KR100736623B1 - Led having vertical structure and method for making the same - Google Patents

Led having vertical structure and method for making the same Download PDF

Info

Publication number
KR100736623B1
KR100736623B1 KR1020060041006A KR20060041006A KR100736623B1 KR 100736623 B1 KR100736623 B1 KR 100736623B1 KR 1020060041006 A KR1020060041006 A KR 1020060041006A KR 20060041006 A KR20060041006 A KR 20060041006A KR 100736623 B1 KR100736623 B1 KR 100736623B1
Authority
KR
South Korea
Prior art keywords
semiconductor layer
electrode
layer
forming
substrate
Prior art date
Application number
KR1020060041006A
Other languages
Korean (ko)
Inventor
조현경
장준호
Original Assignee
엘지전자 주식회사
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 엘지이노텍 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020060041006A priority Critical patent/KR100736623B1/en
Priority claimed from KR1020070037414A external-priority patent/KR101317632B1/en
Priority claimed from KR1020070037416A external-priority patent/KR20080093558A/en
Priority claimed from KR1020070037415A external-priority patent/KR20080093557A/en
Priority to EP07107655A priority patent/EP1855327B1/en
Priority to EP14175657.7A priority patent/EP2808909B1/en
Priority to EP11167031A priority patent/EP2362439A3/en
Priority to EP11167038A priority patent/EP2362442A3/en
Priority to EP11167034A priority patent/EP2362440A3/en
Priority to US11/797,727 priority patent/US7652295B2/en
Priority to EP11167036.0A priority patent/EP2362441B1/en
Priority to CN201410116298.2A priority patent/CN103928580B/en
Priority to CNA2007101049636A priority patent/CN101071840A/en
Priority to JP2007123894A priority patent/JP5179087B2/en
Publication of KR100736623B1 publication Critical patent/KR100736623B1/en
Application granted granted Critical
Priority to US12/637,637 priority patent/US8003993B2/en
Priority to US12/637,661 priority patent/US7939840B2/en
Priority to US12/637,646 priority patent/US7893451B2/en
Priority to US12/637,653 priority patent/US8008103B2/en
Priority to US13/214,871 priority patent/US8283690B2/en
Priority to US13/612,343 priority patent/US8648376B2/en
Priority to JP2013001743A priority patent/JP2013062552A/en
Priority to US14/151,613 priority patent/US9246054B2/en
Priority to US14/974,991 priority patent/US9837578B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/977Thinning or removal of substrate

Abstract

A light emitting device of vertical type and a fabricating method thereof are provided to form precise optical crystal structure by using a dielectric layer as a protective film. Semiconductor layers(20) are grown on a substrate, and a first electrode is formed on the semiconductor layer. After the substrate is removed, a dielectric layer(60) is formed on the semiconductor layer which is exposed by the removed substrate. Plural holes(61) are formed on the dielectric layer, and then the dielectric layer with the holes is etched to form plural grooves on the exposed semiconductor layer. The dielectric layer is removed, and a second electrode is formed on the semiconductor layer.

Description

수직형 발광 소자 및 그 제조방법{LED having vertical structure and method for making the same}Vertical light emitting device and its manufacturing method {LED having vertical structure and method for making the same}

도 1은 종래의 발광 소자의 일례를 나타내는 단면도이다.1 is a cross-sectional view showing an example of a conventional light emitting device.

도 2는 본 발명의 기판 위에 LED 구조를 형성한 단계를 나타내는 단면도이다.2 is a cross-sectional view showing a step of forming an LED structure on a substrate of the present invention.

도 3은 본 발명의 기판을 제거하고 유전체층을 형성한 단계를 나타내는 단면도이다.3 is a cross-sectional view showing a step of removing the substrate of the present invention and forming a dielectric layer.

도 4는 본 발명의 유전체층에 홀 패턴을 형성하기 위한 마스크를 위치시킨 단계를 나타내는 단면도이다.4 is a cross-sectional view showing a step of placing a mask for forming a hole pattern in the dielectric layer of the present invention.

도 5는 본 발명의 유전체층에 다수의 홀을 형성한 단계를 나타내는 단면도이다.5 is a cross-sectional view illustrating a step of forming a plurality of holes in the dielectric layer of the present invention.

도 6 내지 도 10은 본 발명의 다수의 홀 패턴의 예를 나타내는 평면도이다.6 to 10 are plan views illustrating examples of the plurality of hole patterns of the present invention.

도 11은 본 발명의 건식 식각 과정을 나타내는 개략도이다.11 is a schematic diagram illustrating a dry etching process of the present invention.

도 12는 본 발명의 n-형 반도체층에 광결정을 형성한 단계를 나타내는 단면도이다.12 is a cross-sectional view showing a step of forming a photonic crystal in the n-type semiconductor layer of the present invention.

도 13은 본 발명의 광결정 구조를 나타내는 SEM 이미지이다.13 is an SEM image showing the photonic crystal structure of the present invention.

도 14는 본 발명의 발광 소자의 구조를 나타내는 단면도이다.14 is a cross-sectional view showing the structure of the light emitting device of the present invention.

<도면의 주요 부분에 대한 간단한 설명><Brief description of the main parts of the drawing>

10 : 기판 20 : 반도체층10: substrate 20: semiconductor layer

21 : n-형 반도체층 22 : 활성층21: n-type semiconductor layer 22: active layer

23 : p-형 반도체층 24 : 홈23: p-type semiconductor layer 24: groove

30 : n-형 전극 40 : 반사전극30: n-type electrode 40: reflective electrode

50 : 지지층 60 : 유전체층50: support layer 60: dielectric layer

70 : 마스크 80 : 광결정 구조70 mask 80 photonic crystal structure

100 : LED 구조 200 : 챔버100: LED structure 200: chamber

210 : 코일 220 : RF 공급기210: coil 220: RF supply

230 : 하부 전극 240 : 바이어스 전압 공급기230: lower electrode 240: bias voltage supply

본 발명은 수직형 발광 소자에 관한 것으로 특히, 발광 효율을 향상시킬 수 있는 수직형 발광 소자의 제조방법에 관한 것이다.The present invention relates to a vertical light emitting device, and more particularly, to a method of manufacturing a vertical light emitting device that can improve luminous efficiency.

현재 큰 밴드갭을 가진 질화물계 반도체를 이용하여 질화물계 반도체 성장 구조나 성장된 박막의 제작공정을 개선시켜 광변환 효율이 높은 발광 소자(LED: light emitting diode) 개발이 활발이 이루어지고 있다. Currently, light emitting diodes (LEDs) having high light conversion efficiency have been actively developed by improving nitride-based semiconductor growth structures or grown thin film manufacturing processes using nitride-based semiconductors having a large band gap.

이러한 LED의 광출력에 있어서 내부 양자 효율(Internal quantum efficiency)과 함께 광 추출 효율(extraction efficiency)은 고려해야할 중요한 요 소이다. The extraction efficiency along with the internal quantum efficiency is an important factor in the light output of such LEDs.

대부분의 LED에 있어서, 광 추출 효율은 제한이 되는데, 이는 반도체와 공기 사이의 면과 같은 계면(interface)에서 발생되는 내부의 반사에 기인한다.For most LEDs, light extraction efficiency is limited, due to internal reflections occurring at the interface, such as the plane between the semiconductor and the air.

이러한 현상은 두 물질간의 굴절율 차이에 의한 스넬의 법칙(Snell's law: n1 * sin q1 = n2 * sin q2)의 관계에 의하여, 계면에서 임계각(critical angle)보다 작게 입사되는 빛은 투과되고, 임계각보다 큰 빛은 반사되는 현상에서 기인하는 것이다. This phenomenon is due to the relationship between Snell's law (n 1 * sin q 1 = n 2 * sin q 2 ) due to the difference in refractive index between the two materials, so that light incident at the interface is smaller than the critical angle. The light larger than the critical angle is caused by the reflection phenomenon.

이와 같은 LED의 광 추출 효율을 개선하는 방법은 다음과 같은 방법들이 있다.There are the following methods to improve the light extraction efficiency of the LED.

첫째로 LED 칩의 모양을 변형하여 칩 표면에 빛이 수직한 방향으로 입사하는 확률을 높이는 방법이 있으며, 칩을 반구형태의 모양으로 제작하는 것이 이론적으로 가장 최적이라고 알려져 있으나 제작이 어렵고 비용이 많이 든다는 단점이 있다. First, there is a method of changing the shape of the LED chip to increase the probability that light is incident on the chip surface in the vertical direction, and manufacturing the chip in the hemispherical shape is known as the best theoretically, but it is difficult and expensive to manufacture. The disadvantage is that it costs.

둘째로 반구형의 에폭시 돔(epoxy dome)을 이용하여 LED를 봉지(encapsulation)하는 방법이 있으며, 세번째 방법으로 LED 구조 내에서 광을 재흡수하는 기존의 기판(substrate)을 투명 기판으로 변경하는 방법도 있다. Secondly, there is a method of encapsulating the LED using a hemispherical epoxy dome, and a third method is to change the existing substrate which reabsorbs light in the LED structure into a transparent substrate. have.

이와 함께 미세 공동(microcavity) 혹은 공명 공동(resonant cavity) 구조를 가지는 LED를 제작하는 방법이 있는데, 이는 매우 정교한 성장 제어(growth control)가 요구되며 반도체로부터 공기중으로 빛이 효율적으로 추출되려면 LED의 발광 파장이 정확하게 공동 모드(cavity mode)와 일치하여야 하는 어려움이 있다. 따라서 온도나 전류가 증가하면 발광 파장이 변화하여 광출력이 급격하게 감소하는 문제점이 있다. In addition, there is a method of manufacturing an LED having a microcavity or resonant cavity structure, which requires very sophisticated growth control and emits light in order to efficiently extract light from the semiconductor into the air. There is a difficulty that the wavelength must exactly match the cavity mode. Therefore, when the temperature or the current increases, the light emission wavelength changes and there is a problem that the light output is drastically reduced.

최근에는 이러한 LED 칩의 발광표면에 광결정(photonic crystal) 구조와 같은 구조적인 형상을 형성하는 기술들이 보고되고 있으며, 이러한 기술은 LED 칩 상에서 광 추출 효율을 향상할 수 있는 기술로서, 상술한 칩 모양을 변형하는 기술과 에폭시 봉지(epoxy encapsulation) 방법과 기판 변경 등의 방법과 함께 적용할 수 있어서 광 추출 효율을 더욱 크게 개선할 수 있다. Recently, techniques for forming a structural shape such as a photonic crystal structure on the light emitting surface of the LED chip have been reported, and this technique is a technique capable of improving light extraction efficiency on the LED chip. It can be applied in combination with the technology of modifying and epoxy encapsulation method and the method of changing the substrate can further improve the light extraction efficiency.

이와 같은 광결정을 이용하는 방법은 기판으로 사용되는 사파이어를 식각하는 방법과 p-형 GaN층 표면을 거칠게 하는 방법보다 더욱 우수한 광추출 효율을 갖는다. Such a method using photonic crystals has more excellent light extraction efficiency than etching the sapphire used as a substrate and roughening the surface of the p-type GaN layer.

이러한 광결정을 이용하는 대표적인 방법은 도 1에서 도시하는 바와 같이, 사파이어 기판(1) 위에 n-형 질화갈륨(GaN)층(2)과 활성층(발광층: 3) 및 p-형 질화갈륨(GaN)층(4)을 차례로 형성하고, 상기 n-형 GaN층(2)이 드러나도록 식각된 면에 n-형 전극(5)을, 그리고 상기 p-형 GaN층(4)에는 p-형 전극(6)을 형성한다.Representative methods using such a photonic crystal, as shown in FIG. 1, have an n-type gallium nitride (GaN) layer 2, an active layer (light emitting layer: 3), and a p-type gallium nitride (GaN) layer on the sapphire substrate 1. (4) are formed in order, n-type electrode 5 on the etched surface to expose the n-type GaN layer 2, and p-type electrode 6 on the p-type GaN layer 4 ).

이후, 상술한 기본 구조에서 상단의 p-형 GaN층(4)을 일정한 주기의 패턴으로 식각하여 광결정(7)을 형성하는 것이다.Subsequently, in the above-described basic structure, the upper p-type GaN layer 4 is etched in a regular pattern to form the photonic crystal 7.

그러나, 이런 방법은 p-형 GaN층(4)의 본질적으로 낮은 전기적 특성과 얇은 박막 두께 및 식각에 의한 전기적 특성의 퇴화에 의해서 광추출 효율 개선이 제한된다. However, this method is limited in improving light extraction efficiency due to the inherently low electrical properties of the p-type GaN layer 4 and the degradation of the electrical properties by thin film thickness and etching.

다른 방법으로는 기판 위에 p-형 GaN층을 먼저 성장시키고 발광층을 성장시킨 후 상단에 n-형 GaN층을 성장시킨 구조를 사용하여 상단의 n-형 GaN층에 광결정 구조를 형성시키는 방법이다. Another method is to form a photonic crystal structure on the upper n-type GaN layer by using a structure in which a p-type GaN layer is first grown on a substrate, a light emitting layer is grown, and an n-type GaN layer is grown on top.

그러나, p-형 GaN층의 본질적으로 낮은 전기적 전도성과 낮은 결정성 및 식각에 의한 전기적 특성 퇴화는 p-형 GaN층을 하단에 성장시키는 방법을 불가능하게 한다. However, the inherently low electrical conductivity of the p-type GaN layer and the degradation of the electrical properties due to low crystallinity and etching make it impossible to grow the p-type GaN layer at the bottom.

또 다른 방법은 사파이어 기판 위에 n-형 GaN층을 성장하고, 이어 발광층을 성장하고 p-형 GaN층을 성장한 후, 다시 n-형 GaN층을 성장시키는 방법이 있다. 이는 p-GaN층과 n-층 GaN층 사이에서의 전기적 터널접합 특성을 이용하는 방법이다.Another method is to grow an n-type GaN layer on a sapphire substrate, then grow a light emitting layer, grow a p-type GaN layer, and then grow an n-type GaN layer again. This is a method using the electrical tunnel junction property between the p-GaN layer and the n-layer GaN layer.

그러나, 이 방법 역시 p-형 GaN층의 낮은 전기적 특성으로 말미암아 접합부위에서 저항을 증가시켜서 결국 소자의 작동 전압을 증가시키는 문제점을 갖는다. However, this method also has the problem of increasing the resistance at the junction due to the low electrical properties of the p-type GaN layer, which in turn increases the operating voltage of the device.

그 외의 다른 방법으로는 사파이어 기판 위에 n-형 GaN층, 발광층, p-형 GaN층을 차례로 성장시킨 후 반사층과 열방출 능력이 우수한 금속판을 접합시킨 후 적절한 방법으로 사파이어를 제거하고 노출된 n-형 GaN층에 식각공정을 통해서 광결정을 형성하는 방법이다. In other methods, the n-type GaN layer, the light emitting layer, and the p-type GaN layer are grown on the sapphire substrate in order, and then the sapphire is removed by an appropriate method. The photonic crystal is formed on the GaN layer by an etching process.

그러나, 이러한 방법도 역시 접합된 박막층의 식각 공정 단계에서 금속판이 충분히 안정하지 못하여 식각공정이 어렵고 생산성이 낮은 문제점이 있었다.However, this method also has a problem that the metal plate is not sufficiently stable in the etching process step of the bonded thin film layer, the etching process is difficult and the productivity is low.

본 발명이 이루고자 하는 기술적 과제는, 수직형 발광 소자에 있어서, 발광 소자의 상측면에 효율적으로 광결정 구조를 형성할 수 있는 수직형 발광 소자 및 그 제조방법을 제공하는 데 있다.An object of the present invention is to provide a vertical light emitting device capable of efficiently forming a photonic crystal structure on an upper surface of a light emitting device, and a method of manufacturing the vertical light emitting device.

상기 기술적 과제를 이루기 위해, 본 발명은, 기판상에 복수의 반도체층들을 성장시키는 단계와; 상기 반도체층 상에 제1전극을 형성하는 단계와; 상기 기판을 제거하는 단계와; 상기 기판이 제거되어 드러난 반도체층 위에 유전체층을 형성하는 단계와; 상기 유전체층에 다수의 홀을 형성하는 단계와; 상기 다수의 홀이 형성된 유전체층 면을 식각하여, 상기 반도체층에 다수의 홈을 형성하는 단계와; 상기 유전체층을 제거하는 단계와; 상기 유전체층이 제거된 반도체층 면에 제2전극을 형성하는 단계를 포함하여 구성되는 것이 바람직하다.In order to achieve the above technical problem, the present invention comprises the steps of growing a plurality of semiconductor layers on a substrate; Forming a first electrode on the semiconductor layer; Removing the substrate; Forming a dielectric layer on the exposed semiconductor layer from which the substrate is removed; Forming a plurality of holes in the dielectric layer; Etching a surface of the dielectric layer in which the plurality of holes is formed to form a plurality of grooves in the semiconductor layer; Removing the dielectric layer; And forming a second electrode on the surface of the semiconductor layer from which the dielectric layer is removed.

상기 유전체층은 산화물 또는 질화물이고, 상기 다수의 홀 또는 홈은 규칙적으로 형성되는 것이 바람직하다.Preferably, the dielectric layer is an oxide or nitride, and the plurality of holes or grooves are formed regularly.

또한, 상기 다수의 홀 또는 다수의 홈을 형성하는 단계는, 건식 식각법을 이용하여 형성되며, 특히, RIE(reactive ion etching) 또는 ICP-RIE(inductively coupled plasm reactive ion etching)를 이용할 수 있다.In addition, the forming of the plurality of holes or the plurality of grooves may be formed using a dry etching method, and in particular, may use reactive ion etching (RIE) or inductively coupled plasm reactive ion etching (ICP-RIE).

이때, 상기 건식 식각법은 Ar, BCl3, Cl2, CF4, CHF3 중 적어도 어느 하나를 이용하는 것이 바람직하다.In this case, the dry etching method is preferably at least one of Ar, BCl 3 , Cl 2, CF 4 , CHF 3 .

한편, 상기 유전체층에 다수의 홀을 형성하는 단계에서, 상기 다수의 홀은 상기 제2전극 형성 영역을 제외한 부분에 형성할 수 있다.Meanwhile, in the forming of the plurality of holes in the dielectric layer, the plurality of holes may be formed in portions except the second electrode formation region.

상기 기술적 과제를 이루기 위한 다른 관점으로서, 본 발명은, 지지층과; 상 기 지지층 위에 위치하는 제1전극과; 상기 제1전극 위에 위치하는 제1반도체층과; 상기 제1반도체층 위에 위치하는 발광층과; 상기 발광층 위에 위치하는 제2반도체층과; 상기 제2반도체층의 1/3 이상의 깊이로 형성되는 다수의 홈으로 이루어지는 광결정과; 상기 광결정 위에 위치하는 제2전극을 포함하여 구성되는 것이 바람직하다.As another aspect for achieving the above technical problem, the present invention, the support layer; A first electrode on the support layer; A first semiconductor layer on the first electrode; A light emitting layer on the first semiconductor layer; A second semiconductor layer on the light emitting layer; A photonic crystal comprising a plurality of grooves formed to a depth of 1/3 or more of the second semiconductor layer; It is preferably configured to include a second electrode located on the photonic crystal.

이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 기판(10)에 형성된 LED 구조(100)를 나타내고 있다. 2 shows an LED structure 100 formed on a substrate 10.

이러한 LED 구조(100)의 형성은, 먼저, 사파이어와 같은 기판(10) 위에 화합물 반도체층(20)을 형성한다. 이와 같은 반도체층(20)은 기판(10) 측으로부터 차례로, n-형 반도체층(21), 활성층(22), p-형 반도체층(23)의 순서로 이루어진다.In the formation of the LED structure 100, first, the compound semiconductor layer 20 is formed on the substrate 10 such as sapphire. The semiconductor layer 20 is formed in this order from the substrate 10 side in the order of the n-type semiconductor layer 21, the active layer 22, and the p-type semiconductor layer 23.

이때, 상기 n-형 반도체층(21), 활성층(22), p-형 반도체층(23)의 순서는 반대로 형성될 수도 있다. 즉, 기판(10) 위로부터 p-형 반도체층(23), 활성층(22), n-형 반도체층(21)의 순서로 형성될 수도 있다.In this case, the order of the n-type semiconductor layer 21, the active layer 22, and the p-type semiconductor layer 23 may be reversed. That is, the p-type semiconductor layer 23, the active layer 22, and the n-type semiconductor layer 21 may be formed in the order from the substrate 10.

특히, 상기 반도체층(20)은 질화갈륨(GaN) 계열 반도체가 이용될 수 있으며, 이때, 상기 활성층(22)은 InGaN/GaN 양자우물(quantum well: QW) 구조를 이룰 수 있다. 그 외에 AlGaN, AlInGaN 등의 물질도 활성층(22)으로 이용될 수 있음은 물론이다. 이러한 활성층(22)에서는 전계를 인가하였을 때, 전자-정공 쌍의 결합에 의하여 빛이 발생하게 된다.In particular, the semiconductor layer 20 may be formed of a gallium nitride (GaN) -based semiconductor. In this case, the active layer 22 may have an InGaN / GaN quantum well (QW) structure. In addition, materials such as AlGaN and AlInGaN may also be used as the active layer 22. In the active layer 22, when an electric field is applied, light is generated by the combination of the electron-hole pairs.

또한, 이러한 활성층(22)은 휘도 향상을 위하여 상술한 양자우물 구조(QW)가 복수로 형성되어 다중 양자우물(multi quantum well: MQW) 구조를 이룰 수 있다.In addition, the active layer 22 may have a plurality of quantum well structures (QW) as described above in order to improve luminance, thereby forming a multi quantum well (MQW) structure.

상기 반도체층(20) 위에는 p-형 전극(30)이 형성된다. 이때, 이러한 p-형 전극(30)은 오믹 전극이며, 이 p-형 전극(30) 위에는 상기 활성층(22)에서 발생한 빛을 반사하여 외부로 방출시키기 위한 반사전극(40)이 형성될 수 있다.The p-type electrode 30 is formed on the semiconductor layer 20. In this case, the p-type electrode 30 is an ohmic electrode, and a reflective electrode 40 for reflecting light emitted from the active layer 22 and emitting it to the outside may be formed on the p-type electrode 30. .

또한, p-형 전극(30)과 반사전극(40)의 물질의 선택에 따라 하나의 전극이 p-형 전극(30)과 반사전극(40)의 역할을 겸할 수도 있다.In addition, one electrode may serve as the p-type electrode 30 and the reflective electrode 40 according to the selection of the material of the p-type electrode 30 and the reflective electrode 40.

이러한 반사전극(40) 위에는 추후 기판(10) 분리과정에서 LED 구조(100)의 지지를 위하여 지지층(50)이 형성될 수 있다.The support layer 50 may be formed on the reflective electrode 40 to support the LED structure 100 in a later process of separating the substrate 10.

이와 같은 지지층(50)은 실리콘(Si), 갈륨비소(GaAs), 게르마늄(Ge) 등의 반도체 기판이나 CuW 등의 금속 기판을 반사전극(40) 위에 본딩하여 형성할 수 있다. 또한, 상기 반사전극(40) 위에 니켈(Ni) 또는 구리(Cu)와 같은 금속을 도금하여 형성할 수도 있다.The support layer 50 may be formed by bonding a semiconductor substrate such as silicon (Si), gallium arsenide (GaAs), germanium (Ge), or a metal substrate such as CuW onto the reflective electrode 40. In addition, the metal may be formed by plating a metal such as nickel (Ni) or copper (Cu) on the reflective electrode 40.

이러한 지지층(50)이 금속인 경우에는 반사전극(40)에 부착성을 높이기 위하여 결합금속(seed metal)을 이용하여 형성할 수도 있다.When the support layer 50 is made of metal, the support layer 50 may be formed using a bonded metal to increase adhesion to the reflective electrode 40.

이상과 같은 단계에 의하여 LED 구조(100)는 도 2와 같은 구조를 이룬다. 이와 같이 형성된 구조는, 이후, 상기 기판(10)을 제거하고, 이 기판(10)이 제거된 면에 유전체층(60)을 형성하여 도 3과 같은 구조가 된다.By the above steps, the LED structure 100 forms a structure as shown in FIG. The structure thus formed is then removed, and the dielectric layer 60 is formed on the surface from which the substrate 10 is removed to form a structure as shown in FIG. 3.

상기 기판(10)의 제거는 이른바, 레이저 리프트 오프(laser lift off)법을 이용하여 레이저를 이용하여 제거할 수 있고, 또한 식각법을 이용하여 화학적인 방법으로 제거할 수도 있다.The substrate 10 may be removed by a laser using a so-called laser lift off method, or may be removed by a chemical method using an etching method.

이러한 기판(10)의 제거하는 과정에서 상기 지지층(50)은 LED 구조(100)를 지지할 수 있도록 한다.In the process of removing the substrate 10, the support layer 50 may support the LED structure 100.

상기 기판(10)이 제거되어 드러나는 n-형 반도체층(21)에는 상술한 바와 같이, 유전체층(60)이 형성되는데, 이러한 유전체층(60)은 산화물 또는 질화물이 이용될 수 있고, 그 일례로, 실리콘 산화물(SiO2)이 이용될 수 있다.As described above, the dielectric layer 60 is formed on the n-type semiconductor layer 21 from which the substrate 10 is removed, and the dielectric layer 60 may be formed of an oxide or nitride. Silicon oxide (SiO 2 ) may be used.

상기 유전체층(60)에는 규칙적으로 이루어지는 다수의 홀(61)이 형성되는데, 이러한 홀(61)의 형성은 RIE(reactive ion etching: 반응성 이온 에칭) 또는 ICP-RIE(inductively coupled plasma reactive ion etching: 유도 결합 플라즈마 반응성 이온 에칭)과 같은 건식 식각법이 이용될 수 있다.A plurality of holes 61 are formed in the dielectric layer 60 at regular intervals. The formation of the holes 61 may include reactive ion etching (RIE) or inductively coupled plasma reactive ion etching (ICP-RIE). Dry etching, such as coupled plasma reactive ion etching).

이러한 건식 식각법은 습식 식각법과 달리, 일방성 식각이 가능하여 이러한 홀(61)을 형성하기에 적합하다. 즉, 습식 식각법은 등방성(isotropic) 식각이 이루어져, 모든 방향으로 식각이 이루어지나, 이와 달리 건식 식각법은 홀(61)을 형성하기 위한 깊이 방향으로만의 식각이 가능하여, 홀(61)의 크기 및 간격 등을 원하는 패턴으로 형성할 수 있다.Unlike the wet etching method, the dry etching method is suitable for forming the hole 61 because one-sided etching is possible. That is, in the wet etching method, isotropic etching is performed and etching is performed in all directions. In contrast, the dry etching method is capable of etching only in the depth direction for forming the hole 61. The size and spacing can be formed in a desired pattern.

상기와 같은 다수의 홀(61)을 형성하기 위해서는, 도 4에서와 같이, 홀 패턴(71)이 형성된 패턴 마스크(70)를 이용할 수 있다.In order to form the plurality of holes 61 as described above, as shown in FIG. 4, a pattern mask 70 in which the hole pattern 71 is formed may be used.

이러한 패턴 마스크(70)는 크롬(Cr)과 같은 금속 마스크를 이용할 수 있고, 경우에 따라서는 포토 레지스트를 이용할 수 있다. The pattern mask 70 may use a metal mask such as chromium (Cr), and in some cases, a photoresist may be used.

패턴 마스크(70)로 포토 레지스트를 이용하는 경우에 홀 패턴(71)은 포토 리 소그래피(photo-lithography), e-빔 리소그래피(e-beam lithography), 또는 나노 임프린트 리소그래피(nano imprint lithography) 등의 방법을 이용하여 형성할 수 있다. 또한 이와 같은 과정은 건식 식각 또는 습식 식각을 이용할 수 있다.When the photoresist is used as the pattern mask 70, the hole pattern 71 may be formed of photo-lithography, e-beam lithography, or nano imprint lithography. It can form using a method. In addition, this process may use dry etching or wet etching.

상기 패턴 마스크(70)로 크롬 마스크를 이용하는 경우에, 크롬에 패턴을 형성하기 위해서는 크롬 위에 폴리머층을 형성하고, 이러한 폴리머에 나노 임프린팅을 이용하여 패턴을 형성한 후에, 크롬 마스크를 식각하여 패턴 마스크(70)를 형성한다. 이러한 크롬 마스크의 식각은 건식 식각법이 사용될 수 있다.In the case of using the chromium mask as the pattern mask 70, in order to form a pattern in chromium, a polymer layer is formed on chromium, and after the pattern is formed using nanoimprinting on the polymer, the chromium mask is etched to form a pattern. The mask 70 is formed. Dry etching of such a chrome mask may be used.

이러한 건식 식각법은 상술한 바와 같은 RIE, ICP-RIE가 사용될 수 있으며, 이때, 사용되는 가스는 Cl2 및 O2 중 적어도 어느 하나가 사용될 수 있다.Such dry etching may be used as described above RIE, ICP-RIE, wherein the gas used may be at least one of Cl 2 and O 2 .

이때, 추후 n-형 전극패드(91: 도 14 참고)가 형성될 공간을 위하여, 이러한 일부 영역에서는 홀 패턴(71)을 형성하지 않는 것이 바람직하다.In this case, for the space where the n-type electrode pad 91 (see FIG. 14) will be formed later, it is preferable not to form the hole pattern 71 in such a partial region.

이러한 과정을 통하여 상기 유전체층(60)에는, 도 5에서 도시하는 바와 같이, 상기 홀 패턴(71)과 동일한 패턴의 다수의 홀(61)이 형성되는데, 이때 상기 다수의 홀(61)은 유전체층(60) 전체를 관통하여 형성된다.Through this process, as illustrated in FIG. 5, a plurality of holes 61 having the same pattern as that of the hole pattern 71 is formed in the dielectric layer 60, wherein the plurality of holes 61 are formed of a dielectric layer ( 60) is formed through the whole.

상술한 다수의 홀(61)은 다양한 패턴으로 형성될 수 있는데, 예를 들어, 그 패턴이 정방형을 이루도록 형성할 수 있다. 또한, 도 6 내지 도 10에서 도시하는 바와 같이, 다양한 패턴으로 형성이 가능하다.The plurality of holes 61 described above may be formed in various patterns. For example, the holes 61 may be formed to form a square. 6 to 10, it is possible to form in various patterns.

즉, 도 6에서와 같이, 상기 다수의 홀(61)들이 발광 소자 패키지의 사선형으로 나열되도록 형성할 수 있고, 도 7에서와 같이, 상기 홀(61)들이 발광 소자 패키 지의 다수로 구획된 면에서 사선을 이루도록 형성할 수 있다. 이때, 이러한 사선의 패턴들은 다른 구획의 사선 패턴들이 서로 만나지 않도록 할 수 있다.That is, as shown in FIG. 6, the plurality of holes 61 may be formed to be arranged in a diagonal line of the light emitting device package. As shown in FIG. 7, the holes 61 may be divided into a plurality of light emitting device packages. It may be formed to form an oblique line in the plane. In this case, the diagonal patterns may prevent the diagonal patterns of different sections from meeting each other.

또한, 도 8 및 도 9에서와 같이, 이러한 다수의 홀(61)의 사선형 패턴이 복수의 구역에서 서로 만나도록 형성할 수도 있다. 도 8에서는 발광 소자가 두 개의 영역으로 구획된 상태에서 홀(61)이 각 구획의 경계면에서 서로 만나는 사선형으로 배열된 패턴을 나타내고, 도 9에서는 네 개의 영역으로 구획된 서로 만나는 사선형 패턴을 도시하고 있다.8 and 9, the diagonal patterns of the plurality of holes 61 may be formed to meet each other in a plurality of zones. FIG. 8 illustrates a pattern in which holes 61 are arranged in a diagonal form where the light emitting elements are divided into two regions, and each other meets at a boundary surface of each compartment. In FIG. 9, a diagonal pattern which meets each other is divided into four regions. It is shown.

한편, 도 10에서 도시하는 바와 같이, 상기 다수의 홀(61)이 복수의 동심원형 또는 방사형 패턴을 이루도록 형성할 수도 있다.Meanwhile, as shown in FIG. 10, the plurality of holes 61 may be formed to form a plurality of concentric or radial patterns.

그 외에, 6각형, 8각형 등 다양한 다각형의 패턴, 사다리꼴 등으로 형성할 수도 있고, 부정형의 패턴도 가능하다.In addition, various polygonal patterns such as hexagonal and octagonal shapes, trapezoids, or the like may be formed, and irregular patterns may be formed.

이러한 홀(61)이 형성된 유전체층(60)이 n-형 반도체층(21) 위에 위치한 상태에서, 도 6에서 도시하는 바와 같이, 건식 식각법을 이용하여 상기 유전체층(60) 표면을 통하여 n-형 반도체층(21)을 식각하여 다수의 홈(24)을 형성한다.With the dielectric layer 60 having such a hole 61 formed on the n-type semiconductor layer 21, as shown in FIG. 6, the n-type is formed through the surface of the dielectric layer 60 by dry etching. The semiconductor layer 21 is etched to form a plurality of grooves 24.

이와 같이, n-형 반도체층(21) 위에 형성된 유전체층(60)은 상기 n-형 반도체층(21)을 식각하기 위한 마스크 또는 보호막 역할을 수행하게 된다.As such, the dielectric layer 60 formed on the n-type semiconductor layer 21 serves as a mask or a protective film for etching the n-type semiconductor layer 21.

이때, 상기 다수의 홈(24)은 유전체층(60)에 형성된 홀(61)의 패턴과 동일한 패턴으로 형성된다.In this case, the plurality of grooves 24 are formed in the same pattern as the pattern of the holes 61 formed in the dielectric layer 60.

즉, 홈(24)의 패턴은, 상기 도 6 내지 도 10을 참고하여 상술한 바와 같은, 정방형, 복수의 사선형, 적어도 둘 이상의 구획이 나뉘어진 복수의 사선형, 적어도 둘 이상의 구획이 나뉘어지며 서로 반대방향을 향하는 복수의 사선형, 복수의 동심원형, 다각형, 사다리꼴, 및 방사형의 패턴 등으로 형성될 수 있다.That is, the pattern of the groove 24 is divided into a square, a plurality of diagonals, a plurality of diagonals divided by at least two partitions, and at least two partitions as described above with reference to FIGS. 6 to 10. It may be formed in a plurality of diagonal lines, a plurality of concentric circles, polygons, trapezoids, radial patterns and the like facing in the opposite direction.

도 11에서는 ICP-RIE를 이용하여 n-형 반도체층(21)에 홈(24)을 형성하는 과정을 도시하고 있다. FIG. 11 illustrates a process of forming the grooves 24 in the n-type semiconductor layer 21 using ICP-RIE.

이러한 ICP-RIE 장치는 평면형, 솔레노이드형이 모두 사용될 수 있으며, 도 11에서는 평면형 ICP-RIE 장치를 도시하고 있다. 그 구체적인 방법을 설명하면 다음과 같다.This ICP-RIE device can be used both planar and solenoid type, Figure 11 shows a planar ICP-RIE device. The specific method is described as follows.

상기 ICP-RIE 장치는, 접지된 금속 실드(201)와, 이를 덮는 절연창(202)으로 이루어지는 챔버(200) 위에 구리 코일(210)이 위치하고, 전력이 RF 공급기(220)로부터 코일(210)에 가해진다. 이때, 상기 RF 전력에 의해 절연창(202)을 절연하기 위해 적절한 각도에서 자기장이 형성되어야 한다.In the ICP-RIE device, a copper coil 210 is positioned on a chamber 200 including a grounded metal shield 201 and an insulating window 202 covering the coil, and power is supplied from the RF supply 220 to the coil 210. Is applied to. At this time, a magnetic field should be formed at an appropriate angle to insulate the insulating window 202 by the RF power.

이와 같은 챔버(200)의 하부 전극(230) 상에 홀(61) 패턴을 갖는 유전체층(60)이 형성된 LED 구조(100)를 위치시킨다. 상기 하부 전극(230)은 에칭이 이루어지도록 LED 구조(100)를 편향시키는 바이어스 전압 공급기(240)와 연결된다.The LED structure 100 having the dielectric layer 60 having the hole 61 pattern formed thereon is disposed on the lower electrode 230 of the chamber 200. The lower electrode 230 is connected to a bias voltage supply 240 that biases the LED structure 100 to be etched.

이러한 바이어스 전압 공급기(240)는 무선 주파수 전력 및 DC 바이어스 전압을 공급하는 것이 바람직하다.The bias voltage supply 240 preferably supplies radio frequency power and a DC bias voltage.

이때, Ar, BCl3, Cl2 중 적어도 어느 하나의 가스가 적절히 혼합된 가스 혼합물이 반응성 가스 포트(203)를 통해 챔버(200) 내로 유입되고, 이때 전자는 상측 포트(204)를 통해 챔버(200) 내로 주입된다.At this time, a gas mixture in which at least one of Ar, BCl 3 , and Cl 2 is properly mixed is introduced into the chamber 200 through the reactive gas port 203, and electrons are introduced into the chamber through the upper port 204. 200).

이와 같이 주입된 전자는 코일(210)에 의해 생성된 전자기장에 의하여, 주입된 혼합 가스의 중성 입자와 충돌하여 플라즈마를 생성하는 이온과 중성 원자를 형성한다. The electrons thus injected collide with neutral particles of the injected mixed gas by the electromagnetic field generated by the coil 210 to form ions and neutral atoms that generate plasma.

이러한 플라즈마 내의 이온은 바이어스 전압 공급기(240)에 의해 전극(230)에 공급된 바이어스 전압에 의해 LED 구조(100)를 향하여 가속되며, 상기 가속된 전자와 함께 유전체층(60)에 형성된 홀(61)의 패턴을 통과하여, 도 12에서와 같이, n-형 반도체층(21)에 홈(24) 패턴을 형성한다.Ions in this plasma are accelerated toward the LED structure 100 by the bias voltage supplied to the electrode 230 by the bias voltage supply 240, and the holes 61 formed in the dielectric layer 60 together with the accelerated electrons. 12, a groove 24 pattern is formed in the n-type semiconductor layer 21 as shown in FIG.

이때, 챔버(200) 내의 압력은 5 mTorr로 유지시키고, He 흐름을 이용할 수 있으며, 에칭 과정에서 챔버는 10℃로 쿨링하는 것이 바람직하다.At this time, the pressure in the chamber 200 is maintained at 5 mTorr, He flow may be used, and in the etching process, the chamber is preferably cooled to 10 ° C.

또한, 상기 RF 공급기(220)와 바이어스 전압 공급기(240)는 각각 33W, 230W의 전력을 이용할 수 있다.In addition, the RF supply 220 and the bias voltage supply 240 may use power of 33W, 230W, respectively.

이러한 ICP-RIE 장치는 유전체층(61)에 홀(60)을 형성할 때도 동일하게 이용될 수 있으며, 이때, 혼합 가스는 CF4, Ar, CHF3 중 적어도 어느 하나 이상이 이용할 수 있고, RF 공급기(220)와 바이어스 전압 공급기(240)는 각각 50W, 300W의 전력을 이용할 수 있다.The ICP-RIE device may be used in the same manner when forming the hole 60 in the dielectric layer 61, wherein the mixed gas may be used by at least one of CF 4 , Ar, and CHF 3 , and the RF supply 220 and the bias voltage supplyer 240 may use power of 50W and 300W, respectively.

한편, 상술한 과정에 의하여 상기 유전체층(61)에 형성된 다수의 홀(60)을 불규칙적으로 형성함으로써, 상기 n-형 반도체층(21)에 형성된 홈(24)이 불규칙적으로 형성될 수도 있다. 이러한 불규칙적으로 형성된 홈(24)은 광이 추출되는 표면을 거칠게 하여 광 추출 효율을 향상시킬 수 있다.Meanwhile, by irregularly forming the plurality of holes 60 formed in the dielectric layer 61 by the above-described process, the grooves 24 formed in the n-type semiconductor layer 21 may be irregularly formed. The irregularly formed groove 24 may improve the light extraction efficiency by roughening the surface from which light is extracted.

그러나 바람직하게는 상기 홈(24) 패턴을 규칙적으로 형성하여 주기성을 가지게 함으로써(도 6 내지 도 10 참고), 이른바, n-형 반도체층(21)의 표면에 광결정 구조(80)를 형성하는 것이 바람직하다.However, it is preferable to form the photonic crystal structure 80 on the surface of the n-type semiconductor layer 21 by forming the groove 24 pattern regularly so as to have periodicity (see FIGS. 6 to 10). desirable.

도 13은 상기와 같은 과정에 의하여 n-형 반도체층(21)에 형성된 광결정 구조(80)의 SEM(scaning electron microscopy) 이미지를 나타내고 있다.FIG. 13 illustrates a scanning electron microscopy (SEM) image of the photonic crystal structure 80 formed on the n-type semiconductor layer 21 by the above process.

이러한 광결정 구조(80)는 GaN의 굴절률(2.6)과 광이 추출되는 LED의 에폭시 렌즈 굴절률(1.5)과, 구동전압과의 관계 등을 고려할 때, 광결정 주기는 0.5 내지 1.5㎛, 그리고 광결정을 이루는 홈(24)의 직경은 대략 상기 주기의 0.3 내지 0.6배로 형성하는 것이 바람직하다.The photonic crystal structure 80 has a photonic crystal period of 0.5 to 1.5 mu m and a photonic crystal, considering the relationship between the refractive index of GaN (2.6), the epoxy lens refractive index (1.5) of the LED from which light is extracted, the driving voltage, and the like. The diameter of the groove 24 is preferably formed approximately 0.3 to 0.6 times the period.

또한, 홈(24)의 깊이는 상기 n-형 반도체층(21)의 1/3 이상의 깊이로 형성하는 것이 바람직하다.In addition, the depth of the groove 24 is preferably formed to be 1/3 or more of the depth of the n-type semiconductor layer 21.

이와 같은 광결정 구조(80)가 형성되면, 이러한 광결정 구조(80)에서는 굴절률의 배치가 주기적으로 이루어지게 된다. 이때, 광결정 구조(80)의 주기(periodicity)가 방출되는 빛의 파장의 대략 절반 정도가 될 때, 주기적으로 굴절률(refractive index)이 변하는 광결정 격자에 의한 광자의 다중 산란에 의해 광금지대(photonic band gap)가 형성된다. When the photonic crystal structure 80 is formed, the refractive index is arranged periodically in the photonic crystal structure 80. At this time, when the period (periodicity) of the photonic crystal structure 80 is about half of the wavelength of the emitted light, the photonic zone by the multi-scattering of photons by the photonic crystal lattice of which the refractive index changes periodically band gap) is formed.

이러한 광결정 구조(80)에서 빛은 일정한 방향으로 효과적으로 방출되는 속성을 갖는다. 즉, 이와 같은 광금지대가 형성되므로, 발광되는 빛은 광결정 구조(80)를 이루는 홀(24)로 유입되거나 통과되지 못하고, 이 홀(24) 이외의 부분을 통하여 추출되는 현상이 발생될 수 있다.In this photonic crystal structure 80, light has a property of being effectively emitted in a constant direction. That is, since the light blocking zone is formed, light emitted may not flow into or pass through the holes 24 constituting the photonic crystal structure 80, and may be extracted through portions other than the holes 24. .

상기와 같은 현상은 주기성을 갖는 다수의 홀(24)에 의하여 형성되는 광결정 구조(80)에서의 광자(photon)의 거동에 의하여 설명될 수 있다.This phenomenon can be explained by the behavior of photons in the photonic crystal structure 80 formed by the plurality of holes 24 having periodicity.

즉, 주기성을 갖는 다수의 홀(24)에 의하여 광결정 구조(80)에서는 유전상수(dielectric constant)가 주기적으로 변조되고, 이러한 광결정 구조(80)를 전파하는 빛의 거동에 영향을 주게 된다.That is, the dielectric constant is periodically modulated in the photonic crystal structure 80 by the plurality of holes 24 having periodicity, and affects the behavior of light propagating through the photonic crystal structure 80.

특히, 광결정 구조(80)의 광금지대가 LED에서 방출하는 빛의 파장대역에 속하거나 포함되는 경우에, 이러한 LED의 광자는 LED에서 마치 전반사 현상에 의하여 반사되는 것과 같은 효과가 발생한다.In particular, when the light blocking zone of the photonic crystal structure 80 belongs to or is included in the wavelength band of the light emitted from the LED, the photon of the LED produces an effect as if it is reflected by the total reflection phenomenon in the LED.

이러한 광금지대는 마치, 결정구조에서의 전자와 유사성을 가지며, 이러한 광금지대에 속하는 광자는 광결정 구조(80)내에서 자유로이 전파되지 못한다.This photoblock has similarities to electrons in the crystal structure, and photons belonging to the photoblock are not freely propagated in the photonic crystal structure 80.

따라서, LED에서 방출되는 빛의 광자가 모두 광금지대에 속하게 한다면 모든 광자들은 전반사 현상과 유사하게 LED를 빠져나오게 되며, 결국 발광 효율이 증가하게 되는 것이다.Therefore, if all of the photons of the light emitted from the LED belongs to the photoban zone, all the photons exit the LED similar to the total reflection phenomenon, and eventually the luminous efficiency is increased.

상술한 바와 같이, 광결정 구조(80)가 형성된 LED 구조(100)의 상하측에는, 도 14에서 도시하는 바와 같이, 각각 n-형 전극패드(91)와 p-형 전극패드(92)가 형성되어 LED 구조(100)가 완성된다.As described above, as shown in FIG. 14, n-type electrode pads 91 and p-type electrode pads 92 are formed on the upper and lower sides of the LED structure 100 on which the photonic crystal structure 80 is formed. LED structure 100 is completed.

상기 실시예는 본 발명의 기술적 사상을 구체적으로 설명하기 위한 일례로서, 본 발명은 상기 실시예에 한정되지 않으며, 다양한 형태의 변형이 가능하고, 이러한 기술적 사상의 여러 실시 형태는 모두 본 발명의 보호범위에 속함은 당연하다.The above embodiment is an example for explaining the technical idea of the present invention in detail, and the present invention is not limited to the above embodiment, various modifications are possible, and various embodiments of the technical idea are all protected by the present invention. It belongs to the scope.

이상과 같은 본 발명은 다음과 같은 효과가 있는 것이다.The present invention as described above has the following effects.

첫째, 본 발명은 광결정 구조를 형성함에 있어서, 유전체층을 보호막으로 이용하여 건식 식각 공정을 통하여 형성되므로 보다 정밀한 구조의 광결정 구조를 형성할 수 있다.First, in the formation of the photonic crystal structure, since the dielectric layer is used as a protective film through a dry etching process, a more precise photonic crystal structure can be formed.

둘때, 상기와 같이 형성된 광결정 구조에 의하여 LED의 광 추출 효율을 향상시킬 수 있다.In both cases, the light extraction efficiency of the LED can be improved by the photonic crystal structure formed as described above.

셋째, 본 발명은 n-형 반도체층 위에 선택적인 식각을 통하여 박막 내의 스트레인(strain)의 완화를 통하여 내부양자효율을 향상시킬 수 있다.Third, the present invention can improve internal quantum efficiency through relaxation of strain in the thin film through selective etching on the n-type semiconductor layer.

Claims (18)

기판상에 복수의 반도체층들을 성장시키는 단계와; Growing a plurality of semiconductor layers on the substrate; 상기 반도체층 상에 제1전극을 형성하는 단계와; Forming a first electrode on the semiconductor layer; 상기 기판을 제거하는 단계와; Removing the substrate; 상기 기판이 제거된 면에 드러난 반도체층 위에 유전체층을 형성하는 단계와;Forming a dielectric layer over the semiconductor layer exposed on the side from which the substrate is removed; 상기 유전체층에 다수의 홀을 형성하는 단계와;Forming a plurality of holes in the dielectric layer; 상기 다수의 홀이 형성된 유전체층 면을 식각하여, 상기 기판이 제거된 면에 드러난 반도체층에 다수의 홈을 형성하는 단계와;Etching a surface of the dielectric layer in which the plurality of holes are formed to form a plurality of grooves in the semiconductor layer exposed on the surface from which the substrate is removed; 상기 유전체층을 제거하는 단계와;Removing the dielectric layer; 상기 유전체층이 제거된 반도체층 면에 제2전극을 형성하는 단계를 포함하여 구성되는 것을 특징으로 하는 수직형 발광 소자의 제조방법.And forming a second electrode on a surface of the semiconductor layer from which the dielectric layer has been removed. 제 1항에 있어서, 상기 복수의 반도체층들을 성장시키는 단계는,The method of claim 1, wherein the growing of the plurality of semiconductor layers comprises: 상기 기판 위에 n형 반도체층을 형성하는 단계와;Forming an n-type semiconductor layer on the substrate; 상기 n형 반도체층 위에 활성층을 형성하는 단계와;Forming an active layer on the n-type semiconductor layer; 상기 활성층 위에 p형 반도체층을 형성하는 단계를 포함하는 것을 특징으로 하는 수직형 발광 소자의 제조방법.And forming a p-type semiconductor layer over the active layer. 제 1항에 있어서, 상기 제1전극을 형성하는 단계는,The method of claim 1, wherein the forming of the first electrode comprises: 오믹전극을 형성하는 단계와;Forming an ohmic electrode; 상기 오믹전극 위에 반사전극을 포함하는 것을 특징으로 하는 수직형 발광 소자의 제조방법.The manufacturing method of the vertical light-emitting device comprising a reflective electrode on the ohmic electrode. 제 1항에 있어서, 상기 반도체층 상에 제1전극을 형성하는 단계 이후에는, 상기 제1전극 위에 반도체 기판 또는 금속으로 이루어지는 지지층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 수직형 발광 소자의 제조방법.The method of claim 1, further comprising, after forming the first electrode on the semiconductor layer, forming a support layer made of a semiconductor substrate or a metal on the first electrode. Manufacturing method. 제 1항에 있어서, 상기 유전체층은 산화물 또는 질화물인 것을 특징으로 하는 수직형 발광 소자의 제조방법.The method of claim 1, wherein the dielectric layer is an oxide or nitride. 제 1항에 있어서, 상기 홈의 깊이는, 상기 기판이 제거된 면에 드러난 반도체층의 1/3 이상 형성하는 것을 특징으로 하는 수직형 발광 소자의 제조방법.The method of claim 1, wherein the depth of the groove is formed at least 1/3 of the semiconductor layer exposed on the surface from which the substrate is removed. 제 1항에 있어서, 상기 다수의 홀 또는 홈은 규칙성을 가지는 패턴으로 형성되는 것을 특징으로 하는 수직형 발광 소자의 제조방법.The method of claim 1, wherein the plurality of holes or grooves are formed in a pattern having regularity. 제 7항에 있어서, 상기 다수의 홀 또는 홈의 패턴은, 정방형, 복수의 사선형, 적어도 둘 이상의 구획이 나뉘어진 복수의 사선형, 적어도 둘 이상의 구획이 나뉘어지며 서로 반대방향을 향하는 복수의 사선형, 복수의 동심원형, 다각형, 사다리꼴, 및 방사형 중 어느 하나인 것을 특징으로 하는 수직형 발광 소자의 제조방법.The method of claim 7, wherein the plurality of holes or grooves have a square shape, a plurality of diagonal lines, a plurality of diagonal lines in which at least two or more partitions are divided, and a plurality of yarns in which at least two or more sections are divided and facing in opposite directions. The method of manufacturing a vertical light emitting device, characterized in that any one of a linear, a plurality of concentric, polygonal, trapezoidal, and radial. 제 1항에 있어서, 상기 다수의 홀 또는 홈을 형성하는 단계는, 건식 식각법을 이용하는 것을 특징으로 하는 수직형 발광 소자의 제조방법.The method of claim 1, wherein the forming of the plurality of holes or grooves uses a dry etching method. 제 9항에 있어서, 상기 건식 식각법은, RIE(reactive ion etching) 또는 ICP-RIE(inductively coupled plasma reactive ion etching) 인 것을 특징으로 하는 수직형 발광 소자의 제조방법.The method of claim 9, wherein the dry etching method is reactive ion etching (RIE) or inductively coupled plasma reactive ion etching (ICP-RIE). 제 9항에 있어서, 상기 건식 식각은, Ar, BCl3, Cl2, CF4, CHF3 중 적어도 어느 하나를 이용하는 것을 특징으로 하는 수직형 발광 소자의 제조방법.The method of claim 9, wherein the dry etching comprises at least one of Ar, BCl 3 , Cl 2, CF 4 , and CHF 3 . 제 1항에 있어서, 상기 유전체층에 다수의 홀을 형성하는 단계는, 상기 제2전극 형성 영역을 제외한 부분에 형성하는 것을 특징으로 하는 수직형 발광 소자의 제조방법.The method of claim 1, wherein the forming of the plurality of holes in the dielectric layer is performed in a portion other than the second electrode formation region. 지지층과;A support layer; 상기 지지층 위에 위치하는 제1전극과;A first electrode on the support layer; 상기 제1전극 위에 위치하는 제1반도체층과;A first semiconductor layer on the first electrode; 상기 제1반도체층 위에 위치하는 발광층과;A light emitting layer on the first semiconductor layer; 상기 발광층 위에 위치하는 제2반도체층과;A second semiconductor layer on the light emitting layer; 상기 제2반도체층의 1/3 이상의 깊이로 형성되는 다수의 홈으로 이루어지는 광결정과;A photonic crystal comprising a plurality of grooves formed to a depth of 1/3 or more of the second semiconductor layer; 상기 광결정 위에 위치하는 제2전극을 포함하여 구성되는 것을 특징으로 하는 수직형 발광 소자.And a second electrode positioned on the photonic crystal. 제 13항에 있어서, 상기 광결정은 0.5 내지 1.5㎛의 주기를 갖는 것을 특징으로 하는 수직형 발광 소자.The vertical light emitting device of claim 13, wherein the photonic crystal has a period of 0.5 to 1.5 μm. 제 13항에 있어서, 상기 광결정의 홈의 직경은, 상기 주기의 0.3 내지 0.6배에 해당하는 것을 특징으로 하는 수직형 발광 소자.14. The vertical light emitting device of claim 13, wherein a diameter of the groove of the photonic crystal corresponds to 0.3 to 0.6 times the period. 제 13항에 있어서, 상기 제1전극은 오믹전극과 반사전극 중 적어도 어느 하나인 것을 특징으로 하는 수직형 발광 소자.The vertical light emitting device of claim 13, wherein the first electrode is at least one of an ohmic electrode and a reflective electrode. 제 13항에 있어서, 상기 제2반도체층은, n-형 질화물 반도체층인 것을 특징으로 하는 수직형 발광 소자.14. The vertical light emitting device of claim 13, wherein the second semiconductor layer is an n-type nitride semiconductor layer. 제 13항에 있어서, 상기 광결정의 패턴은, 정방형, 복수의 사선형, 적어도 둘 이상의 구획이 나뉘어진 복수의 사선형, 적어도 둘 이상의 구획이 나뉘어지며 서로 반대방향을 향하는 복수의 사선형, 복수의 동심원형, 다각형, 사다리꼴, 및 방사형 중 어느 하나인 것을 특징으로 하는 수직형 발광 소자.The method of claim 13, wherein the photonic crystal pattern includes a square, a plurality of diagonals, a plurality of diagonals divided into at least two partitions, a plurality of diagonals divided into at least two partitions, and facing in opposite directions. Vertical light emitting device, characterized in that any one of concentric, polygonal, trapezoidal, and radial.
KR1020060041006A 2006-05-08 2006-05-08 Led having vertical structure and method for making the same KR100736623B1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
KR1020060041006A KR100736623B1 (en) 2006-05-08 2006-05-08 Led having vertical structure and method for making the same
EP07107655A EP1855327B1 (en) 2006-05-08 2007-05-07 Semiconductor light emitting device
EP14175657.7A EP2808909B1 (en) 2006-05-08 2007-05-07 Semiconductor light emitting device
EP11167031A EP2362439A3 (en) 2006-05-08 2007-05-07 Semiconductor light emitting device
EP11167038A EP2362442A3 (en) 2006-05-08 2007-05-07 Method for manufacturing a semiconductor light emitting device
EP11167034A EP2362440A3 (en) 2006-05-08 2007-05-07 Semiconductor light emitting device
US11/797,727 US7652295B2 (en) 2006-05-08 2007-05-07 Light emitting device having light extraction structure and method for manufacturing the same
EP11167036.0A EP2362441B1 (en) 2006-05-08 2007-05-07 Semiconductor light emitting device
CNA2007101049636A CN101071840A (en) 2006-05-08 2007-05-08 Light emitting device and method for manufacturing the same
JP2007123894A JP5179087B2 (en) 2006-05-08 2007-05-08 Light emitting element
CN201410116298.2A CN103928580B (en) 2006-05-08 2007-05-08 Light emitting device
US12/637,661 US7939840B2 (en) 2006-05-08 2009-12-14 Light emitting device having light extraction structure and method for manufacturing the same
US12/637,653 US8008103B2 (en) 2006-05-08 2009-12-14 Light emitting device having light extraction structure and method for manufacturing the same
US12/637,646 US7893451B2 (en) 2006-05-08 2009-12-14 Light emitting device having light extraction structure and method for manufacturing the same
US12/637,637 US8003993B2 (en) 2006-05-08 2009-12-14 Light emitting device having light extraction structure
US13/214,871 US8283690B2 (en) 2006-05-08 2011-08-22 Light emitting device having light extraction structure and method for manufacturing the same
US13/612,343 US8648376B2 (en) 2006-05-08 2012-09-12 Light emitting device having light extraction structure and method for manufacturing the same
JP2013001743A JP2013062552A (en) 2006-05-08 2013-01-09 Light-emitting device
US14/151,613 US9246054B2 (en) 2006-05-08 2014-01-09 Light emitting device having light extraction structure and method for manufacturing the same
US14/974,991 US9837578B2 (en) 2006-05-08 2015-12-18 Light emitting device having light extraction structure and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020060041006A KR100736623B1 (en) 2006-05-08 2006-05-08 Led having vertical structure and method for making the same
KR1020070037415A KR20080093557A (en) 2007-04-17 2007-04-17 Nitride light emitting device
KR1020070037416A KR20080093558A (en) 2007-04-17 2007-04-17 Nitride light emitting device
KR1020070037414A KR101317632B1 (en) 2007-04-17 2007-04-17 Nitride light emitting device and method of making the same

Publications (1)

Publication Number Publication Date
KR100736623B1 true KR100736623B1 (en) 2007-07-09

Family

ID=38337661

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060041006A KR100736623B1 (en) 2006-05-08 2006-05-08 Led having vertical structure and method for making the same

Country Status (5)

Country Link
US (9) US7652295B2 (en)
EP (6) EP2362439A3 (en)
JP (2) JP5179087B2 (en)
KR (1) KR100736623B1 (en)
CN (2) CN103928580B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834033B1 (en) 2007-04-20 2008-05-30 삼성전기주식회사 Nitride simiconductor light emitting diode and fabrication method thereof
KR101163838B1 (en) * 2009-10-19 2012-07-09 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508902B2 (en) * 2005-02-21 2016-11-29 Epistar Corporation Optoelectronic semiconductor device
US8278128B2 (en) * 2008-02-01 2012-10-02 The Regents Of The University Of California Enhancement of optical polarization of nitride light-emitting diodes by wafer off-axis cut
US7928462B2 (en) * 2006-02-16 2011-04-19 Lg Electronics Inc. Light emitting device having vertical structure, package thereof and method for manufacturing the same
KR100736623B1 (en) * 2006-05-08 2007-07-09 엘지전자 주식회사 Led having vertical structure and method for making the same
JP5326225B2 (en) * 2006-05-29 2013-10-30 日亜化学工業株式会社 Nitride semiconductor light emitting device
KR101341374B1 (en) * 2007-07-30 2013-12-16 삼성전자주식회사 Photonic crystal light emitting device and manufacturing method of the same
JP4829190B2 (en) * 2007-08-22 2011-12-07 株式会社東芝 Light emitting element
KR100921466B1 (en) * 2007-08-30 2009-10-13 엘지전자 주식회사 Nitride light emitting device and method of making the same
US8378567B2 (en) * 2007-11-21 2013-02-19 Industrial Technology Research Institute Light-polarizing structure
US8872204B2 (en) * 2007-11-23 2014-10-28 Epistar Corporation Light-emitting device having a trench in a semiconductor layer
EP2225781B1 (en) * 2007-12-18 2017-07-12 Koninklijke Philips N.V. Photonic crystal led
TW200929601A (en) * 2007-12-26 2009-07-01 Epistar Corp Semiconductor device
KR101459764B1 (en) * 2008-01-21 2014-11-12 엘지이노텍 주식회사 Nitride light emitting device
WO2009097622A1 (en) * 2008-02-01 2009-08-06 The Regents Of The University Of California Enhancement of optical polarization of nitride light-emitting diodes by increased indium incorporation
KR101499952B1 (en) * 2008-02-20 2015-03-06 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
CN101257075B (en) * 2008-03-13 2010-05-12 鹤山丽得电子实业有限公司 Light emitting diode device and manufacturing method thereof
KR100914406B1 (en) * 2008-03-24 2009-08-31 주식회사 엘 앤 에프 Method of preparing positive active material for rechargeable lithium battery
JP2011515859A (en) * 2008-03-26 2011-05-19 ラティス パワー (チアンシ) コーポレイション Semiconductor light-emitting device with highly reflective ohmic electrodes
KR20090106299A (en) 2008-04-05 2009-10-08 송준오 group 3 nitride-based semiconductor light emitting diodes with ohmic contact light extraction structured layers and methods to fabricate them
KR100941616B1 (en) * 2008-05-15 2010-02-11 주식회사 에피밸리 Semiconductor light emitting device
CN102354722B (en) * 2008-05-26 2015-10-14 晶元光电股份有限公司 Lighting device with high power
TW201005997A (en) * 2008-07-24 2010-02-01 Advanced Optoelectronic Tech Rough structure of optoeletronics device and fabrication thereof
KR20100050430A (en) * 2008-11-04 2010-05-13 삼성엘이디 주식회사 Light emitting device with fine pattern
KR101064016B1 (en) 2008-11-26 2011-09-08 엘지이노텍 주식회사 Light emitting device and manufacturing method
KR101040462B1 (en) 2008-12-04 2011-06-09 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
KR101029299B1 (en) * 2008-12-30 2011-04-18 서울대학교산학협력단 Organic light emitting devices and fabrication method thereof
KR101134810B1 (en) 2009-03-03 2012-04-13 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
KR100969160B1 (en) * 2009-03-10 2010-07-21 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
US8525198B2 (en) * 2009-03-31 2013-09-03 Xidian University Ultraviolet light emitting diode devices and methods for fabricating the same
KR101154596B1 (en) * 2009-05-21 2012-06-08 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
DE102009023351A1 (en) * 2009-05-29 2010-12-02 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
WO2010141943A1 (en) * 2009-06-05 2010-12-09 The Regents Of The University Of California LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES
US8542355B2 (en) * 2009-07-08 2013-09-24 Hewlett-Packard Development Company, L.P. Light amplifying devices for surface enhanced raman spectroscopy
KR101081166B1 (en) * 2009-09-23 2011-11-07 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
KR20110043282A (en) * 2009-10-21 2011-04-27 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
KR101039930B1 (en) * 2009-10-23 2011-06-09 엘지이노텍 주식회사 Light emitting device package and method for fabricating the same
KR101712094B1 (en) * 2009-11-27 2017-03-03 포항공과대학교 산학협력단 Vertical gallium nitride-based light emitting diode and method of manufacturing the same
KR101103892B1 (en) * 2009-12-08 2012-01-12 엘지이노텍 주식회사 Light emitting device and light emitting device package
DE102009057780A1 (en) * 2009-12-10 2011-06-16 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and photonic crystal
KR100993094B1 (en) * 2010-02-01 2010-11-08 엘지이노텍 주식회사 Light emitting device, and light emitting device package
KR101134802B1 (en) * 2010-02-01 2012-04-13 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
KR100993093B1 (en) * 2010-02-04 2010-11-08 엘지이노텍 주식회사 Light emitting device package
TW201133980A (en) * 2010-02-08 2011-10-01 Moser Baer India Ltd Method of manufacturing organic lighting device
JP5678629B2 (en) * 2010-02-09 2015-03-04 ソニー株式会社 Method for manufacturing light emitting device
KR100969100B1 (en) 2010-02-12 2010-07-09 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
KR100993077B1 (en) * 2010-02-17 2010-11-08 엘지이노텍 주식회사 Semiconductor light emitting device, fabrication method of the semiconductor light emitting device, and light emitting device package
US8084776B2 (en) * 2010-02-25 2011-12-27 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting system
KR101014155B1 (en) * 2010-03-10 2011-02-10 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
JP2011192880A (en) * 2010-03-16 2011-09-29 Toshiba Corp Semiconductor light emitting element, and liquid crystal display device
KR101039937B1 (en) * 2010-04-28 2011-06-09 엘지이노텍 주식회사 Light emitting device, method for fabricating the same, light emitting device package and lighting system
KR101081169B1 (en) * 2010-04-05 2011-11-07 엘지이노텍 주식회사 Light emitting device and method for fabricating the same, light emitting device package, lighting system
US8378367B2 (en) 2010-04-16 2013-02-19 Invenlux Limited Light-emitting devices with vertical light-extraction mechanism and method for fabricating the same
US8538224B2 (en) 2010-04-22 2013-09-17 3M Innovative Properties Company OLED light extraction films having internal nanostructures and external microstructures
KR101039948B1 (en) * 2010-04-23 2011-06-09 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
TWI455377B (en) * 2010-04-23 2014-10-01 Everlight Electronics Co Ltd Light emitting diode structure and fabrication method thereof
KR101047720B1 (en) * 2010-04-23 2011-07-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package using the light emitting device
US8614452B2 (en) * 2010-04-26 2013-12-24 Gwangju Institute Of Science And Technology Light-emitting diode having zinc oxide nanorods and method of fabricating the same
KR101039880B1 (en) 2010-04-28 2011-06-09 엘지이노텍 주식회사 Light emitting device, method for fabricating the same and light emitting device package
DE102010020789B4 (en) * 2010-05-18 2021-05-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor chip and method for its production
JP5687858B2 (en) * 2010-07-30 2015-03-25 スタンレー電気株式会社 Semiconductor light emitting device
US8476652B2 (en) 2010-07-30 2013-07-02 Invenlux Corporation Three-dimensional light-emitting devices and method for fabricating the same
US8723201B2 (en) 2010-08-20 2014-05-13 Invenlux Corporation Light-emitting devices with substrate coated with optically denser material
US8466478B2 (en) * 2010-09-07 2013-06-18 Chi Mei Lighting Technology Corporation Light emitting device utilizing rod structure
TWI540939B (en) 2010-09-14 2016-07-01 半導體能源研究所股份有限公司 Solid-state light-emitting element, light-emitting device, and lighting device
JP5827104B2 (en) 2010-11-19 2015-12-02 株式会社半導体エネルギー研究所 Lighting device
CN102479905A (en) * 2010-11-23 2012-05-30 孙智江 Multi-layer conductive transparent film and method for increasing light emitting efficiency of light emitting device
EP2458412A1 (en) 2010-11-24 2012-05-30 Université de Liège Method for manufacturing an improved optical layer of a light emitting device, and light emitting device with surface nano-micro texturation based on radiation speckle lithography.
CN102097568A (en) * 2010-12-15 2011-06-15 武汉迪源光电科技有限公司 Light emitting diode with oxide nano array structure and preparation method thereof
TWI562422B (en) 2010-12-16 2016-12-11 Semiconductor Energy Lab Co Ltd Light-emitting device and lighting device
KR101215299B1 (en) * 2010-12-30 2012-12-26 포항공과대학교 산학협력단 Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
TWI456791B (en) * 2011-01-20 2014-10-11 Hon Hai Prec Ind Co Ltd Light-emitting semiconductor chip and method for manufacturing the same
GB2487917B (en) * 2011-02-08 2015-03-18 Seren Photonics Ltd Semiconductor devices and fabrication methods
CN102157645A (en) * 2011-02-10 2011-08-17 武汉迪源光电科技有限公司 Light emitting diode and preparation method thereof
US8735874B2 (en) 2011-02-14 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and method for manufacturing the same
KR101922603B1 (en) 2011-03-04 2018-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device, lighting device, substrate, and manufacturing method of substrate
WO2012128188A1 (en) * 2011-03-23 2012-09-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and lighting device
JP2012204103A (en) * 2011-03-24 2012-10-22 Toshiba Corp Organic electroluminescent element, display device and luminaire
TWI543386B (en) * 2011-03-28 2016-07-21 財團法人工業技術研究院 Circular photonic crystal structure, light emitting diode device and photoelectric conversion device
CN102760802B (en) * 2011-04-29 2015-03-11 清华大学 Led
CN102760804B (en) * 2011-04-29 2015-01-21 清华大学 Light-emitting diode
CN102760803B (en) * 2011-04-29 2015-08-26 清华大学 Light-emitting diode
KR101983773B1 (en) * 2011-06-17 2019-05-29 엘지이노텍 주식회사 Lihgt emitting device and light emitting device package including the same
JP5315513B2 (en) * 2011-07-12 2013-10-16 丸文株式会社 Light emitting device and manufacturing method thereof
KR20130012376A (en) * 2011-07-25 2013-02-04 삼성전자주식회사 Manufacturing method of semiconductor light emitting device
US20140191194A1 (en) * 2011-08-09 2014-07-10 Samsung Electronics Co., Ltd. Nitride semiconductor light-emitting element
JP5501319B2 (en) * 2011-09-24 2014-05-21 株式会社東芝 Semiconductor light emitting device
JP5988568B2 (en) * 2011-11-14 2016-09-07 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and manufacturing method thereof
KR101969334B1 (en) * 2011-11-16 2019-04-17 엘지이노텍 주식회사 Light emitting device and light emitting apparatus having the same
US8759128B2 (en) * 2012-03-22 2014-06-24 SemiLEDs Optoelectronics Co., Ltd. Light emitting diode (LED) die having recessed electrode and light extraction structures and method of fabrication
CN102623603A (en) * 2012-03-31 2012-08-01 华灿光电股份有限公司 Semiconductor light-emitting device and preparation method thereof
KR101763460B1 (en) * 2012-04-02 2017-07-31 아사히 가세이 가부시키가이샤 Optical substrate, semiconductor light-emitting element, and method for producing semiconductor light-emitting element
KR101311772B1 (en) * 2012-05-25 2013-10-14 고려대학교 산학협력단 Transparent electrode and fabrication method of the same
DE102012107001A1 (en) * 2012-07-31 2014-02-06 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
JP5792694B2 (en) * 2012-08-14 2015-10-14 株式会社東芝 Semiconductor light emitting device
CN103700734B (en) * 2012-09-28 2017-01-25 上海蓝光科技有限公司 Manufacturing method of light-emitting diode
US8907365B2 (en) * 2012-10-01 2014-12-09 Corning Incorporated OLEDs comprising light extraction substructures and display devices incorporating the same
CN102931308B (en) * 2012-11-19 2015-05-06 中国科学院半导体研究所 Preparation method of light emitting diode with photonic crystals with gradually-changed radius
KR20140065105A (en) * 2012-11-21 2014-05-29 서울바이오시스 주식회사 High efficiency light emitting diode
CN103050600B (en) * 2012-12-21 2015-12-09 华灿光电股份有限公司 A kind of preparation method of chip of light-emitting diode
KR20140086624A (en) * 2012-12-28 2014-07-08 삼성전자주식회사 Nitride-based semiconductor light-emitting device
CN103022310B (en) * 2012-12-30 2016-03-23 佛山市国星半导体技术有限公司 The light-extraction layer of LED luminescence chip and LED matrix
US20140217355A1 (en) * 2013-02-05 2014-08-07 Rensselaer Polytechnic Institute Semiconductor light emitting device
CN103151440A (en) * 2013-03-25 2013-06-12 中国科学院半导体研究所 Photonic crystal LED (Light Emitting Diode) structure with gradually-varied refractive index
KR101580619B1 (en) 2013-07-17 2015-12-28 마루분 가부시키가이샤 Semiconductor light-emitting element and production method
US9048387B2 (en) 2013-08-09 2015-06-02 Qingdao Jason Electric Co., Ltd. Light-emitting device with improved light extraction efficiency
US9190563B2 (en) 2013-11-25 2015-11-17 Samsung Electronics Co., Ltd. Nanostructure semiconductor light emitting device
KR101608335B1 (en) * 2013-12-02 2016-04-01 코닝정밀소재 주식회사 Organic light emitting diodes
JP6206159B2 (en) * 2013-12-17 2017-10-04 三菱電機株式会社 Manufacturing method of semiconductor device
TW201530815A (en) * 2014-01-23 2015-08-01 Lextar Electronics Corp Semiconductor light emitting structure
CN105934833B (en) 2014-03-06 2017-09-15 丸文株式会社 Deep ultraviolet LED and its manufacture method
US10663142B2 (en) * 2014-03-31 2020-05-26 Bridgelux Inc. Light-emitting device with reflective ceramic substrate
DE102014108301A1 (en) * 2014-06-12 2015-12-17 Osram Opto Semiconductors Gmbh Semiconductor chip and method for producing a semiconductor chip
CN104218134B (en) * 2014-09-15 2017-02-15 映瑞光电科技(上海)有限公司 LED (Light Emitting Diode) vertical chip structure with special coarsening morphology and preparation method thereof
EP3246956A4 (en) 2015-01-16 2018-05-23 Marubun Corporation Deep ultraviolet led and method for manufacturing same
JP2016178234A (en) * 2015-03-20 2016-10-06 株式会社東芝 Semiconductor light-receiving device
TWI637530B (en) * 2015-09-03 2018-10-01 丸文股份有限公司 Deep ultraviolet LED and manufacturing method thereof
KR101811819B1 (en) 2016-03-30 2017-12-22 마루분 가부시키가이샤 Deep ultraviolet LED and method for manufacturing the same
US9502601B1 (en) 2016-04-01 2016-11-22 Sunpower Corporation Metallization of solar cells with differentiated P-type and N-type region architectures
EP3270128A1 (en) * 2016-07-15 2018-01-17 Micos Engineering GmbH Waveguide spectrometer to carry out the integrated interferogram scanning
EP3270127A1 (en) 2016-07-15 2018-01-17 Micos Engineering GmbH Miniaturized waveguide imaging spectrometer
WO2018080830A1 (en) * 2016-10-28 2018-05-03 3M Innovative Properties Company Nanostructured article
CN106784183B (en) * 2016-12-19 2019-06-11 华灿光电(浙江)有限公司 A kind of LED chip and preparation method thereof
DE102017105397A1 (en) * 2017-03-14 2018-09-20 Osram Opto Semiconductors Gmbh Process for the production of light emitting diodes and light emitting diode
EP3422411B1 (en) * 2017-06-30 2020-05-20 Nichia Corporation Light emitting device and method of manufacturing same
US20190165209A1 (en) * 2017-11-29 2019-05-30 Facebook Technologies, Llc Photonic crystals in micro light-emitting diode devices
CN108063365B (en) * 2017-12-12 2020-11-13 中国科学院半导体研究所 Preparation method of electric pumping perovskite quantum dot laser
JP7316610B6 (en) 2018-01-26 2024-02-19 丸文株式会社 Deep ultraviolet LED and its manufacturing method
CN110535033B (en) * 2018-05-24 2021-05-25 智林企业股份有限公司 Surface emitting laser device of electro-excited photonic crystal
CN109273501B (en) 2018-09-25 2020-08-21 京东方科技集团股份有限公司 Flexible substrate, manufacturing method thereof and display device
KR20200076969A (en) * 2018-12-20 2020-06-30 엘지디스플레이 주식회사 Lighting apparatus using organic light emitting diode
US11322669B2 (en) * 2018-12-21 2022-05-03 Lumileds Llc Color uniformity in converted light emitting diode using nano-structures
US11041983B2 (en) * 2018-12-21 2021-06-22 Lumileds Llc High brightness directional direct emitter with photonic filter of angular momentum
US10804440B2 (en) 2018-12-21 2020-10-13 Lumileds Holding B.V. Light extraction through adhesive layer between LED and converter
US20220082742A1 (en) * 2018-12-21 2022-03-17 Lumileds Llc High brightness directional direct emitter with photonic filter of angular momentum
CN109828404B (en) * 2019-01-31 2022-03-18 京东方科技集团股份有限公司 Array substrate, preparation method thereof and display panel
US11588137B2 (en) 2019-06-05 2023-02-21 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11659758B2 (en) 2019-07-05 2023-05-23 Semiconductor Energy Laboratory Co., Ltd. Display unit, display module, and electronic device
KR20220031679A (en) 2019-07-12 2022-03-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Function panel, display device, input/output device, information processing device
WO2021023374A1 (en) * 2019-08-06 2021-02-11 Osram Opto Semiconductors Gmbh Optoelectronic device and method for producing thereof
CN110379899A (en) * 2019-08-26 2019-10-25 厦门乾照光电股份有限公司 A kind of LED chip and preparation method thereof
FR3105586B1 (en) * 2019-12-23 2023-07-21 Commissariat Energie Atomique Method for manufacturing a light-emitting diode comprising a step of dimensioning a semiconductor layer
FR3105587B1 (en) * 2019-12-23 2022-01-07 Commissariat Energie Atomique Method for manufacturing a light-emitting diode with an extraction layer comprising a step of dimensioning a semiconductor layer
CN113823756A (en) * 2020-06-19 2021-12-21 北京小米移动软件有限公司 Display module, display panel and electronic equipment
US11204153B1 (en) 2021-02-22 2021-12-21 Lumileds Llc Light-emitting device assembly with emitter array, micro- or nano-structured lens, and angular filter
US11508888B2 (en) 2021-02-22 2022-11-22 Lumileds Llc Light-emitting device assembly with emitter array, micro- or nano-structured lens, and angular filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029383A (en) * 2003-09-22 2005-03-28 엘지이노텍 주식회사 Light emitting diode and method for manufacturing light emitting diode

Family Cites Families (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739217A (en) * 1969-06-23 1973-06-12 Bell Telephone Labor Inc Surface roughening of electroluminescent diodes
US4868614A (en) * 1981-02-09 1989-09-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting semiconductor device matrix with non-single-crystalline semiconductor
US4407695A (en) * 1981-12-31 1983-10-04 Exxon Research And Engineering Co. Natural lithographic fabrication of microstructures over large areas
JPS613471A (en) * 1984-06-15 1986-01-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
US5196954A (en) * 1985-08-08 1993-03-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display
US5300788A (en) * 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
US5258320A (en) * 1990-12-31 1993-11-02 Kopin Corporation Single crystal silicon arrayed devices for display panels
JP2918345B2 (en) * 1991-02-20 1999-07-12 キヤノン株式会社 Photovoltaic element
EP0536790B1 (en) * 1991-10-11 2004-03-03 Canon Kabushiki Kaisha Method for producing semiconductor articles
US5221854A (en) * 1991-11-18 1993-06-22 United Solar Systems Corporation Protective layer for the back reflector of a photovoltaic device
JP2830591B2 (en) * 1992-03-12 1998-12-02 日本電気株式会社 Semiconductor optical function device
JP3230638B2 (en) * 1993-02-10 2001-11-19 シャープ株式会社 Light emitting diode manufacturing method
US5510156A (en) * 1994-08-23 1996-04-23 Analog Devices, Inc. Micromechanical structure with textured surface and method for making same
JPH10123522A (en) 1996-10-21 1998-05-15 Sumitomo Bakelite Co Ltd Substrate for liquid crystal display element
US5955749A (en) 1996-12-02 1999-09-21 Massachusetts Institute Of Technology Light emitting device utilizing a periodic dielectric structure
JPH10242557A (en) * 1997-02-21 1998-09-11 Sony Corp Manufacture of semiconductor light emitting device
GB9710062D0 (en) * 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US6051149A (en) * 1998-03-12 2000-04-18 Micron Technology, Inc. Coated beads and process utilizing such beads for forming an etch mask having a discontinuous regular pattern
US6504180B1 (en) * 1998-07-28 2003-01-07 Imec Vzw And Vrije Universiteit Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom
US6134043A (en) * 1998-08-11 2000-10-17 Massachusetts Institute Of Technology Composite photonic crystals
US6097041A (en) * 1998-08-24 2000-08-01 Kingmax Technology Inc. Light-emitting diode with anti-reflector
JP3469484B2 (en) 1998-12-24 2003-11-25 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
JP2001044453A (en) * 1999-07-30 2001-02-16 Fujitsu Ltd Photodetector
JP3586594B2 (en) * 1999-08-25 2004-11-10 シャープ株式会社 Semiconductor light emitting device and method of manufacturing the same
EP1104031B1 (en) * 1999-11-15 2012-04-11 Panasonic Corporation Nitride semiconductor laser diode and method of fabricating the same
AU4139101A (en) * 1999-12-03 2001-06-12 Cree Lighting Company Enhanced light extraction in leds through the use of internal and external optical elements
US6835963B2 (en) * 1999-12-22 2004-12-28 Kabushiki Kaisha Toshiba Light-emitting element and method of fabrication thereof
US6277665B1 (en) 2000-01-10 2001-08-21 United Epitaxy Company, Ltd. Fabrication process of semiconductor light-emitting device with enhanced external quantum efficiency
JP2001298212A (en) * 2000-02-07 2001-10-26 Sharp Corp Semiconductor light-emitting element and method of manufacturing the same
JP2001281473A (en) * 2000-03-28 2001-10-10 Toshiba Corp Photonics crystal and method for manufacturing the same, optical module as well as optical system
DE60133970D1 (en) * 2000-06-21 2008-06-26 Matsushita Electric Ind Co Ltd Optical fiber with photonic bandgap structure
US6562648B1 (en) * 2000-08-23 2003-05-13 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
US7064355B2 (en) * 2000-09-12 2006-06-20 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
US6436810B1 (en) * 2000-09-27 2002-08-20 Institute Of Microelectronics Bi-layer resist process for dual damascene
FR2824228B1 (en) * 2001-04-26 2003-08-01 Centre Nat Rech Scient ELECTROLUMINESCENT DEVICE WITH LIGHT EXTRACTOR
DZ3069A1 (en) 2001-04-30 2004-09-14 Bachir Hihi Method for increasing the output power of photovoltaic cells.
JP3561244B2 (en) * 2001-07-05 2004-09-02 独立行政法人 科学技術振興機構 Two-dimensional photonic crystal surface emitting laser
US6949395B2 (en) * 2001-10-22 2005-09-27 Oriol, Inc. Method of making diode having reflective layer
JP2003168822A (en) 2001-11-30 2003-06-13 Shin Etsu Handotai Co Ltd Light emitting element and its fabricating method
JP3802424B2 (en) 2002-01-15 2006-07-26 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP3782357B2 (en) * 2002-01-18 2006-06-07 株式会社東芝 Manufacturing method of semiconductor light emitting device
US6649990B2 (en) * 2002-03-29 2003-11-18 Intel Corporation Method and apparatus for incorporating a low contrast interface and a high contrast interface into an optical device
US20030189215A1 (en) * 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
JP4233268B2 (en) * 2002-04-23 2009-03-04 シャープ株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
JP3966067B2 (en) 2002-04-26 2007-08-29 富士ゼロックス株式会社 Surface emitting semiconductor laser device and method for manufacturing the same
US6924510B2 (en) * 2002-05-06 2005-08-02 Intel Corporation Silicon and silicon/germanium light-emitting device, methods and systems
US6829281B2 (en) * 2002-06-19 2004-12-07 Finisar Corporation Vertical cavity surface emitting laser using photonic crystals
JP2004056010A (en) * 2002-07-23 2004-02-19 Toyota Central Res & Dev Lab Inc Nitride semiconductor light emitting device
US20040067324A1 (en) * 2002-09-13 2004-04-08 Lazarev Pavel I Organic photosensitive optoelectronic device
US6810067B2 (en) * 2002-09-26 2004-10-26 Photodigm, Inc. Single mode grating-outcoupled surface emitting laser with broadband and narrow-band DBR reflectors
JP4350996B2 (en) * 2002-11-26 2009-10-28 日東電工株式会社 Organic electroluminescence device, surface light source and display device
US6900474B2 (en) * 2002-12-20 2005-05-31 Lumileds Lighting U.S., Llc Light emitting devices with compact active regions
US20040149984A1 (en) * 2003-01-31 2004-08-05 Eastman Kodak Company Color OLED display with improved emission
US6737800B1 (en) * 2003-02-18 2004-05-18 Eastman Kodak Company White-emitting organic electroluminescent device with color filters and reflective layer for causing colored light constructive interference
US7084434B2 (en) * 2003-04-15 2006-08-01 Luminus Devices, Inc. Uniform color phosphor-coated light-emitting diode
US7074631B2 (en) * 2003-04-15 2006-07-11 Luminus Devices, Inc. Light emitting device methods
US7102175B2 (en) * 2003-04-15 2006-09-05 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for fabricating the same
US6831302B2 (en) 2003-04-15 2004-12-14 Luminus Devices, Inc. Light emitting devices with improved extraction efficiency
KR100483049B1 (en) * 2003-06-03 2005-04-15 삼성전기주식회사 A METHOD OF PRODUCING VERTICAL GaN LIGHT EMITTING DIODES
US6847057B1 (en) * 2003-08-01 2005-01-25 Lumileds Lighting U.S., Llc Semiconductor light emitting devices
US7109048B2 (en) * 2003-09-30 2006-09-19 Lg Electronics Inc. Semiconductor light emitting device and fabrication method thereof
US20050082562A1 (en) * 2003-10-15 2005-04-21 Epistar Corporation High efficiency nitride based light emitting device
US7012279B2 (en) 2003-10-21 2006-03-14 Lumileds Lighting U.S., Llc Photonic crystal light emitting device
US7119372B2 (en) * 2003-10-24 2006-10-10 Gelcore, Llc Flip-chip light emitting diode
JP4590905B2 (en) * 2003-10-31 2010-12-01 豊田合成株式会社 Light emitting element and light emitting device
EP1686629B1 (en) * 2003-11-19 2018-12-26 Nichia Corporation Nitride semiconductor light emitting diode and method for manufacturing the same
TW200520266A (en) * 2003-11-21 2005-06-16 Sanken Electric Co Ltd Semiconductor luminous element and manufacturing method of the same
KR100586949B1 (en) 2004-01-19 2006-06-07 삼성전기주식회사 Flip chip type nitride semiconductor light emitting diode
US20050173714A1 (en) * 2004-02-06 2005-08-11 Ho-Shang Lee Lighting system with high and improved extraction efficiency
US7569863B2 (en) 2004-02-19 2009-08-04 Panasonic Corporation Semiconductor light emitting device
US20050205883A1 (en) * 2004-03-19 2005-09-22 Wierer Jonathan J Jr Photonic crystal light emitting device
TWI237402B (en) 2004-03-24 2005-08-01 Epistar Corp High luminant device
US7385226B2 (en) 2004-03-24 2008-06-10 Epistar Corporation Light-emitting device
KR100486177B1 (en) 2004-03-25 2005-05-06 에피밸리 주식회사 Ⅲ-Nitride Compound Semiconductor Light Emitting Device
US7615798B2 (en) 2004-03-29 2009-11-10 Nichia Corporation Semiconductor light emitting device having an electrode made of a conductive oxide
US7419912B2 (en) * 2004-04-01 2008-09-02 Cree, Inc. Laser patterning of light emitting devices
JP4642527B2 (en) * 2004-04-12 2011-03-02 キヤノン株式会社 LAMINATED 3D PHOTONIC CRYSTAL, LIGHT EMITTING ELEMENT AND IMAGE DISPLAY DEVICE
DE102005016592A1 (en) 2004-04-14 2005-11-24 Osram Opto Semiconductors Gmbh LED chip
TWM255518U (en) * 2004-04-23 2005-01-11 Super Nova Optoelectronics Cor Vertical electrode structure of Gallium Nitride based LED
JP4092658B2 (en) 2004-04-27 2008-05-28 信越半導体株式会社 Method for manufacturing light emitting device
US20050270633A1 (en) * 2004-05-14 2005-12-08 Peter Herman Photonic crystal mirrors for high-resolving power fabry perots
US7791061B2 (en) 2004-05-18 2010-09-07 Cree, Inc. External extraction light emitting diode based upon crystallographic faceted surfaces
US7582910B2 (en) * 2005-02-28 2009-09-01 The Regents Of The University Of California High efficiency light emitting diode (LED) with optimized photonic crystal extractor
JP2006049855A (en) * 2004-06-28 2006-02-16 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
US7161188B2 (en) * 2004-06-28 2007-01-09 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, semiconductor light emitting device, and method for fabricating semiconductor light emitting element
WO2006009413A1 (en) * 2004-07-23 2006-01-26 Gwangju Institute Of Science And Technology Top-emitting light emitting diodes and method of manufacturing thereof
US8938141B2 (en) * 2004-07-30 2015-01-20 University Of Connecticut Tunable resonant leaky-mode N/MEMS elements and uses in optical devices
US7442964B2 (en) * 2004-08-04 2008-10-28 Philips Lumileds Lighting Company, Llc Photonic crystal light emitting device with multiple lattices
JP2006100787A (en) * 2004-08-31 2006-04-13 Toyoda Gosei Co Ltd Light emitting device and light emitting element
US20060043400A1 (en) * 2004-08-31 2006-03-02 Erchak Alexei A Polarized light emitting device
US7223998B2 (en) * 2004-09-10 2007-05-29 The Regents Of The University Of California White, single or multi-color light emitting diodes by recycling guided modes
US7177021B2 (en) * 2004-09-14 2007-02-13 Hewlett-Packard Development Company, L.P. Integrated radiation sources and amplifying structures, and methods of using the same
TWM265766U (en) 2004-09-16 2005-05-21 Super Nova Optoelectronics Cor Structure of GaN light emitting device
US7509012B2 (en) * 2004-09-22 2009-03-24 Luxtaltek Corporation Light emitting diode structures
KR101197691B1 (en) 2004-09-24 2012-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device
WO2006035958A1 (en) 2004-09-30 2006-04-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting element
US7274040B2 (en) * 2004-10-06 2007-09-25 Philips Lumileds Lighting Company, Llc Contact and omnidirectional reflective mirror for flip chipped light emitting devices
JP4919639B2 (en) * 2004-10-13 2012-04-18 株式会社リコー Surface emitting laser element, surface emitting laser array, surface emitting laser element manufacturing method, surface emitting laser module, electrophotographic system, optical communication system, and optical interconnection system
US20060102910A1 (en) * 2004-10-29 2006-05-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light emitting device
JP4431889B2 (en) * 2004-11-09 2010-03-17 セイコーエプソン株式会社 Surface emitting semiconductor laser
KR100624449B1 (en) 2004-12-08 2006-09-18 삼성전기주식회사 Semiconductor emitting device with approved and manufacturing method for the same
KR100639617B1 (en) * 2004-12-20 2006-10-31 주식회사 하이닉스반도체 Delay locked loop in semiconductor memory device and its clock locking method
US7170100B2 (en) * 2005-01-21 2007-01-30 Luminus Devices, Inc. Packaging designs for LEDs
TW200637037A (en) * 2005-02-18 2006-10-16 Sumitomo Chemical Co Semiconductor light-emitting element and fabrication method thereof
US20060204865A1 (en) 2005-03-08 2006-09-14 Luminus Devices, Inc. Patterned light-emitting devices
US7649197B2 (en) * 2005-03-23 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Composite material, and light emitting element and light emitting device using the composite material
US7851989B2 (en) 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
KR100593939B1 (en) * 2005-04-21 2006-06-30 삼성전기주식회사 Nitride based semiconductor light emitting device and method for fabricating the same
US7745019B2 (en) 2005-04-28 2010-06-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device and method of manufacturing light emitting element
JP4027392B2 (en) * 2005-04-28 2007-12-26 キヤノン株式会社 Vertical cavity surface emitting laser device
KR101166922B1 (en) * 2005-05-27 2012-07-19 엘지이노텍 주식회사 Method of manufacturing light emitting diode
US7358543B2 (en) * 2005-05-27 2008-04-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light emitting device having a layer of photonic crystals and a region of diffusing material and method for fabricating the device
US7213476B2 (en) * 2005-05-31 2007-05-08 Ut-Battelle, Llc Stackable differential mobility analyzer for aerosol measurement
DE102005048408B4 (en) * 2005-06-10 2015-03-19 Osram Opto Semiconductors Gmbh Thin-film semiconductor body
KR20090016438A (en) * 2005-07-11 2009-02-13 젤코어 엘엘씨 Laser lift-off led with improved light extraction
KR100610639B1 (en) * 2005-07-22 2006-08-09 삼성전기주식회사 Vertically structured gan type led device and method of manufacturing the same
JP5611522B2 (en) 2005-08-19 2014-10-22 エルジー ディスプレイ カンパニー リミテッド Light emitting device including conductive nanorod as transparent electrode
KR101131349B1 (en) 2005-09-27 2012-04-04 엘지이노텍 주식회사 Nitride Based Light Emitting Diode
US7355720B1 (en) * 2005-12-20 2008-04-08 Sandia Corporation Optical displacement sensor
JP2007273746A (en) * 2006-03-31 2007-10-18 Sumitomo Chemical Co Ltd Method of micromachining solid-state surface and light emitting element
US7521727B2 (en) * 2006-04-26 2009-04-21 Rohm And Haas Company Light emitting device having improved light extraction efficiency and method of making same
KR100736623B1 (en) * 2006-05-08 2007-07-09 엘지전자 주식회사 Led having vertical structure and method for making the same
KR100780233B1 (en) * 2006-05-15 2007-11-27 삼성전기주식회사 Light emitting device with multi-pattern
CN101485000B (en) * 2006-06-23 2012-01-11 Lg电子株式会社 Light emitting diode having vertical topology and method of making the same
KR100820546B1 (en) * 2006-09-07 2008-04-07 엘지이노텍 주식회사 Semiconductor light-emitting device and Manufacturing method thereof
JP5168152B2 (en) 2006-12-28 2013-03-21 日亜化学工業株式会社 Light emitting device
US7838410B2 (en) * 2007-07-11 2010-11-23 Sony Corporation Method of electrically connecting element to wiring, method of producing light-emitting element assembly, and light-emitting element assembly
KR100843426B1 (en) * 2007-07-23 2008-07-03 삼성전기주식회사 Light emitting device
KR101459764B1 (en) * 2008-01-21 2014-11-12 엘지이노텍 주식회사 Nitride light emitting device
JP5232975B2 (en) 2008-07-01 2013-07-10 豊田合成株式会社 Light emitting diode manufacturing method, light emitting diode, and lamp
JP2010016066A (en) 2008-07-01 2010-01-21 Shimadzu Corp Substrate inspection apparatus
JP5340660B2 (en) 2008-07-08 2013-11-13 株式会社デンソー Vehicle occupant awakening device
US7785989B2 (en) * 2008-12-17 2010-08-31 Emcore Solar Power, Inc. Growth substrates for inverted metamorphic multijunction solar cells
KR101028251B1 (en) * 2010-01-19 2011-04-11 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
KR100999733B1 (en) * 2010-02-18 2010-12-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029383A (en) * 2003-09-22 2005-03-28 엘지이노텍 주식회사 Light emitting diode and method for manufacturing light emitting diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834033B1 (en) 2007-04-20 2008-05-30 삼성전기주식회사 Nitride simiconductor light emitting diode and fabrication method thereof
KR101163838B1 (en) * 2009-10-19 2012-07-09 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
US8624270B2 (en) 2009-10-19 2014-01-07 Lg Innotek Co., Ltd. Device having a plurality of light emitting structures bonded by adhesive layers and light emitting device package having the same

Also Published As

Publication number Publication date
EP1855327A3 (en) 2009-08-05
EP1855327A8 (en) 2008-01-02
EP2362441A3 (en) 2012-03-07
CN103928580A (en) 2014-07-16
JP2013062552A (en) 2013-04-04
US7939840B2 (en) 2011-05-10
US8283690B2 (en) 2012-10-09
EP2362440A3 (en) 2012-03-07
US20100093123A1 (en) 2010-04-15
US9837578B2 (en) 2017-12-05
US20100090243A1 (en) 2010-04-15
EP1855327B1 (en) 2011-08-03
EP2362440A2 (en) 2011-08-31
EP2362441A2 (en) 2011-08-31
US20130001625A1 (en) 2013-01-03
US8003993B2 (en) 2011-08-23
US9246054B2 (en) 2016-01-26
EP2362442A3 (en) 2012-03-07
JP5179087B2 (en) 2013-04-10
EP2362442A2 (en) 2011-08-31
CN103928580B (en) 2017-01-11
CN101071840A (en) 2007-11-14
US7652295B2 (en) 2010-01-26
EP2362441B1 (en) 2014-08-13
US7893451B2 (en) 2011-02-22
US20100090234A1 (en) 2010-04-15
US20070257269A1 (en) 2007-11-08
US20100090242A1 (en) 2010-04-15
EP2362439A2 (en) 2011-08-31
EP2362439A3 (en) 2012-03-07
EP2808909B1 (en) 2020-10-14
US8008103B2 (en) 2011-08-30
US20110297993A1 (en) 2011-12-08
EP1855327A2 (en) 2007-11-14
JP2007305998A (en) 2007-11-22
US20140124814A1 (en) 2014-05-08
EP2808909A1 (en) 2014-12-03
US20160111598A1 (en) 2016-04-21
US8648376B2 (en) 2014-02-11

Similar Documents

Publication Publication Date Title
KR100736623B1 (en) Led having vertical structure and method for making the same
KR100786091B1 (en) LED having lateral structure and method for making the same
US7294862B2 (en) Photonic crystal light emitting device
KR100921466B1 (en) Nitride light emitting device and method of making the same
US8847265B2 (en) Light-emitting device having dielectric reflector and method of manufacturing the same
JP5237286B2 (en) Light emitting device comprising an array of emitters defined by a photonic crystal
US8895329B2 (en) Patterned substrate for light emitting diode and light emitting diode employing the same
KR100649769B1 (en) Semiconductor light emitting diode and method for fabricating the same
KR101154596B1 (en) Semiconductor light emitting device and fabrication method thereof
US7781242B1 (en) Method of forming vertical structure light emitting diode with heat exhaustion structure
US8247822B2 (en) Semiconductor light-emitting device
KR101064081B1 (en) Semiconductor light emitting device and manufacturing method thereof
JP5306779B2 (en) Light emitting device and manufacturing method thereof
KR101281504B1 (en) Pyramidal Photonic Crystal Light Emitting Device
CN105633229B (en) Light emitting diode and manufacturing method thereof
JP2013110426A (en) Semiconductor device manufacturing method
KR100969160B1 (en) Light emitting device and method for fabricating the same
KR100700530B1 (en) Corrugated light emitting diode and manufacturing method thereof
KR20080028292A (en) Iii-nitride based light-emitting diode structure with monolithically integrated sidewall deflectors and method of thereof
KR100808197B1 (en) LED having vertical structure and method for making the same
KR102283105B1 (en) High heat dissipation nanostructure photonic device and method of manuafcturing the same
KR20100054594A (en) Nitride semiconductor light emitting device and manufacturing method of the same
TWI786276B (en) Manufacturing method of light-emitting device
KR20080041817A (en) Light emitting device
KR100896287B1 (en) Light emitting device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140624

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150624

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160624

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170613

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190612

Year of fee payment: 13