KR100660506B1 - 리소그래피 장치 및 디바이스 제조방법 - Google Patents

리소그래피 장치 및 디바이스 제조방법 Download PDF

Info

Publication number
KR100660506B1
KR100660506B1 KR1020050017138A KR20050017138A KR100660506B1 KR 100660506 B1 KR100660506 B1 KR 100660506B1 KR 1020050017138 A KR1020050017138 A KR 1020050017138A KR 20050017138 A KR20050017138 A KR 20050017138A KR 100660506 B1 KR100660506 B1 KR 100660506B1
Authority
KR
South Korea
Prior art keywords
radiation
intensity
substrate
patterning
patterning means
Prior art date
Application number
KR1020050017138A
Other languages
English (en)
Other versions
KR20060043305A (ko
Inventor
유스트 지트스마
야거 피터 빌렘 헤어만 데
Original Assignee
에이에스엠엘 네델란즈 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이에스엠엘 네델란즈 비.브이. filed Critical 에이에스엠엘 네델란즈 비.브이.
Publication of KR20060043305A publication Critical patent/KR20060043305A/ko
Application granted granted Critical
Publication of KR100660506B1 publication Critical patent/KR100660506B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70208Multiple illumination paths, e.g. radiation distribution devices, microlens illumination systems, multiplexers or demultiplexers for single or multiple projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

본 발명은, 방사선 시스템으로부터 각각, 기판상으로 순차적으로 투영되는 방사선 빔들을 패터닝하기 위한 개별적으로 제어가능한 요소들의 2이상의 어레이로 방사선을 분배하는 방사선 분배시스템과 함께 사용하기 위한 디텍터, 피드백 및 보상 시스템에 관한 것이다. 상기 디텍터는 방사선 분배 시스템에서의 방사선의 손실을 판정하고 그 정보를 보상시스템으로 피드백하여 상기 손실을 보상하고 상기 기판상으로 투영되는 방사선을 균일하게 유지시킨다.

Description

리소그래피 장치 및 디바이스 제조방법{LITHOGRAPHIC APPARATUS AND DEVICE MANUFACTURING METHOD}
도 1은 본 발명의 일 실시예에 따른 리소그래피 장치의 도;
도 2는 본 발명의 제1실시예에 따른 장치 일부의 배치도;
도 3은 본 발명의 제2실시예에 따른 장치 일부의 배치도;
도 4은 본 발명의 제3실시예에 따른 장치 일부의 배치도;
도 5는 본 발명에 따른 피드백 시스템의 플로우차트이다.
이제, 첨부 도면을 참조하여 본 발명에 대해 기술할 것이다. 도면에서 같은 참조부호는 동일하거나 기능적으로 유사한 요소들을 나타낼 수 있다.
본 발명은 리소그래피 장치 및 디바이스 제조방법에 관한 것이다.
리소그래피 장치는 기판의 타겟부상으로 원하는 패턴을 적용시키는 기계이다. 리소그래피 장치는 예를 들어, 집적회로(IC), 평판 디스플레이(flat panel display) 및 미세 구조체들을 포함하는 여타 디바이스들의 제조에 사용될 수 있다. 종래 리소그래피 장치에서, 대안적으로는 마스크 또는 레티클로 지칭되는 패터닝수 단은 IC(또는 여타 디바이스)의 각각의 층에 대응되는 회로패턴을 생성하는데 사용될 수 있으며, 이 패턴은 방사선 감응재(레지스트)층을 갖는 기판(예를 들면, 실리콘 웨이퍼 또는 글라스 플레이트)상의 타겟부(예를 들어, 하나 또는 몇개의 다이의 일부를 포함함)상으로 묘화(image)될 수 있다. 마스크 대신에, 패터닝장치는 회로패턴을 생성시키는 역할을 하는 개별적으로 제어가능한 요소들의 어레이를 포함할 수도 있다.
일반적으로, 단일 기판은 연속적으로 노광되는 인접해 있는 타겟부들의 네트워크를 포함한다. 공지된 리소그래피 장치는, 타겟부상으로 전체 패턴을 한번에 노광함으로써 각 타겟부가 조사되는 이른바 스테퍼(stepper)와, 주어진 방향("스캐닝"방향)으로 투영빔을 통한 패턴을 스캐닝하는 한편, 이 방향과 같은 방향 또는 반대 방향으로 기판을 동기적으로 스캐닝함으로써 각 타겟부가 조사되는 이른바 스캐너(scanner)를 포함한다.
개별적으로 제어가능한 요소들의 어레이를 사용하는 리소그래피 투영장치에서는, 기판상의 패턴을 충분히 신속하게 노광시켜 상기 장치에서 노광되는 기판에 대한 스루풋 시간이 절약될 수 있도록, 흔히 복수의 상기 어레이를 사용할 필요가 있다. 또한, 각각의 어레이는 각 어레이상의 패턴을 설정하는데 필요한 제어 라인 또는 데이터와 같은 그것의 지지 서비스를 위하여 그 주위에 상대적으로 큰 양의 공간을 필요로 한다. 따라서, 단일 조명 필드로 단순히 동시에 모든 어레이를 조명하는 것은 적절하지 않다. 단일 조명 필드로 모든 어레이들을 조명하는 것은 조명 또는 방사선의 높은 비율이 손실되고(즉, 상기 조명이 어레이들 사이로 전달되고 어레이들에 의해서는 수용되지 않음) 리소그래피 장치의 다른 표면들로부터 반사되어 나가 어레이에서의 원하지 않는 세기의 변화를 가져오는 추가적인 단점을 갖는다. 따라서, 복수의 방사선 소스로부터 및/또는 복수의 방사선 분배 채널을 통해 복수의 어레이로 방사선을 분배하는 시스템이 포함될 수 있다.
명백하게는, 방사선 분배 채널을 통과한 방사선은 가능한 한 균일하게 유지될 수 있다. 종래기술은 방사선 소스의 출력시 99% 거울 배후에 배치되는 디텍터를 사용함으로써 상기 소스에서의 방사선을 연속적으로 모니터링하도록 되어 있는 시스템에 대해 기술하며, 상기 방사선 빔의 99%는 패터닝장치로 지향되며, 나머지 1%는 방사선의 세기를 측정하는 디텍터로 지향된다. 이 디텍터는 방사선이 상기 패터닝장치로 들어갈 때의 방사선의 세기는 효과적으로 측정하지만 실제 기판상으로 투영되는 세기는 측정하지 않는다. 이 때문에, 종래 기술은 또한 기판과 나란히 배치되는 정적 디텍터에 대해서도 기술하고 있다. 상기 정적 디텍터는 기판들의 노광들 사이에서 설정된 간격으로 방사선 빔내로 이동된다. 이로 인한 문제는 이 시스템이 99% 거울과 기판간의 광학 경로의 투과율이 디텍터에 의해 빔의 세기가 감지되는 시간동안 변화되지 않는다는 것을 가정하고 있다는 점이다. 나아가, 빔이 복수의 방사선 분배 채널내로 분배되는 경우나 또는 복수의 방사선 소스들이 존재하는 경우에, 각 채널에 대한 디텍터가 존재해야 하며, 모든 채널들이 동일한(또는 적어도 정확한) 세기의 방사선을 분배할 수 있도록 이들 디텍터 모두는 캘리브레이션되어야 하고 그들의 출력들이 비교되어야 한다.
종래 기술의 추가적인 문제는 세기의 변화가 감지되면, 방사선 소스에서 변 화가 발생되고 그에 따라 방사선 소스가 조정되는 것으로 가정된다는 것이다. 디텍터들은 패터닝장치에서 결함이 있는(detective) 개별적으로 제어가능한 요소들에 의하여 야기되는 세기의 변화는 고려하지 않는다.
본 발명의 일 실시예는 복수의 방사선 분배 채널의 방사선 세기를 측정하고 이 측정된 세기의 어떠한 변화도 보상할 수 있는 시스템을 제공할 수 있다.
본 발명의 또 다른 실시예는 방사선 빔을 제공하는 방사선 시스템, 기판을 잡아주는 기판테이블, 상기 방사선 시스템으로부터 유도된 방사선 빔을 원하는 패턴에 따라 패터닝하는 복수의 패터닝장치, 상기 패터닝된 빔을 상기 기판의 타겟부상으로 투영하는 투영시스템, 상기 방사선 시스템으로부터 상기 패터닝장치로 방사선을 분배하는 방사선 분배장치, 및 상기 각각의 패터닝장치와 관련된 방사선의 세기를 측정하는 방사선 검출시스템을 포함하는 리소그래피 투영장치가 제공되며, 상기 방사선 분배장치는 상기 방사선 시스템으로부터 복수의 방사선 분배 채널로 방사선을 지향시키고; 상기 방사선 분배 채널은 상기 패터닝장치로 방사선 빔을 제공한다. 상기 방사선 분배 채널은 방사선 빔을 구성하거나 또는 그들은 방사선을 지향시키는 물리적인 광학 채널일 수 있다.
이러한 배치는 예를 들어 패터닝장치 사이에서 조명시스템을 분할하는 제어가 용이한 장치를 제공한다. 예를 들어, 연속적인 부분적인 반사면 각각에 의하여 관련된 방사선 분배 채널들로 반사되는 방사선 빔의 비율들은 상기 방사선 분배 채널 각각으로 지향되는 방사선 빔의 세기가 동일하도록 선택될 수 있다. 이러한 비 율들은 실질적으로 시간에 대해 일정(time-constant)하기 때문에, 조명시스템으로부터의 방사선 빔의 방사선 세기의 완전 동일한 분배로부터의 변동이 측정될 수 있고, 따라서 그 후 보상될 수 있다.
방사선 검출 시스템은, 차례로 각각의 패터닝장치와 관련된 방사선을 순차적으로 검출하는 디텍터를 포함하는 것이 바람직하다. 이동가능한 디텍터는 각 방사선 분배 채널을 위한 디텍터에 대한 필요성을 없앨 수 있다. 이와 같은 일련의 디텍터들은 캘리브레이션을 필요로 하며 리소그래피 시스템의 정확성에 대한 잠재적인 위협이 될 수 있다.
상기 디텍터는 각각의 패터닝장치와 관련된 방사선의 일 부분을 가로질러 이동하도록 배치되는 것이 바람직하다. 예를 들어, 방사선의 일 부분은 부분적 거울의 사용에 의해 그것의 정규 코스를 벗어나 취해질 수 있고, 디텍터는 이 제거된 부분을 가로질러 이동되어 상기 리소그래피 장치가 사용중인 동안에도 방사선의 세기의 검출이 가능하다.
리소그래피 투영장치는 디텍터와 관련된 프로브를 포함하는 것이 바람직한데, 상기 디텍터는 정적이며, 상기 프로브는 전체 디텍터가 움직이는 대신에 각 패터닝장치와 관련된 방사선의 부분을 가로질러 움직인다. 이는, 리소그래피 장치의 관련부에서 디텍터를 위한 충분한 공간이 없으나, 보다 작고 특정 상황에서는 조작이 보다 용이한 광섬유와 같은 프로브를 위한 공간은 존재하는 상황에서 사용될 수 있다.
방사선 검출 시스템은 모든 패터닝장치를 위해 사용되는 단일 디텍터보다는 각 패터닝장치와 관련된 디텍터를 포함할 수도 있다. 이는, 예를 들어 각 패터닝장치가 별도의 방사선 소스를 가지고 방사선 세기의 변동에 대해 각 소스가 지속적으로 모니터링되어야 할 필요가 있는 경우에 유용하다.
상기 방사선 검출 시스템은 방사선 분배 시스템의 출구에서 방사선을 검출하도록 배치될 수 있다. 이는, 방사선이 방사선 분배 시스템에 의하여 분배된 지점에 있고 방사선 분배 채널들로의 루트이다. 이는, 방사선 분배시스템에 의하여 야기되는 어떠한 변동들도 픽 업(pick up)될 수 있기 때문에 방사선의 세기를 모니터링하는데 바람직하다.
방사선 검출 시스템은 분배 채널의 출구에서 방사선을 검출하도록, 대안적으로 또는 추가적으로 배치될 수 있다. 이 경우에, 상기 채널들은 상기 방사선을 지향시키는 물리적인 객체(entity)로 제한된다. 이 디텍터는 상기 채널들에서의 어떠한 변동들도 픽 업할 것이다. 디텍터들이 방사선 분배 시스템 뒤에 그리고 채널들 뒤 모두에 있다면, 방사선 세기의 변동이 시작되는 지점을 판정하기 위해 디텍터의 출력들이 비교될 수 있다.
상기 검출 시스템은 패터닝장치와 투영시스템 사이에서 방사선을 검출하도록 대안적으로 또는 추가적으로 배치될 수 있다. 리소그래피 장치의 레이아웃에 따라, 각 채널을 위한 디텍터 또는 조합된 모든 채널들을 위한 단일 디텍터가 존재할 수 있다. 따라서 패터닝장치로 인한 변동들이 모니터링될 수 있다.
검출 시스템은 투영시스템의 출구에서 방사선을 검출하도록 대안적으로 또는 추가적으로 배치될 수 있다. 이 시점에서, 방사선은 기판으로 지향되며, 따라서 그 것의 최종 형태의 방사선을 검출하는 것이 중요하다. 이는, 캘리브레이션 단계로서 기판들 사이에서 수행되거나 리소그래피 프로세스 동안 검출을 위해 방사선의 일 부분이 디텍터로 지향될 수도 있다. 리소그래피 장치의 상기 시점들 각각에서의 디텍터는 변동에 대한 이유가 정확히 지적되고 가장 효율적으로 보상될 수 있도록 한다. 예를 들어, 조명 소스가 고장이 나면, 추후에 장치에서 고장을 고치려(make up) 하기 보다 상기 소스에서 그것을 보상하는 것이 가장 효율적일 수 있다.
리소그래피 투영장치는, 1이상의 패터닝장치와 관련되어 있고 투영시스템에 의하여 투영되는 방사선의 세기를 조정하는 보상시스템을 포함하는 것이 바람직하다. 디텍터와 보상장치의 조합은, 기판상으로 투영되는 모든 패턴에 대해 정확한 세기가 사용될 수 있도록 하여 패터닝 시스템의 효율성을 증대시킨다. 이 보상시스템은 캘리브레이션 동안 사용되거나 기판이 투영되고 있는 동안 실시간으로 사용될 수 있다.
상기 보상시스템은 각각의 패터닝장치와 관련된 방사선의 세기를 독립적으로 조정하도록 배치되는 것이 바람직하다.
1이상의 패터닝장치는 방사선 빔의 단면에 원하는 패턴을 부여하도록 설정될 수 있는 개별적으로 제어가능한 요소들의 어레이이고; 각각의 개별적으로 제어가능한 요소는 복수의 상태들 중 하나로 설정될 수 있고, 그 각각은 방사선의 상이한 비율을 투영시스템으로 지향시키며; 상기 보상시스템은, 상기 방사선의 패턴은 유지되나 세기는 변화되도록 상기 개별적으로 제어가능한 요소들 각각에 대한 셋팅을 변화시킴으로써 상기 방사선을 조정한다.
보상장치는 1이상의 패터닝장치와 관련되어 있고 투영시스템에 의해 투영되는, 방사선을 감쇄시키는 방사선 감쇄기를 포함하는 것이 바람직하다. 감쇄기는, 방사선의 세기가 상기 시스템을 위한 세기 보다 세고 과도한 방사선이 제거될 필요가 있는 경우에 방사선을 감쇄시키는데 유용하다.
보상시스템은 1이상의 패터닝장치와 관련되어 있고 투영시스템에 의해 투영되는 방사선의 비율의 세기를 조정하도록 배치될 수 있다. 이러한 방사선의 비율은, 기판 타겟부의 특정 부분상으로 투영되도록 되어 있는 것이거나 복수의 패터닝장치들 중 하나와 관련된 것 등일 수 있다.
물론, 모든 형태의 보상 (감쇄기 등)은 빔 전체를 조정하는 경우와 마찬가지로 빔의 일 부분을 조정하는 경우에도 동일하게 적용된다.
리소그래피 투영장치는, 방사선이 기판의 일 부분상으로 투영되는 시간 간격 동안 사전-검출되고 저장된 방사선 세기의 데이터를 이용하여 보상 시스템을 업데이트하는 제어시스템을 포함하는 것이 바람직하다. 이는, 방사선 세기의 변동에 대한 실시간 보정을 가능하게 한다. 예를 들어, 방사선이 패터닝장치에 의해 패터닝되기 이전에 세기의 변동이 검출된다면, 방사선이 패터닝장치로 들어갈 때 패터닝장치가 상기 세기의 변동을 보상할 수 있도록 피드백시스템이 채용될 수 있다. 세기의 점진적인 변화 또한 피드백 및 제어 시스템에 의하여 보상될 수 있다.
리소그래피 투영장치는, 기판의 일 부분상으로 방사선이 투영되는 시간 간격 동안 사전-검출된 방사선 세기 데이터를 이용하여 보상시스템을 업데이트하는 제어시스템을 포함하고, 상기 사전-검출된 방사선 세기의 데이터는 방사선 검출시스템 에 의해 미리 검출되고 저장 매체내에 저장된 데이터를 지칭한다. 상기 시스템을 캘리브레이션하기 위하여, 세기의 변화들이 모니터링되고, 이 데이터가 저장되어 추후의 검출시스템의 데이터와 비교하는데 사용된다. 따라서 상기 변화들은 기판상으로 방사선을 투영 하는 동안(즉, 실시간으로) 보상될 수 있다.
저장된 데이터는 패터닝장치가 플레인(plain) 패턴인 경우에 세기의 변화 측정인 것이 바람직하다. 예를 들어 캘리브레이션의 목적으로 기판상으로의 실제 투영에 대해 사전 측정이 이루어지는 경우, 패터닝장치는 평범한 패턴을 갖도록 설정된다(즉, 모든 개별적으로 제어가능한 요소들은, 예를 들어 최대 세기를 지향하기 위해서 동일한 상태로 설정된다). 그 다음, 리소그래피 장치의 모든 부분들이 작동 및 정렬 등이 이루어지도록 하기 위해 방사선의 세기들이 비교된다.
방사선 검출시스템은 방사선 분배 시스템 및/또는 패터닝장치 각각을 위한 방사선 분배 채널들에서의 방사선 세기의 변화를 검출하도록 배치될 수 있고, 보상 시스템은 이러한 방사선 세기의 변화를 보상하도록 배치된다.
방사선 검출시스템은 패터닝장치 각각을 위한 투영시스템에서의 방사선 세기의 변화를 검출하도록 대안적으로 또는 추가적으로 배치되고 보상시스템은 이러한 방사선 세기의 변화를 보상하도록 배치된다.
본 발명의 또 다른 실시예는, 패터닝장치가 플레인 패턴을 갖는 경우 리소그래피 투영장치에서의 많은 스테이지들 중 어느 것에서의 방사선의 세기를 검출하는 단계; 상기 많은 수의 스테이지들 중 어느 것에 대한 방사선 세기 데이터를 저장 매체내에 저장하는 단계; 그것이 사용중인 동안 리소그래피 투영장치의 동일한 스 테이지에서 상기 방사선의 세기를 검출하는 단계; 제어시스템을 사용하여, 상기 리소그래피 투영장치가 사용중인 동안 획득된 데이터와 상기 저장된 데이터를 비교하는 단계; 및 보상시스템을 사용하여 상기 제어시스템의 출력에 따라 상기 방사선의 세기를 조정하는 단계를 포함하는, 리소그래피 투영장치에서 방사선 세기를 캘리브레이션하는 방법을 제공한다.
본 발명의 또 다른 추가 형태는, 기판을 제공하는 단계, 방사선 시스템을 사용하여 방사선 투영빔을 제공하는 단계, 복수의 패터닝장치를 사용하여 상기 방사선 시스템으로부터 유도된 방사선 빔들을 원하는 패턴에 따라 패터닝하는 단계, 상기 패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하는 단계, 방사선 분배장치를 사용하여 복수의 방사선 분배 채널을 통해 상기 방사선 시스템으로부터 상기 패터닝장치로 상기 방사선을 분배하는 단계 및 방사선 디텍터를 사용하여 상기 방사선 분배 채널들에서의 방사선의 세기를 측정하는 단계를 포함하는 디바이스 제조방법을 제공한다.
본 발명의 또 다른 추가 실시예는, 기판을 제공하는 단계, 방사선 시스템을 사용하여 방사선 투영빔을 제공하는 단계, 복수의 패터닝장치를 사용하여 상기 방사선 시스템으로부터 유도된 방사선 빔들을 원하는 패턴에 다라 패터닝하는 단계, 상기 패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하는 단계, 방사선 분배장치를 사용하여 복수의 방사선 분배 채널을 통해 상기 방사선 시스템으로부터 상기 패터닝장치로 상기 방사선을 분배하는 단계, 방사선 디텍터를 사용하여 상기 방사선 분배 채널들에서의 방사선의 세기를 측정하고 상기 방사선 디텍터는 상기 방 사선 분배 채널 각각에 대한 세기 값을 출력하는 단계, 및 상기 방사선 분배 채널들의 방사선 세기의 어떠한 차이도 보상하는 단계를 포함하는 디바이스 제조방법을 제공한다.
본 발명의 추가 형태에 따르면, 상술된 디바이스 제조방법 및/또는 상술된 리소그래피 장치에 의하여 제조되는 디바이스가 제공된다.
본 발명의 추가 실시예, 특징 및 장점들과 본 발명의 다양한 실시예들의 구조 및 작동에 대해서는 첨부 도면을 참조하여 보다 상세히 후술할 것이다.
본 명세서에서 사용되는 "개별적으로 제어가능한 요소들의 어레이"라는 용어는, 기판의 타겟부에 원하는 패턴이 생성될 수 있도록, 입사하는 방사선 빔에 패터닝된 단면을 부여하는데 사용될 수 있는 여하한의 수단을 지칭하는 것으로서 폭넓게 해석되어야 한다. 본 명세서에서는 "광 밸브(light valve)" 및 "공간 광 모듈레이터(Spatial Light Modulator:SLM)"라는 용어도 사용될 수 있다. 이러한 패터닝수단의 예로는 다음과 같은 것들이 있다:
프로그램가능한 거울 어레이. 이것은 점탄성 제어층(viscoelastic control layer)과 반사면을 구비한 매트릭스-어드레서블 표면을 포함할 수 있다. 이러한 장치의 기본원리는, 예를 들어 반사면의 어드레스된 영역(addressed area)에서는 입사광이 회절광으로 반사되는 반면, 어드레스되지 않은 영역에서는 입사광이 비회절광으로 반사되는 것이다. 적절한 공간 필터(spatial filter)를 사용하면, 상기 비회절광이 반사된 빔으로부터 필터링되어 회절광만이 기판에 도달하도록 할 수 있 다. 이러한 방식으로, 상기 빔은 상기 매트릭스-어드레서블 표면의 어드레싱 패턴에 따라 패터닝된다.
대안례로서, 필터는 회절광을 필터링 하여 비회절광이 기판에 도달하도록 남게 할 수도 있음을 이해할 수 있을 것이다. 회절 광학 미소기전복합시스템(MEMS) 디바이스의 어레이가 대응되는 방식에 사용될 수도 있다. 각각의 회절 광학 MEMS 디바이스는 입사광을 회절광으로서 반사하는 격자를 형성하기 위하여 서로에 대해 변형될 수 있는 복수의 반사 리본으로 이루어진다.
프로그램가능한 거울 어레이의 추가적인 대안실시예는 작은 거울들의 매트릭스 배치를 채택하는 것인데, 상기 작은 거울 각각은 적당하게 국부화된 전기장을 가하거나 또는 압전작동장치(piezoelectric actuation device)를 채택함으로써 축에 대하여 개별적으로 기울어질 수 있다. 다시, 이러한 어드레싱된 거울들은 입사하는 방사선 빔을 어드레싱되지 않은 거울과 다른 방향으로 반사하도록, 상기 거울은 매트릭스-어드레서블이다. 이러한 방식으로, 반사된 빔은 매트릭스-어드레서블 거울의 어드레싱 패턴에 따라 패터닝된다. 이때 요구되는 매트릭스 어드레싱은 적절한 전자장치를 사용하여 수행될 수 있다.
상술된 두가지 상황 모두에 있어서, 개별적으로 제어가능한 요소들의 어레이는 1이상의 프로그램가능한 거울 어레이를 포함할 수 있다. 이러한 거울 어레이들에 관한 보다 상세한 정보는, 예를 들어 본 명세서에서 참고자료로 채택되고 있는 미국특허 US 5,296,891호 및 US 5,523,193호와 PCT 특허출원 WO 98/38597호 및 WO 98/33096호로부터 얻을 수 있다.
프로그램가능한 LCD 어레이. 이러한 구조의 일례는 본 명세서에서 참고자료로 채택되고 있는 미국특허 US 5,229,872호에 개시되어 있다.
예를 들어, 피처의 예비-바이어싱(pre-biasing), 광 근접 교정 피처, 위상 변화 기술 및 다중 노광 기술들이 사용되는 경우, 개별적으로 제어가능한 요소들의 어레이상에 "디스플레이되는" 패턴은 최종적으로 기판의 층으로 또는 기판상으로 전달되는 패턴과는 실질적으로 차이가 있을 수 있다는 것을 이해해야 한다. 이와 유사하게, 최종적으로 기판상에 생성되는 패턴은 어느 한 순간에 개별적으로 제어가능한 요소들의 어레이상에 형성되는 패턴과는 일치하지 않을 수 있다. 이는, 기판의 각 부분상에 형성되는 최종 패턴이 개별적으로 제어가능한 요소들의 어레이상의 패턴 및/또는 기판의 상대적인 위치가 변화되는 주어진 횟수의 노광에 걸쳐 또는 주어진 시간에 걸쳐 조성되는 배치(arrangement)의 경우일 수 있다.
본 명세서에서는 IC의 제조에 있어서의 리소그래피 장치의 사용에 대하여 언급하였으나, 상술된 리소그래피 장치는 집적 광학시스템의 제조, 자기 도메인 메모리, 평판 디스플레이, 박막자기헤드 등을 위한 가이던스 및 검출 패턴들과 같은 다른 여러 가능한 응용례를 가지고 있음을 이해해야 할 것이다. 당업자라면, 이러한 대안적인 적용례와 관련하여, 본 명세서에서 사용된 "웨이퍼" 또는 "다이"와 같은 용어는 각각 "기판" 또는 "타겟부" 등과 같은 좀 더 일반적인 용어와 동의어로 간주될 것임을 이해할 수 있다. 본 명세서에서 언급되는 기판이라는 용어는, 예를 들어 트랙(통상적으로 레지스트의 층을 기판에 적용하고 노광된 레지스트를 현상하는 툴)이나 메트롤로지 또는 검사 툴에서 노광 전 또는 후에 처리될 수도 있다. 적용 이 가능할 경우, 본 명세서의 내용은 상기 및 기타 기판 처리 툴에 적용될 수 있다. 또한, 기판은 예를 들어 다중-층 IC를 생성시키기 위하여 한번 이상 처리될 수 있어서, 본 명세서에서 사용된 기판이라는 용어는 다중 처리된 층을 이미 포함하는 기판을 언급할 수도 있다.
본 명세서에서 사용되는 "방사선" 및 "빔"이란 용어는 (예를 들어, 365, 248, 193, 157 또는 126㎚의 파장을 갖는) 자외선(UV)과 (예를 들어, 5 내지 20㎚ 범위내의 파장을 갖는) 극자외(EUV)선 및 이온빔 또는 전자빔과 같은 입자빔을 포함하는 모든 형태의 전자기방사선을 포괄하여 사용된다.
본 명세서에서 사용되는 "투영시스템"이라는 용어는, 예를 들어, 사용되는 노광방사선에 대하여 적절하거나 또는 침지유체(immersion fluid)의 사용이나 진공의 사용과 같은 여타의 팩터들에 대하여 적절한, 굴절광학시스템, 반사광학시스템 및 카타디옵트릭광학시스템을 포함하는 다양한 형태의 투영시스템을 포괄하는 것으로서 폭넓게 해석되어야 한다. 본 명세서에서의 "렌즈"라는 용어의 어떠한 사용도 "투영시스템"과 같은 좀 더 일반적인 용어와 동의어로 간주될 수 있다.
또한, 조명시스템은 방사선 투영빔의 지향, 성형 또는 제어를 위하여 굴절, 반사 및 카타디옵트릭 광학구성요소를 포함하는 다양한 종류의 광학구성요소를 포괄할 수 있고, 이후의 설명에서는 이러한 구성요소들을 집합적으로 또는 개별적으로 "렌즈"라고 언급할 수도 있다.
리소그래피장치는 2개(듀얼스테이지)이상의 기판테이블(및/또는 2이상의 마스크테이블)을 갖는 형태일 수 있다. 이러한 "다수스테이지" 기계에서는 추가 테이 블이 병행하여 사용될 수 있거나, 1이상의 테이블이 노광에 사용되고 있는 동안 1이상의 다른 테이블에서는 준비작업 단계가 수행될 수도 있다.
또한, 리소그래피장치는 투영시스템의 최종요소와 기판 사이의 공간을 채우도록 비교적 높은 굴절지수를 가지는 액체, 예를 들어 물에 기판이 침지되는 형태일 수도 있다. 침지액은 리소그래피장치내의 여타의 공간, 예를 들어 투영시스템의 최종 요소와 마스크 사이에 적용될 수도 있다. 당 업계에서는 투영시스템의 개구수를 증가시키는 것으로 침지기술이 잘 알려져 있다.
리소그래피 투영장치
도 1은 본 발명의 일 실시예에 따른 리소그래피 투영장치(100)를 개략적으로 도시한다. 상기 장치(100)는 적어도 방사선시스템(102)(예를 들어, EX, IL(예를 들어, AM, IN, CO, 등) 등), 개별적으로 제어가능한 요소들의 어레이(PPM)(104), 대물테이블(WT)(106)(예를 들어, 기판테이블), 및 투영시스템("렌즈")(PL)(108)을 포함한다.
방사선시스템(102)은 방사선(예를 들어 UV 방사선)의 투영빔(PB)(110)을 공급하는데 사용될 수 있으며, 특히 이 경우에는 방사선 소스(LA)(112)도 포함할 수 있다.
개별적으로 제어가능한 요소들의 어레이(104)(예를 들어, 프로그램가능한 거울 어레이)는 투영빔(110)에 패턴을 적용시키는데 사용될 수 있다. 일반적으로, 개별적으로 제어가능한 요소들의 어레이(104)의 위치는 투영시스템(108)에 대해 고정될 수 있다. 하지만, 대안적인 구성에서, 개별적으로 제어가능한 요소들의 어레이 (104)는 투영시스템(108)에 대해 그것을 정확히 위치시키는 위치설정 디바이스(미도시됨)에 연결될 수도 있다. 도시된 바와 같이, 개별적으로 제어가능한 요소들의 어레이(104)는 (예를 들어, 개별적으로 제어가능한 요소들의 반사형 어레이를 가지는) 반사형으로 구성된다.
대물테이블(106)에는 기판(W)(114)(예를 들어, 레지스트-코팅된 실리콘 웨이퍼 또는 유리기판)을 지지하는 기판홀더(상세히 도시되지 않음)가 제공될 수 있으며, 또한 대물테이블(106)은 투영시스템(108)에 대해 기판(114)을 정확히 위치시키는 위치설정 디바이스(PW)(116)에 연결될 수 있다.
투영시스템(예를 들어, 렌즈)(108)(예를 들어, 석영 및/또는 CaF2 물질로 만들어진 렌즈 요소를 포함하는 석영 및/또는 CaF2 렌즈 시스템 또는 카타디옵트릭 시스템, 또는 거울 시스템)은 기판(114)의 타겟부(C)(120)(예를 들어, 1이상의 다이)상에 빔 스플리터(beam splitter; 118)로부터 수용된 패터닝된 빔을 투영하기 위해 사용될 수 있다. 투영시스템(108)은 개별적으로 제어가능한 요소들의 어레이(104)의 이미지를 기판(114)상에 투영시킬 수도 있다. 대안적으로, 상기 투영시스템(108)은 개별적으로 제어가능한 요소들의 어레이(104)의 요소들이 셔터들로서 기능하는 2차 소스(secondary source)들의 이미지들을 투영시킬 수도 있다. 또한, 투영시스템(108)은, 2차 소스들을 형성하고 기판(114)상에 마이크로스폿(microspot)들을 투영시키기 위해, 마이크로 렌즈 어레이(MLA)를 포함할 수도 있다.
상기 소스(112)(예를 들어, 엑시머 레이저)는 방사선의 빔(122)을 생성할 수 있다. 상기 빔(122)은 곧 바로, 또는 예를 들어 빔 익스팬더(Ex)와 같은 컨디셔닝 디바이스(126)를 지난 후에, 조명시스템(일루미네이터)(IL)(124)으로 공급된다. 일루미네이터(124)는 상기 빔(122)내의 세기분포의 외반경 및/또는 내반경 크기(통상적으로, 각각 외측-σ 및 내측-σ라 함)를 설정하는 조정수단(AM)(128)을 포함할 수 있다. 또한, 일루미네이터는 일반적으로 인티그레이터(IN)(130) 및 콘덴서(CO)(132)와 같은 다양한 다른 구성요소들을 포함할 것이다. 이 방식으로, 개별적으로 제어가능한 요소들의 어레이(104)상에 입사되는 상기 빔(110)은 그 단면에 원하는 균일성과 세기 분포를 가진다.
도 1과 관련하여, 상기 소스(112)는 (상기 소스(112)가 예를 들어 수은 램프인 경우에 흔히 있듯이) 리소그패피 투영장치(100)의 하우징내에 놓일 것이다. 대안적인 실시예에서, 상기 소스(112)는 리소그래피 투영장치(100)로부터 멀리 떨어져 있을 수도 있다. 이 경우에, 방사선 빔(122)은 (가령, 적절한 지향 거울의 도움으로) 상기 장치(100)안으로 유도될 수도 있다. 후자의 시나리오는 상기 소스(112)가 엑시머 레이저인 경우에 흔히 있는 것이다. 본 발명의 범위내에는 이 두 시나리오가 모두 고려되고 있음을 이해하여야 할 것이다.
이어서, 상기 빔(110)은 빔 스플리터(118)를 이용하여 지향된 후에 개별적으로 제어가능한 요소들의 어레이(104)를 거친다(intercept). 개별적으로 제어가능한 요소들의 어레이(104)에 의하여 반사되면, 상기 빔(110)은 투영시스템(108)을 통과하고, 이 투영시스템은 기판(114)의 타겟부(C)(120)상에 상기 빔(110)을 포커싱한다.
위치설정 디바이스(116) [그리고, 선택적으로 빔 스플리터(140)를 통해 간섭계 빔(138)을 수용하는 베이스 플레이트(base plate; BP)(136)상의 간섭계 측정 디바이스(IF)(134)]의 도움으로, 기판테이블(106)은, 상기 빔(110)의 경로내에 상이한 타겟부(120)들을 위치시키도록 정확하게 이동될 수 있다. 사용된다면, 개별적으로 제어가능한 요소들의 어레이(104)용 위치설정 디바이스는, 예를 들어 스캔 중에 상기 빔(110)의 경로에 대해 개별적으로 제어가능한 요소들의 어레이(104)의 위치를 정확히 보정하는데 사용될 수 있다. 일반적으로, 대물테이블(106)의 이동은, 긴 행정 모듈(long stroke module)(개략 위치설정) 및 짧은 행정 모듈(미세 위치설정)의 도움을 받아 실현되며, 이는 도 1에 명확히 도시되어는 있지 않다. 또한, 유사한 시스템이 개별적으로 제어가능한 요소들의 어레이(104)를 위치시키기 위해 사용될 수도 있다. 요구되는 상대 이동을 제공하도록 대물테이블(106) 및/또는 개별적으로 제어가능한 요소들의 어레이(104)가 고정된 위치를 가지는 동안, 투영빔(110)이 대안적으로/추가적으로 이동될 수 있음을 이해할 것이다.
상기 실시예의 또 다른 구성에서, 기판테이블(106)은 고정될 수도 있으며, 기판(114)은 상기 기판테이블(106)에 걸쳐 이동할 수 있다. 이것이 행해졌으면, 기판테이블(106)에는 평탄한 최상면상에 다수의 개구부들이 제공되며, 기판(114)을 지지할 수 있는 가스 쿠션(gas cushion)을 제공하도록 상기 개구부들을 통해 가스가 공급된다. 통상적으로 공기 베어링 구성(air bearing arrangement)이라 칭한다. 기판(114)은 상기 빔(110)의 경로에 대해 상기 기판(114)을 정확히 위치시킬 수 있는 1이상의 액츄에이터(미도시됨)를 이용하여 기판테이블(106)상에서 이동된다. 대 안적으로, 상기 기판(114)은 상기 개구부들을 통해 가스를 선택적으로 공급 및 차단시킴으로써 기판테이블(106)에 걸쳐 이동될 수 있다.
본 명세서에는 기판상의 레지스트를 노광하는 본 발명에 따른 리소그래피 장치(100)가 서술되었으나, 본 발명은 이러한 용도로 제한되지 않으며 상기 장치(100)는 레지스트없는 리소그래피(resistless lithography)에서의 사용을 위해 패터닝된 투영빔(110)을 투영하는데 사용될 수 있음을 이해할 수 있을 것이다.
서술된 장치(100)는 다음의 바람직한 4가지 모드로 사용될 수 있다.
1. 스텝 모드: 개별적으로 제어가능한 요소들의 어레이(104)상의 전체 패턴은 한번에(즉, 단일 "섬광(flash)") 타겟부(120)상에 투영된다. 기판테이블(106)은 상이한 타겟부(120)가 상기 빔(110)에 의해 조사(irradiate)되도록 상이한 위치로 x 및/또는 y 방향으로 이동된다.
2. 스캔 모드: 주어진 타겟부(120)가 단일 "섬광"으로 노광되지 않는다는 것을 제외하고는 본질적으로 스텝 모드와 동일하다. 대신에, 개별적으로 제어가능한 요소들의 어레이(104)는 v의 속도로 주어진 방향(소위 "스캔방향", 예를 들어 y 방향)으로 이동가능해서, 투영빔(110)이 개별적으로 제어가능한 요소들의 어레이(104)에 걸쳐 스캐닝하도록 된다. 그에 따라, 기판테이블(106)은 속도 V=Mv로, 동일한 방향 또는 그 반대방향으로 동시에 이동되며, 여기서 M은 투영시스템(108)의 배율이다. 이 방식으로, 비교적 큰 타겟부(120)가 분해능이 저하되지 않고 노광될 수 있다.
3. 펄스모드: 개별적으로 제어가능한 요소들의 어레이(104)는 기본적으로 정 지상태로 유지되며 전체 패턴은 펄스 방사선 소스(102)를 사용하여 기판(114)의 타겟부(120)상에 투영된다. 기판테이블(106)은 투영빔(110)이 기판테이블(106)을 가로질러 라인을 스캐닝하게 되도록 기본적으로 일정한 속도로 이동된다. 개별적으로 제어가능한 요소들의 어레이(104)상의 패턴은 방사선시스템(102)의 펄스들 사이에서 요구되는 바에 따라 업데이트되고, 후속하는 타겟부(120)가 기판(114)상의 요구되는 위치에 노광되도록 펄스들이 시간조정된다. 따라서, 투영빔(110)은 기판(114)의 스트립(strip)을 위한 전체(complete) 패턴을 노광시키도록 기판(114)을 가로질러 스캔할 수 있다. 상기 공정은 전체 기판(114)이 한 라인씩 노광될 때까지 반복된다.
4. 연속스캔모드: 실질적으로 일정한 방사선시스템(102)이 사용되고, 투영빔(110)이 기판(114)을 가로질러 스캔하고 기판을 노광함에 따라 개별적으로 제어가능한 요소들의 어레이(104)상의 패턴이 업데이트되는 것을 제외하고는 본질적적으로 펄스모드와 동일하다.
또한, 상술된 모드들의 조합 및/또는 변형, 또는 완전히 상이한 사용 모드들을 채용할 수 있다.
예시적 적용례들
도 2, 3 및 4는 본 발명의 다양한 실시예들에 따른 리소그래피 투영장치의 부분을 개략적으로 나타내고 있다. 조명시스템(5;60)은, 도 3 및 4의 경우에 방사선 분배 시스템(7)에 의해, 방사선 빔을 패터닝하고 그것을 기판(9)상으로 투영하는 복수의 광 엔진(8)으로 분배되는 방사선 빔(6)을 생성한다. 각각의 광 엔진(8) 은 원하는 패턴에 따라 방사선 빔을 패터닝하는 개별적으로 제어가능한 요소들의 어레이 및 상기 패터닝된 빔을 기판상으로 투영하는 투영시스템을 포함한다. 또한 광 엔진들은 그것이 개별적으로 제어가능한 요소들의 어레이상에 입사되기에 앞서 방사선 빔을 준비하기 위한 추가 요소들을 포함할 수도 있다. 예를 들어, 그것은 광 엔진(8)들이 방사선 분배 시스템(7)으로부터 방사선을 수용하는 각도를 보상하기 위한 구성요소를 포함할 수 있다.
별도의 투영시스템을 갖는 대신에, 복수의 광 엔진들에는 개별적으로 제어가능한 요소들의 어레이들에 의해 생성되는 패터닝된 빔들을 동시에 기판상으로 투영하는 공통의 투영시스템이 배치될 수 있다. 각각의 채널은 또한 각 채널에서의 방사선의 세기를 연속적으로 모니터링하기 위하여 입력 방사선의 양을 반사하기 위한 부분 거울을 가질 수도 있다. 나아가, 본 발명이 방사선 빔을 패터닝하는데 개별적으로 제어가능한 요소들의 어레이들을 이용하는 것으로만 제한되지는 않도록 하는 것이 실현될 것이다. 일반적으로, 상술된 개별적으로 제어가능한 요소들의 어레이 대신에 방사선 빔의 단면에 소정의 패턴을 부여하는 어떠한 패터닝장치도 사용될 수 있다.
도 2는 각각 하나의 광 엔진(8)을 공급하는, 수개의 방사선 소스들(60a, 60b, 60c, 60d, 60e 및 60f)이 존재하는 실시예를 도시하고 있다. 후술되는 바와 같이 일 소스로부터의 방사선이 복수의 광 엔진들(8) 사이에서 분할가능거나 또는 복수의 소스로부터의 방사선이 단일의 광 엔진내로 입력되도록 조합가능한 등의 다수의 방사선 소스 및 광 엔진들의 어떠한 조합도 가능하다. 복수의 광 엔진으로 방 사선을 공급하는 복수의 소스들을 가지고, 인-라인 방사선 선량(dose) 모니터링이 디텍터 시스템(62)을 사용하여 수행될 수도 있다. 디텍터 시스템은 각각의 방사선 소스(60)를 위한 별도의 디텍터를 포함하고 디텍터들 사이에 캘리브레이션 스텝과 연관될 수 있으며, 및/또는 그것은 방사선 빔들 사이에서 이동하는 보다 작은 수의 디텍터들을 포함할 수도 있다. 부분 거울들 및/또는 여타 광학 가이드들을 사용하면, 빔들 각각의 일 부분은 빔의 세기들을 모니터링하는 디텍터로 지향될 수 있다.
방사선 분배 시스템(7)은 도 3에 도시되어 있으며, 조명시스템(5)으로부터의 방사선 빔(6)의 경로내에서 회전가능하게 장착되는 리플렉터를 포함한다. 상이한 회전각도로, 리플렉터는 조명시스템으로부터 상이한 광 엔진들(8)로 방사선 빔(6)을 반사시킨다. 따라서, 드라이버(도시 안됨)가 리플렉터(7)를 회전시키면, 조명시스템(5)으로부터의 방사선은 광 엔진들(8) 각각으로 차례로 지향된다. 리플렉터(7)는 방사선이 광 엔진들(8)의 라인을 따라 전방 및 후방으로 지향될 수 있도록 왕복적으로 회전가능하게 배치될 수 있다. 이를 달성하기 위하여, 리플렉터는 압전 액츄에이터, 정전 액츄에이터(electro-static actuator), 로렌츠 액추에이터(Lorentz actuator) 또는 여느 다른 적절한 장치에 의하여 작동될 수 있다. 대안적으로, 리플렉터는 방사선이 광 엔진들(8)의 행을 따라 반복적으로 지향되도록 축선을 중심으로 일정한 속도로 회전하게 배치될 수 있다. 도 3에 나타낸 바와 같이, 방사선 분배 시스템(7)의 회전 리플렉터는 평면 요소일 수 있다. 이러한 배치에서, 평면 요소의 양 측면은, 요소에 대한 매 반회전에 대하여 방사선이 각각의 광 엔진(8)으로 차례로 분배되도록 반사면들을 포함할 수 있다. 대안적으로, 회전 리플렉터는, 그것이 회전할 때, 상이한 광 엔진들(8)로 방사선을 지향시키는 어떠한 형상도 가능하다. 일 예시에서, 방사선 분배 요소의 평면 리플렉터는 불규칙한 다각형 형상의, 축선 주위에 장착되는 복수의 반사면을 갖는 방사선 분배 요소로 대체된다. 방사선 분배 요소가 회전하면, 각각의 반사면은 조명시스템(5)으로부터의 방사선 빔(6)과 차례로 교차한다. 각각의 이러한 패스동안, 각 반사면이 조명시스템(5)으로부터의 방사선 빔(6)으로 나타내는 각도가 변화된다. 따라서, 그 시간동안 반사면으로부터 반사된 방사선 빔 또한 방향을 변화시킨다. 그러므로, 제1실시예와 관련하여 상술된 방식에 대응되는 방식으로, 각각의 반사면은 그것이 조명시스템(5)으로부터의 방사선 빔(6)과 교차하는 시간 동안 각각의 방사선 분배 채널들 사이에서 차례로 방사선을 분배하는데 사용될 수 있다.
도면들에는 광 엔진들(8)이 단일 행으로 배치된 것으로 도시되어 있으나, 실제에 있어서는, 광 엔진들은 예를 들어 편의에 따라 2이상의 행 등, 어떠한 방식으로도 배치될 수도 있다. 그러므로, 조명시스템(5)으로부터의 방사선은 도시된 바와 같은 평면에서뿐만 아니라 도면의 평면에 직각 방향으로도 분배될 필요가 있다. 이는, 방사선 분배 시스템(7)의 리플렉터가 도 3의 평면에 수직한 축선을 중심으로 회전할 뿐만 아니라 보다 제한된 양만큼 제2의 직교 축선을 중심으로도 회전하게 할 수 있도록 함으로써 배치될 수 있다. 대안적으로, 리플렉터는 도 3에 도시된 바와 같이 단일 축선을 중심으로 방사선을 분배할 수 있고, 광 엔진들(8)로 방사선을 전달하기 위해 분배 요소들이 제공될 수 있다.
추가 변형례로서, 방사선 분배 요소(7)로부터의 방사선은 각각의 광 엔진에 직접적으로 지향되지 않을 수 있다. 그 대신, 각각의 방사선 분배 채널은 어느 주어진 순간에 상기 채널로 지향되는 방사선을 분할하고 그것을 2이상의 광 엔진으로 분배하는 1이상의 방사선 빔 스플리터를 포함할 수 있다. 이와 유사하게, 각각의 광 엔진은 동일한 필드에 조명되고 및/또는 공통의 투영시스템을 공유하는 1이상의 개별적으로 제어가능한 요소들의 어레이를 포함할 수 있다.
일반적으로 조명시스템(5)은 일정한 소스(예를 들어 평판 디스플레이의 생산을 위한 일정한 UV 소스)를 사용하나, 상기 조명시스템(5)은 정규적인 간격으로 방사선의 펄스들을 생성시킬 수 있다. 즉 펄스 방사선 소스(pulsed radiation source)를 포함한다. 이 경우에, 방사선 분배 요소(7)의 회전은 조명시스템(5)의 펄스 속도와 동기화된다. 예를 들어, 상기 동기화는 방사선 분배 요소(7)의 단일 회전(또는 예를 들어 상기 요소가 연속적인 속도로 회전하고 있고 더블-사이딩(double-sided)된다면 반 회전)동안, 조명시스템은, 리플렉터가 각각의 방사선 분배 채널들로(또는 도 3에 도시된 바와 같이 광 엔진(8)으로 직접적으로) 방사선을 반사시키는데 필요한 각도에 있는 각 지점에서 방사선의 펄스들을 제공한다. 대안적으로는, 예를 들어 상기 동기화는 매 회전시, 조명시스템이 방사선 분배 채널들 중 단 하나에 대해서만 펄스를 제공하거나 각 회전시 채널들에 번갈아 방사선을 제공하도록 이루어질 수도 있다.
다른 듀티 사이클 또한 고려될 수 있다는 것을 이해해야 할 것이다. 예를 들어, 상술된 바와 같이 광 엔진들(8)이 1이상의 행으로 배치된다면, 도 3의 평면에 대해 직각인 축선을 중심으로 한 방사선 분배 요소(7)의 매 회전시 조명시스템이 단일 행의 광 엔진들(8) 각각에 대한 방사선 펄스들을 제공하도록 동기화기 이루어진다. 따라서, 방사선 분배 요소는 제2축선을 중심으로 이동되고, 방사선 분배 요소(7)의 다음 회전은 광 엔진들의 또 다른 행으로 방사선을 전달한다.
결과적으로, 상술된 바와 같이, 방사선 분배 요소(7)는 조명시스템으로부터의 방사선이 복수의 방사선 분배 채널들로 차례로 분배되는 듀티 사이클을 갖는다. 방사선 분배 채널 각각은 방사선 빔을 패터닝하는 개별적으로 제어가능한 요소들의 어레이를 포함하는 1이상의 광 엔진들로 순차적으로 방사선을 지향시킨다. 따라서, 개별적으로 제어가능한 요소들의 일 어레이가 조명되고, 그에 따라 패터닝된 방사선 빔이 기판상으로 투영되고 있는 동안, 개별적으로 제어가능한 요소들의 다른 어레이들이 다음 패턴이 설정되도록 할 수도 있다. 이는 펄스 방사선 소스가, 개별적으로 제어가능한 요소들이 새로운 패턴으로 설정될 수 있는 것보다 빠르게 방사선 펄스들을 제공할 수 있기 때문에 유용하다. 따라서, 단일 조명시스템으로부터 복수의 개별적으로 제어가능한 요소들의 어레이로 방사선 펄스들을 분배함으로써, 조명시스템이 보다 효율적으로 사용될 수 있고, 장치의 크기 및 비용도, 독립적인 조명시스템이 예를 들어 각각의 광 엔진에 대해 필요한 경우보다 작아진다.
펄스 방사선 소스에 방사선 분배 시스템을 동기화시키는 것 외에, 이들 둘 모두를 각각의 개별적으로 제어가능한 요소들의 어레이상의 패턴의 업데이트와 동기화할 필요가 있다는 것을 이해해야 한다.
기판상으로 패터닝된 방사선 빔을 투영하는데 사용되고 있는 주어진 개수의 광 엔진들에 대하여, 장치는 광 엔진들이 존재할 때와 동일한 개수의 방사선 소스 들을 갖는 조명시스템, 상기 소스들 각각에 의해 생성되는 방사선 빔들을 조합하는 시스템 및, 상술되거나 후술되는 것과 같은, 각각의 광 엔진들 사이로 방사선을 재분배하는 방사선 분배 시스템을 포함할 수 있다.
일반적으로, 어떠한 개수의 소스들도 어떠한 개수의 광 엔진들과 연계하여 사용될 수 있다는 것을 이해해야 한다. 추가적으로, 방사선의 조합된 빔의 세기가 여전히 어느 정도의 변화가 있다 하더라도, 각각의 광 엔진과 관련된 복수의 독립적 조명시스템을 이용하는 장치와 비교하여, 주어진 시간에 패터닝되고 기판상으로 투영되는 방사선 빔들의 세기들간의 변화는 저감될 것이다.
도 2는 광 엔진들내로 입력되는 방사선의 세기를 모니터링하는 일련의 디텍터(62) 및 광 엔진 및 투영시스템을 거친 후에 실질적으로 기판 레벨에서 광의 세기를 모니터링하는 디텍터(20)를 도시하고 있다. 이들 디텍터(62,20) 또는 개별 디텍터들의 조합을 이용하면, 시스템의 전체 세기가 캘리브레이트되는 빈도 높은 캘리브레이션 단계(frequent calibration step) 및 각 채널에 걸친 세기 분포를 모니터링하고 보상하는 빈도 낮은 캘리브레이션 단계(less frequent calibration step)들을 갖는 것이 가능하다. 예를 들어, 전자, 즉 빈도 높은 단계는 각 기판 사이에서 일어나고, 후자, 즉 빈도 낮은 단계는 기판들의 각 배치(batch) 사이에서 일어날 수 있다. 도 3은 디텍터 20을, 도 4는 디텍터 22를 도시하고 있다. 디텍터(22)는 광 엔진(8)내로 입력되는 방사선 빔들을 따라 이동하고 그들의 상대적인 세기를 측정한다. 디텍터들은 예를 들어 레일을 따라 이동되거나 또는 프로브 또는 광학 가이드는 시스템과 나란히 정적인 디텍터로 방사선의 일 부분을 지향시키는, 광 엔진들의 입력 또는 출력부들을 따라 이동될 수 있다. 실제로는, 광 엔진들(8) 모두를 커버하는 단일의 큰 기판 레벨 디텍터를 갖거나; 또는 부분적으로 오버래핑하는 디텍터들의 어레이를 갖는 것도 가능할 수 있다. 디텍터 범위의 오버랩은 오버랩이 없는 경우보다 더 효율적으로 디텍터들을 캘리브레이션하는데 사용될 수 있는데, 그 이유는 동일하게 분배되는 광의 세기가 2이상의 디텍터들상에 부딪히기(impinge) 때문이다.
디텍터들은 광 엔진들(8)내에 추가적으로 또는 대안적으로 배치될 수도 있다. 이들은 도 2의 디텍터(62)들과 동일한 목적으로 기능할 수 있다. 기판으로의 투영을 위해 방사선이 요구되지 않는 동안 방사선의 세기가 검출될 수 있거나, 부분 거울 등을 이용하여 디텍터들을 향해 방사선의 일 부분이 지향될 수도 있다.
방사선 분배 요소(7)의 결함 또는 방사선 소스(5)의 변화들로 인해, 각각의 광 엔진(8)으로 들어가는 방사선이 균일하지 않을 수 있다. 이러한 경우일 때, 디텍터(22)는 세기의 차를 보상하는 보상시스템으로 정보를 피드백한다. 디텍터(20)는 기판(9)상으로 투영되도록 되어 있는 광 엔진들(8)로부터 나오는 패터닝된 방사선의 세기를 측정함으로써 디텍터(22)를 교체 또는 보완할 수 있다. 이 디텍터는, 예를 들어 방사선이 패터닝장치를 통과할 때, 광 엔진 자체에 의하여 야기되는 방사선의 어떠한 변화도 측정한다. 디텍터(20)는 각각의 광 엔진이 그 자체의 광학 시스템을 갖는 경우에 사용하기가 보다 용이할 수도 있다. 이 경우에는 광 엔진 다음에 디텍터를 배치시키는 것이 무엇보다 중요한데, 그 이유는 단순히 캘리브레이션을 요하는 보다 많은 요소들이 관련되어 있으므로 1이상의 투영시스템을 이용하 면 투영되는 방사선의 변화가 훨씬 더 많아지기 때문이다.
방사선의 변화들이 보상될 수 있는 몇가지 방법이 있다. 첫번째 방법은 패터닝장치를 이용하는 것이다. 디텍터(22)와 같은 디텍터가 패터닝장치내로 입력되는 방사선이 입력 방사선 세기들의 나머지와는 상이한 것으로 측정한다면, 그것은 이 정보를 패터닝장치로 공급하고, 이 패터닝장치는 기판상으로 투영되어질 패턴의 세기를 바꿀 수 있다. 예를 들어, 디텍터(20)가 다른 광 엔진 출력들에 대해서 패터닝된 방사선의 세기의 변화를 측정한다면, 그것은 그 정보를 보상시스템으로 피드백하고, 패턴은 동일하게 유지하나 패턴내의 방사선 세기는 상이하게 유지하기 위해 상이한 양의 방사선을 지향시키기 위한 개별적으로 제어가능한 요소들의 오프셋에 의하여(그레이-스케일(gray-scale)로 알려짐), 상기 광 엔진에 의해 야기되는 어떠한 변화들도 보상될 수 있다.
일 실시예에서는, 패터닝장치의 개별적으로 제어가능한 요소들이, 광 엔진으로부터 출력되는 패턴의 각 지점의 세기에 영향을 줄 수 있도록 오프셋될 수 있다.
보다 상세하게는, 1이상의 개별적으로 제어가능한 요소들의 어레이는 투영시스템으로부터 방사선을 수용하고, 상기 요소들은 기판상으로 투영되는 방사선의 보다 크거나 작은 세기들에 의해 형성되는 패턴을 생성하기 위하여 개별적으로 오프셋된다. 개별적으로 제어가능한 요소들로 제공되는 세기가 다른 광 엔진들내로의 입력치보다 크다면, 상기 요소들은 그레이 스케일을 변화시키고 투영시스템으로 지향되는 방사선의 세기를 저감하도록 상이한 양만큼 오프셋될 수 있다. 한편, 예를 들어 하나의 광 엔진과 관련된 투영시스템이 다른 광 엔진과 관련된 투영시스템보 다 방사선을 많이 감쇄시킨다는 것이 발견된다면, 투영시스템으로 지향되는 세기를 증가시키도록 그레이 스케일이 변화될 수 있다.
방사선 세기가 균일하게 만들어질 수 있는 또 다른 방법은, 그들 광 엔진들로부터 투영되는 방사선이 광 엔진들의 나머지에서보다 큰 경우, 광 엔진들을 향하거나 그로부터 나오도록 되어 있는 방사선을 감쇄시키는 감쇄기(attenuator)를 설치하는 것이다. 상기 빔의 감쇄는 패터닝장치 뒤에서 일어날 수도 있으나 패터닝장치 앞에서 일어나는 것이 바람직한데, 그 이유는 패터닝된 것보다 아직 패터닝되지 않은 빔을 감쇄시키는 것이 보다 용이하기 때문이다. 예를 들어, 각 채널에서의 선량의 균일성 부족을 보상함으로써 빔의 일부만을 감쇄시키는 것이 가능하나, 이것 역시 상기 빔이 패터닝장치로 들어가기 이전에 수행되는 것이 바람직하다.
도 4는 방사선 분배 시스템의 상이한 실시예를 도시하고 있다. 이는, 2이상의 방사선 분배 채널(또는 광 엔진(8))로 동시에 방사선을 제공할 수 있는 방사선 분배 시스템을 제공한다. 특히, 펄스 조명 시스템이 사용되고 있다면, 방사선 분배 요소(30)는 방사선 분배 채널들 사이로 각각의 펄스를 분할할 수 있다. 또한, 도시된 배치는 상술된 바와 같이 방사선 분배 채널들 중 하나내에서 빔 디바이더로서 사용될 수 있다.
도 4에 도시된 바와 같이, 방사선 분배 요소(30)는 복수의 섹션들(31,32,33,34,35,36)로 이루어져 있으며, 이들 각각은 방사선 분배 채널 또는 광 엔진(8)과 관련되어 있다. 각각의 섹션은 사용되는 방사선에 대해 실질적으로 투과 적인 재료로 이루어지며, 특히 유리, 석영 또는 CaF2의 로드로부터 형성될 수 있다. 하지만, 이들 섹션들의 단면형상은 어떠한 편의상의 형상으로도 이루어질 수 있고 상기 섹션들은 기계적으로 연결될 필요가 없다는 것을 이해해야 한다.
제1섹션(31)은 조명시스템(5)으로부터 방사선 빔(6)을 수용하는 제1단부(31b)를 갖는다. 다른 단부에서, 제1섹션은 방사선 빔(6)에 대해 소정 각도로 배치되는 부분 반사면(31a)을 갖는다. 방사선 빔(6)의 일 부분은 방사선 분배 요소(30)로부터, 관련된 방사선 분배 채널 또는 광 엔진(8)으로 반사된다. 상기 방사선 빔의 나머지는 상기 부분 반사면을 통과하여 방사선 분배 요소(30)의 제2섹션(32)내로 나아간다. 도시된 바와 같이, 방사선을 수용하는 단부가 제1섹션의 부분 반사면(31a)에 대응되는 형상을 갖도록, 제2섹션은 편의적으로 형상화된다. 하지만, 이것이 반드시 상기 경우에 국한될 필요는 없다. 제2섹션(32) 또한 방사선 분배 요소(30)로부터 나온 방사선 빔의 나머지 부분을 번갈아 반사시키고 상기 방사선의 나머지 부분을 제3섹션내로 통과시키는 제1섹션과 유사한 대향 단부에 부분 반사면을 갖는다. 이것은, 필요에 따라 최종 섹션, 도시된 예시에서는 방사선 빔(6)의 나머지 부분을 조명시스템(5)으로부터 관련된 방사선 분배 채널 또는 광 엔진(8)내로 반사시키는 완전 반사면(36a)을 갖는 제6섹션(36)까지 반복된다.
부분 반사면들의 적절한 배치에 의하여, 방사선 분배 요소(30)는 방사선 빔(6)을 조명시스템(5)으로부터, 동일한 세기를 갖는 각각의 방사선 분배 채널의 복수의 빔으로 분할하도록 배치될 수 있다. 예를 들어, 각 부분 반사면들상에는 상이 한 코팅들이 사용될 수 있다. 이러한 코팅들을 위한 적절한 재료에는 빙정석(cryolite)과 같은 플루오르화물(fluorides)이 포함된다. 또한, 각각의 방사선 분배 채널로 지향될 방사선 빔(6)의 부분들은 시간에 따라 일정하게 유지될 것이다. 그러므로, 방사선 세기의 분포가 완전히 균일하지 않다면, 각각의 방사선 분배 채널에서의 상대적인 세기들이 측정될 수 있고 상술된 바와 같이 장치의 나머지부분에서 적절히 보상될 수 있다.
앞선 실시예들에 의한 바와 같이, 방사선 분배 채널들 또는 광 엔진들(8)은 도 4에 도시된 바와 같은 단일 행으로와는 달리 배치될 수도 있다는 것을 이해해야 한다. 이 경우에 방사선 분배 요소들이 방사선을 적절히 지향시키는데 사용될 수 있거나 도 3에 도시된 방사선 분배 요소(30)의 배치의 변화가 사용될 수 있다. 예를 들어, 1이상의 방사선 분배 요소(30) 사이에 풀 리플렉터들(full reflectors)이 배치되어, 방사선 분배 요소(30)의 개별 섹션들이 정렬될 필요가 없게 된다. 이와 유사하게, 섹션들(31,32,33,34,35,36)의 대안적인 구성들 또한 사용될 수 있다. 예를 들어, 교번 섹션(alternate section)들의 부분 반사면들이 대향되는 방향으로 각도를 이루어, 방사선 분배 요소의 대향 측으로부터의 방사선을 제1부분 반사면들로 반사시킬 수도 있다. 평면 리플렉터들은 90°로 (예를 들어, 도 4의 평면안으로) 방사선 빔의 부분들 모두를 반사시키도록 배치되어, 광 엔진들의 2개의 행으로 직접적으로 투영될 수 있는 방사선 빔의 두 평행한 행들을 생성시킬 수도 있다.
도 5에는 디텍터의 피드백 시스템 및 보상장치가 도시되어 있다. 캘리브레이션 정보(40)는 리소그래피 장치의 셋업시에 결정된다. 이 정보는 입력 방사선의 세 기 및 필요에 따라 방사선을 패터닝하는데 필요한 패터닝장치의 위치설정을 포함한다.
기판의 각 패터닝 프로세스 사이에, 디텍터들(20, 22 또는 62)은 광 엔진(8) 전 또는 후에 방사선의 실제 세기를 모니터링하고 각 광 엔진(8)의 세기를 다른 광 엔진들의 세기 및 캘리브레이션 정보(40)와 비교한다. 각 광 엔진(8)에서 디텍터(20 또는 22)에 의하여 측정된 방사선의 세기가 다른 광 엔진 및 캘리브레이션 정보의 세기와 동일하다면, 보상시스템(44)은 작동될 필요가 없다. 하지만, 특정 광 엔진(8)에 대한 세기의 변화가 존재한다면, 보상 시스템(44)은, 예를 들어 과도한 방사선을 감쇄시키기 위해 감쇄기(46) 또는 패터닝장치(48)의 그레이 스케일 능력(gray scale capability)을 이용하여 상기 변화를 보상한다. 모든 광 엔진들로부터의 방사선 출력이 균일해진다. 상기 출력값은 디텍터(20)에 의해 선택적으로 감지된다. 이는 보상시스템이 필요에 따라 변화를 보상할지를 결정할 수 있다. 디텍터들은 또한 개별적으로 제어가능한 요소들의 어레이의 개별 요소들과 관련된 정보를 모니터링할 수도 있다. 이러한 방식으로, 전체 광 엔진에 대해서뿐만 아니라 개별 요소들에 대해서도, 받아들인 정보를 기초로 필요에 따라 모니터링된 요소들을 오프셋함으로써 세기를 조정할 수 있다.
또한 입력된 방사선은, 변화가 여전히 존재하는지의 여부를 판정하기 위하여 디텍터(20 또는 22)에 의해 측정되고 보상될 수 있다. 모든 광 엔진들(8)이 동등하게 오프셋되었다는 것이 감지되면, 개별적으로 제어가능한 요소들뿐만 아니라 소스에 대해서도 세기의 보상이 가능하다.
물론, 디텍터들 중 어느 것도 실시예들 중 어느 것의 조합으로도 사용될 수 있으며, 그들은 간명히 하기 위해 별도의 실시예들에 보여졌다는 것을 분명히 알아야 한다.
결론
본 발명의 다양한 실시예들에 대하여 상술하였으나, 그들은 단지 예시에 지나지 않으며, 제한을 둔 것은 아니라는 점을 이해해야 한다. 당업자라면 본 명세서내에서 본 발명의 기술적사상 및 범위를 벗어나지 않는 선에서 그 형태 및 세부사항에서의 다양한 변화들이 이루어질 수 있다는 것을 이해해야 한다. 따라서, 본 발명의 폭과 범위는 상술된 예시적 실시예들 중 어느 것에 의해서도 제한받지 않으며, 후속 청구항 및 그들의 등가물에 따라서만 정의되어야 한다.
본 발명에 따르면, 방사선 시스템으로부터 각각, 기판상으로 순차적으로 투영되는 방사선 빔들을 패터닝하기 위한 개별적으로 제어가능한 요소들의 2이상의 어레이로 방사선을 분배하는 방사선 분배시스템과 함께 사용하기 위한 디텍터, 피드백 및 보상 시스템을 얻을 수 있으며, 상기 디텍터는 방사선 분배 시스템에서의 방사선의 손실을 판정하고 그 정보를 보상시스템으로 피드백하여 상기 손실을 보상하고 상기 기판상으로 투영되는 방사선을 균일하게 유지시켜 준다.

Claims (22)

  1. 리소그래피 투영 장치에 있어서,
    방사선 빔을 제공하는 방사선 시스템;
    기판을 잡아주는 기판테이블;
    상기 방사선 시스템으로부터 유도된 방사선 빔을 원하는 패턴에 따라 패터닝하는 복수의 패터닝수단;
    상기 패터닝된 빔을 상기 기판의 타겟부상으로 투영하는 투영시스템;
    상기 방사선을 상기 방사선 시스템으로부터 상기 패터닝수단으로 분배하는 방사선 분배 장치;
    방사선 분배 채널들; 및
    상기 각각의 패터닝수단들과 관련된 방사선의 세기를 측정하는 방사선 검출시스템을 포함하고,
    상기 방사선 분배 장치는 상기 방사선을 상기 방사선 시스템으로부터 복수의 상기 방사선 분배 채널로 지향시키고 상기 방사선 분배 채널들은 상기 방사선 빔을 상기 패터닝수단에 제공하는 것을 특징으로 하는 리소그래피 투영장치.
  2. 제1항에 있어서,
    상기 방사선 검출 시스템은 각각의 패터닝수단과 관련된 방사선을 순차적으로 검출하는 디텍터를 포함하는 것을 특징으로 하는 리소그래피 투영장치.
  3. 제2항에 있어서,
    상기 디텍터는 상기 각각의 패터닝수단과 관련된 방사선의 일 부분을 가로질러 이동하는 것을 특징으로 하는 리소그래피 투영장치.
  4. 제2항에 있어서,
    상기 디텍터와 관련된 프로브를 더 포함하되, 상기 디텍터는 실질적으로 정적이고 상기 프로브는 상기 각각의 패터닝수단과 관련된 상기 방사선의 일 부분을 가로질러 이동하는 것을 특징으로 하는 리소그래피 투영장치.
  5. 제1항에 있어서,
    상기 방사선 검출시스템은 디텍터들을 포함하고, 상기 디텍터들 각각은 상기 패터닝수단들 각각과 관련되어 있는 것을 특징으로 하는 리소그래피 투영장치.
  6. 제1항에 있어서,
    상기 방사선 검출시스템은 상기 방사선 분배 시스템을 나가는 방사선을 검출하는 것을 특징으로 하는 리소그래피 투영장치.
  7. 제1항에 있어서,
    상기 방사선 검출시스템은 상기 분배 채널을 나가는 방사선을 검출하는 것을 특징으로 하는 리소그래피 투영장치.
  8. 제1항에 있어서,
    상기 검출시스템은 상기 패터닝수단들과 상기 투영시스템 사이에서 방사선을 검출하는 것을 특징으로 하는 리소그래피 투영장치.
  9. 제1항에 있어서,
    상기 검출시스템은 상기 투영시스템을 나가는 방사선을 검출하는 것을 특징으로 하는 리소그래피 투영장치.
  10. 제1항에 있어서,
    1이상의 패터닝수단과 관련되고 상기 투영시스템에 의하여 투영되는 방사선의 세기를 조정하는 보상시스템을 더 포함하는 것을 특징으로 하는 리소그래피 투영장치.
  11. 제10항에 있어서,
    상기 보상시스템은 상기 각각의 패터닝수단과 관련된 방사선의 세기를 독립적으로 조정하는 것을 특징으로 하는 리소그래피 투영장치.
  12. 제10항에 있어서,
    상기 패터닝수단들 중 1이상은 방사선 빔의 단면에 원하는 패턴을 부여하도록 설정될 수 있는 개별적으로 제어가능한 요소들의 어레이이고;
    각각의 독립적으로 제어가능한 요소는 상기 방사선의 상이한 부분이 상기 투영시스템으로 지향되는 복수의 상태들 중 하나로 설정되며;
    상기 보상시스템은, 상기 방사선의 세기가 변화되는 동안 상기 방사선의 패턴이 유지되도록 상기 개별적으로 제어가능한 요소들 각각에 대한 설정들을 변화시킴으로써 상기 방사선을 조정하는 것을 특징으로 하는 리소그래피 투영장치.
  13. 제12항에 있어서,
    상기 방사선이 상기 기판의 일 부분상으로 투영되는 경우 이미 검출되고 저장된 방사선 세기의 데이터를 이용하여 상기 보상시스템을 업데이트하는 제어시스템을 더 포함하고, 상기 개별적으로 제어가능한 요소들 모두가 동일한 상태로 설정되도록 상기 패터닝수단들이 설정되는 경우, 상기 저장된 데이터는 상기 세기 변화의 측정치인 것을 특징으로 하는 리소그래피 투영장치.
  14. 제10항에 있어서,
    상기 보상시스템은 1이상의 패터닝수단과 관련되어 있고 상기 투영시스템에 의하여 투영되는 상기 방사선을 감쇄시키는 방사선 감쇄기를 포함하는 것을 특징으로 하는 리소그래피 투영장치.
  15. 제10항에 있어서,
    상기 보상시스템은 1이상의 패터닝수단과 관련되어 있고 상기 투영시스템에 의하여 투영되는 상기 방사선의 일 부분의 세기를 조정하는 것을 특징으로 하는 리소그래피 투영장치.
  16. 제10항에 있어서,
    상기 방사선이 상기 기판의 일 부분상으로 투영되는 경우 이미 검출되고 저장된 방사선 세기의 데이터를 이용하여 상기 보상시스템을 업데이터하는 제어시스템을 더 포함하는 것을 특징으로 하는 리소그래피 투영장치.
  17. 제10항에 있어서,
    방사선이 상기 기판의 일 부분상으로 투영되는 경우 이미 검출된 방사선 세기의 데이터를 이용하여 상기 보상시스템을 업데이트하는 제어시스템을 더 포함하고, 상기 이미 검출된 방사선 세기의 데이터는 저장 매체내에 저장되는 현재 작동(current operation) 이전에 상기 방사선 검출시스템에 의하여 검출된 데이터에 대응되는 것을 특징으로 하는 리소그래피 투영장치.
  18. 제10항에 있어서,
    상기 방사선 검출시스템은 상기 각각의 패터닝수단을 위한 상기 방사선 분배 채널들 및 상기 방사선 분배 시스템 중 1이상의 방사선 세기의 변화를 검출하고;
    상기 보상시스템은 이러한 방사선 세기의 변화를 보상하도록 배치되는 것을 특징으로 하는 리소그래피 투영장치.
  19. 제10항에 있어서,
    상기 방사선 검출시스템은 상기 각각의 패터닝수단을 위한 상기 투영시스템의 방사선 세기의 변화를 검출하도록 배치되고;
    상기 보상시스템은 이러한 방사선 세기의 변화를 보상하도록 배치되는 것을 특징으로 하는 리소그래피 투영장치.
  20. 삭제
  21. 디바이스 제조방법에 있어서,
    기판을 제공하는 단계;
    방사선 시스템을 사용하여 방사선 투영빔을 제공하는 단계;
    복수의 패터닝장치를 사용하여 상기 방사선 시스템으로부터 유도된 방사선 빔들을 원하는 패턴에 따라 패터닝하는 단계;
    상기 패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하는 단계;
    방사선 분배장치를 사용하여 복수의 방사선 분배 채널을 통해 상기 방사선 시스템으로부터 상기 패터닝수단으로 상기 방사선을 분배하는 단계;
    방사선 디텍터를 사용하여 상기 방사선 분배 채널의 방사선 세기를 측정하는 단계를 포함하는 것을 특징으로 하는 디바이스 제조방법.
  22. 디바이스 제조방법에 있어서,
    기판을 제공하는 단계;
    방사선 시스템을 사용하여 방사선 투영빔을 제공하는 단계;
    복수의 패터닝장치를 사용하여 상기 방사선 시스템으로부터 유도된 방사선 빔들을 원하는 패턴에 따라 패터닝하는 단계;
    상기 패터닝된 방사선 빔을 상기 기판의 타겟부상으로 투영하는 단계;
    방사선 분배장치를 사용하여 복수의 방사선 분배 채널을 통해 상기 방사선 시스템으로부터 상기 패터닝장치로 상기 방사선을 분배하는 단계;
    방사선 디텍터를 사용하여 상기 방사선 분배 채널의 방사선 세기를 측정하고, 상기 방사선 디텍터는 상기 방사선 분배 채널 각각에 대한 세기값을 출력하는 단계; 및
    상기 방사선 분배 채널들의 방사선 세기의 어떠한 차이도 보상하는 단계를 포함하는 것을 특징으로 하는 디바이스 제조방법.
KR1020050017138A 2004-03-02 2005-03-02 리소그래피 장치 및 디바이스 제조방법 KR100660506B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/790,257 2004-03-02
US10/790,257 US7061586B2 (en) 2004-03-02 2004-03-02 Lithographic apparatus and device manufacturing method

Publications (2)

Publication Number Publication Date
KR20060043305A KR20060043305A (ko) 2006-05-15
KR100660506B1 true KR100660506B1 (ko) 2006-12-22

Family

ID=34750565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050017138A KR100660506B1 (ko) 2004-03-02 2005-03-02 리소그래피 장치 및 디바이스 제조방법

Country Status (7)

Country Link
US (1) US7061586B2 (ko)
EP (1) EP1571494A1 (ko)
JP (2) JP4648036B2 (ko)
KR (1) KR100660506B1 (ko)
CN (1) CN1664704B (ko)
SG (1) SG114763A1 (ko)
TW (1) TWI269944B (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548134B1 (ko) * 2003-10-31 2006-02-02 삼성전자주식회사 무선 네트워크 환경에서의 tcp의 데이터 전송효율을향상시킬 수 있는 통신시스템 및 그 방법
US7061586B2 (en) * 2004-03-02 2006-06-13 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
BRPI0508483A (pt) * 2004-03-05 2007-07-31 Donaldson Co Inc conjunto de filtro de lìquido de carga superior para uso com agente de tratamento e métodos
US7342644B2 (en) * 2004-12-29 2008-03-11 Asml Netherlands B.V. Methods and systems for lithographic beam generation
JP5025157B2 (ja) * 2005-09-29 2012-09-12 大日本スクリーン製造株式会社 画像記録装置および画像記録方法
JPWO2007058188A1 (ja) * 2005-11-15 2009-04-30 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
US7728955B2 (en) * 2006-03-21 2010-06-01 Asml Netherlands B.V. Lithographic apparatus, radiation supply and device manufacturing method
NL2003204A1 (nl) * 2008-08-14 2010-02-16 Asml Netherlands Bv Lithographic apparatus and method.
JP4868034B2 (ja) * 2009-07-16 2012-02-01 横河電機株式会社 放射線検査装置
US20110102780A1 (en) * 2009-10-30 2011-05-05 Karassiouk Valentine A Calibration of a spatial light modulator
US8243115B2 (en) * 2009-10-30 2012-08-14 Eastman Kodak Company Method for adjusting a spatial light modulator
NL2006625A (en) * 2010-05-26 2011-11-29 Asml Netherlands Bv Illumination system and lithographic apparatus.
JP6206945B2 (ja) * 2013-03-07 2017-10-04 株式会社ブイ・テクノロジー 走査露光装置及び走査露光方法
EP3011645B1 (en) * 2013-06-18 2019-03-13 ASML Netherlands B.V. Lithographic method and system
CN107611287A (zh) * 2014-01-21 2018-01-19 科迪华公司 用于电子装置封装的设备和技术
TWI728951B (zh) * 2014-07-31 2021-06-01 德商卡爾蔡司Smt有限公司 投影曝光系統之照明裝置
TWI701517B (zh) * 2014-12-23 2020-08-11 德商卡爾蔡司Smt有限公司 光學構件
EP3395406A1 (en) * 2017-04-28 2018-10-31 EFSEN Engineering A/S A system and a method for irradiating an object

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732796A (en) * 1970-07-09 1973-05-15 Thomson Csf Line tracing systems using laser energy for exposing photo-sensitive substrates
US5523193A (en) * 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
US6219015B1 (en) * 1992-04-28 2001-04-17 The Board Of Directors Of The Leland Stanford, Junior University Method and apparatus for using an array of grating light valves to produce multicolor optical images
JP3224041B2 (ja) * 1992-07-29 2001-10-29 株式会社ニコン 露光方法及び装置
US5729331A (en) * 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
JP3339149B2 (ja) * 1993-12-08 2002-10-28 株式会社ニコン 走査型露光装置ならびに露光方法
US5677703A (en) * 1995-01-06 1997-10-14 Texas Instruments Incorporated Data loading circuit for digital micro-mirror device
US5530482A (en) * 1995-03-21 1996-06-25 Texas Instruments Incorporated Pixel data processing for spatial light modulator having staggered pixels
KR100210569B1 (ko) * 1995-09-29 1999-07-15 미따라이 하지메 노광방법 및 노광장치, 그리고 이를 이용한 디바이스제조방법
EP0991959B1 (en) * 1996-02-28 2004-06-23 Kenneth C. Johnson Microlens scanner for microlithography and wide-field confocal microscopy
JPH10199800A (ja) * 1997-01-09 1998-07-31 Nikon Corp オプティカルインテグレータを備える照明光学装置
US6177980B1 (en) * 1997-02-20 2001-01-23 Kenneth C. Johnson High-throughput, maskless lithography system
US5982553A (en) * 1997-03-20 1999-11-09 Silicon Light Machines Display device incorporating one-dimensional grating light-valve array
SE9800665D0 (sv) * 1998-03-02 1998-03-02 Micronic Laser Systems Ab Improved method for projection printing using a micromirror SLM
US6229639B1 (en) * 1998-07-09 2001-05-08 Cymer, Inc. Multiplexer for laser lithography
JP4289755B2 (ja) * 2000-02-24 2009-07-01 キヤノン株式会社 露光量制御方法、デバイス製造方法および露光装置
TW520526B (en) * 2000-05-22 2003-02-11 Nikon Corp Exposure apparatus, method for manufacturing thereof, method for exposing and method for manufacturing micro-device
KR20040047816A (ko) * 2001-09-12 2004-06-05 마이크로닉 레이저 시스템즈 에이비 공간광변조기를 이용한 개선된 방법 및 장치
JP3563384B2 (ja) * 2001-11-08 2004-09-08 大日本スクリーン製造株式会社 画像記録装置
TW556043B (en) * 2001-11-30 2003-10-01 Asml Netherlands Bv Imaging apparatus, device manufacturing method and device manufactured by said method
JP2003215808A (ja) * 2002-01-25 2003-07-30 Pentax Corp 多重露光描画装置およびその照明機構
US6870601B2 (en) * 2002-06-12 2005-03-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4174307B2 (ja) * 2002-12-02 2008-10-29 キヤノン株式会社 露光装置
US6870554B2 (en) * 2003-01-07 2005-03-22 Anvik Corporation Maskless lithography with multiplexed spatial light modulators
EP1482375B1 (en) 2003-05-30 2014-09-17 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7190434B2 (en) * 2004-02-18 2007-03-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7061586B2 (en) * 2004-03-02 2006-06-13 Asml Netherlands Bv Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
TW200532395A (en) 2005-10-01
JP4648036B2 (ja) 2011-03-09
EP1571494A1 (en) 2005-09-07
CN1664704B (zh) 2012-03-21
US20050195380A1 (en) 2005-09-08
CN1664704A (zh) 2005-09-07
JP2005252256A (ja) 2005-09-15
KR20060043305A (ko) 2006-05-15
TWI269944B (en) 2007-01-01
SG114763A1 (en) 2005-09-28
US7061586B2 (en) 2006-06-13
JP2010093262A (ja) 2010-04-22

Similar Documents

Publication Publication Date Title
KR100660506B1 (ko) 리소그래피 장치 및 디바이스 제조방법
JP4310302B2 (ja) 光学的に位置を評価する機器及び方法
KR100767090B1 (ko) 리소그래피장치 및 디바이스 제조방법
KR100747782B1 (ko) 리소그래피 장치 및 디바이스 제조방법
KR100660503B1 (ko) 리소그래피 장치 및 디바이스 제조방법
JP5032253B2 (ja) 測定装置および方法
US20070252967A1 (en) Lithographic apparatus and device manufacturing method
JP2005286333A (ja) リソグラフィ装置、及びデバイス製造方法
JP4388928B2 (ja) リソグラフィ・ビーム形成方法及びシステム
JP2010068002A (ja) リソグラフィ装置及びデバイス製造方法
KR20050001440A (ko) 리소그래피 장치에 대한 캘리브레이션방법 및 디바이스제조방법
KR100718740B1 (ko) 리소그래피 투영 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121207

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141205

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171208

Year of fee payment: 12