KR100739534B1 - 내연기관의 공연비 제어장치 - Google Patents
내연기관의 공연비 제어장치 Download PDFInfo
- Publication number
- KR100739534B1 KR100739534B1 KR1020027008097A KR20027008097A KR100739534B1 KR 100739534 B1 KR100739534 B1 KR 100739534B1 KR 1020027008097 A KR1020027008097 A KR 1020027008097A KR 20027008097 A KR20027008097 A KR 20027008097A KR 100739534 B1 KR100739534 B1 KR 100739534B1
- Authority
- KR
- South Korea
- Prior art keywords
- value
- air
- fuel ratio
- deterioration
- evaluation
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/007—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1403—Sliding mode control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/02—Catalytic activity of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1409—Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1415—Controller structures or design using a state feedback or a state space representation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1415—Controller structures or design using a state feedback or a state space representation
- F02D2041/1416—Observer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1418—Several control loops, either as alternatives or simultaneous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/142—Controller structures or design using different types of control law in combination, e.g. adaptive combined with PID and sliding mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1431—Controller structures or design the system including an input-output delay
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1432—Controller structures or design the system including a filter, e.g. a low pass or high pass filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1402—Adaptive control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1456—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
내연기관의 배기통로에 구비된 촉매장치의 필요한 정화성능을 확보하면서, 이 촉매장치의 열화상태를 적정하게 평가할 수 내연기관의 공연비 제어장치로서, 촉매장치(3)의 하류의 02센서(6)의 출력(VO2/OUT)을 소정의 목표값(VO2/TARGET)에 수렴시키도록 촉매장치(3)의 상류측에서의 배기가스의 목표공연비(KCMD)를 차례로 구한다. 그리고, 이 목표공연비(KCMD)에 공연비 센서(5)의 출력(KACT)을 수렴시키도록 엔진(1)의 연료 공급량을 제어한다. 이 제어를 행하면서, 02센서(6)의 출력(VO2/OUT)의 시계열 데이터를 변수성분으로 하는 열화평가용 선형함수(σ)의 값을 구하고, 그 값의 제곱값(σ2)의 중심값을 열화평가용 파라미터로서 구한다. 이 열화평가용 파라미터의 값에 근거하여 촉매장치(3)의 열화상태를 평가한다.
공연비, 배기가스, 내연기관, 시계열 데이터, 선형함수, 알고리즘, 촉매장치, 전환함수, 낭비시간, 슬라이딩 모드
Description
본 발명은, 내연기관의 공연비 제어장치에 관한 것이며, 보다 상세하게는 배기가스 정화용의 촉매장치의 열화상태를 평가할 수 있는 공연비 제어장치에 관한 것이다.
내연기관의 배기통로에 설치된 배기가스 정화용의 촉매장치의 열화상태를 판별하는 수법으로서는, 예를 들면 일본 특허공보 제 2526640 호나, 일본 특개평 7-19033호 공보에 개시되는 기술이 종래부터 알려져 있다.
이들의 기술은, 내연기관에서 연소시키는 혼합기의 공연비를 희박 측에서 농후 측, 또는 농후 측에서 희박 측으로 변화시켰을 때, 촉매장치의 상류측 및 하류측에 각각 설치된 산소농도센서의 출력이 반전하는 것을 사용한 것이다. 보다 상세하게는, 이들 기술에서는, 내연기관의 특정한 운전조건하에서(일본 특허 공보 제 2526640 호의 것에서는 내연기관의 출력 증량시나 연료중단시, 일본 특개평 7-19033호 공보의 것에서는, 내연기관의 부하나 회전수가 소정 범위내에 있는 것 등의 소정 조건이 충족된 경우), 공연비를 적극적으로 희박 측에서 농후 측, 또는 농후 측에서 희박 측으로 변화시킨다. 그리고, 이 때, 상류측의 산소농도센서의 출 력이 반전하고 나서 하류측의 산소농도센서의 출력이 반전하기 까지의 시간이나, 하류측의 산소농도센서의 반전주기 등을 계측하고, 그들의 계측값에 근거하여 촉매장치의 열화상태를 평가한다.
또한, 이들 기술에서는, 내연기관의 통상적인 운전상태(촉매장치의 열화상태의 평가를 행하지 않는 운전 상태)에서는, 내연기관의 공연비가 이론 공연비 근방에 유지되도록 상기 산소농도센서의 출력의 반전에 따라 공연비를 피드백 제어하고, 이것에 의해, 촉매장치의 적정한 정화성능을 확보하도록 하고 있다.
그렇지만, 상기와 같은 촉매장치의 열화상태의 평가수법에서는, 촉매장치의 열화상태를 평가하기 위해 공연비를 적극적으로 희박 측에서 농후 측, 또는 농후 측에서 희박 측으로 변화시키지 않으면 안된다. 이 때문에, 촉매장치의 적정한 정화성능을 확보하도록 내연기관의 공연비를 피드백 제어하고 있는 상태에서는, 촉매장치의 열화상태를 평가할 수 없다. 따라서, 그 평가시에는, 촉매장치의 적정한 정화성능을 확보하는 것이 곤란하다는 지장이 있었다.
또한, 본원 출원인은, 촉매장치의 하류측에 배기가스중의 특정 성분의 농도, 예를 들면 산소농도를 검출하는 배기가스 센서를 설치함과 함께, 이 배기가스 센서의 출력을 소정의 목표값에 수렴시키도록 내연기관에서 연소시키는 혼합기의 공연비를 조작함으로써 촉매장치의 최적인 정화성능을 확보하는 기술을 앞서 제안하고 있다(예를 들면 일본 특개평 9-324681 호 공보, 일본 특개평 11-153051 호 공보 또는 미국 특허 제 5852930 호, 미국 특허 출원 09/153300 등).
이 기술에서는, 상기 배기가스 센서의 출력(산소농도의 검출값)을 소정의 목 표값(일정값)에 수렴시키도록, 슬라이딩 모드 제어를 사용하여 촉매장치에 진입되는 배기가스의 공연비(상세하게는 이 배기가스의 산소농도로부터 파악되는 공연비)의 목표값(목표공연비)을 차례로 산출한다. 그리고, 그 목표공연비에 따라서 내연기관에서 연소시키는 혼합기의 공연비를 조작함으로써, 촉매장치가 최적인 정화 성능을 확보하는 것이다.
이러한 기술에서는, 상기와 같은 공연비 제어에 의해, 촉매장치의 최적인 정화성능을 안정되게 확보할 수 있기 때문에, 그 공연비 제어를 행하면서, 촉매장치의 열화상태를 평가할 수 있는 것이 바람직하다.
본 발명은 이러한 배경을 감안하고, 내연기관의 배기통로에 설치된 촉매장치의 필요한 정화성능을 확보하면서, 이 촉매장치의 열화상태를 적정하게 평가할 수 있는 내연기관의 공연비 제어장치를 제공하는 것을 목적으로 한다.
본 발명의 내연기관의 공연비 제어장치는, 이러한 목적을 달성하기 위해, 내연기관의 배기통로에 설치된 촉매장치의 하류측에 이 촉매장치를 통과한 상기 내연기관의 배기가스중의 특정 성분의 농도를 검출하기 위해 배치된 배기가스 센서와, 이 배기가스 센서의 출력을 소정의 목표값에 수렴시키도록 상기 촉매장치에 진입되는 배기가스의 공연비를 규정하는 조작량을 차례로 생성하는 공연비 조작량 생성수단과, 이 조작량에 따라서 상기 내연기관에서 연소시키는 혼합기의 공연비를 조작하는 공연비 조작수단을 구비한 내연기관의 공연비 제어장치에 있어서, 상기 공연비 조작 수단에 의한 상기 혼합기의 공연비의 조작중에, 상기 배기가스 센서의 출 력의 시계열 데이터로부터 이 시계열 데이터를 변수성분으로 표시한 소정의 열화평가용 선형함수의 값을 차례로 구하고, 그 구한 열화평가용 선형함수의 값에 근거하여 상기 촉매장치의 열화상태를 평가하는 열화상태 평가수단을 갖춘 것을 특징으로 하는 것이다.
즉, 본원 발명자 등의 식견에 의하면, 상기 촉매장치의 하류측의 배기가스 센서의 출력을 소정의 목표값에 수렴시키도록 촉매장치에 진입하는 배기가스의 공연비를 규정하는 조작량(예를 들면 이 공연비의 목표값)을 차례로 생성하고, 그 조작량에 따라서 상기 혼합기의 공연비를 조작하고 있는 상태, 즉, 배기가스 센서의 출력의 상기 목표값으로의 수렴제어를 행하고 있는 상태에서, 상기 배기가스 센서의 출력의 시계열 데이터로부터, 그 시계열 데이터를 변수성분으로 하는, 어떤 적당한 소정의 선형함수(배기가스 센서의 출력의 시계열 데이터의 선형결합의 형태로 표현되는 함수)의 값을 구했을 때, 그 선형함수의 값은, 촉매장치의 열화의 진행정도와의 사이에 특징적인 상관성을 나타내는 경향이 있다.
예를 들면, 촉매장치가 대략 신품 상태인 때에는, 상기 선형함수의 값은, 어떤 소정값의 부근에 집적하는 경향이 있다. 그리고, 촉매장치의 열화가 진행해 가면, 상기 선형함수의 값은, 상기 소정값으로부터 떨어진 값을 쉽게 채택하게 되는 경향이 있다. 즉, 촉매장치의 열화의 진행에 따라서 이 선형함수의 값의 분산정도가 커진다.
그래서, 본 발명에서는, 상기 열화상태 평가수단은, 상기의 선형함수를 열화평가용 선형함수로 하고, 이 열화평가용 선형함수의 값을 상기 배기가스 센서의 출 력의 시계열 데이터로부터 차례로 구한다. 그리고, 이 열화평가용 선형함수의 값에 근거하여, 촉매장치의 열화장치를 평가한다.
이러한 본 발명에 의하면, 촉매장치의 열화상태를 평가하는 기초가 되는 상기 열화평가용 선형함수의 값은, 배기가스 센서의 출력을 소정의 목표값에 수렴시키도록 상기 공연비 조작량 생성수단이 생성하는 조작량에 따라서, 상기 공연비 조작 수단이 상기 혼합기의 공연비를 조작하고 있는 상태에서, 배기가스 센서의 출력의 시계열 데이터로부터 구해지는 것이다. 즉, 상기 열화평가용 선형함수의 값은, 상기 촉매장치의 필요한 정화성능을 확보하도록 공연비를 조작하고 있는 상태에서 얻어진다.
이 때문에, 이 열화평가용 선형함수의 값에 근거하는 촉매장치의 열화상태의 평가를 행함으로써, 그 열화상태의 평가를, 촉매장치의 필요한 정화성능을 확보하면서 행할 수 있다.
이러한 본 발명에서는, 상기 열화평가용 선형함수의 값의 상술과 같은 촉매장치의 열화의 진행정도에 따랐던 경향은, 본원 발명자 등의 식견에 의하면, 상기 공연비 조작량 생성수단에 의한 상기 조작량의 생성을 예를 들면 피드백 제어의 한 방법인 슬라이딩 모드 제어를 사용하여 행한 경우에, 매우 적합하게 현저한 것으로 되기 쉽다. 그리고, 이와 같이 공연비 조작량 생성수단이, 슬라이딩 모드 제어의 것을 사용하여 상기 조작량을 생성하는 수단인 경우에는, 특히, 촉매장치의 열화상태와의 상관성이 높은 열화평가용 선형함수는 이 슬라이딩 모드 제어에 사용되는 전환함수에 밀접하게 관련되어 있다. 따라서, 이 전환함수에 따라서 정해지는 선 형함수를 열화평가용 선형함수로 하는 것이 매우 적합하다.
이 경우, 보다 구체적으로는, 상기 공연비 조작량 생성수단이 사용되는 슬라이딩 모드 제어는, 예를 들면 상기 배기가스 센서의 출력과 상기 목표값과의 편차의 시계열 데이터를 변수성분으로서 나타낸 선형함수를 상기 전환함수로서 사용한다. 그리고, 이와 같은 전환함수를 슬라이딩 모드 제어에 사용하는 경우에는, 상기 열화평가용 선형함수는, 그 변수성분에 관련되는 계수값을 상기 전환함수의 변수성분에 관련되는 계수값과 동일하게 한 선형함수로 하는 것이 매우 적합하다. 또한, 이 선형함수는, 슬라이딩 모드 제어용의 상기 전환함수 그 자체라도 좋다.
이와 같이 슬라이딩 모드 제어용의 전환함수에 따라서 정해지는 선형함수를 상기 열화평가용 선형함수로 함으로써, 이 열화평가용 선형함수의 값과 촉매장치의 열화상태의 상관성이 현저한 것이 되고, 이 열화평가용 선형함수의 값에 근거하는 촉매장치의 열화상태의 평가를 적정하게 행할 수 있다.
또한, 상기 조작량을, PID 제어(비례·적분·미분 제어) 등, 다른 피드백 제어수법의 처리에 의해 생성한 경우라도, 예를 들면 상기 슬라이딩 모드 제어용의 전환함수와 동일한 형태의 선형함수를 열화평가용 선형함수로서 정하면, 그 열화평가용 선형함수의 값과 촉매장치의 열화상태 사이에 상술과 같은 경향의 상관성을 가지게 할 수 있다.
본 발명에서는, 상기 열화상태 평가수단은, 상기 열화평가용 선형함수의 값의 시계열 데이터의 분산 정도를 표시하는 데이터를 열화평가용 파라미터로서, 이 열화평가용 파라미터를 상기 열화평가용 선형함수의 값의 시계열 데이터로부터 구 하고, 그 구한 열화평가용 파라미터의 값에 근거하여 상기 촉매장치의 열화상태를 평가하는 것이 바람직하다.
즉 상술과 같이 촉매장치의 열화의 진행에 따라서, 상기 열화평가용 선형함수의 값이 어떤 소정값으로부터 떨어진 값을 채택하기 쉬워지고, 이 열화평가용 선형함수의 값의 분산 정도가 커진다. 그래서, 본 발명에서는, 그 분산 정도를 표시하는 데이터를 열화평가용 파라미터로 하고, 이것을 상기 열화평가용 선형함수의 값의 시계열 데이터로부터 구한다. 이와 같은 열화평가용 파라미터를 구했을 때, 이 열화평가용 파라미터의 값은, 촉매장치의 열화상태와의 상관관계가 명확하게 되고, 이 열화평가용 파라미터의 값에 근거하여 촉매장치의 열화상태의 평가를 보다 적정하게 행할 수 있다.
이 경우, 상기 열화평가용 파라미터는, 예를 들면 열화평가용 선형함수의 값과 소정값의 편차의 제곱값이나 이 편차의 절대값 등이라도 좋지만, 바람직하게는, 상기 열화상태 평가수단은, 상기 열화평가용 선형함수의 값의 시계열 데이터의 각 데이터 값과 이 열화평가용 선형함수의 값의 중심값으로서 미리 정한 소정값과의 편차의 제곱값 또는 절대값으로 로-패스 특성의 필터링 처리를 실시함으로써 상기 열화평가용 파라미터를 구한다.
이와 같이 상기 편차의 제곱값 또는 절대값으로 로-패스 특성의 필터링 처리를 실시하여 열화평가용 파라미터를 구했을 때, 그 열화평가용 파라미터의 값은, 열화평가용 선형함수의 값의 분산 정도를 나타내는 것으로서 적정한 것이 된다. 그리고, 이 열화평가용 파라미터의 값은, 촉매장치의 열화의 진행에 따라서 단조롭 게 증가해 가게 되고, 이 촉매장치의 열화상태와의 상관성이 명백하게 된다. 따라서, 이 열화평가용 파라미터의 값에 근거하여, 촉매장치의 열화상태의 평가를 높은 신뢰성으로 확실하게 행할 수 있다.
더욱이 이 경우, 상기 로-패스 특성의 필터링 처리는, 축차형의 통계처리 알고리즘에 의한 필터링처리인 것이 바람직하다.
이와 같이 축차형의 통계처리 알고리즘에 의한 필터링 처리에 의해, 상기 열화평가용 파라미터를 구함으로써, 상기 편차나 그 제곱값 혹은 절대값의 데이터 등을 다수 기억하는 메모리를 필요로 하지 않고, 이 열화평가용 파라미터를 적은 메모리용량으로 구할 수 있다.
또한, 상기 축차형의 통계처리 알고리즘으로서는, 예를 들면 최소자승법, 가중 최소자승법, 점감 게인법, 고정 게인법 등의 알고리즘이 매우 적합하다.
또, 본 발명에서는, 상술과 같이 열화평가용 파라미터는, 촉매장치의 열화의 진행에 따라서, 단조롭게 증가한다. 이 때문에, 상기 열화상태 평가수단은, 상기 열화평가용 파라미터의 값을 소정의 역치와 비교함으로써, 상기 촉매장치의 열화상태가 상기 역치에 대응하는 열화 정도 이상으로 열화되어 있는지 아닌지를 판단할 수 있다.
그런데, 촉매장치에 진입되는 배기가스의 유량의 변화상태에 따라서는, 촉매장치의 열화상태를 평가하는 점에서 적정한 열화평가용 선형함수의 값이나 상기 열화평가용 파라미터의 값을 얻을 수 없는 경우도 있다. 그래서, 본 발명에서는, 상기 열화상태 평가수단은, 상기 촉매장치에 진입되는 배기가스의 유량의 변화상태에 따라서 상기 촉매장치의 열화상태의 평가를 행할지 아닐지를 판단하는 수단을 구비한다.
이 경우, 보다 구체적으로는, 예를 들면 배기가스의 유량이 안정하게 일정하게 유지되어 있는 상태에서는, 외란(外亂)이 적기 때문에, 상기 슬라이딩 모드 제어등의 피드백 제어에 의해 배기가스 센서의 출력이 정상적으로 안정되어 상기 목표값으로 유지되기 쉽다. 이 때문에, 이와 같은 상황에서는, 상기 열화평가용 선형함수의 값은, 촉매장치의 열화가 진행한 상태라도, 소정값 근방에 집적하기 쉽고, 촉매장치가 대략 신품상태인 경우와 구별짓기 어려워진다.
그래서, 상기 열화상태 평가수단은, 상기 촉매장치에 진입되는 배기가스의 유량이 대략 일정하게 유지되고 있는 상태에서는, 상기 촉매장치의 열화상태의 평가를 행하지 않고, 상기 배기가스의 유량이 대략 일정하게 유지되고 있지 않는 상태에서 상기 촉매장치의 열화상태의 평가를 행한다.
이와 같이 배기가스의 유량의 변화상태가 적정인 상태(배기가스의 유량의 어느 정도의 변동이 생기고 있는 상태)에 있어서만, 촉매장치의 열화상태의 평가를 행하는 것으로, 촉매장치의 열화상태의 평가결과의 신뢰성을 높일 수 있다.
또한, 상술과 같이 열화평가용 파라미터를 구하는 본 발명에 있어서는, 상기 열화상태 평가수단은, 상기 촉매장치에 진입되는 배기가스의 유량이 대략 일정하게 유지되고 있는 상태에서는, 상기 열화평가용 파라미터의 산출을 행하지 않고, 상기 배기가스의 유량이 대략 일정하게 유지되고 있지 않는 상태에서는 상기 열화평가용 파라미터의 산출을 행한다. 이것에 의해, 배기가스의 유량이 적정한 상태에서 산 출되는 열화평가용 파라미터만을 사용하여 촉매장치의 열화상태의 평가를 행할 수 있다. 더 나아가서는, 그 평가결과의 신뢰성을 높일 수 있다.
또, 본 발명에서는, 상기 공연비 조작량 생성수단은, 상기 촉매장치의 상류 측으로부터 상기 배기가스 센서에 걸친 계가 갖는 낭비시간(dead time)후의 상기 배기가스 센서의 출력의 추정치를 나타내는 데이터를 차례로 구하는 추정수단을 구비하고, 이 추정수단이 구한 데이터를 사용하여 상기 조작량을 생성한다.
또는, 상기 공연비 조작량 생성수단은, 상기 촉매장치의 상류측으로부터 상기 배기가스 센서에 걸친 계가 갖는 낭비시간과, 상기 공연비 조작수단 및 상기 내연기관으로 이루어지는 계가 갖는 낭비시간을 합친 합계 낭비시간후의 상기 배기가스 센서의 출력의 추정치를 나타내는 데이터를 구하는 추정수단을 구비하고, 이 추정수단이 구한 데이터를 사용하여 상기 조작량을 생성한다.
즉, 상기 촉매장치의 상류측으로부터 상기 배기가스 센서에 걸친 계(이 계는 상기 조작량에 의해 규정되는 배기가스의 공연비로부터 배기가스 센서의 출력을 생성하는 계이다. 이하, 여기서는 대상 배기계라 함)에는, 일반적으로, 이 대상 배기계가 포함하는 촉매장치에 기인하여 비교적 긴 낭비시간을 갖는다. 또, 특히 내연기관의 회전수가 비교적 낮은 상태에서는, 상기 공연비 조작수단 및 상기 내연기관으로 이루어지는 계(이 계는 상기 조작량으로부터 촉매장치에 진입되는 배기가스의 공연비를 생성하는 계이다. 이하, 공연비 조작계라 함)도, 비교적 긴 낭비시간을 갖는다. 그리고, 이들 낭비시간은, 상기 배기가스센서의 출력을 목표값에 수렴시키는 점에서 악영향을 미치는 일이 있으므로, 그 영향을 보상하는 것이 바람직하 다.
이를 위해, 본 발명에서는, 상기 대상 배기계의 낭비시간후의 배기가스 센서의 출력의 추정치를 나타내는 데이터, 또는, 이 낭비시간과 상기 공연비 조작계의 낭비시간을 합한 합계 낭비시간후의 배기가스 센서의 출력의 추정치를 나타내는 데이터를 추정수단에 의해 구하고, 그 데이터를 사용하여 상기 조작량을 생성한다.
이것에 의해, 상기 낭비시간의 영향을 보상할 수 있게 되고, 배기가스 센서의 출력의 목표값으로의 수렴제어를 양호하게 행할 수 있게 된다. 이 결과, 촉매장치의 원하는 정화성능을 양호하게 확보하면서 이 촉매장치의 열화상태의 평가를 행할 수 있다.
더욱이 상기와 같이 추정수단을 구비했을 때, 보다 구체적으로는 상기 공연비 조작량 생성수단은, 상기 추정수단이 구한 데이터에 의해 표시되는 상기 배기가스 센서의 출력의 추정치를 슬라이딩 모드 제어에 의해 상기 목표값에 수렴시키도록 상기 조작량을 생성한다. 이것에 의해, 상술의 낭비시간의 영향을 적정하게 보상할 수 있다. 이 때문에, 배기가스 센서의 출력의 목표값으로의 수습제어의 안정성을 높이고, 더 나아가서는, 촉매장치의 필요한 정화성능의 확보를 안정되게 행할 수 있다.
또한, 배기가스 센서의 출력의 추정치를 나타내는 데이터는, 예를 들면, 배기가스 센서의 출력과, 상기 공연비 조작량 생성수단이 과거에 생성한 상기 조작량 또는 이 조작량에 따른 것으로 되는 촉매장치의 상류측의 배기가스의 공연비의 검출값을 사용하여 생성할 수 있다.
또, 본 발명에서는, 상기 슬라이딩 모드 제어는 바람직하게는 적응 슬라이딩 모드 제어이다.
즉, 적응 슬라이딩 모드 제어는, 외란 등의 영향을 극히 배제하기 위해, 통상의 슬라이딩 모드 제어에 대하여, 이른바 적응법칙(적응 알고리즘)이라고 일컬어지는 제어규칙을 가미한 것이다. 이와 같은 적응 슬라이딩 모드 제어를 사용하여 상기 조작량을 생성함으로써, 이 조작량의 신뢰성이 높아지고, 배기가스 센서의 출력의 목표값에의 수렴제어를 매우 신속한 응답성으로 양호하게 행할 수 있다. 또, 슬라이딩 모드 제어용의 전환함수에 따라서 정해지는 열화평가용 선형함수의 값에 대하여, 촉매장치의 열화상태 이외의 단순한 외란 등의 요인에 의한 영향이 억제된다. 이 때문에, 이 열화평가용 선형함수의 값의 분산 정도를 나타내는 상기 열화평가용 파라미터에 근거하는 촉매장치의 열화상태의 평가의 신뢰성을 높일 수 있다.
또, 본 발명에서는, 상기 공연비 조작량 생성수단이 생성하는 상기 조작량은, 상기 촉매장치에 진입되는 배기가스의 목표공연비임과 동시에, 이 촉매장치에 진입되는 배기가스의 공연비를 검출하는 공연비 센서를 이 촉매장치의 상류측에 구비하고, 상기 공연비 조작수단은, 이 공연비 센서의 출력이 상기 목표공연비에 수렴하도록 피드백 제어에 의해 상기 혼합기의 공연비를 조작한다.
이와 같이 상기 조작량을 촉매장치에 진입되는 배기가스의 목표공연비로 하고, 이 촉매장치에 진입되는 배기가스의 공연비를 검출하는 공연비 센서의 출력(공연비의 검출값)을 목표공연비에 피드백 제어함으로써, 배기가스 센서의 출력의 목 표값으로의 수렴제어, 더 나아가서는 촉매장치의 필요한 정화성능의 확보를 보다 양호하게 행할 수 있다.
또한, 상기 조작량은, 상기 목표공연비 이외에도 예를 들면 내연기관의 연료 공급량의 보정량 등을 들 수 있다. 또, 상기 조작량에 따른 상기 혼합기의 공연비의 조작은, 이 조작량으로부터 피드백 제어에 의해 행하도록 할 수도 있다. 더욱이, 본 발명에서, 촉매장치가 최적인 정화성능을 확보하면서 이 촉매장치의 열화상태의 평가를 행하는 점에서는, 상기 배기가스 센서로서 산소농도센서(02 센서)를 사용하여, 그 목표값을 소정의 일정값으로 하는 것이 매우 적합하다.
도 1은 본 발명의 내연기관의 공연비 제어장치의 제 1 실시형태의 전체적 시스템 구성을 도시하는 블록도,
도 2는 도 1의 장치에서 사용되는 02 센서 및 공연비 센서의 출력특성도,
도 3은 도 1의 장치의 주요부의 기본구성을 도시하는 블록도,
도 4는 도 1의 장치에서 사용되는 슬라이딩 모드 제어를 설명하기 위한 설명도,
도 5∼도 8은 도 1의 장치에서 사용되는 촉매장치의 열화상태의 평가수법을 설명하기 위한 도면,
도 9는 도 1의 장치에서 사용되는 적응제어기를 설명하기 위한 블록도 이다.
도 10은 도 1의 장치의 기관측 제어유닛의 처리를 도시하는 플로차트,
도 11은 도 10의 플로차트의 서브루틴 처리를 도시하는 플로차트이다.
도 12는 도 1의 장치의 배기측 제어유닛의 처리를 도시하는 플로차트,
도 13∼도 16은 도 12의 플로차트의 서브루틴 처리를 도시하는 플로차트,
도 17∼도 19는 도 16의 플로차트의 서브루틴 처리를 도시하는 플로차트이다.
도 20은 본 발명의 내연기관의 공연비 제어장치의 제 2 실시형태의 주요부 구성(배기측 제어유닛)을 도시하는 블록도,
도 21은 도 20의 배기측 제어유닛의 장치의 처리를 도시하는 플로차트,
도 22는 도 21의 플로차트의 주요부의 처리를 설명하기 위한 선도이다.
발명을 실시하기 위한 최량의 형태
본 발명의 제l실시형태를 도 1∼도 19를 참조하여 설명한다.
도 1은 본 실시형태의 장치의 전체적인 시스템 구성을 도시하는 블록도이다. 도면중, 1은, 예를 들면 자동차나 하이브리드 차에 그 차량의 추진원으로서 탑재된 4 기통의 엔진(내연기관)이다. 이 엔진(1)의 각 기통마다에 연료 및 공기의 혼합기의 연소에 의해 생성되는 배기가스는, 엔진(1)의 근방에서 공통의 배기관(2)(배기통로)에 집합되고, 이 배기관(2)을 통해서 대기중에 방출된다. 배기관(2)에는, 배기가스를 정화하기 위해, 예를 들면 3원촉매에 의해 구성된 2개의 촉매장치(3, 4)가 상류측으로부터 차례로 개장되어 있다.
또한, 본 실시형태에서 열화상태를 평가하는 촉매장치는, 상류측의 촉매장치(3)이며, 하류측의 촉매장치(4)는 생략해도 좋다.
본 실시형태의 장치에서는, 기본적으로는, 촉매장치(3)의 최적인 정화성능을 확보하도록 촉매장치(3)에 진입되는 배기가스의 공연비(상세하게는 촉매장치(3)에 진입되는 배기가스중의 산소농도로부터 파악되는 공연비. 이하, 단지 엔진(1)의 공연비라 하는 것이 있음)가 제어된다. 또, 이 공연비 제어를 행하면서, 촉매장치(3)의 열화상태를 평가할 수 있다.
그리고, 이와 같은 처리를 행하기 위해, 촉매장치(3)의 상류측(보다 상세하게는 엔진(1)의 각 기통마다의 배기가스의 집합 개소)에서 배기관(2)에 설치된 공연비 센서(5)와, 촉매장치(3)의 하류측(촉매장치(4)의 상류측)에서 배기관(2)에 설치된 배기가스 센서로서의 02 센서(산소농도센서)(6)와, 이들 센서(5, 6)의 출력 등에 근거하여 후술의 제어처리나 촉매장치(3)의 열화상태의 평가를 행하는 제어유닛(7)을 구비하고 있다.
또한, 제어유닛(7)에는, 상기 공연비 센서(5)나 02 센서(6)의 출력외에, 엔진(1)의 운전상태를 검출하기 위한 도시하지 않는 회전수 센서나 흡기압 센서, 냉각수온 센서 등, 각종의 센서의 출력이 부여된다.
02센서(6)는, 촉매장치(3)를 통과한 배기가스중의 산소농도에 따른 레벨의 출력(VO2/OUT(산소농도의 검출값을 나타내는 출력))을 생성하는 통상적인 02센서이다. 여기서, 배기가스중의 산소농도는, 그 배기가스를 연소에 의해 생성한 혼합기 의 공연비에 따른 것으로 된다. 그리고, 이 02센서(6)의 출력(VO2/OUT)은, 도 2에 실선(a)으로 도시하는 바와 같이, 배기가스중의 산소농도에 대응하는 공연비가 이론공연비 부근의 범위(△)에 존재하는 상태에서, 이 배기가스중의 산소농도에 거의 비례한 고감도의 변화를 발생시키는 것으로 된다. 또, 그 범위(△)를 일탈한 공연비에 대응하는 산소농도에서는, 02센서(6)의 출력 VO2/OUT는 포화되어, 대략 일정한 레벨로 된다.
공연비 센서(5)는, 촉매장치(3)에 진입되는 배기가스의 산소농도에 의해 파악되는 엔진(1)의 공연비의 검출값을 나타내는 출력(KACT)을 생성하는 것이다. 이 공연비 센서(5)는, 예를 들면 본원 출원인이 일본 특개평 4-369471호 공보 또는 미국 특허 제5391282호에 상세히 설명한 광역 공연비 센서에 의해 구성된 것이다. 그리고, 이 공연비 센서(5)는, 도 2에 실선(b)으로 도시하는 바와 같이, 02센서(6)보다도 배기가스중의 산소농도의 광범위에 걸쳐서 그것에 비례한 레벨의 출력을 생성한다. 바꾸어 말하면, 이 공연비 센서(5)(이하, LAF 센서(5)라 함)는, 배기가스중의 산소농도에 대응한 공연비의 광범위에 걸쳐서 그것에 비례한 레벨의 출력(KACT)을 생성한다.
제어유닛(7)은, 엔진(1)의 공연비를 규정하는 조작량으로서의 목표공연비(KCMD)(엔진(1)의 공연비의 목표값)를 산출하기 위한 처리, 및 촉매장치(3)의 열화상태를 평가하기 위한 처리를 담당하는 제어유닛(7a)(이하, 배기측 제어유닛(7a)이라 함)과, 상기 목표공연비(KCMD)에 따라서 엔진(1)의 연료 분 사량(연료 공급량)을 조정함으로써 엔진(1)에서 연소시키는 혼합기의 공연비를 조작하는 처리를 담당하는 공연비 조작수단으로서의 제어유닛(7b)(이하, 기관측 제어유닛(7b)이라 함)으로 구성되어 있다.
이들 제어유닛(7a, 7b)은 마이크로 컴퓨터를 사용하여 구성된 것이고, 각각의 처리를 소정의 제어사이클로 실행한다. 여기서, 본 실시형태에서는, 배기측 제어유닛(7a)이 그 처리(목표공연비(KCMD)의 생성처리나 촉매장치(3)의 열화상태의 평가처리)를 실행하는 제어사이클은, 촉매장치(3)에 기인한 후술의 낭비시간이나 연산부하 등을 고려하여, 미리 정한 일정주기(예를 들면 30∼100ms)로 하고 있다.
또, 기관측 제어유닛(7b)이 실행하는 처리(연료분사량의 조정처리)는, 엔진(1)의 회전수(상세하게는 엔진(1)의 연소 사이클)에 동기시켜서 행할 필요가 있다. 이 때문에, 기관측 제어유닛(7b)이 그 처리를 실행하는 제어사이클은, 엔진(1)의 크랭크각 주기(이른바 TDC)에 동기한 주기로 하고 있다.
또한, 배기측 제어유닛(7a)의 제어사이클의 일정 주기는, 상기 크랭크각 주기(TDC) 보다도 긴 것으로 되어 있다.
상기 기관측 제어유닛(7b)을 도 1을 참조하여 더욱 설명한다. 기관측 제어유닛(7b)은, 그 기능적 구성으로서, 엔진(1)으로의 기본 연료분사량(Tim)을 구하는 기본 연료분사량 산출부(8)와, 기본 연료분사량(Tim)을 보정하기 위한 제 1 보정계수(KTOTAL) 및 제 2 보정계수(KCMDM)를 각각 구하는 제l 보정계수 산출부(9) 및 제 2 보정계수 산출부(10)를 구비한다.
상기 기본 연료 분사량 산출부(8)는, 엔진(1)의 회전수(NE)와 흡기압(PB)으 로부터, 그것들에 의해 규정되는 엔진(1)의 기준의 연료분사량(연료 공급량)을 미리 설정된 맵을 사용하여 구하고, 그 기준의 연료 분사량을 엔진(1)의 도시하지 않은 스로틀 밸브의 유효 개구면적에 맞게 보정함으로써 기본 연료분사량(Tim)을 산출하는 것이다.
또, 제 1 보정계수 산출부(9)가 구하는 제 1 보정계수(KTOTAL)는, 엔진(1)의 배기환류율(엔진(1)의 흡입공기중에 포함되는 배기가스의 비율)이나, 엔진(1)의 도시하지 않은 캐니스터(cannister)의 퍼지시에 엔진(1)에 공급되는 연료의 퍼지량, 엔진(1)의 냉각수온, 흡기온 등을 고려하여 상기 기본연료 분사량(Tim)을 보정하기 위한 것이다.
또, 제 2 보정계수 산출부(10)가 구하는 제 2 보정계수(KCMDM)는, 배기측 제어유닛(7a)이 후술과 같이 산출하는 목표공연비(KCMD)에 대응하여 엔진(1)에 유입되는 연료의 냉각효과에 의한 흡입공기의 충전효율을 고려하여 기본 연료분사량(Tim)을 보정하기 위한 것이다.
이들의 제 1 보정계수(KTOTAL) 및 제 2 보정계수(KCMDM)에 의한 기본 연료분사량(Tim)의 보정은, 제 1 보정계수(KTOTAL) 및 제 2 보정계수(KCMDM)를 기본 연료분사량(Tim)에 곱한 것으로 행해지고, 이 보정에 의해 엔진(1)의 요구 연료분사량(Tcyl)이 얻어진다.
또한, 상기 기본 연료분사량(Tim)이나, 제 1 보정계수(KTOTAL), 제 2 보정계수(KCMDM)의 보다 구체적인 산출수법은, 일본 특개평 5-79374호 공보 또는 미국 특허 제5253630호 등에 본원 출원인이 개시하고 있으므로, 여기서는 상세한 설명을 생략한다.
기관측 제어유닛(7b)은, 상기의 기능적 구성외에, 더욱, 배기측 제어유닛(7a)이 산출하는 목표공연비(KCMD)에 LAF 센서(5)의 출력(KACT)(엔진(1)의 공연비의 검출값)을 수렴시키도록 피드백 제어에 의해 엔진(1)의 연료분사량을 조정함으로써 엔진(1)에서 연소시키는 혼합기의 공연비를 조작하는 피드백 제어부(14)를 구비하고 있다.
이 피드백 제어부(14)는, 본 실시형태에서는, 엔진(1)의 각 기통의 전체적인 공연비를 피드백 제어하는 대국적 피드백 제어부(15)와, 엔진(1)의 각 기통마다의 공연비를 피드백 제어하는 국소적 피드백 제어부(16)로 분별된다.
상기 대국적 피드백 제어부(15)는, LAF 센서(5)의 출력(KACT)이 상기 목표공연비(KCMD)에 수렴하도록, 상기 요구 연료분사량(Tcyl)을 보정하는(요구 연료분사량(Tcyl)에 곱함) 피드백 보정계수(KFB)를 차례로 구하는 것이다.
이 대국적 피드백 제어부(15)는, LAF센서(5)의 출력(KACT)과 목표공연비(KCMD)의 편차에 따라서 주지의 PID 제어를 사용하여 상기 피드백 보정계수(KFB)로서의 피드백 조작량(KLAF)을 생성하는 PID 제어기(17)와, LAF 센서(5)의 출력(KACT)과 목표공연비(KCMD)로부터 엔진(1)의 운전상태의 변화나 특성변화 등을 고려하여 상기 피드백 보정계수(KFB)를 규정하는 피드백 조작량(kstr)을 적응적으로 구하는 적응제어기(18)(도면에서는 STR이라 칭하고 있음)를 각각 독립적으로 구비하고 있다.
여기서, 본 실시형태에서는, 상기 PID 제어기(17)가 생성하는 피드백 조작 량(KLAF)은, LAF센서(5)의 출력(KACT(공연비의 검출값))이 목표공연비(KCMD)에 일치하고 있는 상태에서 「1」로 되고, 이 조작량(KLAF)을 그대로 상기 피드백 보정계수(KFB)로서 사용할 수 있게 되어 있다. 한편, 적응제어기(18)가 생성하는 피드백 조작량(kstr)은 LAF 센서(5)의 출력(KACT)이 목표공연비(KCMD)에 일치하는 상태에서 「목표공연비(KCMD)」로 되는 것이다. 이 때문에, 이 피드백 조작 량(KSTR)을 제산(除算)처리부(19)에서 목표공연비(KCMD)로 나누어서 이루어지는 피드백 조작량(KSTR(=KSTR/KCMD))이 상기 피드백 보정계수(KFB)로서 사용할 수 있게 되어 있다.
대국적 피드백 제어부(15)는, PID 제어기(17)에 의해 생성되는 피드백 조작 량(KLAF)과, 적응제어기(18)가 생성하는 피드백 조작량(kstr)을 목표공연비(KCMD)로 나누어서 이루어지는 피드백 조작량(kstr)을 전환부(20)에서 적절하게, 택일적으로 선택한다. 그리고, 어느쪽인가 한쪽의 피드백 조작량(KLAF 또는 kstr)을 상기 피드백 보정계수(KFB)로서 사용하고, 이 보정계수(KFB)를 상기 요구 연료분사량(Tcyl)에 곱함으로써 이 요구 연료분사량(Tcyl)을 보정한다. 또한 이러한 대국적 피드백 제어부(15)(특히 적응제어기(18))에 대해서는 후에 더욱 상세히 설명한다.
상기 국소적 피드백 제어부(16)는, LAF 센서(5)의 출력(KACT)으로부터 각 기통마다의 실공연비(#nA/F(n=1, 2, 3, 4))를 추정하는 옵저버(21)와, 이 옵저버(21)에 의해 추정된 각 기통마다의 실공연비(#nA/F)로부터 각 기통마다의 공연비의 분산을 해소하도록, PID 제어를 사용하여 각 기통마다의 연료 분사량의 피드백 보정 계수(#nKLAF)를 각각 구하는 복수(기통수개)의 PID 제어기(22)를 구비한다.
여기서, 옵저버(21)는, 그것을 간단하게 설명하면, 각 기통마다의 실공연비(#nA/F)의 추정을 다음과 같게 행하는 것이다. 즉, 엔진(1)으로부터 LAF 센서(5)의 개소(각 기통마다의 배기가스의 집합부)에 걸친 계를, 엔진(1)의 각 기통마다의 실공연비(#nA/F)로부터 LAF 센서(5)에서 검출되는 공연비를 생성하는 계라고 생각한다. 그리고, 이 계를, LA 센서(5)의 검출응답 지연(예를 들면 1차 지연)이나, LAF 센서(5)에서 검출되는 공연비에 대한 엔진(1)의 각 기통마다의 공연비의 시간적 기여도를 고려하여 모델화 한다. 그리고, 그 모델의 기초로, LAF 센서(5)의 출력(KACT)으로부터, 역산적으로 각 기통마다의 실공연비(#nA/F)를 추정한다.
또한, 이와 같은 옵저버(21)는, 본원 출원인이 예를 들면 일본 특개평 7-83094호 공보 또는 미국 특허 제 5531208 호에 상세히 개시하고 있으므로, 여기서는, 더 이상의 설명을 생략한다.
또, 국소적 피드백 제어부(16)의 각 PID 제어기(22)는, LAF 센서(5)의 출력(KACT)을, 전회의 제어사이클에서 각 PID 제어기(22)에 의해 요구된 피드백 보정계수(#nKLAF)의 전체 기통에 대한 평균치로 나누어서 이루어지는 값을 각 기통의 공연비의 목표값으로 한다. 더욱이, 그 목표값와 옵저버(21)에 의해 구해진 각 기통마다의 실공연비(#nA/F)의 추정치와의 편차가 해소되도록, 이번의 제어사이클에서의 각 기통마다의 피드백 보정계수(#nKLAF)를 구한다.
그리고, 국소적 피드백 제어부(16)는, 상기 요구 연료분사량(Tcyl)에 대국적 피드백 제어부(15)의 피드백 보정계수(KFB)를 곱하여 이루어지는 값에, 각 기통마다의 피드백 보정계수(#nKLAF)를 곱함으로써, 각 기통의 출력 연료분사량(#nTout)(n=1, 2, 3. 4)을 구한다.
이와 같이 하여 구해지는 각 기통의 출력 연료분사량(#nTout)은, 기관측 제어유닛(7b)에 구비된 각 기통마다의 부착 보정부(23)에 의해, 흡기관에서의 연료의 벽면 부착을 고려한 보정이 각 기통마다 이루어진 후, 엔진(1)이 도시하지 않은 연료 분사장치에 부여된다. 그리고, 그 부착보정이 이루어진 출력 연료분사량(#nTout)에 따라서, 엔진(1)의 각 기통으로의 연료분사가 행해지도록 되어 있다.
또한, 상기 부착 보정에 대해서는, 본원 출원인이 예를 들면 특개평 8-21273호 공보 또는 미국 특허 제5568799호에 상세히 개시하고 있으므로, 여기서는 더 이상의 설명을 생략한다. 또, 도 1에 있어서, 참조부호(24)를 붙인 센서 출력선택 처리부는, 상기 옵저버(21)에 의한 각 기통마다의 실공연비(#nA/F)의 추정에 적합한 LAF 센서(5)의 출력(KACT)을 엔진(1)의 운전상태에 따라 선택하는 것으로, 이것에 대해서는, 본원 출원인이 일본 특개평 7-259588호 공보 또는 미국 특허 제 5540209 호에 상세히 개시하고 있으므로, 여기서는 더 이상의 설명을 생략한다.
한편, 상기 배기측 제어유닛(7a)은, LAF 센서(5)의 출력(KACT)와 소정의 기준값(FLAF/BASE)의 편차(kact(=KACT-FLAF/BASE))를 구하는 감산처리부(11)와, 02센서(6)의 출력(VO2/OUT)과 그 목표값(VO2/TARGET)의 편차(VO2(=VO2
/OUT-VO2/TARGET)) 를 구하는 감산처리부(12)를 구비하고 있다.
이 경우, 02센서(6)의 출력 VO2/OUT가 어떤 소정의 일정값(VO2/TARGET(도 2 참조))으로 정정하는 엔진(1)의 공연비의 상태에 있어서, 촉매장치(3)가 그 열화상태등에 의하지 않고 최적인 정화성능을 발휘한다. 이 때문에, 본 실시형태에서는, 상기 일정값(VO2/TARGET)을 O2 센서(6)의 출력(VO2/OUT)의 목표값(VO2/TARGET)으로 하고 있다. 또, LAF 센서(5)의 출력(KACT)에 대한 상기 기준값(FLAF/BASE)은, 본 실시형태에서는, 「이론 공연비」에 설정되어 있다.
또한, 이하의 설명에서, 상기 감산처리부(11, 12)가 각각 구하는 편차(kact, VO2)를 각각 LAF 센서(5)의 편차출력(kact) 및 02센서(6)의 편차출력(VO2)이라 칭한다.
배기측 제어유닛(7a)은 더욱, 상기의 편차출력(kact, VO2)의 데이터가 각각 LAF 센서(5)의 출력 및 02센서(6)의 출력의 데이터로서 부여되는 배기측 주연산처리부(13)를 구비하고 있다.
이 배기측 주연산처리부(13)는, 그 기능으로서, 도 3에 도시하는 바와 같이 상기 편차출력(kact, VO2)의 데이터에 근거하여 엔진(1)의 목표공연비(KCMD)를 차례로 산출하는 공연비 조작량 결정수단으로서의 목표공연비 산출수단(13a)와, 02센서(6)의 편차출력(VO2)의 데이터에 근거하여 촉매장치(3)의 열화상태를 평가하는 열화상태 평가수단(13b)을 갖는다.
이 경우, 보다 상세하게는 목표공연비 산출수단(13a)과, 배기관(2)의 LAF 센서(5)의 개소로부터 02센서(6)의 개소에 걸쳐서 촉매장치(3)를 포함하는 배기계(도 1에서 참조부호(E)를 붙인 부분)를 제어대상으로 한다. 그리고, 이 대상 배기계(E)가 갖는 낭비시간이나, 상기 엔진(1) 및 기관측 제어유닛(7b)이 갖는 낭비시간, 대상 배기계(E)의 거동변화 등을 고려하면서, 슬라이딩 모드 제어(상세하게는 적응 슬라이딩 모드 제어)를 사용하여 02센서(6)의 출력(VO2/OUT)을 그 목표 치(VO2/TARGET)에 수렴시키도록 엔진(1)의 목표공연비(KCMD)를 차례로 산출하는 것이다.
또, 열화상태 평가수단(13b)은, 02센서(6)의 편차출력(VO2)의 시계열 데이터로부터 정해지는 후술의 열화평가용 선형함수의 값에 근거하여 촉매장치(3)의 열화상태를 평가함과 동시에, 그 평가결과에 따라서 본 실시형태의 장치에 구비된 열화 알림기(29)의 작동을 제어하는 것이다. 또한, 열화 알림기(29)는, 램프의 점등 혹은 점멸, 또는 버저의 명동(鳴動), 또는 문자 혹은 도형의 표시 등에 의해 촉매장치(3)의 열화상태를 외부에 알리는 것이다,
상기 목표공연비 산출수단(13a) 및 열화상태 평가수단(13b)을 더욱 설명한다.
먼저, 목표공연비 산출수단(13a)에 관하여, 본 실시형태에서는, 이 수단(13a)의 처리를 행하기 위해, 상기 대상 배기계(E)를, 상기 LAF 센서(5)의 출력(KACT(엔진(1)의 공연비의 검출값))으로부터 낭비시간 요소 및 응답지연 요소를 통해서 02센서(6)의 출력(VO2/OUT(촉매장치(3)를 통과한 배기가즈중의 산소농도의 검출값))을 생성하는 계로 간주하고, 그 거동을 미리 이산(離散)시간계로 모델화 하고 있다.
더욱이, 상기 엔진(1) 및 기관측 제어유닛(7b)으로 이루어지는 계를, 목표공연비(KCMD)로부터 낭비시간 요소를 통해 LAF 센서(5)의 출력(KACT)을 생성하는 계(이하, 이 계를 공연비 조작계라고 칭함)로 간주하고, 그 거동을 미리 이산시간계에서 모델화 하고 있다.
이 경우, 본 실시형태에서는, 대상 배기계(E)의 거동을 이산시간계로 표현하는 모델(이하, 배기계 모델이라 함)은, LAF 센서(5)의 출력(KACT) 및 02센서(6)의 출력(VO2/OUT) 대신에, LAF 센서(5)의 상기 편차출력(kact(=KACT-FLAF/BASE))과 02센서(6)의 상기 편차출력(VO2(=VO2/OUT-VO2/TARGET))을 사용해서, 다음 식(1)에 의해 표현한다.
이 식(1)은, 대상 배기계(E)가 LAF 센서(5)의 편차출력(kact)으로부터, 낭비 시간 요소 및 응답지연 요소를 통해서 02센서(6)의 편차출력(VO2)을 생성하는 계로 간주하고, 이 대상 배기계(E)의 거동을 이산시간계의 모델(보다 상세하게는 대상 배기계(E)의 입력량으로서의 편차출력(kact)에 낭비시간을 갖는 자기 회귀모델)로 표현한 것이다.
여기서, 상기 식(1)에 있어서, 「k」는 상기 배기측 제어유닛(7a)의 이산시간적인 제어사이클의 프로그램 수를 나타내고(이하, 동일), 「dl」는 대상 배기계(E)에 존재하는 낭비시간(상세하게는 LAF 센서(5)가 검출하는 각 시점의 공연비가 02센서(6)의 출력(VO2/OUT)에 반영되게 되기 까지 필요로 하는 낭비시간)을 제어사이클 수로 나타낸 것이다. 이 경우, 대상 배기계(E)의 낭비시간은, 배기측 제어유닛(7a)의 제어사이클의 주기(이것은 본 실시형태에서는 일정함)를 30∼100ms로 했을 때, 일반적으로는, 3∼10 제어사이클 분량의 시간(d1=3∼10)이다. 그리고, 본 실시형태에서는, 식(1)에 의해 나타낸 배기계 모델에서의 낭비시간(d1)의 값으로서, 대상 배기계(E)의 실제의 낭비시간과 동등하던지 혹은 그것보다도 약간 긴 것에 미리 설정한 소정의 일정값(본 실시형태에서는 예를 들면 d1=7)을 설정하고 있다.
또, 식(1)의 우변 제 l항 및 제 2항은 각각 대상 배기계(E)의 응답지연 요소에 대응한 것으로, 제 l항은 l차째의 자기 회귀항, 제 2항은 2차째의 자기 회귀항이다. 그리고, 「a1」, 「a2」는 각각 1차째의 자기 회귀항의 게인계수, 2차째의 자기 회귀항의 게인계수이다. 이들 게인계수(a1, a2)는 달리 말하면, 대상 배기계(E)의 출력량으로서의 02센서(6)의 편차출력(VO2)에 관련되는 계수이다.
더욱이, 식(1)의 우변 제 3항은 대상 배기계(E)의 입력량으로서의 LAF 센서(5)의 편차출력(kact)에 대상 배기계(E)의 낭비시간(d1)을 포함하여 표현한 것이고, 「b1」은 그 입력량(=LAF 센서(5)의 편차출력(kact))에 관련되는 게인계수이 다. 이들 게인계수(a1, a2, b1)는 배기계 모델의 거동을 규정하는 파라미터이고, 본 실시형태에서는 후술의 동정기(同定器)에 의해 차례로 동정하는 것이다.
한편, 엔진(1) 및 기계측 제어유닛(7b)으로 이루어지는 상기 공연비 조작계의 이산시간계의 모델(이하, 공연비 조작계 모델이라 함)은, 본 실시형태에서는, 배기계 모델의 경우와 동일하게 LAF센서(5)의 출력(KACT) 대신에 LAF센서(5)의 상기 편차출력(kact(=KACT-FLAF/BASE))을 사용함과 동시에, 이것에 대응시켜서 목표공연비(KCMD) 대신에 이 목표공연비(KCMD)의 상기 기준값(FLAF/BASE)에 대한 편차(kcmd(=FLAF/BASE. 이것은 LAF센서(5)의 편차출력(kact)의 목표치에 상당한다. 이하, 이것을 목표편차 공연비(kcmd)라 함))를 사용하여, 다음 식(2)에 의해 나타낸다.
이 식(2)은 공연비 조작계가 상기 목표 편차 공연비(kcmd)로부터 낭비시간 요소를 통해서 LAF 센서(5)의 편차출력(kact)을 생성하는 계(각 제어사이클에서의 편차출력(kact)이 낭비시간전의 목표편차 공연비(kcmd)에 일치하는 계)라고 간주하고, 이 공연비 조작계를 이산시간계의 모델로 표현한 것이다,
여기서, 식(2)에서, 「d2」가 공연비 조작계의 낭비시간(상세하게는 각 시점의 목표공연비(KCMD)가 LAF 센서(5)의 출력(KACT)에 반영되게 되기 까지 필요로 하는 낭비시간)을 배기측 제어유닛(7a)의 제어사이클 수로 나타낸 것이다. 이 경우, 공연비 조작계의 낭비시간은, 엔진(1)의 회전수(NE)에 의해 변화하고, 엔진(1)의 회전수가 낮아질 수록, 길어진다. 그리고, 본 실시형태에서는, 식(2)에 의해 나타 낸 공연비 조작계 모델에서의 낭비시간(d2)의 값으로서는, 상기와 같은 공연비 조작계의 낭비시간의 특성을 고려하여, 예를 들면 엔진(1)의 저속 회전역의 회전수인 아이들링 회전수에서 실제의 공연비 조작계가 갖는 낭비시간(이것은, 엔진(1)의 임의의 회전수에서 공연비 조작계가 채택할 수 있는 최대측의 낭비시간임)과 동등한지, 혹은 그것보다도 약간 긴 것에 미리 설정한 소정의 일정값(본 실시형태에서는 예를 들면 d2=3)을 사용한다.
또한, 상기 공연비 조작계에는, 실제로는, 낭비시간 요소외에, 엔진(1)에 기인한 응답지연 요소도 포함된다. 그런데, 목표공연비(KCMD)에 대한 LAF 센서(5)의 출력(KACT)의 응답지연은, 기본적으로는 상기 기관측 제어유닛(7b)의 피드백 제어부(14)(특히 적응제어기(18))에 의해 보상되기 때문에, 배기측 제어유닛(7a)으로부터 본 공연비 조작계에서는, 엔진(1)에 기인하는 응답지연 요소를 고려하지 않아도 지장은 없다.
상기 배기측 주연산처리부(13)의 목표공연비 산출수단(13a)은, 식(1) 및 식(2)에 의해 각각 표현된 배기계 모델 및 공연비 조작계 모델에 근거하는 목표공연비(KCMD)의 산출처리를 배기측 제어유닛(7a)의 제어사이클(일정한 제어사이클)로 행하는 것이다. 그리고, 이 처리를 행하기 위해, 도 3에 도시하는 바와 같은 기능적 구성을 구비하고 있다.
즉, 목표공연비 산출수단(13a)은, 상기 배기계 모델(식(l))이 설정할 파라미터인 상기 게인계수(a1, a2, b1)의 동정값(a1해트, a2해트, b1해트(이하, 동정 게인계수(a1해트, a2해트, b1해트라 함)을 제어사이클마다 차례로 구하는 동정기(25)와, 대상 배기계(E)의 낭비시간(d1) 및 공연비 조작계의 낭비시간(d2)을 합한 합계 낭비시간(d(=d1+d2))후의 02센서(6)의 편차출력(VO2)의 추정값(VO2 바)(이하, 추정 편차 출력(VO2바)라 함)을 제어사이클마다 차례로 구하는 추정기(26)와, 적응 슬라이딩 모드 제어의 처리에 의해 상기 목표공연비(KCMD)를 제어사이클마다 차례로 산출하는 슬라이딩 모드 제어기(27)를 구비한다.
이들 동정기(25), 추정기(26) 및 슬라이딩 모드 제어기(27)에 의한 연산처리의 알고리즘은 이하와 같이 구축되어 있다.
먼저, 상기 동정기(25)는, 상기 식(1)에 의해 표현된 배기계 모델의 실제의 대상 배기계(E)에 대한 모델화 오차를 극력 작게 하도록 상기 게인계수(a1, a2, b1)의 값을 실시간으로 차례로 동정하는 것이며, 그 동정처리를 다음과 같이 행한다.
즉, 동정기(25)는, 배기측 제어유닛(7a)의 제어사이클마다, 먼저, 지금 현재 설정되어 있는 배기계 모델의 동정 게인계수(a1해트, a2해트, b1해트), 즉 전회의 제어사이클에서 결정된 동정 게인계수(a1(k-1)해트, a2(k-1)해트, b1(k-1)해트)의 값과, LAF 센서(5)의 편차출력(kact) 및 02센서(6)의 편차출력(VO2)의 과거값의 데이터(kact(k-d1-1). VO2(k-1), VO2(k-2))를 사용하여, 다음 식(3)에 의해 배기계 모델상에서의 02센서(6)의 편차출력(VO2(배기계 모델의 출력))의 값(VO2(k)해트(이 하, 동정 편차출력 VO2(k)해트라 함))를 구한다.
이 식(3)은, 배기계 모델을 나타내는 상기 식(1)을 1제어사이클 분량, 과거측에 시프트하고, 게인계수(a1, a2, b1)로서 동정 게인계수(a1(k-1)해트, a2(k-1)해트, b1(k-1)해트)를 사용한 것이다. 또, 식(3)의 제 3항에서 사용되는 대상 배기계(E)의 낭비시간(d1)의 값은, 상술과 같이 설정한 일정값(본 실시형태에서는 d1=7)을 사용한다.
상기 식(3)은, 다음 식(6)에 의해 표시된다.
더욱이 동정기(25)는, 상기 식(3) 또는 식(6)에 의해 구해지는 02센서(6)의 동정 편차출력(VO2(k)해트)과 지금 현재의 02센서(6)의 편차출력(VO2(k))과의 편차(id/e(k))를 배기계 모델의 실제의 대상 배기계(E)에 대한 모델화 오차를 나타 내는 것으로서 다음 식(7)에 의해 구한다(이하, 편차(id/e)를 동정 오차(id/e라 함).
그리고, 동정기(25)는, 상기 동정오차(id/e)를 최소로 하도록 새로운 동정 게인계수(a1(k)해트, a2(k)해트, b1(k)해트), 바꾸어 말하면, 이들의 동정 게인계수를 요소로 하는 새로운 상기 벡터((k)(이하, 이 벡터를 동정 게인계수 벡터라 함))를 구하는 것으로서, 그 산출을, 다음 식(8)에 의해 행한다. 즉, 동정기(25)는, 전회의 제어사이클에서 결정된 동정 게인계수(a1(k-1)해트, a2(k-1)해트, b1(k-1)해트)를, 동정오차((id/e)(k))에 비례시킨 양만큼 변화시키므로써 새로운 동정 게인계수(a1(k)해트, a2(k)해트, b1(k)해트)를 구한다.
여기서, 식(8)중의 「Kθ」는 다음 식(9)에 의해 결정되는 3차의 벡터(각 동정 게인계수(a1 해트, a2 해트, b1 해트)의 동정오차(id/e)에 따른 변화정도를 규정하는 게인계수 벡터)이다.
또, 상기 식(9)중의 「P」는 다음 식(10)의 점화식에 의해 결정되는 3차의 정방행렬이다.
또한, 식(10)중의 「λ1」, 「λ2」는 0〈λ1≤ 1 및 0≤λ2〈2의 조건을 만족하도록 설정되고, 또, 「P」의 초기값(P(0))은, 그 각 대각성분을 정의 수로 하는 대각행렬이다.
이 경우, 식(10)중의 「λ1」, 「λ2」의 설정의 방법에 따라서, 고정게인법, 점감게인법, 가중 최소자승법, 최소자승법, 고정 트레이스법 등, 각종의 구체적인 동정 알고리즘이 구성되고, 본 실시형태에서는, 예를 들면 최소자승법(이 경우, λ1=λ2=1)을 사용하고 있다.
본 실시형태에서의 동정기(25)는 기본적으로는 상술과 같은 알고리즘(연산처리)에 의해, 상기 동정오차(id/e)를 최소화하도록 배기계 모델의 상기 동정 게인계수(a1 해트, a2 해트, b1 해트)를 제어사이클마다 차례로 구하는 것이다. 이와 같은 처리에 의해, 실제의 대상 배기계(E)에 적합한 동정 게인계수(a1 해트, a2 해트, b1 해트)를 차례로 얻을 수 있다.
이상 설명한 알고리즘이 동정기(25)가 실행하는 기본적인 알고리즘이다.
다음에, 상기 추정기(26)는, 후에 상세를 설명하는 슬라이딩 모드 제어기(27)에 의한 목표공연비(KCMD)의 산출처리시의 대상 배기계(E)의 낭비시간(d1) 및 상기 공연비 조작계의 낭비시간(d2)의 영향을 보상하기 위해, 상 기 합계 낭비시간(d)(=d1+d12)후의 02센서(6)의 편차출력(VO2)의 추정값인 상기 추정 편차출력(VO2바)을 제어사이클마다 차례로 구하는 것이다. 그 추정처리의 알고리즘은 다음과 같이 구축되어 있다.
먼저, 배기계 모델을 나타내는 상기 식(1)에, 공연비 조작계 모델을 나타내는 식(2)을 적용하면, 다음 식(11)이 얻어진다.
이 식(11)은, 대상 배기계(E) 및 공연비 조작계를 합한 계를, 목표편차 공연비(kcmd)로부터 대상 배기계(E) 및 공연비 조작계의 양자의 낭비시간 요소와 대상 배기계(E)의 응답지연 요소를 통해서 02센서(6)의 편차, 출력(VO2)을 생성하는 계인 것으로서, 이 계의 거동을 이산시간계의 모델로 표현한 것이다.
그리고, 이 식(11)을 사용함으로써, 각 제어사이클에서의 상기 합계 낭비시간(d) 후의 02센서(6)의 편차출력(VO2(k+d))의 추정값인 상기 추정 편차출력(VO2(k+d)바)은, 02센서(6)의 편차출력 VO2의 현재값 및 과거값의 시계열 데이터(VO2(k) 및 VO2(k-1))와, 슬라이딩 모드 제어기(27)가 구하는 목표공연비(KCMD)(구체적인 구하는 방법은 후술함)에 상당하는 목표 편차공연비(kcmd(=KCMD-FLAF/BASE))의 과거값의 시계열 데이터(kcmd(k-j)(j=1, 2, …, d1))를 사용하여 다음 식(12)에 의해 표시된다.
여기서, 식(12)에서, α1, α2는, 각각 동식(12)중의 단서로 정의한 행렬A의 건승(巾乘)(Ad)(d:합계 낭비시간)의 제 1행 제 1열 성분, 제 1행 제 2열 성분이다. 또, βj(j=1, 2, …, d)는, 각각 행렬(A)의 건승(Aj-1(j=1, 2, …, d))과 동식(12)중의 단서로 정의된 벡터(B)와의 곱(Aj-1·B)의 제 1행 성분이다.
더욱이, 식(12)중의 목표 편차 공연비(kcmd)의 과거값의 시계열 데이터(kcmd(k·j)(j=1, 2, …. d))중, 현재부터 공연비 조작계의 낭비시간(d2) 이전의 목표 편차 공연비(kcmd)의 과거값의 시계열 데이터(kcmd(k-d2), kcmd(k-d2-1), …, kcmd(k-d))는 상기 식(2)에 의해서, 각각, LAF 센서(5)의 편차출력(kact)의 현재 이전에 얻어지는 데이터(kact(k), kact(k-1), …, kact(k-d+d2))로 치환할 수 있다. 그리고, 이 치환을 행함으로써, 다음 식(13)이 얻어진다.
이 식(13)이 본 실시형태에서, 추정기(26)가 상기 추정 편차출력(VO2(k+d)바)을 산출하기 위한 기본 식이다. 즉, 본 실시형태에서는, 추정기(26)는, 제어사이클마다, 02센서(6)의 편차출력(VO2)의 시계열 데이터(VO2(k) 및 VO2(k-1))와, 슬라이딩 모드 제어기(27)가 과거에 구한 목표공연비(KCMD)를 나타내는 목표 편차 공연비(kcmd)의 과거값의 시계열 데이터(kcmd(k-j)(j=1, …, d2·1))와, LAF 센서(5)의 편차출력(kact)의 현재값 및 과거값의 시계열 데이터(kact(k-i)(i=0, …, d1))를 사용하여 식(13)의 연산을 행함으로써, 02센서(6)의 추정 편차출력((VO2)(k+d1)바)을 구한다.
이 경우, 본 실시형태에서는, 식(13)에 의해 추정 편차출력(VO2(k+d)바)을 산출하기 위해 필요로 되는 계수(α1, α2 및 βj(j=1, 2, …, d))의 값은, 기본적으로는, 상기 게인계수(a1, a2, b1(이들은 식(12)의 단서로 정의한 행렬(A) 및 벡터(B)의 성분임))의 동정값인 상기 동정 게인계수(a1 해트, a2 해트, b1 해트)를 사용하여 산출한다. 또, 식(13)의 연산에서 필요하게 되는 낭비시간(d1, d2)의 값은, 상술과 같이 설정한 값을 사용한다.
또한, 추정 편차출력(VO2(k+d)바)은, LAF 센서(5)의 편차출력(kact)의 데이 터를 사용하지 않고, 식(12)의 연산에 의해 구하도록 해도 되는데, 추정 편차출력(VO2(k+d)바)의 신뢰성을 높이는 점에서는, 엔진(1) 등의 실제의 거동이 반영되는 LAF 센서(5)의 편차출력(kact)의 데이터를 사용한 식(13)의 연산에 의해 추정 편차출력(VO2(k+d)바)을 구하는 것이 바람직하다. 또, 공연비 조작계의 낭비시간(d2)을 「l」로 설정할 수 있는 경우에는, 식(12)중의 목표 편차 공연비(kcmd)의 과거값의 시계열 데이터(kcmd(k-j)(j=1, 2, …, d))의 전체를 각각, LAF 센서(5)의 편차출력(kact)의 현재 이전에 얻어지는 시계열 데이터(kact(k), kact(k-1), …, kact(k-d+d2))로 치환할 수 있다. 이 때문에, 이 경우에는, 추정 편차출력(VO2(k+d1)바)은, 목표 편차 공연비(kcmd)의 데이터를 포함하지 않는 다음 식(14)에 의해 구할 수 있다.
다음에, 상기 슬라이딩 모드 제어기(27)를 설명한다.
본 실시형태의 슬라이딩 모드 제어기(27)는, 통상적인 슬라이딩 모드 제어에, 외란 등의 영향을 극력 배제하기 위한 적응법칙을 가미한 적응 슬라이딩 모드 제어에 의해 O2센서(6)의 출력(VO2/OUT)을 그 목표값(VO2/TARGET)으로 정정(整定)시키도록(O2센서(6)의 편차입력(VO2)을「0」에 수렴시키도록), 제어대상인 상기 대상배기계(E)에 부여할 입력량(상세하게는, LAF센서(5)의 출력(KACT(공연비의 검출값))과 상기 기준값(FLAF/BASE)의 편차의 목표값으로, 이것은 상기 목표편차 공연비(kcmd)와 동일하다. 이하, 이 입력량을 SLD조작입력(Usl이라 칭함)을 결정하고, 이 결정된 SLD 조작입력(Usl)으로부터 상기 목표공연비(KCMD)를 결정하는 것이다. 그리고, 이 처리를 위한 알고리즘은 다음과 같이 구축되어 있다.
먼저, 슬라이딩 모드 제어기(27)가 실행하는 적응 슬라이딩 모드 제어의 알고리즘에 필요한 전환함수와, 이 전환함수에 의해 정의되는 초평면(이것은 미끄럼면이라고도 언급됨)에 대하여 설명한다.
본 실시형태에서의 슬라이딩 모드 제어의 기본적인 사고방식으로서는, 제어해야할 상태량(제어량)으로서, 예를 들면 각 제어 사이클에서 얻어진 O2센서(6)의 편차출력(VO2(k))과, 그 1제어사이클전에 얻어진 편차출력(VO2(k-1)을 사용하고, 슬라이딩 모드 제어용의 전환함수(σ)를, 다음 식(15)와 같이, 이들 편차출력(VO2(k), VO2(k-1))을 변수성분으로 하는 성형함수로서 정의한다. 또한, 상기 편차출력(VO2(k), VO2(k-1))을 성분으로 하는 벡터로서 식(15)중의 단서로 정의된 벡터(X)를 이하에, 상태량(X)이라 한다.
이 경우, 전환함수(σ)의 계수(sl, s2)는, 다음 식(16)의 조건을 만족하도록 설정한다.
또한, 본 실시형태에서는, 간략화를 위해 계수(sl=1)로 하고(이 경우, s2/sl=s2임), -1〈s2〈1의 조건을 충족시키도록 계수(s2)의 값을 설정하고 있다.
이와 같은 전환함수(σ)에 대하여, 슬라이딩 모드 제어용의 초평면은 σ=0인 식에 의해 정의되는 것이다. 이 경우, 상태량(X)은 2차계이므로 초평면(σ=0)은 도 4에 도시하는 바와 같이 직선으로 된다. 이 초평면은, 위상공간의 차수에 의해, 전환선 또는 전환면이라고도 언급된다.
또한, 본 실시형태에서는, 슬라이딩 모드 제어용의 전환함수의 변수성분인 상태량으로서, 실제로는 상기 추정기(26)에 의해 구해지는 상기 추정 편차출력(VO2 바)의 시계열 데이터를 사용하는 것인데, 이것에 대해서는 후술한다.
본 실시형태에서 사용하는 적응 슬라이딩 모드 제어는, 상태량(X=(VO2(k), VO2(k-1))을 상기와 같이 설정한 초평면(σ=0)에 수렴하게 하기 위해 제어법칙인 도달법칙과, 그 초평면(σ=0)에의 수렴시에 외란 등의 영향을 보상하기 위한 제어법칙인 적응법칙(적응 알고리즘)에 따라 이 상태량(X)을 초평면(σ=0)에 수렴하게 한다(도 4의 모드 1). 그리고, 이 상태량(X)을 소위, 등가 제어입력에 의해 초평면(σ=0)에 구속하면서, 이 상태량(X)을 초평면(σ=0) 상의 평형점인 VO2(k)=VO2(k-1)=0으로 되는 점, 즉, 02센서(6)의 출력(VO2/OUT)의 시계열 데이터(VO2/OUT(k), VO2/OUT(k-1)가 목표값(VO2/TARGET)에 일치하는 점에 수렴하게 한다(도 4의 모드 2).
상기와 같이 상태량(X)을 초평면(σ=0)의 평형점에 수렴하게 하기 위해 슬라이딩 모드 제어기(27)가 생성하는 상기 SLD 조작 입력(Usl(=목표 편차 공연비(kcmd))는, 상태량(X)을 초평면(σ=0)상에 구속하기 위한 제어법칙에 따라서 대상 배기계(E)에 부여해야할 입력 성분인 등가 제어입력(Ueq)과, 상기 도달법칙에 따라서 대상 배기계(E)에 부여해야할 입력성분(Urch(이하, 도달법칙 입력(Urch)이라 함))과, 상기 적응법칙에 따라 대상 배기계(E)에 부여해야 할 입력 성분(Uadp)(이하, 적응법칙 입력(Uadp)라 함))과의 총합에 의해 표시된다(다음 식(17)).
그리고, 이들 등가 제어입력(Ueq), 도달법칙입력(Urch) 및 적응법칙 입력(Uadp)은, 본 실시형태에서는, 상기 식(11)에 의해 표시되는 이산시간계의 모델(식(1)중의 LAF 센서(5)의 편차출력(kact(kd-1))을 합계 낭비시간(d)을 사용한 목표 편차 공연비((kcmd(k-d))로 치환한 모델)에 근거하여, 다음과 같이 결정한다.
먼저, 상태량(X)을 초평면(σ=0)에 구속하기 위해 대상 배기계(E)에 부여해야할 입력성분인 상기 등가제어 입력(Ueq)은, σ(k+1)=σ(k)=0 인 조건을 충족시키는 목표 편차공연비(kcmd)이다. 그리고, 이와 같은 조건을 충족시키는 등가제어입 력(Ueq)은, 식(11)과 식(15)을 사용하여 다음 식(18)에 의해 부여된다.
이 식(18)이 본 실시형태에서, 제어사이클마다 등가제어입력(Ueq(k))을 구하기 위한 기본식이다.
다음에, 상기 도달법칙 입력(Urch)은, 본 실시형태에서는, 기본적으로는 다음 식(19)에 의해 결정되는 것으로 한다.
즉, 도달법칙 입력(Urch)은, 상기 합계 낭비시간(d)을 고려하고, 합계 낭비시간(d) 후의 전환함수(σ)의 값 σ(k+d)에 비례하게 하도록 결정한다.
이 경우, 식(19)중의 계수(F)(이것은 도달법칙의 게인을 규정함)는, 다음 식(20)의 조건을 충족시키도록 설정한다.
또한, 전환함수(σ)의 값의 거동에 관해서는, 이 전환함수(σ)의 값이 초평면(σ=0)에 대하여 진동적인 변화(이른바 채터링)가 발생할 우려가 있고, 이 채터링을 억제하기 위해서는, 도달법칙 입력(Urch)에 관계되는 계수(F)는, 더욱이 다음 식(21)의 조건을 충족시키도록 설정하는 것이 바람직하다.
다음에, 상기 적응법칙 입력(Uadp)은, 본 실시형태에서는, 기본적으로는 다음 식(22)에 의해 결정되는 것으로 한다(식(22)중의 △T는 배기측 제어유닛(7a)의 제어사이클의 주기이다).
즉, 적응법칙 입력(Uadp)은, 합계 낭비시간(d)을 고려하여, 이 합계 낭비시간(d) 후까지의 전환함수(σ)의 값과 배기측 제어유닛(7a)의 주기(△T)와의 곱의 제어사이클마다의 적산값(이것은 전환함수(σ)의 값의 적분치에 상당함)에 비례하도록 결정한다.
이 경우, 식(22)중의 계수(G)(이것은 적응법칙의 게인을 규정함)는, 다음 식(23)의 조건을 충족시키도록 설정한다.
또한, 상기 식(16), (20), (21), (23)의 설정조건의 보다 구체적인 도출 방법에 대해서는, 본원 출원인이 이미 일본 특개평 11-93741호 공보 또는 미국 특허 출원 09/153032 등에 상세히 설명하고 있으므로, 여기서는 상세한 설명을 생략한 다.
본 실시형태에서의 슬라이딩 모드 제어기(27)는, 기본적으로는 상기 식(18), (19), (22)에 의해 결정되는 등가제어입력(Ueq), 도달법칙입력(Urch) 및 적응법칙입력(Uadp)의 총합(Ueq+Urch+Uadp)을 대상 배기계(E)에 부여해야 할 SLD 조작 입력(Usl)으로 하여 결정하는 것인데, 상기 식(18), (19), (22)에서 사용되는 02센서(6)의 편차출력(VO2(k+d), VO2(k+d·1))이나, 전환함수(σ)의 값(σ(k+d)) 등은 미래값이므로 직접적으로는 얻을 수 없다.
그래서, 본 실시형태에서는, 슬라이딩 모드 제어기(27)는, 실제로는, 상기 식(18)에 의해 상기 등가제어입력(Ueq)을 결정하기 위한 02센서(6)의 편차출력(VO2(k+d), VO2(k+d-1)) 대신에, 상기 추정기(26)에서 구해지는 추정 편차출력(VO2(k+d)바, VO2(k+d-1)바)을 사용하여, 다음 식(24)에 의해 제어사이클마다의 등가제어입력(Ueq)을 산출한다.
또, 본 실시형태에서는, 실제로는, 추정기(26)에 의해 상술과 같이 차례로 구해진 추정 편차출력(VO2 바)의 시계열 데이터를 제어해야 할 상태량으로 하여, 상기 식(15)에 의해 설정된 전환함수(σ)에 대신하여, 다음 식(25)에 의해 슬라이딩 모드 제어용의 전환함수(σ바)를 정의한다(이 전환함수(σ바)는, 상기 식(15)의 편차출력(VO2)의 시계열 데이터를 추정 편차출력(VO2 바)의 시계열 데이터로 치환한 것에 상당함).
그리고, 슬라이딩 모드 제어기(27)는, 상기 식(19)에 의해 상기 도달법칙 입력(Urch)을 결정하기 위한 전환함수(σ바)의 값 대신에, 상기 식(25)에 의해 표시되는 전환함수(σ바)의 값을 사용하여 다음 식(26)에 의해 제어사이클마다의 도달법칙 입력(Urch)을 산출한다.
동일하게, 슬라이딩 모드 제어기(27)는, 상기 식(22)에 의해 상기 적응법칙 입력(Uadp)을 결정하기 위한 전환함수(σ)의 값 대신에, 상기 식(25)에 의해 표시되는 전환함수(σ바)의 값을 사용하여 다음 식(27)에 의해 제어사이클마다의 적응법칙 입력(Uadp)을 산출한다.
또한, 상기 식(24), (26), (27)에 의해 등가제어입력(Ueq), 도달법칙 입력(Urch) 및 적응법칙 입력(Uadp)을 산출할 때에 필요하게 되는 상기 게인계수(a1, a2, b1)로서는, 본 실시형태에서는 기본적으로는 상기 동정기(25)에 의해 구해진 최신의 동정 게인계수(a1(k)해트, a2(k)해트, b1(k)해트)를 사용한다.
그리고, 슬라이딩 모드 제어기(27)는, 상기 식(24), (26), (27)에 의해 각각 구해지는 등가제어입력(Ueq), 도달법칙입력(Urch) 및 적응법칙입력(Uadp)의 총합을 대상 배기계(E)에 부여할 상기 SLD 조작 입력(Usl)으로 하여 구한다(상기 식(17)을 참조). 또한, 이 경우에 있어서, 상기 식(24), (26), (27)중에서 사용하는 상기 계수(sl, s2, F, G)의 설정조건은 상술과 같다.
이것이, 본 실시형태에 있어서, 슬라이딩 모드 제어기(27)에 의해, 대상 배기계(E)에 부여될 SLD 조작 입력(Usl)(=목표 편차 공연비(kcmd))을 제어사이클마다 결정하기 위한 기본적인 연산처리(알고리즘)이다. 이와 같이 하여 SLD 조작 입력(Usl)을 결정함으로써, 이 SLD 조작 입력(Usl)은, 02센서(6)의 추정 편차출력 (VO2 바)을 「0」에 수렴시키도록(결과적으로는 02센서(6)의 출력(VO2/OUT)을 목표값(VO2/TARGET)에 수렴시키도록)결정된다.
그런데, 본 실시형태에서의 슬라이딩 모드 제어기(27)는 최종적으로는 상기 목표공연비(KCMD)를 제어사이클마다 차례로 구하는 것인데, 상술과 같이 구해지는 SLD 조작 입력(Usl)은, LAF 센서(5)에서 검출되는 공연비와 상기 기준값(FLAF/BASE)의 편차의 목표값, 즉 상기 목표 편차 공연비(kcmd)이다. 이 때문에, 슬라이딩 모드 제어기(27)는, 최종적으로는, 다음 식(28)에 나타내는 바와 같이, 제어사이클마다, 상술과 같이 구한 SLD 조작 입력(Usl)에 상기 기준값(FLAF/BASE)을 가산함으로써, 목표공연비(KCMD)를 결정한다.
이상이 본 실시형태에서 슬라이딩 모드 제어기(27)에 의해 목표공연비(KCMD)를 결정하기 위한 기본적 알고리즘이다.
또한, 본 실시형태에서는, 슬라이딩 모드 제어기(27)에 의한 적응 슬라이딩 모드 제어의 처리의 안정성을 판별하여, 상기 SLD 조작 입력(Usl)의 값을 제한하거나 하는 것인데, 이것에 대해서는 후술한다.
다음에, 상기 열화상태 평가수단(13b)의 처리를 설명한다.
본원 발명자 등의 각종 검토에 의하면, 상술과 같이 슬라이딩 모드 제어기(27)에 의해 목표공연비(KCMD)를 차례로 구하고, 이 목표공연비(KCMD)에 LAF 센서(5)의 출력(KACT(엔진(1)의 공연비의 검출값))을 수렴시키도록 상기 기관측 제어유닛(7b)에 의해 엔진(1)의 연료분사량을 조정했을 때, 02센서(6)의 출력(VO2/OUT)의 시계열 데이터는, 상기 초평면(σ=0)에 대하여, 촉매장치(3)의 열화상태에 따른 특징적인 변화를 나타내는 것이 판명됐다,
이 모양을 도 5∼도 7을 참조하여 설명한다. 이들 도 5∼도 7은, 각각 신품의 촉매장치(3), 비교적 작은 열화정도의 촉매장치(3), 비교적 큰 열화 정도의 촉매장치(3)에 대하여 상기와 같이 엔진(1)의 연료분사량을 목표공연비(KCMD)에 맞게 조정한 경우에, 배기측 제어유닛(7a)의 제어사이클마다 얻어지는 02센서(6)의 편차출력(VO2)의 시계열 데이터(VO2(k), VO2(k-1))의 세트, 즉 상기 상태량(X)의 샘플링 데이터를 점묘로 도시한 것이다. 또, 이들 도 5∼도 7에 병기한 직선은, 상기 초평면(σ=0)이다.
이들 도 5∼도 7중, 도 5에 보이는 바와 같이, 상태량(X)은, 촉매장치(3)의 신품상태에서는, 초평면(σ=0)의 근방에 집적하는 경향이 있다. 그리고, 촉매장치(3)의 열화가 진행하면, 도 6이나 도 7에 보이는 바와 같이, 상태량(X)은, 초평면(σ=0)으로부터 떨어지는 측에 분산하는(초평면(σ=0)의 둘레의 분산이 커짐) 경향이 있다. 게다가, 그 분산화는, 촉매장치(3)의 열화정도가 클 수록(열화가 진행하고 있을 수록), 높아지는 경향이 있다. 바꾸어 말하면, 상기 식(15)에 의해 정해진 전환함수(σ)의 값이, 촉매장치(3)의 열화의 진행에 따라 「0」으로부터 떨어진 한 값을 채택하기 쉬워지고, 전환함수(σ)의 값의 「0」에 대한 분산이 커진다. 이것은, 촉매장치(3)의 열화의 진행에 따라, 상기 식(1)의 배기계 모델의 오차가 발생하기 쉬워지기 때문에, 상태량(X)의 초평면(σ=0)으로의 수렴성이 저하되기 때문이라고 생각된다.
또한, 상기와 같은 경향은, 추정기(26)에 의해 구해지는 추정 편차출력(VO2바)을 변수성분으로서 상기 식(25)에 의해 정해진 전환함수(σ바)(본 실시형태에서 슬라이딩 모드 제어용의 전환함수로서 실제로 사용되는 전환함수)의 값에 대해서도 동일하게 발견되는 경향이다. 단 전환함수(σ바)는, 02센서(6)의 편차출력(VO2)의 추정치를 사용하는 것인 데에 대하여, 식(15)의 전환함수는 02센서(6)의 실제의 편차출력(VO2)을 사용하는 것이기 때문에, 촉매장치(3)의 실제의 열화상태가 보다 잘 반영되는 것이라고 생각된다.
이와 같은 점에서, 본 실시형태에서는, 상기 식(15)에 의해 정해진 전환함수(σ)의 값에 근거하여 촉매장치(3)의 열화상태를 평가한다. 또한, 본 실시형태에서는, 슬라이딩 모드 제어용의 실제의 전환함수는, 상술과 같이, 추정기(26)가 구하는 추정 편차출력(VO2바)을 변수성분으로 하여 상기 식(25)에 의해 정의된 전환함수(σ바)이다. 즉, 엄밀하게 말하면, 식(15)에 의해 정해진 전환함수(σ)는, 본 실시형태에서의 슬라이딩 모드 제어용의 전환함수는 아니다. 그래서, 이하의 설명에서는, 식(15)에 의해 정해진 함수(σ)를, 열화평가용 선형함수(σ)라 한다.
이 열화평가용 선형함수(σ)에 근거하여 상기 열화상태 평가수단(13b)이 촉매장치(3)의 열화상태의 평가를 행하기 위한 알고리즘은 본 실시형태에서는, 다음과 같이 구축되어 있다.
즉, 촉매장치(3)의 열화의 진행에 수반되는 상술과 같은 열화평가용 선형함수(σ)의 값의 변화의 경향을 고려하여, 열화상태 평가수단(13b)은, 이 열화평가용 선형함수(σ)의 값의 제곱값(σ2)을 제어사이클마다 차례로 구한다.
그리고, 이 제곱값(σ2)에 로-패스 특성의 필터링 처리를 실시함으로써 이 제곱값(σ2)의 중심값(이하, 이것에 참조부호(LSσ2)를 붙임)을 열화평가용 파라미터로 하여 구한다.
이 경우, 열화평가용 파라미터(LSσ2)를 구하기 위한 상기 필터링 처리는, 축차형의 통계처리 알고리즘에 의해 구성되고, 다음 식(29)에 의해 부여된다.
즉, 열화평가용 파라미터(LSσ2)는, 배기측 제어유닛(7a)의 제어사이클마다, 이 열화평가용 파라미터(LSσ2)의 전회 값(LSσ2(k-1))과, 상기 제곱값(σ2)의 현재값(α2(k))과, 다음 식(30)의 점화식에 의해 제어사이클마다 갱신되는 게인 파라미터(BP)로부터 차례로, 갱신되면서 구해진다.
여기서, 식(30)중의 「η1」, 「η2」는 0〈η1≤1 및 0≤η2〈2의 조건을 충족시키도록 설정되고, 그 설정의 방법에 의해, 고정 게인법, 점감 게인법, 가중 최소자승법, 최소자승법, 고정 트레이스법 등, 각종의 구체적인 알고리즘이 구성된다. 본 실시형태에서는, 예를 들면 η1을 「1」보다도 작은 정의 소정값으로 설정함(0〈η1〈1)과 동시에, η2=1로 하고, 가중 최소자승법의 알고리즘을 채용하고 있다.
이와 같이 하여, 열화평가용 선형함수(σ)의 제곱값(σ2)의 중심값(본 실시형태에서는 최소자승 중심값)으로서의 열화평가용 파라미터(LSσ2)를 구했을 때, 이 열화평가용 파라미터(LSσ2)의 값은, 촉매장치(3)의 열화상태에 대하여, 도 8에 도 시하는 바와 같은 경향을 나타낸다. 도 8은 상기 도 5∼도 7의 촉매장치(3)의 각 열화상태에서, 상술과 같이 요구되는 열화평가용 파라미터(LSσ2)와 촉매장치(3)를 흐르는 배기가스의 유량(이하, 배기가스 볼륨이라 함)과의 관계를 나타내는 것이다.
도 8에 보여지는 바와 같이, 열화평가용 파라미터(LSσ2)는, 촉매장치(3)의 각 열화상태에서 상기 배기가스 볼륨에 따르지 않고 대략 일정하게 됨과 동시에, 촉매장치(3)의 열화의 진행에 따라, 값이 커진다. 따라서, 열화평가용 파라미터(LSσ2)의 값이 촉매장치(3)의 열화정도를 나타내는 것으로 된다.
또, 본 실시형태에서는, 예를 들면 촉매장치(3)의 교환을 필요로 할지 또는 그 교환 시기가 가까운 정도로 이 촉매장치(3)가 열화된 상태(이하, 열화 진행 상태라 함)와, 그 정도로는 열화되어 있지 않는 상태(이하, 미열화상태라고 함)로 나누어 촉매장치(3)의 열화상태를 파악하는 것으로 하고, 상기, 「열화진행 상태」에서, 그 취지를 상기 열화 알림기(29)에 의해 알린다.
그래서, 본 실시형태에서는, 도 8의 파선으로 도시하는 바와 같이, 열화평가용 파라미터(LSσ2)에 대한 역치(CATAGELMT)를 미리 설정해 둔다. 그리고, 열화평가용 파라미터(LSσ2)가 상기 역치(CATAGELMT) 이상으로 되었을 때에, 촉매장치(3)의 열화상태가 「열화 진행상태」라고 판단하고, 열화평가용 파라미터(LSσ2)가 상 기 역치(CATAGELMT)에 충족되지 않는 경우는, 촉매장치(3)의 열화상태를 「미열화상태」로 판단한다.
이상 설명한 알고리즘이, 열화상태 평가수단(13b)에 의한 촉매장치(3)의 열화상태의 평가의 기본적인 알고리즘이다. 또한, 열화상태 평가수단(13b)은, 촉매장치(3)의 열화상태의 평가시에 배기가스 볼륨의 변화상태의 파악 등, 부가적인 처리도 행하는 것인데, 이것에 대해서는 후술한다.
다음에, 상기 기관측 제어유닛(7b)의 대국적 피드백 제어부(15), 특히 상기 적응제어기(18)를 더욱 설명한다.
상기 도 1을 참조하여, 대국적 피드백 제어부(15)는, 상술과 같이 LAF 센서(5)의 출력(KACT(공연비의 검출값))을 목표공연비(KCMD)에 수렴시키도록 피드백 제어를 행하는 것이다. 이 때, 이와 같은 피드백 제어를 주지의 PID 제어만으로 행하게 하면, 엔진(1)의 운전상태의 변화나 경년적 특성변화 등, 동적인 거동변화에 대하여, 안정된 제어성을 확보하는 것이 곤란하다.
상기 적응제어기(18)는, 상기와 같은 엔진(1)의 동적인 거동변화를 보상한 피드백 제어를 가능하게 하는 점화식 형식의 제어기이고, I.D. 란다우 등에 의해 제창되고 있는 파라미터 조정법칙을 사용하여, 도 9에 도시하는 바와 같이, 복수의 적응 파라미터를 설정하는 파라미터 조정부(30)와, 설정된 적응 파라미터를 사용하여 상기 피드백 조작량(kstr)을 산출하는 조작량 산출부(31)에 의해 구성되어 있다.
여기서, 파라미터 조정부(30)에 관하여 설명하면, 란다우 등의 조정법칙에서 는, 이산계의 제어대상의 전달함수 B(Z-1)/A(Z-1)의 분모 분자의 다항식을 일반적으로 하기의 식(31), (32)와 같이 놓았을 때 파라미터 조정부(30)가 설정하는 적응 파라미터(θ해트(j)(j는 제어사이클의 프로그램 수를 나타냄))는, 식(33)과 같이 벡터(전치 벡터)로 표시된다. 또, 파라미터 조정부(30)에의 입력(ζ(j))은, 식(34)와 같이 표시된다.
이 경우, 본 실시형태에서는, 대국적 피드백 제어부(15)의 제어대상인 엔진(1)이 1차계에서 3제어사이클 분량의 낭비시간(dp(엔진(1)의 연소 사이클의 3사이클 분량의 시간))을 갖는 플랜트로 생각하고, 식(31)∼식(34)에서 m=n=1, dp=3으로 하여, 설정하는 적응 파라미터는 s0, r1, r2, r3, b0의 5개로 했다(도 9 참조). 또한, 식(34)의 상단식 및 중단식에서의 us, ys는, 각각, 제어대상으로의 입력(조작량) 및 제어대상의 출력(제어량)을 일반적으로 나타낸 것인데, 본 실시형태에서는, 상기 입력을 피드백 조작량(kstr), 제어대상(엔진(1))의 출력을 상기 LAF 센서(5)의 출력(KACT(공연비의 검출값))으로 하고, 파라미터 조정부(30)로의 입력(ζ(j))을, 식(34)의 하단식에 의해 표현한다(도 9 참조).
여기서, 상기 식(33)에 표시되는 적응 파라미터(θ해트)는, 적응제어기(18)의 게인을 결정하는 스칼라량 요소(b0해트(j)), 조작량을 사용하여 표현되는 제어요소(BR해트(Z-1, j), 및 제어량을 사용하여 표현되는 제어요소(S해트(Z-1, j)로 이루어지고, 각각, 다음식 (35)∼(37)에 의해 표현된다(도 9의 조작량 산출부(31)의 블록도를 참조).
파라미터 조정부(30)는, 이들 스칼라량 요소나 제어요소의 각 계수를 설정하고, 그것을 식(33)에 나타내는 적응 파라미터(θ 해트)로서 조작량 산출부(31)에 부여하는 것으로, 현재부터 과거에 걸치는 피드백 조작량(kstr)의 시계열 데이터와 LAF 센서(5)의 출력(KACT)을 사용하여, 이 출력(KACT)이 상기 목표공연비(KCMD)에 일치하도록, 적응 파라미터(θ해트)를 산출한다.
이 경우, 구체적으로는, 적응 파라미터(θ해트)는, 다음 식(38)에 의해 산출 한다.
동식(38)에 있어서, Γ(j)는, 적응 파라미터(θ해트)의 설정속도를 결정하는 게인 행렬(이 행렬의 차수는 m+n+dp), e*(j)는, 적응 파라미터(θ 해트)의 추정오차를 나타내는 것으로, 각각 식(39), (40)과 같은 점화식으로 표시된다.
여기서, 식(40)중의 「D(Z-1)」는, 수렴성을 조정하기 위한, 점근 안정한 다항식이고, 본 실시형태에서는 D(Z-1)=1로 하고 있다.
또한, 식(39)의 λ1(j), λ2(j)의 선택방식에 의해, 점감 게인 알고리즘, 가변 게인 알고리즘, 고정 트레이스 알고리즘, 고정 게인 알고리즘 등의 다양한 구체적인 알고리즘이 얻어진다. 엔진(1)의 연료분사 또는 공연비 등의 시변 플랜트에서는, 점감 게인 알고리즘, 가변 게인 알고리즘, 고정 게인 알고리즘, 및 고정 트레이스 알고리즘중 어느 것인가가 적합한다.
상술과 같이 파라미터 조정부(30)에 의해 설정되는 적응 파라미터(θ해트(s0, r1, r2, r3, b0))와, 상기 배기측 주연산 처리부(13)의 목표공연비 산출수단(13a)에 의해 결정되는 목표공연비(KCMD)를 사용하여, 조작량 산출부(31)는, 다음 식(41)의 점화식에 의해, 피드백 조작량(kstr)을 구한다. 도 9의 조작량 산출부(31)는, 동식(41)의 연산을 블록도로 표시한 것이다.
또한, 식(41)에 의해 구해지는 피드백 조작량(kstr)은, LAF 센서(5)의 출력(KACT)이 목표공연비(KCMD)에 일치하는 상태에서, 「목표공연비(KCMD)」로 된다. 이 때문에, 상술과 같이, 피드백 조작량(kstr)을 나눗셈 처리부(19)에 의해 목표공연비(KCMD)로 나눔으로써, 상기 피드백 보정계수(KFB)로서 사용할 수 있는 피드백 조작량(kstr)을 구하도록 하고 있다.
이와 같이 구축된 적응제어기(18)는, 상술한 것으로부터 명확하듯이, 제어 대상인 엔진(1)의 동적인 거동변화를 고려한 점화식 형식의 제어기이고, 바꾸어 말하면, 엔진(1)이 동적인 거동 변화를 보상하기 위해, 점화식 형식으로 기술된 제어기이다. 그리고, 보다 상세하게는, 점화식 형식의 적응 파라미터 조정기구를 갖춘 제어기라고 정의할 수 있다.
또한, 이런 종류의 점화식 형식의 제어기는, 소위, 최적 레귤레이터를 사용하여 구축하는 경우도 있는데, 이 경우에는, 일반적으로는 파라미터 조정기구는 구비되어 있지 않고, 엔진(1)의 동적인 거동변화를 보상하는 점에서는, 상술과 같이 구성된 적응제어기(18)가 매우 적합하다.
이상이, 본 실시형태에서 채용한 적응제어기(18)의 상세이다.
또한, 적응제어기(18)와 함께, 대국적 피드백 제어부(15)에 구비된 PID 제어기(17)는, 일반적인 PID 제어와 동일하게, LAF 센서(5)의 출력(KACT)과, 그 목표공연비(KCMD)와의 편차로부터, 비례항(P 항), 적분항(I항) 및 미분항(D 항)을 산출하고, 이들 각항의 총합을 피드백 조작량(KLAF)로서 산출한다. 이 경우, 본 실시형태에서는, 적분항(I항)의 초기값을 “1”로 함으로써, LAF 센서(5)의 출력(KACT)이 목표공연비(KCMD)에 일치하는 상태에서, 피드백 조작량(KLAF)이 “1”로 되도록 하고, 이 피드백 조작량(KLAF)을 그대로 연료 분사량을 보정하기 위한 상기 피드백 보정계수(KFB)로서 사용할 수 있도록 하고 있다. 또, 비례항, 적분항 및 미분항의 게인은, 엔진(1)의 회전수(NE)와 흡기압(PB)으로부터, 미리 정해진 맵을 사용하여 결정된다.
또, 대국적 피드백 제어부(15)의 상기 전환부(20)는, 엔진(1)의 냉각수온의 저온시나, 고속회전 운전시, 흡기압의 저압시 등, 엔진(1)의 연소가 불안정한 것으로 되기 쉬운 경우, 또는, 목표공연비(KCMD)의 변화가 큰 때나, 공연비의 피드백 제어의 개시직후 등, 이것에 따른 LAF 센서(5)의 출력(KACT)이, 그 LAF 센서(5)의 응답지연 등에 의해, 신뢰성이 결여되는 경우, 또는, 엔진(1)의 아이들 운전시와 같은 엔진(1)의 운전상태가 극히 안정되어 있고, 적응제어기(18)에 의한 고게인 제어를 필요로 하지 않는 경우에는, PID 제어기(17)에 의해 요구되는 피드백 조작량(KLAF)을 연료분사량을 보정하기 위한 피드백 보정량수(KFB)로서 출력한다. 그리고, 상기와 같은 경우 이외의 상태에서, 적응제어기(18)에 의해 구해지는 피드백 조작량(kstr)을 목표공연비(KCMD)로 나누어 이루어지는 피드백 조작량(kstr)을 연료분사량을 보정하기 위한 피드백 보정계수(KFB)로서 출력한다. 이것은, 적응제어기(18)가, 고 게인제어에서, LAF 센서(5)의 출력(KACT)을 급속하게 목표공연비(KCMD)에 수렴시키도록 기능하기 때문에, 상기와 같이 엔진(1)의 연소가 불안정하게 되거나, LAF 센서(5)의 출력(KACT)의 신뢰성이 결여되는 등의 경우에, 적응제어기(18)의 피드백 조작량(kstr)을 사용하면, 오히려 공연비의 제어가 불안정한 것으로 될 우려가 있기 때문이다.
이와 같은 전환부(20)의 작동은, 예를 들면 일본 특개평 8-105345호 공보 또는 미국 특허 제5558075호에 본원 출원인이 상세히 개시하고 있으므로, 여기서는, 더 이상의 설명을 생략한다.
다음에 본 실시형태의 장치의 작동의 상세를 설명한다.
먼저, 도 10의 플로차트를 참조하여, 상기 기관측 제어유닛(7b)에 의한 엔진(1)의 공연비의 제어를 위한 엔진(1)의 각 기통마다의 출력 연료분사량(#nTout(n=1, 2, 3, 4))의 산출처리에 대하여 설명한다. 기관측 제어유닛(7b)은, 각 기통마다의 출력 연료분사량(#nTout)의 산출처리를 엔진(1)의 크랭크각 주기(TDC)와 동기된 제어사이클에서 다음과 같이 행한다.
기관측 제어유닛(7b)은, 먼저, 상기 LAF 센서(5) 및 02센서(6)를 포함하는 각종 센서의 출력을 판독한다(STEPa). 이 경우, LAF 센서(5)의 출력(KACT) 및 02센 서(6)의 출력(VO2/OUT)은 각각 과거에 얻어진 것을 포함하여 시계열적으로 도시하지 않는 메모리에 기억 유지한다.
그 다음에, 기본 연료분사량 산출부(8)에 의해, 상술과 같이 엔진(1)의 회전수(NE) 및 흡기압(PB)에 대응하는 연료분사량을 스로틀 밸브의 유효 개구면적에 따라서 보정하여 이루어지는 기본 연료분사량(Tim)이 요구된다(STEPb). 더욱이, 제 1 보정계수 산출부(9)에 의해, 엔진(1)의 냉각수온이나 캐니스터의 퍼지량 등에 따른 제 1보정계수(KTOTAL)이 산출된다(STEPc).
그 다음에, 기관측 제어유닛(7b)은, 엔진(1)의 운전모드가 배기측 주연산 처리부(13)의 목표공연비 산출수단(13a)이 생성하는 목표공연비(KCMD)를 사용하여 연료분사량의 조정을 행하는 운전모드(이하, 통상 운전 모드라 함)인지 아닌지의 판별처리를 행하여, 이 운전모드가 통상 운전모드인지 아닌지를 각각 값 「1」, 「0」으로 나타내는 플래그(f/prism/on)의 값을 설정한다(STEPd).
상기의 판별처리에서는, 도 11에 나타내는 바와 같이, 02센서(6) 및 LAF 센서(5)가 활성화하고 있는지 아닌지의 판별이 행해진다(STEPd-1, d-2). 이 때, 어느쪽인가가 활성화하고 있지 않은 경우에는, 배기측 주연산처리부(13)의 처리에 사용되는 02센서(6)나 LAF 센서(5)의 검출 데이터를 정밀도 좋게 얻을 수 없다. 따라서, 엔진(1)의 운전모드는 통상 운전모드가 아니라, 플래그(f/prism/on)의 값을 「0」에 세팅한다(STEPd-10).
또, 엔진(1)의 린 운전중(희박연소 운전중)인지 아닌지(STEPd-3), 엔진(1)의 시작직후의 촉매장치(3)의 조기 활성화를 도모하기 위해 엔진(1)의 점화시기가 지각측에 제어되어 있는지 아닌지(STEPd-4), 엔진(1)의 스로틀 밸브가 대략 전개인지 아닌지(STEPd-5), 및 엔진(1)에의 연료공급의 정지중(연료중단중)인지 아닌지(STEPd-6)의 판별이 행해진다. 이들중 어느것인가의 조건이 성립되어 있는 경우에는, 배기측 주연산처리부(13)가 생성하는 목표공연비(KCMD)를 사용하여 엔진(1)의 연료공급을 제어하는 것은 바람직하지 않던지, 혹은 제어할 수 없다. 따라서, 엔진(1)의 운전모드는 통상 운전모드가 아니라, 플래그(f/prism/on)의 값을 「0」에 세팅한다(STEPd-10).
더욱이, 엔진(1)의 회전수(NE) 및 흡기압(PB)이 각각 소정 범위내(정상적인 범위내)에 있는지 아닌지의 판별이 행해진다(STEPd-7, d-8). 이 때, 어느쪽인가가 소정 범위내에 없는 경우에는, 배기측 주연산처리부(13)가 생성하는 목표공연비(KCMD)를 사용하여 엔진(1)의 연료공급을 제어하는 것은 바람직하지 않다. 따라서, 엔진(1)의 운전 모드는 통상 운전모드가 아니라, 플래그(f/prism/on)의 값을 「0」에 세팅한다(STEPd-10).
그리고, STEPd-1, d-2, d-7, d-8의 조건이 충족되고, 또한, STEPd-3, d-4, d-5, d-6의 조건이 성립되어 있지 않은 경우(이것은, 엔진(1)의 통상적인 운전 상태임)에, 엔진(1)의 운전모드가 통상 운전모드로서, 플래그(f/prism/on)의 값을 「1」에 세팅한다(STEPd-9).
도 10의 설명으로 돌아가서, 상기와 같이 플래그(f/prism/on)의 값을 설정한 후, 기관측 제어유닛(7b)은, 플래그(f/prism/on)의 값을 판단하고(STEPe), f/prism/on=1인 경우에는, 배기측 주연산처리부(13)에서 생성된 최신의 목표공연비(KCMD)를 판독한다(STEPf). 또, f/prism/on=0인 경우에는, 목표공연비(KCMD)를 소정값에 설정한다(STEPg). 이 경우, 목표공연비(KCMD)로서 설정하는 소정값은, 예를 들면 엔진(1)의 회전수(NE)나 흡기압(PB)으로부터 미리 정한 맵 등을 사용하여 결정한다.
그 다음에, 기관측 제어유닛(7b)은, 상기 국소적 피드백 제어부(16)에서, 상술과 같이 옵저버(21)에 의해 LAF 센서(5)의 출력(KACT)으로부터 추정한 각 기통마다의 실공연비(#nA/F(n=1, 2, 3, 4))에 근거하여, PID 제어기(22)에 의해, 각 기통마다의 분산을 해소하도록 피드백 보정계수(#nKLAF)를 산출한다(STEPh). 더욱이, 대국적 피드백 제어부(15)에 의해, 피드백 보정계수(KFB)를 산출한다(STEPi).
이 경우, 대국적 피드백 제어부(15)는, 상술과 같이, PID 제어기(17)에 의해 구해지는 피드백 조작량(KLAF)과, 적응제어기(18)에 의해 구해지는 피드백 조작량(kstr)을 목표공연비(KCMD)로 나누어서 이루어지는 피드백 조작량(kstr)으로부터, 전환부(20)에 의해 엔진(1)의 운전상태 등에 따라서 어느것인가 한쪽의 피드백 조작량(KLAF 또는 kstr)을 선택한다(통상적으로는 적응제어기(18) 측의 피드백 조작량(kstr)을 선택한다). 그리고, 선택된 피드백 조작량(KLAF 또는 kstr)을 연료 분사량을 보정하기 위한 피드백 보정량수(KFB)로서 출력한다.
또한, 피드백 보정계수(KFB)를, PID 제어기(17) 측의 피드백 조작량(KLAF)으로부터 적응제어기(18)측의 피드백 조작량(kstr)으로 전환할 때에는, 이 보정계수(KFB)의 급변을 회피하기 위해, 적응제어기(18)는, 그 전환시의 제어사이 클에 한하고, 보정계수(KFB)를 전회의 보정계수(KFB(=KLAF))로 유지하도록, 피드백 조작량(kstr)을 구한다. 동일하게, 보정계수(KFB)를, 적응제어기(18)측의 피드백 조작량(kstr)으로부터 PID 제어기(17)측의 피드백 조작량(KLAF)으로 전환시에는, PID 제어기(17)는, 자신이 전회의 제어사이클에서 구한 피드백 조작량(KLAF)이, 전회의 보정계수(KFB(=kstr))인 것으로 하여, 금회의 보정계수(KLAF)를 산출한다.
상기와 같이 하여 피드백 보정계수(KFB)가 산출된 후, 더욱, 상기 STEPf 또는 STEPg에서 결정된 목표공연비(KCMD)에 따른 제 2 보정계수(KCMDM)가 제 2 보정계수 산출부(10)에 의해 산출된다(STEPj).
그 다음에, 기관측 제어유닛(7b)은, 상술과 같이 구해진 기본 연료분사량(Tim)에, 제 1보정계수(KTOTAL), 제 2보정계수(KCMDM), 피드백 보정계수(KFB), 및 각 기통마다의 피드백 보정계수(#nKLAF)를 곱함으로써, 각 기통마다의 출력 연료분사량(#nTout)을 구한다(STEPk). 그리고, 이 각 기통마다의 출력 연료분사량(#nTout)이, 부착보정부(23)에 의해, 엔진(1)의 흡기관에서의 연료의 벽면부착을 고려한 보정을 실시한후(STEPm), 엔진(1)의 도시하지 않은 연료 분사장치에 출력된다(STEPn).
그리고, 엔진(1)에 있어서는, 각 기통마다의 출력 연료분사량(#nTout)에 따라, 각 기통으로의 연료분사가 행해진다.
이상과 같은 각 기통마다의 출력연료 분사량(#nTout)의 산출 및 그것에 따른 엔진(1)으로의 연료분사가 엔진(1)의 크랭크각 주기에 동기한 사이클 타임으로 순차 행해지고, 이것에 의해 LAF센서(5)의 출력(KACT)(공연비의 검출값)이, 목표공연 비(KCMD)에 수렴하도록, 엔진(1)의 공연비가 제어된다. 이 경우, 특히, 피드백 보정계수(KFB)로서, 적응 제어기(18)측의 피드백 조작량(kstr)을 사용하고 있는 상태에서는, 엔진(1)의 운전상태의 변화나 특성변화 등의 거동변화에 대하여, 높은 안정성을 가지고, LAF센서(5)가 출력(KACT)이 신속하게 목표공연비(KCMD)에 수렴 제어된다. 또, 엔진(1)이 가지는 응답지연의 영향도 적정하게 보상된다.
한편, 상술과 같은 엔진(1)의 연료공급의 제어와 병행하여, 상기 배기측 제어유닛(7a)은, 일정 주기의 제어 사이클로 도 12의 플로우차트에 나타내는 메인루틴 처리를 실행한다.
즉, 도 12를 참조하여, 배기측 제어유닛(7a)은, 우선, 상기 배기측 주연산 처리부(13)에 있어서의 연산처리를 실행할지 여부의 판별처리를 행하고, 그 실행의 가부를 규정하는 플래그(f/prism/cal)의 값을 설정한다(STEP1). 또한, 플래그(f/prism/cal)의 값은, 그것이 「0」일때, 배기측 주연산 처리부(13)에 있어서의 연산처리를 행하지 않는 것을 의미하고, 「1」일 때, 배기측 주연산 처리부(13)에 있어서의 연산처리를 행하는 것을 의미한다.
상기의 판별처리는, 도 13의 플로우차트에 나타낸 바와 같이 행하여진다. 즉, O2센서(6) 및 LAF센서(5)가 활성화되고 있는지 아닌지의 판별이 행하여진다(STEP1-1, 1-2). 이 때, 어느 한 쪽이 활성화되고 있지않는 경우에는, 배기측 주연산 처리부(13)의 처리에 사용하는 O2센서(6) 및 LAF센서(5)의 검출 데이터를 정밀도 좋게 얻을 수가 없기때문에, 플래그(f/prism/cal)의 값을 「0」에 세 팅한다(STEP, 1-6). 또한 이 때, 동정기(25)의 후술하는 초기화를 행하기 위해서, 그 초기화를 행할지의 여부를 규정하는 플래그(f/id/reset)의 값을 「1」에 세팅한다(STEP1-7). 여기서, 플래그(f/id/reset)의 값은, 그것이 「1」일 때, 동정 기(25)의 초기화를 행하는 것을 의미하고, 「0」일 때, 초기화를 행하지 않는 것을 의미한다.
또, 엔진(1)의 린 운전중(희박연소 운전중)인지의 여부(STEP1-3), 및 엔진(1)의 시동직후의 촉매장치(3)의 조기 활성화를 도모하기 위해서 엔진(1)의 점화시기가 지각측(遲角側)으로 제어되고 있는지의 여부(STEP1-4)의 판별이 행하여진다. 이들 중 어느 한 조건이 성립하고 있는 경우에는, 02센서(6)의 출력(VO2/OUT)을 목표값(VO2/TARGET)으로 정정(整定)시키는 목표공연비(KCMD)를 산출하여도, 그것을 엔진(1)의 연료공급의 제어에 사용하는 일은 없으므로, 플래그(f/prism/cal)의 값을 「0」에 세팅한다(STEP1-6). 또한 이 때, 동정기(25)의 초기화를 행하기 위해서, 플래그(f/id/reset)의 값을 「1」에 세팅한다(STEP1-7).
도 12의 설명으로 돌아가서, 상기와 같은 판별처리를 한 후, 배기측 제어유닛(7a)은, 다시, 동정기(25)에 의한 상기 게인계수(a1, a2, b1)의 동정(갱신)처리를 실행할지의 여부의 판별처리를 행하고, 그 실행의 가부를 규정하는 플래그 (f/id/cal)의 값을 설정한다(STEP2). 또한, 플래그(f/id/cal)의 값은, 그것이 「0」일 때, 동정기(25)에 의한 상기 게인계수(a1, a2, b1)의 동정(갱신)처리를 행하지 않는 것을 의미하고, 「1」일 때, 동정(갱신)처리를 행하는 것을 의미한다.
이 STEP2의 판별처리에서는, 엔진(1)의 스로틀밸브가 대략 전개인지 아닌지, 및 엔진(1)에의 연료공급의 정지중(퓨얼컷트중)인지의 여부의 판별이 행하여진다. 이들 중 어느 한 조건이 성립하고 있는 경우에는, 상기 게인계수(a1, a2, b1)를 적정하게 동정하는 것이 곤란하기때문에, 플래그(f/id/cal)의 값을 「0」에 세팅한다. 그리고, 상기의 어느 조건도 성립하고 있지 않는 경우에는, 동정기(25)에 의한 상기 게인계수(a1, a2, b1)의 동정(갱신)처리를 실행하도록 플래그(f/id/cal)의 값을 「1」에 세팅한다.
이어서, 배기측 제어유닛(7a)은, 상기 감산 처리부(11,12)에 의해 각각 최신의 상기 편차출력 kact(k)(=KACT(k)-FLAF/BASE) 및 VO2(k)(=VO2/OUT(k)-VO2/TARGET)를 산출한다(STEP3). 이 경우, 감산 처리부(11, 12)는, 상기 도 10의 STEPa에 있어서 입력되어 도시하지 않은 메모리에 기억된 LAF센서(5)의 출력(KACT) 및 02센서(6)의 출력(VO2/OUT)의 시계열 데이터 중에서, 최신의 것을 선택하여 상기 편차출력 kact(k) 및 VO2(k)를 산출한다. 그리고 이 편차출력 kact(k) 및 VO2(k)는, 배기측 제어유닛(7a)에 있어서, 과거에 산출한 것을 포함하여 시계열적으로 도시하지 않은 메모리에 기억 유지된다.
이어서, 배기측 제어유닛(7a)은, 상기 STEP1에서 설정된 플래그(f/prism/cal)의 값을 판단한다(STEP4). 이 때, f/prism/cal=0인 경우, 즉, 배기측 주연산 처리부(13)의 연산처리를 행하지 않는 경우에는, 슬라이딩 모드 제어기(27)에서 구해야 할 상기 SLD 조작입력 Usl(목표편차 공연비 kcmd)을 강제적 으로 소정값에 설정한다(STEP13). 이 경우, 그 소정값은, 예를 들면 미리 정한 고정값(예를 들면 「0」) 또는 전회의 제어 사이클에서 결정한 SLD 조작입력(Usl)의 값이다.
또한, 이와 같이 SLD 조작입력(Usl)을 소정값으로 한 경우에 있어서, 배기측 제어유닛(7a)은, 그 소정값의 SLD 조작입력(Usl)에 상기 기준치(FLAF/BASE)를 가산함으로써, 금회의 제어 사이클에서의 목표공연비(KCMD)를 결정하고(STEP14), 금회의 제어 사이클의 처리를 종료한다.
한편, STEP4의 판단에서, f/prism/cal=1인 경우, 즉, 배기측 주연산 처리부(13)의 연산처리를 행하는 경우에는, 배기측 제어유닛(7a)은, 우선, 상기 목표공연비 산출수단(13a)의 동정기(25)에 의한 연산처리를 행한다(STEP5).
이 동정기(25)에 의한 연산처리는 도 14의 플로우차트에 나타낸 바와 같이 행하여진다.
즉, 동정기(25)는, 우선, 상기 STEP2에서 설정된 플래그(f/id/cal)의 값을 판단한다(STEP5-1). 이 때 f/id/cal=0이면, 동정기(25)에 의한 게인계수(a1, a2, b1)의 동정처리를 행하지 않으므로, 즉시 도 12의 메인루틴에 복귀한다.
한편, f/id/cal=1이면, 동정기(25)는, 또한 그 동정기(25)의 초기화에 관한 상기 플래그(f/id/cal)의 값(이것은, 상기 STEP1에서 그 값이 설정된다)을 판단하고(STEP5-2), f/id/reset=1인 경우에는, 동정기(25)의 초기화를 행한다(STEP5-3). 이 초기화에서는, 상기 동정 게인계수(a1해트, a2해트, b1해트)의 각 값이 미리 정한 초기값으로 설정되고(식(4)의 동정 게인계수 벡터Θ의 초기화), 또, 상기 식(9) 에서 사용하는 행렬P(대각행렬)의 각 성분이 미리 정한 초기값으로 설정된다. 또한, 플래그(f/id/reset)의 값은 「0」에 리세트된다.
이어서, 동정기(25)는, 현재의 동정 게인계수(a1(k-1)해트, a2(k-1)해트, b1(k-1))해트의 값과, 상기 STEP3에서 제어 사이클마다 산출되는 편차출력(VO2) 및 kact의 과거값의 데이터 V02(k-1), VO2(k-2), kact(k-d-1)를 이용하여, 상기 식(3)에 의해 상기 동정 편차출력 VO2(k)해트를 산출한다(STEP5-4).
또한 동정기(25)는, 새로운 동정 게인계수(a1해트, a2해트, b1해트)를 결정할 때에 사용하는 상기 벡터 Kθ(k)를 식(9)에 의해 산출한 후(STEP5-5), 상기 동정오차 id/e(k)(상기 동정 편차출력 VO2해트와, 실제의 편차출력 VO2의 편차. 식(7)참조)를 산출한다(STEP5-6).
여기서, 상기 동정오차 id/e(k)는, 기본적으로는, 상기 식(7)에 따라서 산출하면 좋은 것인데, 본 실시형태에서는, 상기 도 12의 STEP3에서 제어 사이클마다 산출하는 편차출력(VO2)과, 상기 STEP5-4에서 제어 사이클마다 산출하는 동정 편차출력(VO2)해트로부터 식(7)의 연산에 의해 얻어진 값(=VO2(k)-VO2(k)해트)에, 다시 로패스 특성의 필터링을 실시함으로써 동정오차 id/e(k)를 구한다.
이것은, 촉매장치(3)를 포함하는 대상 배기계(E)의 거동은 일반적으로 로패스 특성을 가지기때문에, 상기 배기계 모델의 게인계수(a1, a2, b1)를 적정하게 동정하는 데에 있어서는, 대상 배기계(E)의 저주파수측의 거동을 중시하는 것이 바람직하기 때문이다.
또한, 이와 같은 필터링은, 결과적으로, 편차출력(VO2) 및 동정 편차출력(VO2)해트의 양자에 동일한 로패스 특성의 필터링이 실시되어 있으면 좋고, 예를 들면 편차출력(VO2) 및 동정 편차출력(VO2)해트에 각각 따로 필터링을 실시한 후에 식(7)의 연산을 행하여 동정오차 id/e(k)를 구하도록 하여도 좋다, 또, 상기의 필터링은, 예를 들면 디지털 필터의 한 수법인 이동 평균처리에 의해서 행하여진다.
이어서, 동정기(25)는, STEP5-6에서 구한 동정오차 id/e(k)와, 상기 STEP5-5에서 산출한 Kθ(k)을 이용하여 상기 식(8)에 의해 새로운 동정 게인계수 벡터 Θ(k), 즉, 새로운 동정 게인계수(a1(k)해트, a2(k)해트, b1(k)해트)를 산출한다(STEP5-7).
이와 같이 하여 새로운 동정 게인계수(a1(k)해트, a2(k)해트, b1(k)해트)를 산출한 후, 동정기(25)는, 그 동정 게인계수(a1해트, a2해트, b1해트)(동정 게인계수 벡터Θ의 요소)의 값을, 소정의 조건을 충족시키도록 제한하는 처리를 한다(STEP5-8). 그리고, 동정기(25)는 차회의 제어 사이클의 처리를 위해서 상기 행렬P(k)를 상기 식(10)에 의해 갱신한 후(STEP5-9), 도 12의 메인루틴의 처리로 복귀한다.
이 경우, 상기 STEP5-8에 있어서 동정 게인계수(a1해트, a2해트, b1해트)의 값을 제한하는 처리는, 동정 게인계수(a1해트, a2해트)의 값의 조합을 소정의 조합으로 제한하는 처리(동정 게인계수(a1해트, a2해트)를 성분으로 하는 좌표 평면상의 소정의 영역내에 점(a1해트, a2해트)을 제한하는 처리)와, 동정 게인계수(b1해트)의 값을 소정의 범위내에 제한하는 처리로 이루어진다. 전자의 처리에서는, STEP5-7에서 산출한 동정 게인계수(a1(k)해트, a2(k)해트)에 의해 결정되는 상기 좌표 평면상의 점(a1(k)해트, a2(k)해트)이 그 좌표 평면상에 미리 정한 소정의 영역으로부터 일탈하고 있는 경우에 동정 게인계수(a1(k)해트, a2(k)해트)의 값을 강제적으로 상기 소정 영역내의 점의 값으로 제한한다. 또, 후자의 처리에서는, 상기 STEP5-7에서 산출한 동정 게인계수(b1(k)해트)의 값이 소정범위의 상한치 또는 하한치를 초과하고 있는 경우에, 그 동정 게인계수(b1(k)해트)의 값을 강제적으로 그 상한치 또는 하한치로 제한한다.
이와 같은 동정 게인계수(a1해트, a2해트, b1해트)의 제한처리는, 슬라이딩 모드 제어기(27)가 산출하는 SLD 조작입력(Usl)(목표편차 공연비 kcmd), 나아가서는 목표공연비(KCMD)의 안정성을 확보하기 위한 것이다.
또한, 이와 같은 동정 게인계수(a1해트, a2해트, b1해트)의 제한처리보다 구체적인 수법에 관해서는, 본원 출원인이 예를 들면 일본 특개평 11-153051호 공보 또는 미국 특허출원 09/153300호에서 상세히 설명하고 있으므로, 여기서는 상세한 설명을 생략한다.
또, 도 12의 STEP5-7에서 새로운 동정 게인계수(a1(k)해트, a2(k)해트, b1(k)해트)를 구하기 위해서 사용하는 동정 게인계수의 전회값(a1(k-1)해트, a2(k-1)해트, b1(k-1)해트)는, 전회의 제어 사이클에 있어서의 STEP5-8의 제한처리를 행한 후의 동정 게인계수의 값이다.
이상이 도 12의 STEP5에 있어서의 동정기(25)의 연산처리의 상세한 설명이다.
도 12의 설명으로 돌아가서, 상기와 같이 동정기(25)의 연산처리를 행한 후, 배기측 제어유닛(7a)은, 게인계수(a1, a2, b1)의 값을 결정한다(STEP6). 이 처리에서는, 상기 STEP2에서 설정된 플래그(f/id/cal)의 값이 「1」인 경우, 즉, 동정기(25)에 의한 게인계수(a1, a2, b1)의 동정처리를 행한 경우에는, 게인계수(a1, a2, b1)의 값으로서, 각각 상기 STEP5에서 상술한 바와 같이 동정기(25)에 의해 구해진 최신의 동정 게인계수(a1(k)해트, a2(k)해트, b1(k)해트)(STEP5-8의 제한처리를 실시한 것)를 설정한다. 또, f/id/cal=0인 경우, 즉, 동정기(25)에 의한 게인계수(a1, a2, b1)의 동정처리를 행하지 않은 경우에는, 게인계수(a1, a2, b1)의 값을 각각 미리 정한 소정값으로 한다.
이어서, 배기측 제어유닛(7a)은, 상기 추정기(26)에 의한 연산처리(추정 편차출력 VO2바의 산출처리)를 행한다(STEP7).
즉, 추정기(26)는, 우선, 상기 STEP6에서 결정된 게인계수(a1,a2,b1)(이들의 값은 기본적으로는, 상기 동정 게인계수(a1해트, a2해트, b1해트)이다)를 이용하여, 상기 식(13)에서 사용하는 계수값 α1, α2, βj(j=1, …, d)를, 식(12)의 단서의 정의에 따라서 산출한다.
이어서, 추정기(26)는, 상기 STEP3에서 제어 사이클마다 산출되는 02센서(6)의 편차출력(VO2)의 현재의 제어 사이클 이전의 시계열 데이터 VO2(k), VO2(k-1), 및 LAF센서(5)의 편차출력(kact)의 현재의 제어 사이클 이전의 시계열 데이터 kact(k-j)(j=0, …, d1)와 슬라이딩 모드 제어기(27)로부터 제어 사이클마다 부여 되는 상기 목표편차 공연비 kcmd(=SLD 조작입력 Usl)의 전회의 제어 사이클 이전의 시계열 데이터 kcmd(k-j)(=Usl(k-j). j=1, …, d2-1)와, 상기와 같이 산출한 계수치 α1, α2, βj를 이용하여 상기 식(13)에 의해, 추정 편차출력 VO2(k+d)바(금회의 제어 사이클의 시점으로부터 상기 합계 낭비시간(d) 후의 편차출력 VO2의 추정치)를 산출한다.
배기측 제어유닛(7a)은, 다음에, 슬라이딩 모드 제어기(27)에 의해서, 상기 SLD 조작입력 Usl(=목표편차 공연비 kcmd)를 산출한다(STEP8).
즉, 슬라이딩 모드 제어기(27)는, 우선, 상기 STEP7에서 추정기(26)에 의해 구해진 추정 편차출력(VO2)바의 시계열 데이터 VO2(k+d)바, VO2(k+d-1)바를 이용하여, 상기 식(25)에 의해 정의된 전환함수(σ바)의 금회의 제어 사이클로부터 상기 합계 낭비시간(d) 후의 값 σ(k+d)바(이것은, 식(15)에서 정의된 선형함수(σ)의 합계 낭비시간(d) 후의 추정치에 상당한다)를 산출한다.
또한, 이 경우, 전환함수(σ바)의 값이 미리 정한 소정의 허용 범위내에 수용되도록 하고, 상기와 같이 구해지는 σ(k+d)바가 그 허용범위의 상한치 또는 하한치를 초과한 경우에는, 각각 σ바의 값 σ(k+d)바를 강제적으로 그 상한치 또는 하한치로 제한한다. 이것은, 전환함수(σ바)의 값이 과대해지면, 상기 도달법칙 입력 (Urch)이 과대해짐과 동시에, 상기 적응법칙 입력(Uadp)의 급변이 생기기때문에, 02센서(6)의 출력(VO2/OUT)의 목표값(VO2/TARGET)으로의 수렴제어의 안정성이 손상될 우려가 있기 때문이다.
또한, 슬라이딩 모드 제어기(27)는, 상기 전환함수(σ바)의 값 σ(k+d)바에, 배기측 제어유닛(7a)의 제어 사이클의 주기△T(일정주기)를 곱셈한 것 σ(k+d)바·△T를 누적적으로 가산하여 가는, 즉, 전회의 제어 사이클에서 구해진 가산결과에 금회의 제어 사이클에서 산출된 σ(k+d)바와 주기(△T)와의 곱 σ(k+d)바·△T를 가산함으로써, 상기 식(27)의 Σ(σ바·△T)의 항의 연산결과인 σ바의 적산값(이하, 이 적산값을 Σσ바에 의해 나타낸다)을 산출한다.
또한, 이 경우, 본 실시형태에서는, 상기 적산값 Σσ바가 미리 정한 소정의 허용 범위내에 수용되도록 하고, 그 적산값 Σσ바가 그 허용범위의 상한치 또는 하한치를 초과한 경우에는, 각각 그 적산값 Σσ바를 강제적으로 그 상한치 또는 하한치로 제한한다. 이것은, 적산값 Σσ바가 과대하게 되면, 상기 식(27)에 의해 구해지는 적응법칙 입력(Uadp)이 과대해져, 02센서(6)의 출력(VO2/OUT)의 목표값(VO2/TARGET)으로의 수렴제어의 안정성이 손상될 우려가 있기 때문이다.
이어서, 슬라이딩 모드 제어기(27)는, 상기 STEP7에서 추정기(26)에 의해 구해진 추정 편차출력 VO2바의 현재값 및 과거값의 시계열 데이터 VO2(k+d)바, VO2(k+d-1)바와, 상기와 같이 구한 전환함수(σ바)의 값 σ(k+d)바 및 그 적산값 Σσ바와, STEP6에서 결정한 게인계수(a1, a2, b1)(이들의 값은 기본적으로는, 최신의 동정 게인계수(a1(k)해트, a2(k)해트, b1(k)해트)이다)를 이용하여, 상기 식(24), (26), (27)에 따라서, 각각 등가제어입력(Ueq), 도달법칙 입력(Urch) 및 적응법칙 입력(Uadp)을 산출한다.
그리고, 슬라이딩 모드 제어기(27)는, 이 등가제어입력(Ueq), 도달법칙 입력(Urch) 및 적응법칙 입력(Uadp)을 가산함으로써, 상기 SLD 조작입력(Usl), 즉, 02센서(6)의 출력(VO2/OUT)을 목표값(VO2/TARGET)에 수렴시키기 위해서 필요한 대상 배기계(E)에의 입력량(=목표편차 공연비 kcmd)을 산출한다.
상기와 같이 SLD 조작입력(Usl)을 산출한 후, 배기측 제어유닛(7a)은, 슬라이딩 모드 제어기(27)에 의한 적응 슬라이딩 모드제어의 안정성(보다 상세하게는, 적응 슬라이딩 모드제어에 기초하는 02센서(6)의 출력(VO2/OUT)의 제어상태(이하, SLD 제어상태라고 한다)의 안정성)을 판별하는 처리를 행하여, 그 SLD 제어상태가 안정한지의 여부를 각각 값「1」,「0」으로 표시하는 플래그(f/sld/stb)의 값을 설정한다(STEP9).
이 안정성의 판별처리는 도 15의 플로우차트에 나타낸 바와 같이 행하여진다.
즉, 배기측 제어유닛(7a)은, 우선, 상기 STEP8에서 산출되는 전환함수(σ바)의 금회값 σ(k+d)바와 전회값 σ(k+d-1)바와의 편차 △σ바(이것은 전환함수(σ바)의 변화속도에 상당한다)를 산출한다(STEP9-1).
이어서, 배기측 제어유닛(7a)은, 상기 편차 △σ바와 전환함수(σ바)의 금회값 σ(k+d)바와의 곱 △σ바·σ(k+d)바(이것은 α바에 관한 리아푸노브함수 σ바2/2의 시간 미분함수에 상당한다)가 미리 정한 소정값 ε(≥0)이하인지 아닌지를 판단한다(STEP9-2).
여기서, 상기 곱△σ바·σ(k+d)바(이하, 이것을 안정판별 파라미터 Pstb라고 한다)에 관하여 설명하면, 이 안정판별 파라미터 Pstb의 값이 Pstb>0이 되는 상태는, 기본적으로는, 전환함수(σ바)의 값이 「0」으로부터 이간하고 있는 상태이다. 또, 안정판별 파라미터 Pstb의 값이 Pstb≤0이 되는 상태는, 기본적으로는, 전환함수(σ바)의 값이 「0」에 수렴하고 있거나, 또는 수렴 중인 상태이다. 그리고, 일반적으로, 슬라이딩 모드제어에서는 그 제어량을 목표값에 안정하게 수렴시키기 위해서는, 전환함수의 값이 안정하게 「0」에 수렴할 필요가 있다. 따라서, 기본적으로는, 상기 안정판별 파라미터 Pstb의 값이 「0」이하인지의 여부에 의해서, 각각 상기 SLD 제어상태가 안정, 불안정하다고 판단할 수가 있다.
단, 안정판별 파라미터(Pstb)의 값을 「0」과 비교함으로써 SLD 제어상태의 안정성을 판단하면, 전환함수(σ바)의 값에 약간의 노이즈가 포함된 것만으로, 안정성의 판별결과에 영향을 미쳐버린다. 이 때문에, 본 실시형태에서는, 상기 STEP9-2에서 안정판별 파라미터(Pstb)와 비교하는 소정값(ε)은, 「0」보다도 약간 큰 양의 값으로 하고 있다.
그리고, STEP9-2의 판단에서, Pstb>ε인 경우에는, SLD 제어상태가 불안정하다고 하여, 상기 STEP8에서 산출되는 SLD 조작입력(Usl)을 사용한 목표공연비(KCMD)의 결정을 소정시간, 금지하기 위해서 타이머카운터(tm)(카운트다운 타이머)의 값을 소정의 초기값(TM)에 세팅한다(타이머카운터(tm)의 기동. STEP9-4). 또한, 상기 플래그(f/sld/stb)의 값을 「0」에 설정한 후(STEP9-5), 도 12의 메인루틴의 처리로 복귀한다.
한편, 상기 STEP9-2의 판단에서, Pstb≤ε인 경우에는, 배기측 제어유닛(7a)은, 전환함수(σ바)의 금회값 σ(k+d)바가 미리 정한 소정범위내에 있는지의 여부를 판단한다(STEP9-3).
이 경우, 전환함수(σ바)의 금회값 σ(k+d)바가, 소정범위내에 없는 상태는, 그 금회값 σ(k+d)바가 「0」으로부터 크게 이간하고 있는 상태이므로, SLD 제어상태가 불안정하다고 고려된다. 이 때문에, STEP9-3의 판단에서, 전환함수(σ바)의 금회값 σ(k+d)바가, 소정범위내에 없는 경우에는, SLD 제어상태가 불안정하다고 하여, 상술한 경우와 마찬가지로, STEP9-4 및 9-5의 처리를 행하여, 타이머카운터(tm)를 기동함과 동시에, 플래그(f/sld/stb)의 값을 「0」에 설정한다.
또한, 본 실시형태에서는, 상술의 STEP8의 처리에 있어서, 전환함수(σ바)의 값을 소정의 허용범위내에 제한하므로, STEP9-3의 판단처리는 생략하여도 좋다.
또, STEP9-3의 판단에서, 전환함수(σ바)의 금회값 σ(k+d)바가, 소정 범위내에 있는 경우에는, 배기측 제어유닛(7a)은, 상기 타이머카운터(tm)를 소정시간 △tm분, 카운트다운한다(STEP9-6). 그리고, 이 타이머카운터(tm)의 값이 「0」이하인지 아닌지, 즉, 타이머카운터(tm)를 기동하고나서 상기 초기값 TM분의 소정시간이 경과했는지의 여부를 판단한다(STEP9-7).
이 때, tm>0인 경우, 즉, 타이머카운터(tm)가 계시 동작중에서 아직 타임업하고 있지 않은 경우는, STEP9-2 또는 STEP9-3의 판단에서 SLD 제어상태가 불안정하다고 판단되고나서, 그다지 시간을 경과하고 있지않으므로, SLD 제어상태가 불안 정한 것으로 되기 쉽다. 이 때문에, STEP9-7에서 tm>0인 경우에는, 상기 STEP9-5의 처리를 행하여 상기 플래그(f/sld/stb)의 값을 「0」에 설정한다.
그리고, STEP9-7의 판단에서 tm≤0인 경우, 즉, 타이머카운터(tm)가 타임업하고 있는 경우에는, SLD 제어상태가 안정하다고 하여, 플래그(f/sld/stb)의 값을 「1」에 설정한다(STEP9-8).
이상과 같은 처리에 의해서, SLD 제어상태의 안정성이 판단되어, 불안정하다고 판단한 경우에는, 플래그(f/sld/stb)의 값이 「0」에 설정되고, 안정하다고 판단한 경우에는, 플래그(f/sld/stb)의 값이 「1」에 설정된다.
또한, 이상 설명한 SLD 제어상태의 안정성 판단의 수법은 예시적인 것으로, 이 외의 수법에 의해서 안정성의 판단을 하도록 하는 것도 가능하다. 예를 들면 제어 사이클보다도 긴 소정기간마다, 각 소정기간내에 있어서의 상기 안정판별 파라미터(Pstb)의 값이 상기 소정값(ε)보다도 커지는 빈도를 계수한다. 그리고, 그 빈도가 미리 정한 소정값을 초과하는 경우에 SLD 제어상태가 불안정하다고 판단하고, 반대의 경우에, SLD 제어상태가 안정하다고 판단하도록 하여도 좋다.
도 12의 설명으로 돌아가서, 상기와 같이 SLD 제어상태의 안정성을 나타내는 플래그(f/sld/stb)의 값을 설정한 후, 배기측 제어유닛(7a)은, 플래그(f/sld/stb)의 값을 판단한다(STEPl0). 이 때, f/sld/stb=1인 경우, 즉, SLD 제어상태가 안정하다고 판단된 경우에는, 슬라이딩 모드제어기(27)가 상기 STEP8에서 산출한 SLD 조작입력(Usl)의 리미트처리를 한다(STEP11). 이 리미트처리에서는, STEP8에서 산출된 SLD 조작입력(Usl)의 금회값 Usl(k)이 소정의 허용범위내에 있는지의 여부가 판단되고, 그 금회값(Usl)이 그 허용범위의 상한치 또는 하한치를 초과하고 있는 경우에는, 각각, SLD 조작입력(Usl)의 금회값 Usl(k)이 강제적으로 그 상한치 또는 하한치로 제한된다.
또한, STEP11의 리미트처리를 거친 SLD 조작입력(Usl)(=목표편차 공연비 kcmd)은, 도시하지 않은 메모리에 시계열적으로 기억유지되고, 그것이, 추정기(26)의 상술의 연산처리를 위해 사용된다.
이어서, 배기측 제어유닛(7a)은, 촉매장치(3)의 열화상태를 평가하는 처리(상세한 것은 후술한다)를 배기측 주연산 처리부(13)의 열화상태 평가수단(13b)에 의해서 실행한 후(STEP12), 슬라이딩 모드 제어기(27)에 의해서, STEP11의 리미트처리를 거친 SLD 조작입력(Usl)에 상기 기준치(FLAF/BASE)를 가산함으로써, 상기 목표공연비(KCMD)를 산출하고(STEP14), 금회의 제어 사이클의 처리를 종료한다.
또, 상기 STEP10의 판단에서 f/sld/stb=0인 경우, 즉, SLD 제어상태가 불안정하다고 판단된 경우에는, 배기측 제어유닛(7a)은, 금회의 제어 사이클에 있어서의 SLD 조작입력(Usl)의 값을 강제적으로 소정값(고정값 또는 SLD 조작입력(Usl)의 전회값)에 설정한 후(STEP13), 상기 식(28)에 따라서 상기 목표공연비(KCMD)를 산출하고(STEP14), 금회의 제어 사이클을 처리종료한다.
또한, STEP14에서 최종적으로 결정되는 목표공연비(KCMD)는, 제어 사이클마다 도시하지 않은 메모리에 시계열적으로 기억 유지된다. 그리고, 상기 대국적 피드백 제어기(15) 등이, 배기측 제어유닛(7a)에서 결정된 목표공연비(KCMD)를 이용하는데 있어서는(도 10의 STEPf를 참조), 상기와 같이 시계열적으로 기억 유지된 목표공연비(KCMD) 중에서 최신의 것이 선택된다.
상기 STEP12에 있어서의 촉매장치(3)의 열화상태의 평가처리를 다음에 설명한다.
이 평가처리는, 배기측 제어유닛(7a)의 열화상태 평가수단(13b)에 의해서 도 16의 플로우차트에 나타낸 바와 같이 행하여진다.
즉, 열화상태 평가수단(13b)은, 우선, 상기 식(15)에 의해 정해진 열화평가용 선형함수(σ)의 값을, 상기 도 12의 STEP3에서 산출되는 02센서(6)의 편차출력(VO2)의 시계열 데이터 VO2(k), VO2(k-1)(편차출력(VO2)의 현재값과 1제어 사이클전의 과거값)로부터 산출한다(STEP12-1).
또한, 이 경우에 사용하는 계수(sl, s2)의 값은, 상기 STEP8에서 슬라이딩 모드 제어기(27)가 전환함수(σ바)의 값을 구하기 위해서 사용하는 계수(sl, s2)의 값과 동일하다.
이어서, 열화상태 평가수단(13b)은, 플래그(F/DONE)의 값을 판단한다(STEP12-2). 여기서, 이 플래그(F/DONE)는, 엔진(1)의 현재의 운전중에, 촉매장치(3)의 열화상태의 평가를 완료했는지의 여부를 각각 값「1」, 「0」으로 표시하는 플래그이고, 후술의 STEP12-5의 처리에 있어서 그 값이 「1」에 설정되는 것이다. 그리고, 그 플래그(F/DONE)는, 엔진(1)의 시동시에 그 값이 「0」으로 초기화되는 것이다.
이 때, F/DONE=0인 경우(촉매장치(3)의 열화상태의 평가가 미완료인 경우) 에는, 열화상태 평가수단(13b)은, 배기가스 볼륨(배기관(2)을 흐르는 배기가스의 유량)의 변동상태를 판단하는 처리를 한다(STEP12-3). 이 처리는, 보다 상세하게는, 배기가스 볼륨이 거의 일정하게 유지되고 있는 상태(이하, 크루즈상태라고 한다)인지 아닌지를 판단하고, 그 크루즈상태인지 아닌지를 각각 값「1」, 「0」으로 표시하는 플래그(F/CRS)의 값을 설정하는 처리이다. 이 경우, 본 실시형태에서는, 이 처리는, 배기측 제어유닛(7a)의 제어 사이클의 주기(30∼100ms)보다도 긴 주기(예를 들면 1초. 이하, 여기서는 배기가스 볼륨변동 판단주기라고 한다)로, 도 17의 플로우차트에 나타낸 바와 같이 행하여진다.
즉, 우선, 엔진(1)의 현재의 회전수(NE) 및 흡기압(PB)의 검출 데이터로부터, 다음 식(42)에 의해서, 현재의 배기가스 볼륨 추정값 ABSV(이하, 추정 배기가스 볼륨이라고 한다)를 산출한다(STEP12-3-1).
여기서, 본 실시형태에서는, 엔진(1)의 회전수가 1500rpm일 때의 배기가스 볼륨을 기준으로 하고 있기때문에, 상기 식(42)에서는, 회전수(NE)(검출치)를 「1500」으로 나눗셈하고 있다. 또, 식(42)에 있어서, SVPRA는, 엔진(1)의 배기량 등에 따라서 미리 정한 정수이다.
또한, 배기가스 볼륨은, 상기와 같이 추정하는 것외에, 예를 들면 엔진(1)의 연료 공급량이나 흡입공기량으로부터 추정하거나, 또는 플로우센서를 이용하여 직접적으로 검출하도록 하여도 좋다.
이어서, 상기 배기가스 볼륨변동 판단주기마다 STEP12-3-1에서 산출되는 추정 배기가스 볼륨(ABSV)에 소정의 필터링처리를 실시함으로써, 배기가스 볼륨의 변동상태를 나타내는 배기가스 볼륨변동 파라미터(SVMA)를 구한다(STEP12-3-2).
이 경우, 상기 필터링처리는, 다음 식(43)에 의해 부여된다.
즉, 배기가스 볼륨변동 판단주기마다의 추정 배기가스 볼륨(ABSV)의 변화량의 복수 주기분(본 실시형태에서는 3주기분)의 이동평균을 구함으로써, 배기가스 볼륨변동 파라미터(SVMA)를 산출한다. 또한, 식(43) 중의 「n」은, 배기가스 볼륨변동 판단주기의 사이클 프로그램수를 나타내는 것이다.
이와 같이 하여 배기가스 볼륨변동 파라미터(SVMA)를 산출했을 때, 그 변동 파라미터(SVMA)는, 추정 배기가스 볼륨(ABSV)의 변화속도를 나타내는 것이 된다. 따라서 배기가스 볼륨변동 파라미터(SVMA)는, 그 값이 「0」에 가까울수록, 추정 배기가스 볼륨(ABSV)의 경시적 변화가 작은 상태(추정 배기가스 볼륨(ABSV)이 거의 일정한 상태)인 것을 의미한다.
열화상태 평가수단(13b)은 다음에, 상기 배기가스 볼륨변동 파라미터(SVMA)의 값을 제곱한 것, 즉, 그 변동 파라미터(SVMA)의 제곱값(SVMA2)를 미리 정한 소정값(δ)과 비교한다(STEP12-3-3). 여기서, 그 소정값(δ)은, 「0」근방의 양의 값이다.
이 때, SVMA2≥δ인 경우(현재의 배기가스 볼륨의 변동이 비교적 큰 경우)에는, 타이머카운터(카운트다운타이머) TMCRSJUD의 값을 미리 정한 초기값(X/TMCRSJST)으로 설정한다(STEP12-3-4). 또한, 배기가스 볼륨의 변동상태가 상기 크루즈상태(대략 일정하게 유지되어 있는 상태)가 아니라고 하여, 상기 플래그 (F/CRS)의 값을 「0」으로 설정한 후(STEP12-3-5), 도 16의 루틴처리로 복귀한다.
한편, STEP12-3-3의 판단처리에 있어서 SVMA2<δ인 경우(현재의 배기가스 볼륨의 변동이 비교적 작은 경우)에는, 이 상태가 계속되는 한 상기 타이머 카운터 (TMCRSJUD)의 값을 배기가스 볼륨변동 판단주기마다 소정값씩 카운트다운한다(STEP12-3-6). 그리고, 이 타이머카운터(TMCRSJUD)의 값이 「0」이하가 되었는지의 여부, 즉, 그 타이머카운터(TMCRSJUD)가 타임업했는지의 여부를 판단한다(STEP12-3-7).
이 때, TMCRSJUD≤0이고, 타이머카운터(TMCRSJUD)가 타임업하고 있는 경우에는, 배기가스 볼륨의 변동상태가 상기 크루즈상태라고 판단하고, 타이머카운터 (TMCRSJUD)의 값을 「0」으로 유지함과 동시에(STEP12-3-8), 상기 플래그(F/CRS)의 값을 「l」에 설정한다(STEPl2-3-9). 그리고, 도 16의 루틴처리로 복귀한다.
또, STEP12-3-7의 판단처리에서, TMCRSJUD>0이고, 타이머카운터(TMCRSJUD)가 타임업하고 있지않은 경우에는, 상기 STEPl2-3-5에서 플래그(F/CRS)의 값을 「0」에 설정한 후, 도 16의 루틴처리로 복귀한다.
이상 설명한 처리가 도 16의 STEP12-3의 처리이다. 이와 같은 처리에 의해서, 상기 배기가스 볼륨변동 파라미터(SVMA)의 제곱값(SVMA2)가 SVMA2<δ이 되는 상태, 즉, 배기가스 볼륨의 변동이 작은 상태가 상기 타이머카운터(TMCRSJUD)의 초기값(X/TMCRSJST)에 상당하는 시간(예를 들면 10∼15초), 계속된 경우에, 상기 크루즈 상태라고 하여, 플래그(F/CRS)의 값이 「1」에 설정된다. 그리고, 이 이외의 경우에는, 배기가스 볼륨의 변동상태는 크루즈상태가 아니라고 하여 플래그(F/CRS)의 값이 「0」에 설정된다.
이와 같은 STEP12-3의 처리에 의해, 배기가스 볼륨이 거의 일정하게 유지되고 있는 상태를 적정하게 파악할 수 있다. 또한, 상기 배기가스 볼륨변동 판단주기의 1주기내에 있어서의 상기 배기측 제어유닛(7a)의 각 제어 사이클에서는, 플래그 (F/CRS)의 값은 일정하게 유지된다.
도 16의 설명으로 돌아가서, 상기 열화상태 평가수단(13b)은, 다음에, 상기 열화평가용 파라미터(LSσ2)를 산출하는 처리를 실행한다(STEP12-4). 이 처리는, 도 18의 플로우차트에 나타낸 바와 같이 행하여진다.
즉, 열화상태 평가수단(13b)은, 열화평가용 파라미터(LSσ2)를 산출하기 위한 소정의 조건이 성립하고 있는지의 여부를 판단한다(STEP12-4-1). 여기서 판단하는 조건으로서는, 상기 STEP12-3에서 설정되는 플래그(F/CRS)의 값이나, 상기 도 10의 STEPd에서 기관측 제어유닛(7b)이 설정하는 플래그(f/prism/on)의 값이 있다.
이 경우, F/CRS=1인 경우, 즉 배기가스 볼륨의 변동상태가 상기 크루즈상태 인 경우에는, 열화평가용 파라미터(LSσ2)를 산출하기 위한 조건(이하, 열화평가조건이라고 한다)이 성립하고 있지않다고 하여, 열화평가용 파라미터(LSσ2)의 산출처리를 행하지않고, 즉시 도 16의 루틴처리로 복귀한다.
이와 같이 상기 크루즈상태, 즉 배기가스 볼륨이 거의 일정하게 유지되고 있는 상태에서, 열화평가용 파라미터(LSσ2)의 산출을 행하지않는 것은, 다음의 이유에 의한다. 즉, 상기 크루즈상태에서는, 02센서(6)의 출력(VO2/OUT)은 목표값(VO2/TARGET)에 안정하게 유지되기 쉽기때문에, 상기 열화평가용 선형함수(σ)의 값은, 촉매장치(3)의 열화가 진행한 상태라도 그 변화가 생기기 어렵다. 이 때문에, 상기 크루즈상태에서는, 열화평가용 선형함수(σ)의 값은, 상기 도 5∼도 7을 참조하여 설명한 것과 같은 촉매장치(3)의 열화상태에 따른 경향이 생기기 어렵다. 그래서, 본 실시형태에서는, 상기 크루즈상태에서는, 열화평가용 파라미터 (LSσ2)의 산출은 행하지않는 것으로 한다.
또, STEP12-4-1에서 f/prism/on=0인 경우, 즉 배기측 제어유닛(7a)의 슬라이딩 모드 제어기(27)가 구하는 목표공연비(KCMD)에 따라서 엔진(1)의 연료 공급의 제어를 행하는 통상 운전모드 이외의 운전모드인 경우에도, 상기 열화평가 조건이 성립하고 있지않다고 하여 열화평가용 파라미터(LSσ2)의 산출처리를 행하지않고, 즉시 도 16의 루틴처리로 복귀한다. 이것은, 열화평가용 파라미터(LSσ2)에 의한 촉매장치(3)의 열화상태의 평가를 적정하게 하는데 있어서는, 상기 슬라이딩 모드 제어기(27)가 적응 슬라이딩 모드제어에 의해 생성하는 목표공연비(KCMD)에 따라서 엔진(1)의 공연비를 제어하고 있는 상태에서 얻어지는 02센서(6)의 편차출력(VO2)의 데이터를 사용하여 열화평가용 파라미터(LSσ2)를 구하는 것이 바람직하기 때문이다.
또한, STEP12-4-1의 조건판단에서는, 플래그(F/CRS) 및 플래그(f/prism/on)의 값 외에, 예를 들면 엔진(1)을 탑재하고 있는 차량의 차속이 소정의 범위내에 있는지의 여부, 엔진(1)의 시동 후, 어느 정도의 시간이 경과한 상태인지의 여부, 촉매장치(3)가 활성화하고 있는지의 여부 등의 조건판단도 이루어지고, 이들의 조건이 충족되고 있지않는 경우에는 상기 열화평가 조건이 성립하고 있지않다고 하여 열화평가용 파라미터(LSσ2)의 산출처리를 행하지않고, 즉시 도 16의 루틴처리로 복귀한다.
한편, STEP12-4-1에서 열화평가 조건이 성립하고 있는 경우(이 때 F/CRS=0 또한 f/prism/on=l이다)에는, 열화상태 평가수단(13b)은, 상기 도 16의 STEP12-1에서 배기측 제어유닛(7a)의 제어 사이클마다 구해지는 열화평가용 선형함수(σ)의 값의 제곱값(σ2)을 산출한다(STEP12-4-2).
그리고, 이 제곱값(σ2)의 현재값 σ2(k)와, 열화평가용 파라미터(LSσ2)의 현재값 LSσ2(k-1)와, 상기 식(30)의 점화식에 의해 결정되는 게인 파라미터(BP)의 현재값 BP(k-1)으로부터, 상기 식(29)에 의해서, 새로운 열화평가용 파라미터 LSσ2(k)를 산출한다(STEP12-4-3).
또한, 게인 파라미터(BP)의 값을 식(30)에 의해 갱신한 후(STEP12-4-4), 열화평가용 파라미터(LSσ2) 및 게인 파라미터(BP)의 갱신회수(이것은 열화평가용 파라미터(LSσ2)를 구하기 위해서 사용한 열화평가용 선형함수(σ)의 값의 개수에 상당한다)를 카운트하는 카운터(CBlP)의 값을 「1」만큼 증가시키고(STEP12-4-5), 도 16의 루틴처리로 복귀한다.
또한, 상술한 바와 같이 STEP12-4-3, 12-4-4에서 각각 구하는 열화평가용 파라미터(LSσ2) 및 게인 파라미터(BP)의 값은, 엔진(1)의 운전 정지중에도 상실되는 일이 없도록, 엔진(1)의 운전 종료시에 도시하지 않은 EEPROM 등의 불휘발성 메모리에 기억된다. 그리고, 차회의 엔진(1)의 운전시에는, 그 기억된 열화평가용 파라미터(LSσ2) 및 게인 파라미터(BP)의 값이 그들의 초기값으로서 사용된다. 또, 엔진(1)의 최초의 운전시에 있어서의 열화평가용 파라미터(LSσ2) 및 게인 파라미터(BP)의 초기값은 각각 「0」, 「l」이다. 또한 상기 카운터(CBlP)의 값은, 엔진(1)의 시동시에 「0」으로 초기화된다.
도 16의 설명으로 돌아가서, 상기와 같이 열화평가용 파라미터(LSσ2)의 값을 산출(갱신)한 후, 열화상태 평가수단(13b)은, 열화평가용 파라미터(LSσ2)에 기 초하는 촉매장치(3)의 열화상태의 평가를 행한다(STEP12-5). 이 처리는 도 19의 플로우차트에 나타낸 바와 같이 행하여진다.
즉, 열화상태 평가수단(13b)은, 상기 게인 파라미터(BP)의 현재값 BP(k)와 전회값 BP(k-1)이 대략 동일한지의 여부(게인 파라미터(BP)가 거의 수렴했는지의 여부)의 판단과, 상기 카운터(CBlP)의 값이 소정값(CBlCAT) 이상이 되었는지의 여부(열화평가용 파라미터(LSσ2)를 구하기 위해서 사용한 열화평가용 선형함수(σ)의 값의 개수가 소정값(CBlCAT)에 도달했는지의 여부)의 판단을 행한다(STEP12-5-1, 12-5-2).
또한, 본 실시형태에서는, 엔진(1)의 시동전에 도시하지 않은 차량의 배터리가 일단 분리된 경우나 엔진(1)의 첫회의 운전시 등과 같이, 엔진(1)의 시동시에 전회의 운전시의 열화평가용 파라미터(LSσ2) 및 게인 파라미터(BP)의 데이터가 유지되고 있지않는 경우(그들의 값이 「0」으로 초기화되어 있는 경우)에는, 상기 STEP12-5-2에서 상기 카운터(CBlP)의 값과 비교하는 소정값은, 상기의 파라미터(LSσ2) 및 BP가 유지되고 있는 경우보다도, 큰 값으로 설정된다.
상기 STEP12-5-l, 12-5-2의 판단에 있어서, 그들 중 어느 한 조건이 만족되고 있지않은 경우에는, 현재의 제어 사이클에 있어서 STEP12-4에서 구해진 열화평가용 파라미터(LSσ2)는, 열화평가용 선형함수(σ)의 값의 제곱값(σ2)의 중심값에 아직 충분히 수렴하고 있지않다고 고려되므로, 현재의 열화평가용 파라미터(LSσ2) 의 값에 기초하는 촉매장치(3)의 열화상태의 평가를 행하지않고, STEP12-5의 처리를 종료한다.
한편, STEP12-5-1, 12-5-2의 어느 조건도 만족되고 있는 경우에는, 현재의 제어 사이클에 있어서 STEP12-4에서 구해진 열화평가용 파라미터(LSσ2)는, 열화평가용 선형함수(σ) 값의 제곱값(σ2)의 중심값을 나타내는 것으로 되어 있으므로, 그 열화평가용 파라미터(LSσ2)를 상기 도 8에 나타낸 소정의 임계값(CATAGELMT)와 비교한다(STEP12-5-3).
이 때 LSσ2≥CATAGELMT인 경우에는, 촉매장치(3)의 열화상태가 상기「열화 진행상태」(촉매장치(3)의 교환을 요하거나 또는 그 교환시기가 가까운 정도로 촉매장치(3)가 열화된 상태)라고 판단하고, 그 취지를 상기 열화 경보기(29)에 경보시킨다(STEP12-5-4). 그리고, 금회의 엔진(1)의 운전중에 있어서의 촉매장치(3)의 열화상태의 평가가 종료되었는지의 여부를 각각 값「1」, 「0」으로 표시하는 상기 플래그(F/DONE)의 값을 「1」에 설정한 후(STEP12-5-5), STEPl2-5의 처리를 종료한다.
또, STEP12-5-3에서, LSσ2<CATAGELMT인 경우에는, 촉매장치(3)의 열화상태는 상기「미열화상태」이므로, 열화 경보기(29)에 의한 경보를 행하지않고, 상기 STEP12-5-5에서 플래그(F/DONE)의 값을 「1」에 설정하고, STEP12-5의 처리를 종료한다.
이상 설명한 처리가, 도 12의 STEPl2에서 열화상태 평가수단(13b)이 행하는 처리이다.
이상 설명한 본 실시형태의 장치에 의하면, 배기측 주연산 처리부(13)의 목표공연비 산출수단(13a)에 의해서, 촉매장치(3)의 하류측의 02센서(6)의 출력(VO2/OUT)을 목표값(VO2/TARGET)에 수렴(정정)시키도록, 적응 슬라이딩 모드제어의 처리를 사용하여 엔진(1)의 목표공연비(촉매장치(3)에 진입하는 배기가스의 공연비의 목표값)가 차례로 결정된다. 또한, 이 목표공연비(KCMD)에 LAF센서(5)의 출력(KACT)을 수렴시키도록 엔진(1)의 연료 분사량을 조정함으로써, 엔진(1)의 공연비가 목표공연비(KCMD)로 피드백 제어된다. 이것에 의해, 02센서(6)의 출력(VO2/OUT)이 목표값(VO2/TARGET)으로 수렴제어되고, 나아가서는 촉매장치(3)의 경시열화 등에 의하지 않고, 촉매장치(3)의 최적인 배기가스 정화성능을 확보할 수가 있다.
또, 이와 같은 엔진(1)의 공연비의 제어와 병행하여, 배기측 주연산 처리부(13)의 열화상태 평가수단(13b)이, 02센서(6)의 편차출력(VO2)의 시계열 데이터로부터 열화평가용 선형함수(σ)를 차례로 구한다. 또한 그 열화평가용 선형함수(σ)의 제곱값(σ2)의 중심값(본 실시형태에서는 최소 제곱 중심값)으로서의 열화평가용 파라미터(LSσ2)를, 축차형의 통계처리 알고리즘(본 실시형태에서는 가중 최소 자승법의 알고리즘)을 사용하여 구한다. 그리고, 이 열화평가용 파라미터(LS σ2)를 미리 정한 임계값(CATAGELMT)과 비교함으로써, 촉매장치(3)의 열화상태를 평가한다.
이것에 의해, 촉매장치(3)의 최적인 정화성능을 확보하면서 촉매장치(3)의 열화상태를 평가할 수 있게 된다. 또, 이 평가를 위해서 사용하는 열화평가용 파라미터(LSσ2)는, 열화평가용 선형함수(σ)의 제곱값(σ2)의 중심값이므로, 촉매장치(3)의 열화상태와의 상관성이 높고, 그 열화평가용 파라미터(LSσ2)에 기초하는 촉매장치(3)의 열화상태의 평가를 적정하게 행할 수가 있다.
특히 본 실시형태에서는, 배기가스 볼륨이 거의 일정하게 유지되는 것과 같은 크루즈상태, 즉, 배기가스 볼륨의 변동이 작고, 열화평가용 선형함수(σ)의 값의 변화도 생기기 어려울 것 같은 상황에서는, 열화평가용 파라미터(LSσ2)의 산출을 행하지 않는다. 그리고, 이러한 상황이외의 상황에서, 열화평가용 파라미터(LSσ2)를 산출하여, 촉매장치(3)의 열화상태를 평가한다. 이 때문에, 촉매장치(3)의 열화상태를 나타내는 것으로서의 열화평가용 파라미터(LSσ2)의 신뢰성이 높아져, 촉매장치(3)의 열화상태의 평가를 정확하게 할 수가 있다.
또, 본 실시형태에서는, 슬라이딩 모드 제어기(27)는, 추정기(26)가 구하는 02센서(6)의 추정 편차출력 VO2바를 「0」에 수렴시키고, 그 결과로서 02센서(6)의 출력(VO2/OUT)이 목표값(VO2/TARGET)에 수렴시키도록 목표공연비(KCMD)를 산출한 다. 이것에 의해 상기 대상 배기계(E)의 낭비시간(d1)이나, 엔진(1) 및 기관측 제어유닛(7b)으로 이루어지는 공연비 조작계의 낭비시간(d2)의 영향을 보상하고, 02센서(6)의 출력(VO2/OUT)의 목표값(VO2/TARGET)으로의 수렴제어의 안정성을 높일 수가 있다. 또한, 슬라이딩 모드 제어기(27)나 추정기(26)가 그 처리에서 사용하는 상기 배기계 모델의 파라미터인 게인계수(a1, a2, b1)의 값이 동정기(25)에 의해 차례로 동정되기때문에, 대상 배기계(E)의 거동상태의 변화가 02센서(6)의 출력(VO2/OUT)의 목표값(VO2/TARGET)으로의 수렴제어에 미치는 영향을 최소한으로 제지할 수가 있다. 이 결과, 02센서(6)의 출력(VO2/OUT)의 목표값(VO2/TARGET)으로의 수렴제어를 안정되고 양호하게 행할 수가 있다.
따라서, 본 실시형태의 장치에 의하면, 촉매장치(3)의 소요의 정화성능을 확실하게 확보하면서, 그 촉매장치(3)의 열화상태의 평가를 높은 신뢰성으로 양호하게 행할 수가 있다.
또한, 본 발명은 상술한 제1실시형태에 한정되는 것이 아니고, 예를 들면 다음과 같은 변형양태도 가능하다.
상기 제1실시형태에서는, 열화평가용 선형함수(σ)의 제곱값(σ2)의 최소 제곱 중심값을 열화평가용 파라미터(LSσ2)로 했는데, 예를 들면 열화평가용 선형함수(σ)의 절대값의 최소 제곱 중심값을 열화평가용 파라미터로서 구하도록 하여도 좋다. 이 경우에는, 상기 도 16의 STEP12-4에 있어서 열화평가용 선형함수(σ)의 제곱값(σ2) 대신에 그 선형함수(σ)의 절대값을 구하고, 상기 식(29)중의 (σ2)을 그 절대값으로 치환한 연산처리를 행함으로써, 촉매장치(3)의 열화상태에 대해서 상기 열화평가용 파라미터(LSσ2)와 동일한 경향을 나타내는 열화평가용 파라미터를 얻을 수 있다. 그리고, 이 열화평가용 파라미터를 미리 정한 소정값과 비교함으로써, 상기 제1실시형태와 마찬가지로, 촉매장치(3)의 열화상태를 평가할 수 있다.
나아가서는, 열화평가용 선형함수(σ)의 제곱값(σ2) 또는 절대값의 최소 제곱 중심값에 한정되지 않고, 그들의 제곱값(σ2) 또는 절대값의 평균값 등의 중심값을 열화평가용 파라미터로 하여도 좋다. 또는, 예를 들면 열화평가용 선형함수(σ)의 값의 분산(보다 정확하게는「0」에 대한 분산으로, 열화평가용 선형함수(σ)의 값의 제곱값(σ2)의 평균값)이나, 표준편차(분산의 평방근)를 열화평가용 파라미터로서 구하도록 하여도 좋다. 이와 같이 하여도, 그 열화평가용 파라미터는, 촉매장치(3)의 열화상태에 대하여, 상기 열화평가용 파라미터(LSσ2)와 동일한 경향을 나타낸다. 따라서, 그 열화평가용 파라미터를 미리 정한 소정값과 비교하거나 함으로써, 촉매장치(3)의 열화상태를 평가할 수 있다.
또, 상기 제1실시형태에서는, 열화평가용 선형함수(σ)는, 02센서(6)의 편차출력(VO2)의 2개의 시계열 데이터를 변수성분으로 하는 상기 식(15)에 의해 결정했 는데, 더욱 많은 편차출력(VO2)의 시계열 데이터를 변수성분으로 하는 선형함수에 의해 열화평가용 선형함수를 정의하여도 좋다. 이 경우, 슬라이딩 모드 제어용의 전환함수는 열화평가용 선형함수에 포함되는 편차출력(VO2)의 시계열 데이터를 추정 편차출력 VO2바의 시계열 데이터로 치환한 선형함수에 의해 정의하는 것이 적합하다.
또, 열화평가용 선형함수는, 예를 들면 식(15)의 편차출력 VO2(k), VO2(k-1)를 02센서(6)의 출력 VO2/OUT(k), VO2/OUT(k-1)로 치환한 식에 의해서 결정하여도 좋다. 이 경우에는, 이 열화평가용 선형함수의 값의 중심값은, 기본적으로는「(sl+s2)·VO2/TARGET」가 된다. 그리고, 예를 들면 이 중심값(sl+s2)·VO2/TARGET와 열화평가용 선형함수의 값과의 편차의 제곱값 또는 절대값의 최소 제곱 중심값 등, 그 중심값(sl+s2)·VO2/TARGET에 대한 열화평가용 선형함수의 값의 분산정도를 나타내는 파라미터를 열화평가용 파라미터로서 구하면, 상기 제1실시형태와 마찬가지로 촉매장치(3)의 열화상태를 평가할 수가 있다.
나아가서는, 예를 들면 상기 식(25)의 전환함수(σ바), 즉, 02센서(6)의 추정 편차출력 VO2바의 시계열 데이터를 변수성분으로 하는 선형함수를 열화평가용 선형함수로서 사용하여도 좋다. 단, 02센서(6)의 편차출력(VO2)의 상기 합계 낭비시간(d) 후의 추정값인 추정 편차출력 VO2바를 변수성분으로 하는 전환함수(σ바)보다도, 02센서(6)의 실제의 편차출력(VO2)을 변수성분으로 하는 식(15)의 열화평가용 선형함수(σ)를 사용하는 편이, 촉매장치(3)의 실제의 상태가 그 선형함수(σ) 에 의해 잘 반영되므로, 평가결과의 신뢰성을 높이는데 있어서 바람직하다고 고려된다.
또, 상기 제1실시형태에서는, 촉매장치(3)의 열화상태를 평가하기 위해서 열화평가용 선형함수(σ)의 제곱값(σ2)을 사용했는데, 예를 들면 그 선형함수(σ)의 값과 그 변화속도와의 곱(이것은 상기 SLD 제어상태의 안정성의 판별을 위해 상기 STEP9에서 사용한 안정판별 파라미터 Pstb이다)을 이용하여 촉매장치(3)의 열화상태를 평가하도록 하는 것도 가능하다. 이 경우에 있어서도, 예를 들면 상기 곱의 분산(보다 일반적으로는 그 곱의 값의 분산정도를 나타내는 것)을 열화평가용 파라미터로서 구하면, 그 열화평가용 파라미터의 값에 의거하여 촉매장치(3)의 열화상태를 평가하는 것이 가능하다.
또, 상기 제1실시형태에서는, 촉매장치(3)의 열화상태를 「열화진행상태」와 「미열화상태」의 2개로 나누어 평가하도록 했는데, 상기 열화평가용 파라미터(LSσ2)와 비교하는 임계값을 더욱 많이 하면, 촉매장치(3)의 열화상태를 더욱 많은 열화정도로 분별하여 평가하도록 하는 것도 가능하다. 그리고, 각각의 열화정도에 따라서 각기 다른 경보를 하도록 하는 것도 가능하다.
또, 상기 제1실시형태에서는, 슬라이딩 모드제어의 알고리즘은, 이산 시간계로 표현한 배기계 모델에 의거하여 구축했는데, 대상 배기계(E)를 연속 시간계로 표현한 모델에 의거하여 구축된 것이라도 좋다. 그리고, 이 때, 슬라이딩 모드 제어용의 전환함수는, 예를 들면 02센서(6)의 편차출력(VO2)과 그 변화속도를 변수성 분으로 하는 선형함수에 의해 표시한 것이라도 좋다.
또, 상기 제1실시형태에서는, 목표공연비(KCMD)를 산출하기 위해서, 적응 슬라이딩 모드제어의 처리를 이용했는데, 적응법칙(적응 알고리즘)을 이용하지 않는 슬라이딩 모드제어의 처리를 이용하여도 좋다. 이 경우에는, 상기 식(28)으로부터 적응법칙 입력(Uadp)의 항을 제거한 식에 의해서, 목표공연비(KCMD)를 구하도록 하면 좋다.
또, 상기 제1실시형태에서는, 목표공연비(KCMD)의 산출에 있어서는, 추정 기(26)에 의해 상기 합계 낭비시간(d)의 영향을 보상하도록 했는데, 상기 공연비 조작계의 낭비시간을 무시할 수 있을 정도로 작은 경우에는, 대상 배기계(E)의 낭비시간(d1)의 영향만을 보상하도록 하여도 좋다. 이 경우에는, 추정기(26)는, 상기 식(12)의 「kcmd」 및「d」를 각각「kact」 및「d1」으로 치환한 다음 식(44)을 이용하여, 상기 실시형태와 마찬가지로 02센서(6)의 편차출력(VO2)의 낭비시간(d1) 후의 추정값 VO2(k+d1)를 제어 사이클마다 차례로 구한다.
또한, 이 경우에는, 슬라이딩 모드 제어기(27)는, 상기 식(24)∼(27)에서 「d」를 「d1」으로 치환한 식에 의해서, 등가 제어입력(Usl), 도달법칙 입력(Urch) 및 적응법칙 입력(Uadp)을 제어 사이클마다 구하고, 그것들을 가산함으로써, 목표편차 공연비(kcmd)를 구한다. 이와 같이 함으로써, 대상 배기계(E)의 낭비시간(d1)의 영향을 보상한 목표공연비(KCMD)를 구할 수가 있다.
또한, 이 경우에 있어서의 동정기(25)나 열화상태 평가수단(13b), 기관측 제어유닛(7b)의 처리는, 상술의 제1실시형태의 것과 동일하여도 좋다.
또, 공연비 조작계의 낭비시간(d1)뿐아니라 대상 배기계(E)의 낭비시간(d1)도 무시할 수 있을 정도로 작은 경우에는, 상기 추정기(26)를 생략하여도 좋다. 이 경우에는, 슬라이딩 모드 제어기(27)나 동정기(25)의 연산처리는, d=d1=0으로서 행하면 좋다.
또, 상기 제1실시형태에서는, 동정기(25)를 구비했는데, 상기 배기계 모델의 게인계수(a1, a2, b1)를 미리 정한 고정값으로 하거나, 엔진(1)의 회전수나 흡기압 등으로부터 맵 등을 이용하여 적절히, 게인계수(a1, a2, b1)의 값을 설정하도록 하여도 좋다.
또, 상기 제1실시형태에서는, 촉매장치(3)의 하류측의 배기가스 센서로서 02센서(6)를 사용했는데, 그 배기가스 센서는, 촉매장치(3)의 소요의 정화성능을 확보하는데 있어서는, 제어해야 할 촉매장치 하류의 배기가스의 특정성분의 농도를 검출할 수 있는 센서라면, 다른 센서를 사용하여도 좋다. 즉, 예를 들면 촉매장치 하류의 배기가스 중의 일산화탄소(CO)를 제어하는 경우는 CO센서, 질소 산화물(NOx)을 제어하는 경우에는 NOx센서, 탄화수소(HC)를 제어하는 경우에는 HC센서를 사용한다. 삼원촉매장치를 사용한 경우에는, 상기의 어느 가스성분의 농도를 검출하도록 하여도, 촉매장치의 정화성능을 최대한으로 발휘시키도록 제어할 수가 있다. 또, 환원촉매장치나 산화촉매장치를 사용한 경우에는, 정화하고 싶은 가스성분을 직접 검출함으로써, 정화성능의 향상을 도모할 수가 있다.
또, 상기 제1실시형태에서는, 02센서(6)의 출력(VO2/OUT)을 목표값(VO2/TARGET)에 수렴시키기 위한 피드백 제어수법으로서 슬라이딩 모드제어의 처리를 이용했는데, 다른 피드백 제어수법의 처리에 의해서 02센서(6)의 출력(VO2/OUT)을 목표값(VO2/TARGET)에 수렴 제어하면서, 촉매장치(3)의 열화상태의 평가를 행하는 것도 가능하다. 이하에, 이 경우의 실시형태를 제2실시형태로서 도 20∼도 22를 참조하여 설명한다.
또한, 본 실시형태는, 상기 제1실시형태의 것과, 배기측 제어유닛(7a)의 기능적 구성 및 그 처리만이 상이한 것이므로, 제1실시형태와 동일 구성부분 및 동일 처리부분에 관해서는 제1실시형태와 동일한 도면 및 참조부호를 이용하여 상세한 설명을 생략한다.
도 20은, 본 실시형태에 있어서의 배기측 제어유닛(7a)의 기능적 구성을 나타내는 블록도이다. 동 도면에 있어서, 본 실시형태에 있어서의 배기측 제어유닛(7a)은, 상기 제l의 실시형태의 것과 마찬가지로 상기 촉매장치(3)의 하류 측의 02센서(6)(도 1 참조)의 출력(VO2/OUT)을 상기 목표값(VO2/TARGET)에 수렴시키도록 목표공연비(KCMD)(상기 LAF센서(5)가 검출하는 공연비의 목표값)를 차례로 생성하는 처리와, 촉매장치(3)의 열화상태의 평가에 관한 처리를 소정의 제어 사이클로 행하는 것이다. 또한, 배기측 제어유닛(7a)의 제어 사이클은 상기 제1의 실시형태의 것과 마찬가지로 일정 주기의 제어 사이클이다.
본 실시형태에 있어서의 배기측 제어유닛(7a)은, 상기의 처리를 행하기위해서, 02센서(6)의 출력(VO2/OUT)과 이것에 대한 목표값(VO2/TARGET)과의 편차(=VO2/OUT-VO2/TARGET), 즉 상기 편차출력(VO2)을 차례로 산출하는 감산 처리부(12)와, 이 편차출력(VO2)의 시계열 데이터를 사용하여 촉매장치(3)의 열화상태를 평가하여 상기 열화 경보기(29)의 작동제어를 행하는 열화상태 평가수단(13b)을 제1실시형태의 것과 마찬가지로 구비하는 한편, 상기 편차출력(VO2)의 데이터로부터, 피드백 제어의 한 수법인 PID제어(비례/적분/미분제어)의 처리를 이용하여 목표공연비(KCMD)를 차례로 산출하는 목표공연비 산출수단(30)을 공연비 조작량 결정수단으로서 구비하고 있다.
이 경우, 감산 처리부(12)와 열화상태 평가수단(13b)의 처리내용은, 상기 제1실시형태의 것과 동일하다. 또한, 본 실시형태에 있어서 열화상태 평가수단 (13b)의 처리에서 필요하게 되는 열화평가용 선형함수(σ)(상기 도 16의 STEP12-1을 참조)의 계수(sl, s2)의 값은, 예를 들면 상기 제1실시형태에서 사용한 값과 동일하여도 좋다. 단, 기본적으로는, 목표공연비 산출수단(30)이 후술하는 바와 같 이 산출하는 목표공연비(KCMD)에 따라서 엔진(1)의 공연비를 제어하고 있는 상태에서, 열화평가용 선형함수(σ)의 값이, 촉매장치(3)의 열화상태에 대해서 상기 도 5∼도 7에 나타낸 바와 같은 경향이 현저히 생길 것 같은 계수(sl, s2)의 값을 실험 등을 통하여 설정하도록 하면 좋다.
상기 목표공연비 산출수단(30)은, 02센서(6)의 편차출력(VO2)을 「0」에 수렴시키기 위해서 요구되는 공연비 조작량(Upid)을 PID제어의 처리(상세한 것은 후술한다)를 이용하여 차례로 생성하는 PID제어기(31)와, 그 공연비 조작량(Upid)에 소정의 공연비 기준치(KBS)를 가산함으로써 목표공연비(KCMD)를 산출하는 가산 처리부(32)로 구성되어 있다.
여기서, 상기 공연비 조작량(Upid)은, 목표공연비(KCMD)의 상기 공연비 기준치(KBS)에 대한 보정량으로서의 의미를 가지는 것으로, 상기 제1실시형태에 있어서의 SLD 조작입력(Usl)(=목표편차 공연비 kcmd)에 상당하는 것이다. 또, 이 공연비 조작량(Upid)에 가산하는 공연비 기준치(KBS)는, 목표공연비(KCMD)의 중심적인 공연비가 되는 것으로, 상기 제1실시형태에 있어서의 기준치(FLAF/BASE)에 상당하는 것이다. 이 경우, 본 실시형태에서는, 그 공연비 기준치(KBS)는, 엔진(1)의 회전수(NE) 및 흡기압(PB)의 검출값으로부터, 미리 설정된 맵을 사용하여 적절히 결정하는 이론 공연비 근방의 값이다.
이상 설명한 배기측 제어유닛(7a) 이외의 구성(기관측 제어유닛(7b)의 기능적 구성이나 엔진(1)의 배기계의 구성)은, 상기 제1실시형태의 것과 완전히 동일하 다.
다음에, 상기 목표공연비 산출수단(30)의 보다 상세한 처리를 포함하여 본 실시형태의 장치의 작동을 설명한다.
우선, 기관측 제어유닛(7b)의 처리는 상기 제1실시형태의 것과 동일하고, 상기 도 10, 도 11의 플로우차트에 나타낸 처리(엔진(1)의 연료 분사량의 조정처리)가 기관측 제어유닛(7b)에 의해 TDC(크랭크각 주기)에 동기한 제어 사이클로 차례로 실행된다. 단, 이 경우, 도 10의 STEPf에서 기관측 제어유닛(7b)이 판독입력하는 목표공연비(KCMD)는, 배기측 제어유닛(7a)의 목표공연비 산출수단(30)에 의해서 후술하는 바와 같이 산출된 최신의 목표공연비(KCMD)이다.
한편, 본 실시형태에서는, 배기측 제어유닛(7a)은, 기관측 제어유닛(7b)의 처리와 병행하여, 일정한 제어 사이클로, 도 21에 나타내는 메인루틴 처리를 실행한다.
즉, 배기측 제어유닛(7a)은, 우선, 엔진(1)의 현재의 회전수(NE) 및 흡기압(PB)으로부터 맵을 사용하여 상기 공연비 기준치(KBS)를 결정한다(STEP21).
또한, 배기측 제어유닛(7a)은, 상기 도 10의 STEPd에서 기관측 제어유닛(7b)이 설정한 플래그(f/prism/on)의 값을 판단한다(STEP22). 이 때 f/prism/on=0인 경우, 즉, 엔진(1)의 운전모드가 02센서(6)의 출력(VO2/OUT)을 목표값(VO2/TARGET)에 수렴시키도록 엔진(1)의 공연비를 조작하는 통상 운전모드가 아닌 경우에는, 금회의 제어 사이클에 있어서의 목표공연비 KCMD(k)를 STEP21에서 결정한 공연비 기 준치(KBS)로 하고(STEP30), 금회의 제어 사이클의 처리를 종료한다.
또, STEP22의 판단에서 f/prism/on=1인 경우(엔진(1)의 운전모드가 통상 운전모드인 경우)에는, 배기측 제어유닛(7a)은, 상기 감산 처리부(12)에 의해 02센서(6)의 최신의 편차출력 VO2(k)(=VO2/OUT-VO2/TARGET)을 산출한다(STEP23). 이 경우, 감산 처리부(12)는, 상기 도 10의 STEPa에서 입력되어 도시하지 않은 메모리에 기억된 02센서(6)의 출력(VO2/OUT)의 시계열 데이터중에서 최신의 것을 선택하여 편차출력 VO2(k)를 산출한다. 그리고, 이 편차출력 VO2(k)는, 과거에 산출한 것(상세하게는 전회의 제어 사이클에서 산출한 편차출력 VO2(k-1))을 포함하여 도시하지 않은 메모리에 기억 유지된다.
이어서, 배기측 제어유닛(7a)은, 목표공연비 산출수단(30)의 처리를 STEP24∼27에서 실행한다.
이 처리에서는, 목표공연비 산출수단(30)의 PID제어기(31)가, 우선, 02센서(6)의 편차출력(VO2)을 「0」에 수렴시키기 위한 PID제어의 처리에 관한 비례 항, 적분항, 및 미분항의 각각의 게인계수(KVP, KVI, KVD)의 값을, 엔진(1)의 현재의 회전수(NE) 및 흡기압(PB)으로부터 미리 정한 맵을 사용하여 결정한다(STEP24).
이어서, PID제어기(31)는, STEP23에서 구해진 02센서(6)의 편차출력(VO2)의 금회값 VO2(k) 및 전회값 VO2(k-1)와, STEP24에서 결정한 최신의 게인계수(KVP, KVI, KVD)를 사용하여 다음 식(45)∼(47)의 연산을 행함으로써, 비례항, 적분항, 및 미분항의 각각의 금회값 VREFP(k), VREFI(k), VREFD(k)를 구한다. 또한, 이들 의 비례항, 적분항, 및 미분항의 각각의 금회값 VREFP(k), VREFI(k), VREPD(k)를 식(48)과 같이 가산함으로써, 상기 공연비 조작량(Usl)의 기초가 되는 기본 조작량(VREF)을 구한다(STEP25).
또한, PID제어기(31)는, 상기 기본 조작량(VREF)에 리미트처리를 실시한다(STEP26). 이 리미트처리에서는, STEP25에서 구한 기본 조작량(VREF)이 미리 정한 상한치 또는 하한치를 초과하고 있던 경우에는, 각각, 기본 조작량(VREF)의 값을 강제적으로 그 상한치 또는 하한치로 설정한다.
이어서, PID제어기(31)는, 상기 리미트처리를 실시한 기본 조작량(VREF)으로부터, 예를 들면 도 22에 나타낸 바와 같이 미리 정해진 데이터 테이블을 사용하여 공연비 조작량(Upid)을 구한다(STEP27).
이 경우, 도 22의 데이터 테이블에서는, 기본적으로는, 기본 조작량(VREF)이 클수록, 공연비 조작량(Upid)이 커지도록 정해져 있다. 그리고 특히, 02센서(6)의 출력(VO2/OUT)이 목표값(VO2/TARGET)의 근방에 거의 수렴하고 있는 듯한 상태에서 PID제어기(31)에 의해 구해지는 기본 조작량(VREF)의 값의 범위(도 22의 참조부호(S)를 붙인 범위)에서는, 기본 조작량(VREF)의 변화에 대한 공연비 조작량(Upid)의 변화가 작고, 그 공연비 조작량(Upid)이 대략「0」근방의 값에 유지되도록 정해져 있다. 이것은, 02센서(6)의 목표값(VO2/TARGET) 근방의 출력 (VO2/OUT)에서는, 상기 도 2의 실선 a로 표시한 바와 같이 공연비의 약간의 변화에 대해서 그 출력(VO2/OUT)이 크게 변화하기 때문이다.
이와 같이 하여 공연비 조작량(Upid)을 구한 후, 목표공연비 산출수단(30)은, 다음에, 상기 가산 처리부(32)에 의해서, 이 공연비 조작량(Upid)에 상기 STEP21에서 결정한 공연비 기준치(KBS)를 가산함으로써, 금회의 제어 사이클에 있어서의 목표공연비 KCMD(k)를 구한다(STEP28).
또한, 이와 같이 하여 구해진 목표 공연비(KCMD)는, 배기측 제어유닛(7a)의 제어 사이클마다 도시하지 않은 메모리에 시계열적으로 기억 유지된다. 그리고, 기관측 제어유닛(7b)에 있어서, 이 목표공연비(KCMD)를 상기 도 10의 STEPf에서 판독입력하는 데 있어서는, 상기와 같이 기억 유지된 목표공연비(KCMD)중에서 최신의 것이 선택된다.
상술과 같이 목표공연비 산출수단(30)에 의해 목표공연비(KCMD)를 구한 후, 배기측 제어유닛(7a)은, 상기 열화상태 평가수단(13b)에 의해 촉매장치(3)의 열화상태를 평가하는 처리를 실행하고(STEP29), 금회의 제어 사이클의 처리를 종료한다. 이 경우, 열화상태 평가수단(13b)이 실행하는 처리는, 상기 제l실시형태의 것과 완전히 동일하다. 즉 그 열화상태 평가수단(13b)은, 상기 STEP23에서 제어 사이클마다 구해지는 02센서(6)의 편차출력(VO2)의 시계열 데이터 VO2(k), VO2(k-1)를 사용하여 상기 도 16∼도 19의 플로우차트의 처리를 상술한 바와 같이 실행한다. 이것에 의해, 촉매장치(3)가 상기「열화 진행상태」인지「미열화상태」인지의 평가가 이루어지고, 「열화 진행상태」인 경우에는, 열화 경보기(29)에 의한 경보가 이루어진다.
이상 설명한 본 실시형태의 장치에 의하면, 상기 제1실시형태와 마찬가지로,촉매장치(3)의 하류측의 02센서(6)의 출력(VO2/OUT)을 목표값(VO2/TARGET)에 수렴시키도록 엔진(1)의 공연비를 조작하면서, 촉매장치(3)의 열화상태의 평가가 행하여진다. 이 때문에, 촉매장치(3)의 적정한 정화성능을 확보하면서, 촉매장치(3)의 열화상태를 평가할 수 있다.
그리고, 본 실시형태에 있어서의 촉매장치(3)의 열화상태의 평가처리는, 상기 제1실시형태와 완전히 동일한 처리에 의해서 행하므로, 그 제1실시형태와 마찬가지로, 촉매장치(3)의 열화상태와의 상관성이 높고, 게다가 신뢰성이 높은 열화평가용 파라미터(LSσ2)에 의거하여 촉매장치(3)의 열화상태의 평가를 적정하게 할 수가 있다.
또한, 본 실시형태에서는, 배기측 제어유닛(7a)은, 일정 주기의 제어 사이클로 처리를 하도록 했는데, 기관측 제어유닛(7b)과 마찬가지로 TDC에 동기시켜서 처리를 행하거나, 또는 1TDC의 소정 수배(복수배)의 주기의 제어 사이클로 처리를 하도록 하여도 좋다.
또, 열화평가용 파라미터나 그것에 의거하는 촉매장치(3)의 열화상태의 평가 에 관해서는, 본 실시형태에 있어서도, 상기 제1실시형태에 관하여 설명한 변형양태와 동일한 각종 변형양태도 가능하다.
이상의 설명으로부터 명백해진 바와 같이, 본 발명은, 자동차, 하이브리드차 등에 탑재되는 내연기관의 배기계에 구비한 삼원촉매 등의 촉매장치의 열화상태를 자동적으로 적정하게 평가할 수 있고, 그 평가결과의 경보를 행하는 경우 등에 유효하게 활용할 수가 있다.
Claims (15)
- 내연기관의 배기통로에 설치된 촉매장치의 하류측에 이 촉매장치를 통과한 상기 내연기관의 배기가스중의 특정 성분의 농도를 검출하기 위해 배치된 배기가스 센서와, 이 배기가스 센서의 출력을 소정의 목표값에 도달 또는 근접시키도록 상기 촉매장치에 진입되는 배기가스의 공연비를 규정하는 조작량을 차례로 생성하는 공연비 조작량 생성수단과, 이 조작량에 따라서 상기 내연기관에서 연소시키는 혼합기의 공연비를 조작하는 공연비 조작수단을 구비한 내연기관의 공연비 제어장치에 있어서,상기 공연비 조작수단에 의한 상기 혼합기의 공연비의 조작중에 상기 배기가스 센서의 출력의 시계열 데이터로부터 이 시계열 데이터를 변수성분으로서 나타낸 소정의 열화평가용 선형함수의 값을 차례로 구하고, 그 구한 열화평가용 선형함수의 값에 근거하여 상기 촉매장치의 열화상태를 평가하는 열화상태 평가수단을 구비한 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 1 항에 있어서, 상기 열화상태 평가수단은, 상기 열화평가용 선형함수의 값의 시계열 데이터의 분산정도를 나타내는 데이터를 열화평가용 파라미터로서, 이 열화평가용 파라미터를 상기 열화평가용 선형함수의 값의 시계열 데이터로부터 구하고, 그 구한 열화평가용 파라미터의 값에 근거하여 상기 촉매장치의 열화상태를 평가하는 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 2 항에 있어서, 상기 열화상태 평가수단은, 상기 열화평가용 선형함수의 값의 시계열 데이터의 각 데이터 값과 이 열화평가용 선형함수의 값의 중심값으로서 미리 정한 소정값과의 편차의 제곱값 또는 절대값에 로-패스 특성의 필터링 처리를 실시함으로써 상기 열화평가용 파라미터를 구하는 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 3 항에 있어서, 상기 로-패스 특성의 필터링 처리는, 축차형의 통계처리 알고리즘에 의한 필터링 처리인 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 3 항에 있어서, 상기 열화상태 평가수단은, 상기 열화평가용 파라미터의 값을 소정의 역치와 비교함으로써, 상기 촉매장치의 열화상태가 상기 역치에 대응하는 열화정도 이상으로 열화되어 있는지 아닌지를 판단하는 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 1 항에 있어서, 상기 열화상태 평가수단은, 상기 촉매장치에 진입되는 배기가스의 유량의 변화상태에 따라 상기 촉매장치의 열화상태의 평가를 행할지 아닐지를 판단하는 수단을 구비하는 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 6 항에 있어서, 상기 열화상태 평가수단은, 상기 촉매장치에 진입되는 배기가스의 유량이 대략 일정하게 유지되어 있는 상태에서는, 상기 촉매장치의 열화 상태의 평가를 행하지 않고, 상기 배기가스의 유량이 대략 일정하게 유지되어 있지 않은 상태에서 상기 촉매장치의 열화상태의 평가를 행하는 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 3 항에 있어서, 상기 열화상태 평가수단은, 상기 촉매장치에 진입되는 배기가스의 유량이 대략 일정하게 유지되어 있는 상태에서는, 상기 열화평가용 파라미터의 산출을 행하지 않고, 상기 배기가스의 유량이 대략 일정하게 유지되어 있지 않은 상태에서 상기 열화평가용 파라미터의 산출을 행하는 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 1 항에 있어서, 상기 공연비 조작량 생성수단은, 슬라이딩 모드 제어를 사용하여 상기 조작량을 생성하는 수단이며, 상기 열화평가용 선형함수는, 이 슬라이딩 모드 제어에 사용되는 전환함수에 따라 정해지는 선형함수인 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 9 항에 있어서, 상기 공연비 조작량 생성수단이 사용되는 슬라이딩 모드 제어는, 상기 배기가스 센서의 출력과 상기 목표값과의 편차의 시계열 데이터를 변수성분으로서 나타낸 선형함수를 상기 전환함수로서 사용하는 것이며, 상기 열화평가용 선형함수는, 그 변수성분에 관련되는 계수값을 상기 전환함수의 변성성분에 관련되는 계수값과 동일하게 한 선형함수인 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 9 항에 있어서, 상기 공연비 조작량 생성수단은, 상기 촉매장치의 상류측으로부터 상기 배기가스 센서에 걸친 계가 갖는 낭비시간후의 상기 배기가스 센서의 출력의 추정값을 나타내는 데이터를 차례로 구하는 추정수단을 구비하고, 이 추정수단이 구한 데이터를 사용하여 상기 조작량을 생성하는 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 9 항에 있어서, 상기 공연비 조작량 생성수단은, 상기 촉매장치의 상류측으로부터 상기 배기가스 센서에 걸친 계가 갖는 낭비시간과, 상기 공연비 조작수단 및 상기 내연기관으로 이루어지는 계가 갖는 낭비시간을 합한 합계 낭비시간후의 상기 배기가스 센서의 출력의 추정값을 나타내는 데이터를 구하는 추정수단을 구비하고, 이 추정수단이 구한 데이터를 사용하여 상기 조작량을 생성하는 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 11 항 또는 제 12 항에 있어서, 상기 공연비 조작량 생성수단은, 상기 추정수단이 구한 데이터에 의해 표시되는 상기 배기가스 센서의 출력의 추정치를 슬라이딩 모드 제어에 의해 상기 목표값에 도달 또는 근접시키도록 상기 조작량을 생성하는 것을 특징으로 하는 공연비 제어장치.
- 제 9 항에 있어서, 상기 슬라이딩 모드 제어는 적응 슬라이딩 모드 제어인 것을 특징으로 하는 내연기관의 공연비 제어장치.
- 제 1 항에 있어서, 상기 공연비 조작량 생성수단이 생성하는 상기 조작량은, 상기 촉매장치에 진입되는 배기가스의 목표공연비이며, 이 촉매장치에 진입되는 배기가스의 공연비를 검출하는 공연비 센서를 이 촉매장치의 상류측에 구비하고, 상기 공연비 조작수단은, 이 공연비 센서의 출력이 상기 목표공연비에 도달 또는 근접하도록 피드백 제어에 의해 상기 혼합기의 공연비를 조작하는 것을 특징으로 하는 내연기관의 공연비 제어장치.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36560499 | 1999-12-22 | ||
JPJP-P-1999-00365604 | 1999-12-22 | ||
JPJP-P-2000-00139860 | 2000-05-12 | ||
JP2000139860A JP3967524B2 (ja) | 1999-12-22 | 2000-05-12 | 内燃機関の空燃比制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020072559A KR20020072559A (ko) | 2002-09-16 |
KR100739534B1 true KR100739534B1 (ko) | 2007-07-13 |
Family
ID=26581684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020027008097A KR100739534B1 (ko) | 1999-12-22 | 2000-12-21 | 내연기관의 공연비 제어장치 |
Country Status (13)
Country | Link |
---|---|
US (1) | US6698186B2 (ko) |
EP (1) | EP1243769B1 (ko) |
JP (1) | JP3967524B2 (ko) |
KR (1) | KR100739534B1 (ko) |
CN (1) | CN1274950C (ko) |
BR (1) | BR0016604A (ko) |
CA (1) | CA2395582C (ko) |
DE (1) | DE60038744T2 (ko) |
ES (1) | ES2304994T3 (ko) |
MX (1) | MXPA02006209A (ko) |
MY (1) | MY122697A (ko) |
TW (1) | TW452629B (ko) |
WO (1) | WO2001046569A1 (ko) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100458112C (zh) * | 2001-06-18 | 2009-02-04 | 丰田自动车株式会社 | 内燃机的空燃比控制装置 |
JP4490000B2 (ja) * | 2001-06-19 | 2010-06-23 | 本田技研工業株式会社 | 内燃機関の空燃比制御装置 |
EP1403491B1 (en) * | 2001-06-19 | 2006-03-08 | Honda Giken Kogyo Kabushiki Kaisha | Device, method, and program recording medium for control of air-fuel ratio of internal combustion engine |
US6978598B2 (en) | 2001-09-05 | 2005-12-27 | Honda Giken Kogyo Kabushiki Kaisha | Deteriorated state evaluation device for exhaust emission control equipment |
JP3857169B2 (ja) * | 2002-03-29 | 2006-12-13 | 本田技研工業株式会社 | プラントの制御装置 |
WO2003087550A1 (en) * | 2002-04-05 | 2003-10-23 | E. I. Du Pont De Nemours And Company | Method and apparatus for controlling a gas-emitting process and related devices |
JP4007384B2 (ja) * | 2003-04-22 | 2007-11-14 | トヨタ自動車株式会社 | 内燃機関の空燃比制御装置 |
AT413738B (de) * | 2004-02-09 | 2006-05-15 | Ge Jenbacher Gmbh & Co Ohg | Verfahren zum regeln einer brennkraftmaschine |
AT413739B (de) * | 2004-02-09 | 2006-05-15 | Ge Jenbacher Gmbh & Co Ohg | Verfahren zum regeln einer brennkraftmaschine |
JP4039380B2 (ja) * | 2004-03-24 | 2008-01-30 | トヨタ自動車株式会社 | 内燃機関の空燃比制御装置 |
JP4312668B2 (ja) * | 2004-06-24 | 2009-08-12 | 三菱電機株式会社 | 内燃機関の空燃比制御装置 |
DE102004057210B4 (de) * | 2004-11-26 | 2011-12-22 | Continental Automotive Gmbh | Verfahren zur Regelung einer Tankentlüftung |
JP4345688B2 (ja) * | 2005-02-24 | 2009-10-14 | 株式会社日立製作所 | 内燃機関の診断装置および制御装置 |
JP4438681B2 (ja) * | 2005-04-27 | 2010-03-24 | トヨタ自動車株式会社 | 内燃機関の空燃比制御装置 |
JP4651454B2 (ja) * | 2005-05-24 | 2011-03-16 | ダイハツ工業株式会社 | 触媒劣化診断方法、触媒劣化診断装置 |
KR100783924B1 (ko) * | 2006-08-18 | 2007-12-10 | 현대자동차주식회사 | 촉매 성능 평가 방법 |
US7412965B1 (en) * | 2007-04-13 | 2008-08-19 | Am General Llc | Exhaust control system for an internal combustion engine |
DE602007011066D1 (de) * | 2007-09-26 | 2011-01-20 | Magneti Marelli Spa | Steuerverfahren für das Mischverhältnis in einem Mehrzylinder-Verbrennungsmotor mit mindestens zwei vor einem Katalysator befindlichen Lambdasonden |
US7983542B2 (en) * | 2007-10-29 | 2011-07-19 | Smiths Medical Asd, Inc. | PID coefficient adjustment for respiratory heater closed loop control |
JP2009115012A (ja) * | 2007-11-08 | 2009-05-28 | Denso Corp | 内燃機関の空燃比制御装置 |
JP4919945B2 (ja) * | 2007-12-12 | 2012-04-18 | 日立オートモティブシステムズ株式会社 | エンジンのスライディングモード制御による空燃比制御方法、及びその方法を備えた燃料制御装置 |
JP4862819B2 (ja) * | 2007-12-27 | 2012-01-25 | トヨタ自動車株式会社 | 内燃機関の排気系異常検出装置 |
DE102011013392A1 (de) * | 2011-03-09 | 2012-09-13 | Daimler Ag | Verfahren zur Regelung eines Verbrennungsmotors |
US8511651B2 (en) | 2011-03-29 | 2013-08-20 | Smiths Medical Asd, Inc. | Heater unit humidification chamber monitor |
JP5616274B2 (ja) * | 2011-03-31 | 2014-10-29 | 本田技研工業株式会社 | 空燃比制御装置 |
US9759127B2 (en) | 2011-08-05 | 2017-09-12 | Husqvarna Ab | Adjusting of air-fuel ratio of a two-stroke internal combustion engine |
JP6018543B2 (ja) * | 2013-05-20 | 2016-11-02 | 川崎重工業株式会社 | 内燃機関における触媒の酸素吸蔵量推定方法、内燃機関の空燃比制御方法、触媒の酸素吸蔵量推定装置、内燃機関の空燃比制御装置及び自動二輪車 |
US9990333B1 (en) * | 2014-05-28 | 2018-06-05 | University Of South Florida | Systems and methods for synchronizing the kinematics of uncoupled, dissimilar rotational systems |
JP6374780B2 (ja) * | 2014-12-03 | 2018-08-15 | 日本碍子株式会社 | 触媒劣化診断システムおよび触媒劣化診断方法 |
JP6408363B2 (ja) * | 2014-12-03 | 2018-10-17 | 日本碍子株式会社 | 触媒劣化診断方法 |
JP6401595B2 (ja) | 2014-12-03 | 2018-10-10 | 日本碍子株式会社 | 触媒劣化診断方法 |
WO2017159713A1 (ja) * | 2016-03-16 | 2017-09-21 | ヤマハ発動機株式会社 | 鞍乗型車両 |
DE102018201378A1 (de) * | 2018-01-30 | 2019-08-01 | Robert Bosch Gmbh | Vorrichtung und Verfahren zur Regelung einer Brennkraftmaschine mit einem Katalysator |
DE102018218020A1 (de) | 2018-10-22 | 2020-04-23 | Ford Global Technologies, Llc | Verfahren zum Regeln einer Einspritzung durch eine Kraftstoffeinspritzeinheit, Regelvorrichtung und Computerprogramm |
CN113847155B (zh) * | 2021-10-15 | 2023-12-29 | 东风汽车集团股份有限公司 | 一种发动机短期燃油修正控制方法及控制系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0799986A2 (en) | 1996-04-05 | 1997-10-08 | Honda Giken Kogyo Kabushiki Kaisha | Air-fuel ratio control system for internal combustion engines |
KR0130043B1 (ko) * | 1992-10-20 | 1998-04-09 | 나까무라 유이찌 | 내연엔진의 공연비 제어장치 |
KR100192101B1 (ko) | 1995-02-10 | 1999-06-15 | 나까무라히로까즈 | 배기정화촉매의 열화진단장치 |
KR20040046822A (ko) * | 2002-11-28 | 2004-06-05 | 현대자동차주식회사 | 차량 내구에 따른 공연비 제어방법 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06101455A (ja) | 1992-09-18 | 1994-04-12 | Honda Motor Co Ltd | 内燃エンジンの触媒劣化検知装置 |
JP2624107B2 (ja) | 1992-12-09 | 1997-06-25 | トヨタ自動車株式会社 | 触媒劣化検出装置 |
JP3169298B2 (ja) | 1993-09-08 | 2001-05-21 | 株式会社日立製作所 | 内燃機関の故障診断装置 |
US5758490A (en) * | 1994-12-30 | 1998-06-02 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
JP3331161B2 (ja) | 1996-11-19 | 2002-10-07 | 本田技研工業株式会社 | 排気ガス浄化用触媒装置の劣化判別方法 |
JP3354088B2 (ja) * | 1997-09-16 | 2002-12-09 | 本田技研工業株式会社 | 内燃機関の排気系の空燃比制御装置 |
KR100614664B1 (ko) * | 1998-07-17 | 2006-08-21 | 혼다 기켄 고교 가부시키가이샤 | 배가스 정화용 촉매장치의 열화판별방법 |
JP3773684B2 (ja) * | 1999-02-09 | 2006-05-10 | 本田技研工業株式会社 | 内燃機関の空燃比制御装置 |
JP4312325B2 (ja) * | 1999-12-28 | 2009-08-12 | 本田技研工業株式会社 | 排ガス浄化用触媒装置の劣化状態評価方法 |
-
2000
- 2000-05-12 JP JP2000139860A patent/JP3967524B2/ja not_active Expired - Lifetime
- 2000-12-21 CA CA002395582A patent/CA2395582C/en not_active Expired - Fee Related
- 2000-12-21 BR BR0016604-9A patent/BR0016604A/pt active Search and Examination
- 2000-12-21 EP EP00987695A patent/EP1243769B1/en not_active Expired - Lifetime
- 2000-12-21 US US10/168,685 patent/US6698186B2/en not_active Expired - Fee Related
- 2000-12-21 KR KR1020027008097A patent/KR100739534B1/ko not_active IP Right Cessation
- 2000-12-21 DE DE60038744T patent/DE60038744T2/de not_active Expired - Lifetime
- 2000-12-21 MY MYPI20006095A patent/MY122697A/en unknown
- 2000-12-21 MX MXPA02006209A patent/MXPA02006209A/es active IP Right Grant
- 2000-12-21 TW TW089127538A patent/TW452629B/zh active
- 2000-12-21 CN CNB008191255A patent/CN1274950C/zh not_active Expired - Fee Related
- 2000-12-21 WO PCT/JP2000/009116 patent/WO2001046569A1/ja active IP Right Grant
- 2000-12-21 ES ES00987695T patent/ES2304994T3/es not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0130043B1 (ko) * | 1992-10-20 | 1998-04-09 | 나까무라 유이찌 | 내연엔진의 공연비 제어장치 |
KR100192101B1 (ko) | 1995-02-10 | 1999-06-15 | 나까무라히로까즈 | 배기정화촉매의 열화진단장치 |
EP0799986A2 (en) | 1996-04-05 | 1997-10-08 | Honda Giken Kogyo Kabushiki Kaisha | Air-fuel ratio control system for internal combustion engines |
KR20040046822A (ko) * | 2002-11-28 | 2004-06-05 | 현대자동차주식회사 | 차량 내구에 따른 공연비 제어방법 |
Also Published As
Publication number | Publication date |
---|---|
CN1434896A (zh) | 2003-08-06 |
CA2395582C (en) | 2008-09-23 |
CA2395582A1 (en) | 2001-06-28 |
KR20020072559A (ko) | 2002-09-16 |
WO2001046569A1 (fr) | 2001-06-28 |
TW452629B (en) | 2001-09-01 |
ES2304994T3 (es) | 2008-11-01 |
US20030093989A1 (en) | 2003-05-22 |
EP1243769A4 (en) | 2006-01-11 |
MXPA02006209A (es) | 2003-03-27 |
JP3967524B2 (ja) | 2007-08-29 |
DE60038744T2 (de) | 2009-07-23 |
US6698186B2 (en) | 2004-03-02 |
MY122697A (en) | 2006-04-29 |
DE60038744D1 (de) | 2008-06-12 |
BR0016604A (pt) | 2003-06-24 |
EP1243769B1 (en) | 2008-04-30 |
CN1274950C (zh) | 2006-09-13 |
EP1243769A1 (en) | 2002-09-25 |
JP2001241349A (ja) | 2001-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100739534B1 (ko) | 내연기관의 공연비 제어장치 | |
EP1106800B1 (en) | Method of judging deterioration of emission gas control catalyst device | |
JP3621839B2 (ja) | プラントの制御装置 | |
JP3484088B2 (ja) | プラントの制御装置 | |
EP0908801B1 (en) | Plant control system | |
US6082099A (en) | Plant control system | |
EP1411230B1 (en) | Device, method, and program recording medium for control of air-fuel ratio of internal combustion engine | |
JP4354068B2 (ja) | 内燃機関の排ガスの空燃比制御装置 | |
JP4312325B2 (ja) | 排ガス浄化用触媒装置の劣化状態評価方法 | |
US6711891B2 (en) | Apparatus for controlling air-fuel ratio of internal combustion engine | |
US7162359B2 (en) | Device, method, and program recording medium for control of air-fuel ratio of internal combustion engine | |
JP3773859B2 (ja) | プラントの制御装置及び内燃機関の空燃比制御装置 | |
JP4074142B2 (ja) | 内燃機関の空燃比制御装置 | |
JP2006177369A (ja) | 制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20100708 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |