙어있는 상태의 화합물들로 구성되는데, 특히 1-메틸 나프탈렌 및 2-메틸 나프탈렌이 주성분으로 포함되며, 구체적으로는 1-메틸 나프탈렌 42~55 vol% 및 2-메틸 나프탈렌 18~26 vol%를 포함하는 것이 바람직하다.
< 실시예 4 >
상기 방향족 용제의 혼합에 따른 가스흡습성 개선 외에 여타 절연유 성능에의 영향 여부를 평가하였으며 그 결과를 표 7에 나타내었다.
실시예 4 -방향족 용제의 혼합비에 따른 절연유 성상/성능 변화
방향족 용제의 혼합비 규격치
파라핀계 오일 60N, wt% 방향족 용제, wt% 100 0.0 99.5 0.5 99.0 1.0 98.0 2.0 97.0 3.0 95.0 4.0
성상 및 성능 변화
가스흡습성, ㎕/min +34 +16 -14 -22 -31 -35 +30이하
절연파괴전압, kV 62.5 61.3 62.5 62.3 61.8 62.6 40이상
유전정접(60Hz/80℃), % 0.02 0.02 0.03 0.02 0.03 0.03 0.1 이하
인화점(밀폐식), ℃ 152 152 150 148 145 142 140이상
상기 방향족 용제의 혼합에 따른 파라핀계 오일의 전기적 특성 변화는 없는 것으로 나타났으나, 방향족 용제 자체의 낮은 인화점(87℃)으로 인하여, 투여량의 증가에 따라 인화점 저하가 나타났으며, 5.0wt% 투여시에는 KS 규격을 충족하지 못하였다. 따라서, 본 발명의 파라핀계 전기절연유용 오일에 가스흡습성을 개선하기 위해 투여하는 방향족 화합물, 구체적으로는 알킬 나프탈렌 혼합물의 방향족 용제 제품은 바람직하게는 0.5~4.0wt%, 더욱 바람직하게는 1.0~2.0wt% 투여하는 것이 가스 방출(+수치) 특성을 흡수(-수치) 특성으로 변화시킴과 동시에, 인화점이 요구규격 범위 내에 안전하게 유지됨을 알 수 있다.
전술한 바와 같이, 연료유 수소화 분해공정에서 부산되는 미전환유를 공급원료로 하여 파라핀계 전기절연유용 오일로서 적절한 점도등급 및 탄소수 분포인 총체적으로 탄소수 15에서 27의 분포를 지니는 유분을 감압증류하여 분류한 후, 저온 유동성 확보를 위해 주기율표 상의 8A족 원소이며 희토류 금속인 백금(Pt)을 함유한 촉매로 이성화법에 의한 탈랍을 수행한 다음에, 주기율표 상의 8A족원소이며 희토류 금속인 팔라듐(Pd)을 함유한 촉매로 수소첨가 마무리 공정을 수행한 결과, 방향족 화합물 및 헤테로 화합물 함량이 매우 낮아 산화안정성과 자외선 안정성이 우수하고 파라핀계 탄화수소이지만 -27.5℃이하의 낮은 유동점을 지니는 전기절연유 용도로 적합한 오일을 얻었으며, 여기에 가스흡습성 향상을 위해 석유계 방향족 용제인 알킬 나프탈렌 혼합물을 0.5~4.0wt% 첨가하여 전기적 성능에 영향을 유발하지 않으면서 매우 우수한 가스흡습성을 지니는 파라핀계 전기절연유를 제조할 수 있었다.
또한 고갈되어가는 납센 원유로부터 전기절연유를 얻는 종래의 기술에 비하여 풍부한 원료공급이 가능한 파라핀 원유로부터 기존의 윤활기유 제조공정을 활용하여 전기절연유를 경제적으로 확보할 수 있게 되었다.

Claims (6)

10% 증류점 내지 90% 증류점에 상응하는 탄화수소의 탄소수가 15~27이고, 40℃에서의 동점도가 7~13 센티스톡스이며, 비중 0.82~0.84이고, 유동점 -27.5℃ 이하이며, 파라핀계 탄화수소가 60% 이상인 것을 특징으로 하는 파라핀계 전기절연유
제 1항에 있어서, 상기 파라핀계 전기절연유에 알킬 나프탈렌계 방향족 혼합물 0.5~4.0중량%를 더욱 포함되는 것을 특징으로 하는 파라핀계 전기절연유.
제 2항에 있어서, 상기 알킬 나프탈렌계 방향족 혼합물은 1-메틸 나프탈렌 18~26 vol% 및 2-메틸 나프탈렌 42~55 vol%를 포함하는 하는 것을 특징으로 하는 파라핀계 전기절연유.
감압가스유(VGO)를 경질연료유로 전환하는 연료유 수소화 분해공정에서 부산되는 미전환유(UCO)를 감압분류하는 단계(V2);
분류된 유분을 각기 촉매탈랍시키는 단계(CDW);
탈랍된 유분을 수소첨가 마무리 반응하는 단계(HDT); 및
경질 탄화수소 분별증류하는 단계(F2)를 포함하는 것을 특징으로 하는 10% 증류점 내지 90% 증류점에 상응하는 탄화수소의 탄소수가 15~27이고, 40℃에서의 동점도가 7~13 센티스톡스이며, 비중 0.82~0.84이고, 유동점 -27.5℃ 이하이며, 파 라핀계 탄화수소가 60% 이상인 파라핀계 전기절연유의 제조방법.
제 4항에 있어서, 상기 촉매탈랍 단계(CDW)가 원소주기율표상의 8A족의 희토류 금속을 포함하는 촉매를 사용하여 이루어지는 것을 특징으로 하는 파라핀계 전기절연유의 제조방법.
제 4항에 있어서, 상기 수소첨가 마무리 반응 단계(HDT)가 원소주기율표상의 8A족의 희토류 금속을 포함하는 촉매를 사용하여 이루어지는 것을 특징으로 하는 파라핀계 전기절연유의 제조방법.
KR1020060113705A 2006-11-17 2006-11-17 파라핀계 전기절연유 및 이의 제조방법 KR100802896B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060113705A KR100802896B1 (ko) 2006-11-17 2006-11-17 파라핀계 전기절연유 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060113705A KR100802896B1 (ko) 2006-11-17 2006-11-17 파라핀계 전기절연유 및 이의 제조방법

Publications (1)

Publication Number Publication Date
KR100802896B1 true KR100802896B1 (ko) 2008-02-13

Family

ID=39343086

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060113705A KR100802896B1 (ko) 2006-11-17 2006-11-17 파라핀계 전기절연유 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR100802896B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501425A (zh) * 2016-11-21 2017-03-15 国网山东省电力公司电力科学研究院 一种变压器在线色谱仪校验用标准油的配制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028148A (ko) * 1999-09-17 2001-04-06 남창우 농업용 스프레이 오일 제조방법
JP2001195920A (ja) 2000-01-13 2001-07-19 Japan Energy Corp 電気絶縁油及び電気絶縁油用基油
KR20020066131A (ko) * 2001-02-09 2002-08-14 에스케이 주식회사 원예작물용 코팅오일 및 이의 제조방법
JP2004164858A (ja) 2002-11-08 2004-06-10 Idemitsu Kosan Co Ltd 電気絶縁油組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028148A (ko) * 1999-09-17 2001-04-06 남창우 농업용 스프레이 오일 제조방법
JP2001195920A (ja) 2000-01-13 2001-07-19 Japan Energy Corp 電気絶縁油及び電気絶縁油用基油
KR20020066131A (ko) * 2001-02-09 2002-08-14 에스케이 주식회사 원예작물용 코팅오일 및 이의 제조방법
JP2004164858A (ja) 2002-11-08 2004-06-10 Idemitsu Kosan Co Ltd 電気絶縁油組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501425A (zh) * 2016-11-21 2017-03-15 国网山东省电力公司电力科学研究院 一种变压器在线色谱仪校验用标准油的配制方法

Similar Documents

Publication Publication Date Title
EP1920444B1 (en) A mineral insulating oil, a process for preparing a mineral insulating oil, and a process for using a mineral insulating oil
KR101509246B1 (ko) 전기 절연유 및 그 제조 방법
JP6298446B2 (ja) 電気絶縁油組成物
JP3011782B2 (ja) 水素化分解原料油からの変圧器油組成物の製造法
RU2373265C1 (ru) Трансформаторное масло
KR101566581B1 (ko) 중간 유분의 용매 추출을 통한 친환경 경유 및 납센계 기유의 병산 방법
KR100802896B1 (ko) 파라핀계 전기절연유 및 이의 제조방법
US4584129A (en) Electric insulating oils
JPS5812961B2 (ja) 電気絶縁油
US3932267A (en) Process for producing uninhibited transformer oil
KR101489546B1 (ko) 중간 유분 내 방향족 저감 및 고품질 경유의 제조 방법
CA1261616A (en) Electrical insulating oils
JP3690649B2 (ja) 電気絶縁油及び電気絶縁油用基油
JP3679272B2 (ja) 電気絶縁油
KR101384267B1 (ko) 식물성 전기절연유 조성물
JP3270677B2 (ja) 電気絶縁油及びその製造方法
KR101317594B1 (ko) 수소 기체 흡수성이 우수한 전기절연유 조성물
JP5363336B2 (ja) 電気絶縁油の製造方法
JPS606044B2 (ja) 電気絶縁油組成物
JP4371937B2 (ja) 接触分解ガソリン基材の製造方法およびそれを用いた無鉛ガソリン組成物
JPS604521B2 (ja) 電気絶縁油組成物
JP2649474B2 (ja) 電気絶縁油及びその製造方法
CN113930276A (zh) 环烷基变压器油组合物及应用
JPS6123602B2 (ko)
JPS59160906A (ja) 酸化安定性が優れた電気絶縁油及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121122

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131212

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141215

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 13