KR100759258B1 - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
KR100759258B1
KR100759258B1 KR1020010038043A KR20010038043A KR100759258B1 KR 100759258 B1 KR100759258 B1 KR 100759258B1 KR 1020010038043 A KR1020010038043 A KR 1020010038043A KR 20010038043 A KR20010038043 A KR 20010038043A KR 100759258 B1 KR100759258 B1 KR 100759258B1
Authority
KR
South Korea
Prior art keywords
manufacturing
semiconductor device
tin
conductive layer
plasma
Prior art date
Application number
KR1020010038043A
Other languages
Korean (ko)
Other versions
KR20030002444A (en
Inventor
류상욱
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020010038043A priority Critical patent/KR100759258B1/en
Publication of KR20030002444A publication Critical patent/KR20030002444A/en
Application granted granted Critical
Publication of KR100759258B1 publication Critical patent/KR100759258B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics

Abstract

본 발명은 반도체소자의 제조방법에 관한 것으로서, 플라즈마가 형성되는 건식식각 공정이나 CVD 또는 PVD 등의 공정진행시 기판의 전표면에 불포화 공유결합 특성에 의해 가전자대에 풍부한 자유전자들을 가지는 도전층을 도포하고, 후속 공정을 진행하여 플라즈마의 불균일에 의한 국지적 차징이나, 플라즈마에서 발생되는 광대역 파장의 방사 에너지에 의해 기판에서의 전자-홀쌍 생성에 의한 게이트산화막 손상등을 방지하여 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 이점이 있다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, comprising a conductive layer having free electrons rich in valence bands due to unsaturated covalent bonds on the entire surface of a substrate during a dry etching process such as plasma formation or a process such as CVD or PVD. Coating and subsequent processing to prevent local charging due to non-uniformity of plasma or gate oxide film damage due to generation of electron-hole pairs on the substrate by broadband energy generated by the plasma to prevent process yield and device operation. There is an advantage to improve the reliability.

Description

반도체소자의 제조방법{Manufacturing method for semiconductor device}Manufacturing method for semiconductor device

도 1은 종래 기술에 따른 플라즈마에 의한 국지적 차징 현상을 설명하기 위한 개략도. 1 is a schematic diagram for explaining a local charging phenomenon by the plasma according to the prior art.

도 2는 게이트산화막 근처의 에너지밴드 다이어그램. 2 is an energy band diagram near a gate oxide film.

도 3은 실리콘기판의 에너지 밴드 다이어그램. 3 is an energy band diagram of a silicon substrate.

도 4a 내지 도 4c는 본 발명의 실시예에 따른 반도체소자의 제조공정도. 4A to 4C are manufacturing process diagrams of a semiconductor device according to an embodiment of the present invention.

< 도면의 주요부분에 대한 부호 설명 ><Explanation of Signs of Major Parts of Drawings>

10,20 : 반도체기판 12 : 필드산화막 10,20: semiconductor substrate 12: field oxide film

14 : 콘택 21 : 게이트산화막14 contact 21 gate oxide film

22 : 게이트전극 23 : 소오스/드레인영역 22: gate electrode 23: source / drain region

25 : 제1층간절연막 27,35 : 콘택플러그 25: first interlayer insulating film 27,35: contact plug

29 : 금속배선 31 : 제2층간절연막29 metal wiring 31 second interlayer insulating film

33 : 하전방지용 도전층 33: charge prevention conductive layer

본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 건식각 식각 공정 시 층간절연막상에 금속막을 형성하고, 식각 공정을 진행하여 플라즈마에 의한 기판 손상을 방지하여 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 반도체소자의 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. In particular, a metal film is formed on an interlayer insulating layer during a dry etching process, and an etching process is performed to prevent substrate damage due to plasma to improve process yield and device operation reliability. It relates to a method for manufacturing a semiconductor device that can be.

최근, 반도체 장치는 적은 면적에 많은 회로소자들을 수용하여 좀 더 많은 정보를 처리 및 저장할 수 있도록 고집적화되고 있다. 상기 반도체장치의 고집적화는 회로소자 및 상기 회로소자들을 접속시키기 위한 배선들을 되도록 좁은 영역에 정확하게 형성하는가에 좌우되며, 이러한 회로소자들 및 배선들 등을 정밀하게 형성하기 위해서는 식각 공정에서 식각장벽으로 이용되는 포토레지스트패턴을 미세하게 형성하여야 한다. Recently, semiconductor devices have been highly integrated to accommodate more circuit elements in a smaller area and to process and store more information. The high integration of the semiconductor device depends on the precise formation of circuit elements and wirings for connecting the circuit elements in a narrow area as much as possible. In order to precisely form such circuit elements and wirings, the semiconductor device is used as an etching barrier in an etching process. The photoresist pattern to be formed should be finely formed.

또한 반도체소자가 미세화됨에 따라 패터닝 공정에서 습식각 보다는 플라즈마를 이용하는 건식식각이 많이 사용되고 있다. 플라즈마 건식식각은 미세패턴 형성이 가능하나, 플라즈마에 의해 반도체기판이 손상되는 문제점이 있다. In addition, as semiconductor devices have been miniaturized, dry etching using plasma rather than wet etching is used in a patterning process. Plasma dry etching can form a fine pattern, but there is a problem that the semiconductor substrate is damaged by plasma.

도 1은 종래 플라즈마에 의한 기판 손상을 설명하기 위한 개략도로서, 반도체기판(10)상에 필드산화막(12)과 콘택(14)이 형성되어있을 때, 불균일한 플라즈마에 의해 반도체기판(10)상에 국부적인 전위차를 형성한다. 1 is a schematic diagram for explaining substrate damage caused by a conventional plasma. When the field oxide film 12 and the contact 14 are formed on the semiconductor substrate 10, the semiconductor substrate 10 is formed on the semiconductor substrate 10 by non-uniform plasma. To form a local potential difference.

이러한 전위차는 게이트전극 패터닝 공정에서는 도 2에서와 같이, 게이트산화막이 반도체기판상에 형성되어있는 상태에서의 에너지밴드에서 볼수 있듯이 전하가 기판에 유도되어 허용금지대의 전자-홀쌍이 유기되어 게이트산화막을 손상시켜 문턱전압과 포화전류 특성을 열화시킨다. In the gate electrode patterning process, as shown in FIG. 2, such a potential difference is caused by charge being induced to the substrate to induce electron-hole pairs in an allowable region as shown in the energy band in which the gate oxide film is formed on the semiconductor substrate. This damages the threshold voltage and saturation current characteristics.

또한 플라즈마 내부에서 발생되는 150㎚∼800㎚ 대역의 광대역 파장의 자외 선, 가시광선 및 적외등이 반도체기판에 전달되면, 실리콘 전자-홀쌍을 만들어 원하지 않는 하전입자를 형성하게 되고, 도 3의 실리콘 에너지 밴드 다이어그램에서 알수 있듯이 실리콘의 허용금지 에너지대는 약 1.1eV로서 상온 정도의 에너지 만으로도 원자가 전자들이 용이하게 전도대로 여기되는데, 플라즈마는 매우 높은 에너지수준의 전자기파를 발생시키므로 이에 의한 전도가 매우 쉽게 일어나 소자의 동작 특성을 열화시키는 다른 문제점이 있다. In addition, when ultraviolet rays, visible rays, infrared rays, and the like having a broadband wavelength of 150 nm to 800 nm generated inside the plasma are transferred to the semiconductor substrate, silicon electron-hole pairs are formed to form unwanted charged particles. As can be seen from the energy band diagram, the allowable energy band of silicon is about 1.1 eV, and valence electrons are easily excited as conduction bands even at the energy of room temperature. There is another problem that deteriorates the operating characteristics of.

더욱이, 0.15㎛급의 미세 선폭을 사용하는 소자에서는 동작전압감소와 트렌지스터의 빠른 동작 속도를 얻기 위하여 게이트산화막의 두께가 얇아지는데 약 20∼25Å 정도가 되는데, 게이트산화막이 너무 얇아 양자역학적인 터널링이 가능하게 되어 동작전압이 요구되는 문턱전압 보다 매우 낮은 전압이어서, 하전입자가 모두 리키지 성분으로 취급되나, 신뢰성이 확보될 경우에는 상기한 두께 정도의 게이트산화막을 실제 사용할 수 있다고 하나, 플라즈마 발생 공정에서 불균일 플라즈마에의한 차징 손상이나, 전자기파에 의한 기판의 전자-홀쌍 형성에 의해 얇은 게이트산화막이 손상될 소지가 더욱 커지게되는 문제점이 있다. In addition, in the device using 0.15µm fine line width, the gate oxide film is thinned to about 20 ~ 25Å in order to reduce the operating voltage and the fast operation speed of the transistor. Since the operating voltage is much lower than the required threshold voltage, all charged particles are treated as a liquid component, but when reliability is ensured, a gate oxide film having the above thickness can be actually used. There is a problem in that the thin gate oxide film is more likely to be damaged by charging damage due to non-uniform plasma or electron-hole pair formation of the substrate by electromagnetic waves.

본 발명은 상기와 같은 문제점들을 해결하기 위한 것으로서, 본 발명의 목적은 전도성물질의 부분적으로 채워져있는 가전자대의 풍부한 자유전자들이 존재하는 불포화 공유결합 특성을 이용하여 플라즈마에서 발생하는 거의 모든 파장대역의 전자기파를 흡수하도록하여 플라즈마 건식식각 공정시 플라즈마의 불균일에 의한 차징 손상을 방지하고, 플라즈마에서 발생되는 높은 에너지 상태의 전자에 의한 국부 적 차징이 위이퍼 전면에 균일하게 유지하게 하여 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 반도체소자의 제조방법을 제공함에 있다. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to use almost all wavelength bands generated in plasma by using unsaturated covalent bonds in which abundant free electrons are partially filled in the valence band of a conductive material. Absorption of electromagnetic waves to prevent charging damage due to non-uniformity of plasma during plasma dry etching process, and local charging by electrons of high energy state generated in plasma is uniformly maintained on the front of the wiper, resulting in process yield and device operation It is to provide a method of manufacturing a semiconductor device that can improve the reliability of the.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체소자의 제조방법의 특징은, Features of the semiconductor device manufacturing method according to the present invention for achieving the above object,

플라즈마를 사용하는 반도체소자의 제조방법에 있어서, In the method of manufacturing a semiconductor device using a plasma,

반도체기판 상에 소저의 공정을 진행하여 반도체기판 상부에 플라즈마가 형성되는 공정 진행 전단계에서 반도체기판 상부에 하전방지용 도전층을 형성하고 후속 공정을 진행함에 있다. In the step before the process of forming a plasma on the semiconductor substrate by proceeding the step of the step on the semiconductor substrate to form a conductive layer for preventing charge on the upper portion of the semiconductor substrate and proceeds to the subsequent process.

또한 본 발명의 다른 특징은 플라즈마를 사용하는 반도체소자의 제조방법에 있어서, In addition, another aspect of the present invention is a method of manufacturing a semiconductor device using a plasma,

소정의 하부 구조물을 가지는 반도체기판 상에 층간절연막과 하전방지용 도전층을 형성하는 공정과,Forming an interlayer insulating film and a charge preventing conductive layer on a semiconductor substrate having a predetermined lower structure;

상기 도전층과 층간절연막에서 콘택홀로 예정되어있는 부분을 건식식각 방법으로 제거하여 콘택홀을 형성하는 공정과,Forming a contact hole by removing a portion of the conductive layer and the interlayer insulating film, which are intended to be contact holes, by dry etching;

상기 콘택홀을 메우는 콘택플러그를 형성하는 공정을 구비함에 있다.And forming a contact plug to fill the contact hole.

또한 상기 플라즈마 발생공정이 건식식각 공정이거나, CVD 또는 PVD 공정중 하나이며, 상기 도전층을 감광막 노광 공정시 반사방지막이 될 수 있는 정도의 두께로 형성하고, 상기 도전층을 Ti/TiN , TiN/Ti/TiN, Ti/TiN의 이중적층구조로 형성하며, 상기 도전층을 Ti 대신 Ta으로 일부 또는 전부를 치환한 물질을 사용하고, 상기 콘택플러그는 Ti/TiN/W 전면 적층후 전면 식각이나 CMP 공정으로 형성하거나 W 대신 알루미늄 합금이나 구리합금으로 형성하는 것을 또 다른 특징으로한다. In addition, the plasma generation process is a dry etching process, or one of the CVD or PVD process, the conductive layer is formed to a thickness that can be an antireflection film during the photosensitive film exposure process, and the conductive layer is Ti / TiN, TiN / It is formed of a dual-layer structure of Ti / TiN and Ti / TiN, and a material in which part or all of the conductive layer is replaced by Ta instead of Ti, and the contact plug is formed on the entire surface by etching Ti / TiN / W and etching the CMP. It is another feature that it is formed by a process or formed of aluminum alloy or copper alloy instead of W.

이하, 본 발명에 따른 반도체소자의 제조방법에 관하여 첨부 도면을 참조하여 상세히 설명한다. Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 4a 내지 도 4c는 본 발명의 실시예에 따른 반도체소자의 제조 공정도이다. 4A through 4C are diagrams illustrating a manufacturing process of a semiconductor device according to an embodiment of the present invention.

먼저, 실리콘 웨이퍼 반도체기판(20) 상에 게이트산화막(21)과 게이트전극(22) 및 소오스/드레인영역(23)으로 구성된 MOSFET를 형성하고, 상기 구조의 전표면에 제1층간절연막(25)과 콘택플러그(27) 및 금속배선(29)을 형성한다. (도 4a 참조).First, a MOSFET including a gate oxide film 21, a gate electrode 22, and a source / drain region 23 is formed on a silicon wafer semiconductor substrate 20, and the first interlayer insulating film 25 is formed on all surfaces of the structure. And a contact plug 27 and a metal wiring 29 are formed. (See FIG. 4A).

그다음 상기 구조의 전표면에 제2층간절연막(31)과 하전방지용 도전층(33)을 순차적으로 형성하고, 상기 금속배선(29)상의 도전층(33)과 제2층간절연막(31)을 순차적으로 식각하여 콘택홀을 형성한 후, 상기 콘택홀을 메우는 콘택플러그(35)를 형성한다. 상기의 콘택홀 식각공정시 건식식각을 실시하게되며, 이때 상기 도전층(33)이 플라즈마로 인한 하전 손상이나 실리콘 여기에 의한 국부적 차징 손상을 방지한다. Then, the second interlayer insulating film 31 and the charge preventing conductive layer 33 are sequentially formed on the entire surface of the structure, and the conductive layer 33 and the second interlayer insulating film 31 on the metal wiring 29 are sequentially formed. After etching to form a contact hole, the contact plug 35 filling the contact hole is formed. Dry etching is performed during the contact hole etching process, in which the conductive layer 33 prevents charge damage due to plasma or local charging damage due to silicon excitation.

상기 도전층(33)은 Ti/TiN , TiN/Ti/TiN 적층 구조이거나 Ti/TiN의 이중 적층 구조로 형성하고, TiN은 감광막 노광 공정시 반사방지막이 될 수 있는 정도의 두께로 형성하며, Ti 대신 Ta으로 일부 또는 전부를 치환한 물질을 사용한다. The conductive layer 33 is formed of a Ti / TiN, TiN / Ti / TiN laminated structure or a double stacked structure of Ti / TiN, and TiN is formed to a thickness that can be an antireflection film during the photosensitive film exposure process. Instead, use a material substituted with some or all of Ta.

또한 상기 콘택홀 형성을 위한 식각 공정은 염소, 불소, 산소, 질소, 브롬, 불화성 기체 등을 포함하는 가스를 조합하여 건식식각하거나, 금속전용식각 장치에서 염소 및 불소 포함가스, 예를들어 Cl2, BCl3, SF6등으로 도전층(33)을 제거한 후 절연막 식각을 실시할 수 있으며, 상기 콘택플러그(35)는 Ti/TiN/W 전면 적층후 전면 식각이나 CMP 공정으로 형성하거나 W 대신 알루미늄 합금이나 구리합금으로 형성하고, 배선도 함께 형성할 수도 있다. (도 4b 및 도 4c 참조). In addition, the etching process for forming the contact hole is dry etching by combining a gas containing chlorine, fluorine, oxygen, nitrogen, bromine, fluorinated gas, or the like, or a chlorine and fluorine-containing gas such as Cl2 in a metal-only etching apparatus. After the conductive layer 33 is removed with BCl 3, SF 6, etc., the insulating layer may be etched. The contact plug 35 may be formed by the entire surface etching or CMP process after Ti / TiN / W stacking or aluminum alloy instead of W. It can also be formed from a copper alloy, and wiring can also be formed together. (See FIGS. 4B and 4C).

상기에서는 건식식각 공정만을 예로 들었으나, 화학기상증착(chemical vapor deposition; 이하 CVD라 칭함) 이나 물리기상증착(physical vapor deposition; 이하 PVD라 칭함) 등과 같은 플라즈마 공정에서 도전층을 도포할 수 있으면 본 발명을 사용 가능함은 물론이다. In the above, only the dry etching process is exemplified, but if the conductive layer can be applied in a plasma process such as chemical vapor deposition (hereinafter referred to as CVD) or physical vapor deposition (hereinafter referred to as PVD). Of course, the invention can be used.

이상에서 설명한 바와 같이, 본 발명에 따른 반도체소자의 제조방법은 플라즈마가 형성되는 건식식각 공정이나 CVD 또는 PVD 등의 공정진행시 기판의 전표면에 불포화 공유결합 특성에 의해 가전자대에 풍부한 자유전자들을 가지는 도전층을 도포하고, 후속 공정을 진행하여 플라즈마의 불균일에 의한 국지적 차징이나, 플라즈마에서 발생되는 광대역 파장의 방사 에너지에 의해 기판에서의 전자-홀쌍 생성에 의한 게이트산화막 손상등을 방지하여 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 이점이 있다. As described above, the method of manufacturing a semiconductor device according to the present invention includes free electrons abundant in the valence band due to unsaturated covalent bonds on the entire surface of the substrate during a dry etching process such as plasma formation or a process such as CVD or PVD. The process is performed by applying a conductive layer to the conductive layer, and then performing a subsequent process to prevent local charging due to non-uniformity of the plasma or to prevent gate oxide film damage due to the generation of electron-hole pairs in the substrate by the radiation energy of the broadband wavelength generated in the plasma. And there is an advantage that can improve the reliability of the device operation.

Claims (10)

플라즈마를 사용하는 반도체소자의 제조방법에 있어서, In the method of manufacturing a semiconductor device using a plasma, 반도체기판 상에 소정의 공정을 진행하여 반도체기판 상부에 플라즈마가 형성되는 공정 진행 전단계에서 반도체기판 상부에 Ti/TiN , TiN/Ti/TiN, Ti/TiN의 이중적층구조로 이루어진 하전방지용 도전층을 형성하고 후속 공정을 진행하는 것을 특징으로하는 반도체소자의 제조방법. In the step before the process of forming a plasma on the semiconductor substrate by performing a predetermined process on the semiconductor substrate, a charge preventing conductive layer having a double laminated structure of Ti / TiN, TiN / Ti / TiN, Ti / TiN is formed on the semiconductor substrate. Forming and proceeding to a subsequent process. 제 1 항에 있어서,The method of claim 1, 상기 플라즈마 발생공정이 건식식각 공정이거나, CVD 또는 PVD 공정중 하나인 것을 특징으로하는 반도체소자의 제조방법. The plasma generation process is a dry etching process, or a method of manufacturing a semiconductor device, characterized in that one of the CVD or PVD process. 제 1 항에 있어서,The method of claim 1, 상기 도전층을 감광막 노광 공정시 반사방지막이 될 수 있는 정도의 두께로 형성하는 것을 특징으로하는 반도체소자의 제조방법. The conductive layer is a manufacturing method of a semiconductor device, characterized in that to form a thickness that can be an anti-reflection film during the photosensitive film exposure process. 삭제delete 제 1 항에 있어서,The method of claim 1, 상기 도전층을 Ti 대신 Ta으로 일부 또는 전부를 치환한 물질을 사용하는 것을 특징으로하는 반도체소자의 제조방법. Method for manufacturing a semiconductor device, characterized in that for the conductive layer using a material in which part or all of Ta is replaced with Ti. 플라즈마를 사용하는 반도체소자의 제조방법에 있어서, In the method of manufacturing a semiconductor device using a plasma, 소정의 하부 구조물을 가지는 반도체기판 상에 층간절연막과 Ti/TiN , TiN/Ti/TiN, Ti/TiN의 이중적층구조로 이루어진 하전방지용 도전층을 형성하는 공정과,Forming an interlayer insulating film and a conductive layer for preventing charges formed of a dual lamination structure of Ti / TiN, TiN / Ti / TiN, Ti / TiN on a semiconductor substrate having a predetermined substructure; 상기 도전층과 층간절연막에서 콘택홀로 예정되어있는 부분을 건식식각 방법으로 제거하여 콘택홀을 형성하는 공정과,Forming a contact hole by removing a portion of the conductive layer and the interlayer insulating film, which are to be contact holes, by dry etching; 상기 콘택홀을 메우는 콘택플러그를 형성하는 공정을 구비하는 반도체소자의 제조방법. And forming a contact plug to fill the contact hole. 제 6 항에 있어서,The method of claim 6, 상기 도전층을 감광막 노광 공정시 반사방지막이 될 수 있는 정도의 두께로 형성하는 것을 특징으로하는 반도체소자의 제조방법. The conductive layer is a manufacturing method of a semiconductor device, characterized in that to form a thickness that can be an anti-reflection film during the photosensitive film exposure process. 삭제delete 제 6 항에 있어서,The method of claim 6, 상기 도전층을 Ti 대신 Ta으로 일부 또는 전부를 치환한 물질을 사용하는 것을 특징으로하는 반도체소자의 제조방법. Method for manufacturing a semiconductor device, characterized in that for the conductive layer using a material in which part or all of Ta is replaced with Ti. 제 6 항에 있어서,The method of claim 6, 상기 콘택플러그는 Ti/TiN/W 전면 적층후 전면 식각이나 CMP 공정으로 형성하거나 W 대신 알루미늄 합금이나 구리합금으로 형성하는 것을 특징으로하는 반도체소자의 제조방법.The contact plug is a semiconductor device manufacturing method, characterized in that formed by the entire surface etching or CMP process after Ti / TiN / W laminated on the front surface, or formed of aluminum alloy or copper alloy instead of W.
KR1020010038043A 2001-06-29 2001-06-29 Manufacturing method for semiconductor device KR100759258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010038043A KR100759258B1 (en) 2001-06-29 2001-06-29 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010038043A KR100759258B1 (en) 2001-06-29 2001-06-29 Manufacturing method for semiconductor device

Publications (2)

Publication Number Publication Date
KR20030002444A KR20030002444A (en) 2003-01-09
KR100759258B1 true KR100759258B1 (en) 2007-09-17

Family

ID=27712172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010038043A KR100759258B1 (en) 2001-06-29 2001-06-29 Manufacturing method for semiconductor device

Country Status (1)

Country Link
KR (1) KR100759258B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894763B1 (en) * 2002-10-21 2009-04-24 매그나칩 반도체 유한회사 Method for reducing plasama charging damage and Method of forming a dual damascene pattern using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0154190B1 (en) * 1994-12-23 1998-12-01 김영환 Formation method of tungsten plug in semiconductor device
JPH11284063A (en) * 1997-12-30 1999-10-15 Siemens Ag Shallow trench isolation structure in substrate and method for reducing problem of reliabilityl for hot carrier inside integrated circuit device on substrate
US5972235A (en) * 1997-02-28 1999-10-26 Candescent Technologies Corporation Plasma etching using polycarbonate mask and low pressure-high density plasma
US6080658A (en) * 1998-07-01 2000-06-27 United Microelectronics Corp. Device protection structure for preventing plasma charging damage and vertical cross talk
KR20000073970A (en) * 1999-05-17 2000-12-05 윤종용 Semiconductor device for reducing charge damage induced by plasma etching process and formation method thereof
KR20010004713A (en) * 1999-06-29 2001-01-15 김영환 Method of forming a storage node in a semiconductor device
EP1098358A2 (en) * 1999-11-04 2001-05-09 Lucent Technologies Inc. Method for making field effect devices and capacitors with thin film dielectrics and resulting devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0154190B1 (en) * 1994-12-23 1998-12-01 김영환 Formation method of tungsten plug in semiconductor device
US5972235A (en) * 1997-02-28 1999-10-26 Candescent Technologies Corporation Plasma etching using polycarbonate mask and low pressure-high density plasma
JPH11284063A (en) * 1997-12-30 1999-10-15 Siemens Ag Shallow trench isolation structure in substrate and method for reducing problem of reliabilityl for hot carrier inside integrated circuit device on substrate
US6080658A (en) * 1998-07-01 2000-06-27 United Microelectronics Corp. Device protection structure for preventing plasma charging damage and vertical cross talk
KR20000073970A (en) * 1999-05-17 2000-12-05 윤종용 Semiconductor device for reducing charge damage induced by plasma etching process and formation method thereof
KR20010004713A (en) * 1999-06-29 2001-01-15 김영환 Method of forming a storage node in a semiconductor device
EP1098358A2 (en) * 1999-11-04 2001-05-09 Lucent Technologies Inc. Method for making field effect devices and capacitors with thin film dielectrics and resulting devices

Also Published As

Publication number Publication date
KR20030002444A (en) 2003-01-09

Similar Documents

Publication Publication Date Title
US9305839B2 (en) Curing photo resist for improving etching selectivity
JP3250518B2 (en) Semiconductor device and manufacturing method thereof
TW201916200A (en) Method for manufacturing a semiconductor device
TWI236094B (en) Method for forming multi-layer metal line of semiconductor device
TW201906001A (en) Method of fabricating semiconductor structure
KR100759258B1 (en) Manufacturing method for semiconductor device
US20220359846A1 (en) Method for forming an isolation structure having multiple thicknesses to mitigate damage to a display device
US20080200027A1 (en) Method of forming metal wire in semiconductor device
CN102082115A (en) Aluminum interconnection structure and method for forming aluminum interconnection structure
US7622331B2 (en) Method for forming contacts of semiconductor device
JP4032447B2 (en) Manufacturing method of semiconductor device
US20050236658A1 (en) Semiconductor device and production method therefor
CN109755175B (en) Interconnect structure and method of forming the same
US20040137691A1 (en) Method of manufacturing capacitor in semiconductor devices
KR20080001714A (en) Method of manufacturing a semiconductor device
US6607993B1 (en) Method using ultraviolet radiation for integrated circuit manufacturing
JP2007128980A (en) Method of manufacturing semiconductor device
CN102201350A (en) Manufacture method for semiconductor device
KR100351906B1 (en) Method for fabricating of semiconductor device
KR100894763B1 (en) Method for reducing plasama charging damage and Method of forming a dual damascene pattern using the same
KR100605933B1 (en) Method for fabricating semiconductor device
KR20100077858A (en) Method for forming metal line of semiconductor device
KR0166508B1 (en) Metal wiring forming method of semiconductor device
US10510845B2 (en) Method for manufacturing electrode of semiconductor device
KR20070105827A (en) Method for manufacturing semiconductor device having repair fuse

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20120823

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130821

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140820

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150818

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160817

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170818

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180820

Year of fee payment: 12