KR100566685B1 - 전지 부재의 제조방법, 당해 방법으로 제조된 전지 부재 및 당해 부재를 합체화한 전기화학 전지 - Google Patents
전지 부재의 제조방법, 당해 방법으로 제조된 전지 부재 및 당해 부재를 합체화한 전기화학 전지 Download PDFInfo
- Publication number
- KR100566685B1 KR100566685B1 KR1020007000693A KR20007000693A KR100566685B1 KR 100566685 B1 KR100566685 B1 KR 100566685B1 KR 1020007000693 A KR1020007000693 A KR 1020007000693A KR 20007000693 A KR20007000693 A KR 20007000693A KR 100566685 B1 KR100566685 B1 KR 100566685B1
- Authority
- KR
- South Korea
- Prior art keywords
- polymer
- composite
- cell
- components
- composite electrode
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0411—Methods of deposition of the material by extrusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/188—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Secondary Cells (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Polymers (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
본 발명은 주로 비닐리덴 플루오라이드로 이루어진 중합체를 유기 가소제와 같은 전지 부재의 다른 성분 중의 하나 이상과 혼합하는 단계 및 중합체의 융점보다 높은 온도에서 혼합물을 압출하는 단계를 포함하는 전지 부재의 제조방법에 관한 것이다. 당해 방법은 중합체를 하나 이상의 염과 혼합시켜 전해질층을 제조하거나 중합체를 입자형 삽입 물질과 혼합시켜 애노드 또는 캐소드로서 사용되는 복합 물질층을 제조하는데 사용될 수 있다. 본 발명의 방법은 휘발성 용매를 필요로 하지 않는다.
전지 부재, 비닐리덴 플루오라이드, 압출, 비다공성 필름 또는 시트, 복합 전극
Description
본 발명은 중합체를 함유하는 전지 부재의 제조방법, 이와 같이 제조된 전지 부재, 및 이러한 전지 부재를 합체한 전기화학 전지에 관한 것이다.
수년 동안, 리튬 금속 애노드와 리튬 이온이 층간삽입(intercalation)되거나 삽입(insertion)될 수 있는 물질로 이루어진 캐소드가 구비된 재충전 가능한 전지를 제조하는 것이 공지되어 왔다. 이러한 전지는, 전해질로서 사용되는 유기 액체(예:프로필렌 카보네이트) 중의 리튬염(예: 리튬 퍼클로레이트)의 용액으로 포화된 여과지 또는 폴리프로필렌과 같은 분리막을 사용할 수 있다. 또는, 이들 전지는 고상 이온 전도성 중합체, 예를 들면, 폴리(에틸렌 옥사이드)와 리튬염과의 착물을 사용할 수 있다. TiS2, V6O13 및 LixCoO2(여기서, x는 1 미만이다)와 같은 다양한 종류의 삽입 물질이 캐소드 물질로서 공지되어 있으며, 이러한 물질은 종종 고체 전해질 물질과 혼합하여 복합 캐소드를 형성한다. 애노드에서 덴드라이트 성장에 의해 야기되는 문제들을 피하기 위해, 역시 애노드 물질로서 흑연과 같은 삽입 물질의 사용이 제안되며, 이 또한 고체 전해질 물질과 혼합하여 복합 애노드를 형성할 수 있다. 나트륨이 리튬 대신 사용되는 유사한 전지를 제조할 수 있다.
최근에 중합체 전해질의 또 다른 형태가 고즈드즈(Gozdz) 등에 의해 제안되었으며(미국 특허 제5,296,318호), 이는 비닐리덴 플루오라이드 75 내지 92%와 헥사플루오로프로필렌 8 내지 25%의 공중합체를 리튬 염 및 혼화성 용매(예: 에틸렌 카보네이트/프로필렌 카보네이트 혼합물)와 혼합된 상태로 포함하며, 저비점 용매(예: 테트라하이드로푸란) 중의 용액으로부터 캐스팅된다. 이는 전도성이 10-4 내지 10-3 S·cm-1인 안정한 필름을 제공하는 것으로 언급된다. 영국 특허원 제2,309,701 A호에는, 모노-불포화 카복실산, 설폰산 또는 포스폰산, 에스테르 또는 아미드가 그래프팅되어 있는 비닐리덴 플루오라이드가 주를 이루는 중합체 쇄가 PVdF/HFP 공중합체 대신 사용되는 전해질이 기재되어 있으며, 고즈드즈의 특허에서와 마찬가지로 당해 전해질 또한 에틸렌 카보네이트 및/또는 프로필렌 카보네이트와 같은 유기 용매와 염을 포함하며, 디메틸 아세트아미드 또는 테트라하이드로푸란과 같은 저비점 용매 중의 용액으로부터 캐스팅된다. 이러한 방법에 의해 고품질의 전해질이 제공되지만, 사용되는 저비점 용매를 다량 증발시켜야 한다는 점이 불편하다.
본 발명에 따라, 주로 비닐리덴 플루오라이드로 이루어진 중합체를 입자형 삽입 물질 및 유기 가소제와 혼합하는 단계(여기서, 유기 가소제는 압출이 종결되기 전에 중합체와 혼합된다) 및 혼합물을 당해 중합체의 융점보다 높은 온도에서 압출하여 비다공성 필름형 또는 시트형 복합 전극을 용융 캐스팅하는 단계를 포함하는, 전지용 복합 전극의 제조방법이 제공된다.
압출되는 혼합물은 적합한 염을 포함할 수도 있다. 전지 부재는 적합한 삽입 물질이 혼입됨으로써 복합 캐소드 또는 복합 애노드 층일 수 있다.
전지가 리튬 전지(또는 리튬 이온 전지)인 경우, 염은 리튬 퍼클로레이트 LiClO4와 같은 리튬 염일 수 있다. 기타 적합한 염은 LiAsF6, LiPF6, LiBF4, LiN(SO2CF3) 또는 LiCF3SO3이며, 염이 압출되는 경우 이는 압출 온도에서 안정해야만 한다. 각종 혼화성 가소제가 사용될 수 있으며, 특히 에틸렌 카보네이트 또는 프로필렌 카보네이트가 사용되고, 다른 가소제로는 디에톡시에탄 또는 디에틸 카보네이트가 있다. 테트라에틸렌 글리콜 디메틸 에테르(테트라글림), 또는 N-메틸피롤리돈 (1-메틸-2-피롤리돈)과 같은 가소제가 또한 목적하는 작동 온도에서 기타 가소제들이 결정화되지 않도록 하여 충분한 전기전도성을 갖도록 하기 위해 제공될 수 있다. 사용될 수 있는 기타 가소제로는 프탈레이트(예: 디부틸프탈레이트), 지방족 이염기산의 에스테르(예: 디옥틸아디페이트 또는 디부틸세바케이트), 알킬 포스페이트(예: 트리부틸포스페이트), 및 아디프산의 중합체성 폴리에스테르(예: 폴리(1,3 부틸렌 글리콜/1,2 프로필렌 글리콜/아디프산 에스테르)이 있다. 이러한 가소제의 비점은 적어도 대부분의 가소제가 압출 도중 증발하지 않도록 압출 온도 이상이어야 한다는 사실이 이해될 것이다.
당해 중합체는 주로 비닐리덴 플루오라이드로 이루어진 중합체 쇄를 포함하며, 단독중합체, 즉 폴리비닐리덴 플루오라이드(PVdF)이거나 비닐리덴 플루오라이드(VdF)와 기타 단량체[예: 헥사플루오로프로필렌(HFP), 클로로트리플로오로에틸렌(CTFE), 또는 테트라플루오로에틸렌(TFE)]와의 공중합체 또는 삼원공중합체일 수 있으며, 이 경우 VdF의 비율은 70중량% 이상이 바람직하다. 중합체는 상기한 바와 같은 중합체 쇄에 그래프팅된 추가의 단량체를 포함할 수 있으며, 특히 모노-불포화 카복실산, 설폰산 또는 포스폰산, 에스테르 또는 아미드가 중합체 쇄에 그래프팅될 수 있다. 이와 같은 그래프팅 중합체에 의해 전지내의 집전물(current collector)과 같은 금속 부재에 대한 접착성이 개선될 수 있다.
그래프팅시키려는 단량체는 탄소쇄 R- 중에 단 하나의 이중결합과, 하나 이상의 카복실 그룹 -COOH, 설폰산 그룹 -SO2OH, 포스폰산 그룹 - PO(0H)2, 에스테르 그룹 -COOR' 또는 아미드 그룹 -CONH2를 가져야 한다. 통상 탄소쇄 R- 중의 탄소수가 5 미만인 저분자량 단량체가 바람직하다. 예를 들면, 아크릴산; 크로톤산, 비닐아세트산, 메틸아크릴산(부테논산의 이성체); 알릴아세트산과 같은 펜테논산의 이성체 또는 티글산; 또는 하나 이상의 산 그룹을 갖는 단량체의 예로서, 이타콘산 또는 말레산이 있다. 아크릴아미드와 같은 상응하는 아미드도 사용될 수 있다. 에스테르에서, 그룹 R'는 메틸, 에틸, 하이드록시에틸, 또는 부틸일 수 있으며, 예를 들면, 메틸 아크릴레이트 또는 하이드록시에틸 메타크릴레이트와 같은 에스테르가 사용될 수 있다. 그래프팅되는 가장 바람직한 단량체는 아크릴산 또는 메타크릴산이다. 그래프팅은 방사선 조사에 의해 성취될 수 있다. 예를 들면, 중합체 쇄 기재와 그래프팅 단량체 물질을 함께 연속식 또는 간헐식으로 조사시킬 수 있으며, 보다 바람직하게는 기재를 그래프팅 단량체 물질과 접촉시키기 전에 예비조사시킬 수 있다. 방사선은, 예를 들면, 전자 빔, X선 또는 γ선이다. 방사선은 명백하게 자유 라디칼을 생성시킴으로써 기재를 활성화시킨다.
그래프팅 수준은 몇 가지 인자에 의해 결정되는데, 가장 중요한 인자는 활성화된 기재가 그래프팅 단량체 물질과 접촉하는 시간의 길이, 조사에 의한 기재의 예비활성화 정도, 그래프팅 단량체 물질이 기재를 침투하는 정도, 및 기재와 단량체 물질이 접촉하는 온도이다. 그래프팅 단량체 물질이 산인 경우, 단량체를 함유하는 용액을 채취한 다음, 염기에 대해 적정하여 잔여 산 단량체의 농도를 관측함으로써 그래프팅 수준을 관찰할 수 있다. 생성된 조성물 내의 그래프팅 수준은 최종 중량의 2 내지 20%, 보다 바람직하게는 3 내지 12%, 예를 들면, 5 내지 10%가 바람직하다.
삭제
본 발명의 제2 양태로서 상술한 바와 같이 압출에 의해 제조되는 비다공성 중합체 함유 물질로 이루어진 시트 형태 또는 필름 형태의 복합 전극이 제공되며, 본 발명의 제3 양태로서 상기와 같은 하나 이상의 복합 전극이 합체된 전지가 제공된다.
따라서, 전지에 압출에 의해 제조된 복합 음극 및/또는 이와 같이 제조된 복합 양극을 합체시킬 수 있다. 바람직한 전지는 복합 양극과 복합 음극을 갖는 재충전 가능한 리튬 스윙 전지(즉, 리튬 금속이 없는 전지)이며, 이때 복합 양극과 복합 음극은 각각 적합한 삽입 물질과 혼합된 중합체를 포함하고 복합 양극과 복합 음극 각각은 압출에 의해 제조될 수 있으며, 이들은 또한 압출에 의해 제조될 수도 있는 전해질 층에 의해 분리된다. 복합 양극과 복합 음극을 각각 구리 또는 알루미늄 호일 또는 메쉬와 같은 적합한 집전물과 접촉시켜야 한다. 하나의 방법으로, 복합 전극을 튜브 형태로 압출하고, 이어서 집전체 호일의 박편을 튜브에 삽입한 후, 튜브를 편평하게 눌러서 호일을 복합 전극 물질 시트 사이에 교대로 적층시킨다. 여기 마지막 단계는 호일이 복합 전극 물질에 접착되도록 가열된 롤러를 사용하여 수행될 수 있다. 다른 방법에서, 복합 양극, 중합체 전해질 및 복합 음극을 모두 압출시킨 후, 이어서 금속 호일 사이에 끼워 넣고, 가열된 롤러 사이로 통과시킴으로써 함께 접착시킨다.
이제 본 발명을 추가로 보다 특정하게 기술할 것이지만, 이는 단지 일례에 불과하다.
모든 실시예에서, 중합체의 용융 유량은 ASTM D 1238에 따라 측정된 파라미터이다. 수력학적 프레스를 사용하는 실시예에서, 조성물을 마일라(Mylar) 시트 사이에서 압축시키는데, 각각의 경우 샘플은 직경이 90mm인 원의 면적보다 작은 면적 위에 도포된다.
모든 실시예에서, 중합체의 용융 유량은 ASTM D 1238에 따라 측정된 파라미터이다. 수력학적 프레스를 사용하는 실시예에서, 조성물을 마일라(Mylar) 시트 사이에서 압축시키는데, 각각의 경우 샘플은 직경이 90mm인 원의 면적보다 작은 면적 위에 도포된다.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
중합체계 복합 전극 층
중합체계 전극 층이 분리막 및 액체 전해질(예: 에틸렌 카보네이트/프로필렌 카보네이트 혼합물 중에 용해된 리튬 헥사플루오로포스페이트)과 조합 사용되어 전지를 형성하는 경우, 복합층이 처음부터 가소제를 함유할 필요는 없다. 중합체계 복합 전극층이 중합체계 전해질 층과 조합 사용되어 전지를 형성한다면, 복합 전극층은 충분한 이온 전도성을 지녀야만 하며, 이러한 요건은 압출되는 층 속에 적합한 염과 가소제를 포함시킴으로써 확보하거나, 염 또는 가소제 없이 층을 형성한 다음 이를 유기 액체 전해질에 침지시킴으로써 확보할 수 있다. 어느 경우이든, 복합 전극층은 집전물에 확실히 고착되어야 하며, 이러한 고착은 그래프팅 중합체를 사용함으로써 개선시킬 수 있다. 본 발명은 가소제를 혼입시킨 층들에 관한 것이다.
실시예 A
본 실시예는 융점이 132℃인 비닐리덴 플루오라이드/헥사플루오로프로필렌 공중합체(이의 용융 유량은 등급 1010의 단독중합체와 동일하다. 즉, 230℃와 2.16kg의 하중에서 2g/10min이다)인 등급 21510 솔베이 솔레프(Solvay Solef; 상표명)를 사용한다.
PVdF/HFP 분말을 시간당 1kgray의 조사 속도로 총 15kgray의 조사량의 코발트-60 감마 광원에 의해 조사한다. 이어서, 조사된 분말을, 단독중합 억제제로서 작용하는 황산 제1철(0.02M)도 함유하는 아크릴산(25중량%)의 탈산화 수용액이 내장된 반응 용기 속에 넣는다. 이러한 반응 혼합물을 60℃로 유지하고, 아크릴산을 사용하여 반응의 진행을 모니터링하기 위해, 간격을 두고 혼합물 샘플을 채취하여 수산화나트륨으로 적정함으로써 산의 잔여 농도를 측정한다.
몇 시간 후, 아크릴산이 목적하는 양만큼 소모되었을 때, 생성된 그래프팅 공중합체 분말을 탈이온수로 여러번 세척한 다음, 진공 오븐에서 24시간 동안 50℃에서 건조시킨다. 관측한 바에 따르면 분말의 중량은 증가되며, 그 증가율은 아크릴산이 중합체 쇄에 그래프팅됨으로 인해 최종 중량의 10%에 해당한다.
혼합물은 다음과 같이 구성된다:
PVdF-HFP/아크릴산 그래프팅 중합체 1부,
LiCF3SO3 0.42부,
에틸렌 카보네이트 1.7부,
프로필렌 카보네이트 1.1부, 및
흑연 2.85부.
이들 성분을 잘 혼합한 다음, 165 내지 205℃의 압출 온도에서 압출하여 펠릿을 형성한다. 이어서, 펠릿을 다시 압출시켜 두께가 0.01mm인 구리 호일 위에 너비가 200mm이고 두께가 0.1mm인 복합 애노드 물질의 박편을 형성하고, 이를 압출 직후에 가열된 닙 롤러(nip roller) 사이에 적층시킨다.
실시예 B
본 실시예는 실시예 A에서와 같은 솔레프 등급 21510 PVdF/HFP 공중합체를 사용하고, 실시예 A와 동일한 방식으로 중합체 쇄에 아크릴산(AA)을 그래프팅하여 이의 중량 증가 또한 최종 중량의 10%가 되도록 한다.
혼합물은 다음과 같이 구성된다:
PVdF-HFP/AA 그래프팅 중합체 1부,
LiCF3SO3 0.6부,
에틸렌 카보네이트 2.2부,
프로필렌 카보네이트 1.5부,
LiNiO2 7부 및
탄소 0.16부.
이들 성분을 잘 혼합한 다음, 165 내지 205℃의 압출 온도에서 압출하여 펠릿을 형성한다. 이어서, 펠릿을 다시 압출시켜 두께가 0.1mm이고 너비가 200mm인 복합 캐소드 물질의 박편을 형성하고, 이를 압출 직후에 가열된 닙 롤러 사이에 통과시킴으로써 두께가 0.02mm인 알루미늄 호일 위에 적층시킨다.
다음 2개의 실시예는 그래프팅되지 않은 PVdF를 사용하는 복합 애노드 층에 관한 것이다.
삭제
삭제
삭제
삭제
실시예 C
본 실시예는 230℃와 하중 10kg에서 용융 유량이 0.7g/10min이고 융점이 172℃인 PVdF 단독중합체인 솔레프 등급 1015를 사용한다. 사용되는 성분들은 다음과 같다:
PVdF 1부,
스테아르산 0.13부,
흑연 5.67부 및
디부틸 세바케이트(DBS) 2부.
PVdF와 스테아르산을 함께 혼합하여 2개의 혼합 영역을 갖는 이축 압출기에 도입시킨다. 흑연은 나사축의 초반부에서 도입시키고 2개의 호퍼로부터 공급하고, 디부틸 세바케이트 가소제는 제1 혼합 영역 바로 앞에서 용적측정식 펌프에 의해 부가한다. 압출기 전체의 온도는 180℃이다. 압출기로부터 0.30mm 두께의 층을 생성시킨 다음 캘린더링하여 두께 0.10mm의 필름을 제조한다.
이어서, 수득된 애노드 층을 리튬 헥사플루오로포스페이트를 함유하는 에틸렌 카보네이트/디메틸 카보네이트 전해질과 리튬 카운터 전극을 갖는 시험 전지 속에서 시험한다. 이 시험 전지는 0.01volt에서 1.5volt 사이의 전류 사이클을 갖는다. 애노드는 리튬 이온을 유입하는 것으로 밝혀졌으며, 이러한 유입은 대부분 가역적이다.
실시예 D
본 실시예는 230℃와 하중 10kg에서 용융 유량이 2.5g/10min이고 융점이 약 173℃인 PVdF 단독중합체인 솔레프 등급 EX1300을 사용한다.
혼합물은 다음과 같이 구성된다:
PVdF 1부,
에틸렌 카보네이트 1.14부 및
흑연 2.76부.
이들 성분들을 기계적으로 혼합한 다음, 이축 공동 혼합기에서 35rpm으로 10분 동안 174℃에서 용융 혼합한다. 이어서, 용융 혼합된 혼합물을 200℃에서 상술한 바와 같은 수력학적 프레스로 5분 동안 가압함으로써 박층을 수득하며, 이때 압반의 하중은 약 6.4톤이다. 생성된 층의 최종 두께는 0.10mm이다.
수득된 애노드 층을 리튬 헥사플루오로포스페이트를 함유하는 에틸렌 카보네이트/디메틸 카보네이트 전해질과 리튬 카운터 전극을 갖는 시험 전지 속에서 시험한다. 이 시험 전지는 0.01volt에서 1.5volt 사이의 전류 사이클을 갖는다. 애노드는 리튬 이온을 유입하는 것으로 밝혀졌으며, 이러한 유입은 대부분 가역적이다. (가소제 DBS는 PVdF와 함께 통상 사용되지만, 전도성을 향상시키지는 않는다. 결과적으로, 실시예 C의 조성물은 실시예 D의 조성물만큼 애노드로서 제대로 작동하지 않는다)
다음 실시예는 그래프팅되지 않은 중합체를 사용하는 복합 캐소드층에 관한 것이다.
실시예 E
본 실시예는 230℃와 하중 5kg에서 용융 유량이 6g/10min이고 융점이 약 146℃인 VdF/HFP 공중합체인 솔레프 등급 21010을 사용한다.
혼합물은 다음과 같이 구성된다:
PVdF/HFP 1부,
에틸렌 카보네이트 0.8부,
전도성 탄소 0.4부 및
LiMn2O4 2.12부
이들 성분들을 기계적으로 혼합한 다음, 이축 공동 혼합기에서 40rpm으로 172℃에서 10분 동안 용융 혼합한다. 이어서, 용융 혼합된 혼합물을 상술한 바와 같이 수력학적 프레스로 200℃에서 5분 동안 가압함으로써 박층을 수득하며, 이때 압반의 하중은 약 8.1톤이다. 생성된 층의 최종 두께는 0.10mm이다.
유사한 조성물이 단독중합체, 예를 들면, 실시예 D에 기재된 바와 같은 솔레프 등급 EX1300 단독중합체를 사용하여 제조될 수 있음을 인지할 수 있을 것이다.
복합 애노드 또는 캐소드를 제조하는데 있어서, 성분들의 비율(중량비)은 바람직하게는 다음과 같다:
PVdF : 15 내지 30%,
가소제: 15 내지 30%,
잔여 성분: 흑연(애노드의 경우) 또는 탄소 7 내지 15%, 및
삽입 물질(캐소드의 경우).
Claims (11)
- 비닐리덴 플루오라이드를 주성분으로 포함하는 중합체를 입자형 삽입 물질 및 유기 가소제와 혼합하는 단계(여기서, 유기 가소제는 압출이 종결되기 전에 중합체와 혼합된다) 및 혼합물을 당해 중합체의 융점보다 높은 온도에서 압출하여 비다공성 필름형 또는 시트형 복합 전극을 용융 캐스팅(melt casting)하는 단계를 포함하는, 전지용 복합 전극의 제조방법.
- 제1항에 있어서, 중합체가 비닐리덴 플루오라이드 단독중합체인 중합체 쇄를 포함하는 방법.
- 제1항에 있어서, 중합체가 비닐리덴 플루오라이드와 기타 단량체와의 공중합체 또는 삼원공중합체인 중합체 쇄를 포함하는 방법.
- 제2항 또는 제3항에 있어서, 중합체의 쇄에 모노-불포화 카복실산, 모노-불포화 설폰산, 모노-불포화 포스폰산, 에스테르 또는 아미드가 그래프팅되는 방법.
- 제1항 내지 제3항 중의 어느 한 항에 있어서, 압출되는 혼합물이 염을 포함하는 방법.
- 제1항 내지 제3항 중의 어느 한 항에 있어서, 중합체와 유기 가소제의 중량비가 각각 15 내지 30%의 범위인 방법.
- 제6항에 있어서, 복합 전극이 캐소드이고, 입자형 삽입 물질 이외에 탄소를 7 내지 15중량% 포함하는 방법.
- 제1항 내지 제3항 중의 어느 한 항에 따르는 방법에 의해 제조된 비다공성 중합체 함유 물질로 구성되는 시트형 또는 필름형 복합 전극.
- 제8항에 따르는 하나 이상의 복합 전극이 합체된 전지.
- 제1항 내지 제3항 중의 어느 한 항에 따르는 방법에 의해 복합 애노드를 제조하는 단계, 제1항 내지 제3항 중의 어느 한 항에 따르는 방법에 의해 복합 캐소드를 제조하는 단계, 복합 애노드와 복합 캐소드와의 사이에 전해질 물질층을 도입한 다음, 이들을 금속 전류 집전물(collecter)들 사이에 끼어놓은 후 이들을 함께 가열된 롤러 사이로 통과시킴으로써 접착시키는 단계를 포함하는, 전지의 제조방법.
- 삭제
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9715392A GB9715392D0 (en) | 1997-07-23 | 1997-07-23 | Polymer electrolyte |
GB9715392.8 | 1997-07-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010022123A KR20010022123A (ko) | 2001-03-15 |
KR100566685B1 true KR100566685B1 (ko) | 2006-04-03 |
Family
ID=10816229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020007000693A KR100566685B1 (ko) | 1997-07-23 | 1998-07-20 | 전지 부재의 제조방법, 당해 방법으로 제조된 전지 부재 및 당해 부재를 합체화한 전기화학 전지 |
Country Status (9)
Country | Link |
---|---|
US (1) | US6409867B1 (ko) |
EP (1) | EP1008202B1 (ko) |
JP (1) | JP2001511593A (ko) |
KR (1) | KR100566685B1 (ko) |
AT (1) | ATE215267T1 (ko) |
DE (1) | DE69804465T2 (ko) |
GB (1) | GB9715392D0 (ko) |
TW (1) | TW409436B (ko) |
WO (1) | WO1999005744A1 (ko) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4488572B2 (ja) * | 1999-02-05 | 2010-06-23 | 株式会社クレハ | 活性炭電極形成用電極合剤および該合剤から得られる活性炭電極 |
GB0018635D0 (en) * | 2000-07-31 | 2000-09-13 | Aea Technology Plc | Polymer electrolyte |
US20030062257A1 (en) * | 2001-10-03 | 2003-04-03 | Gozdz Antoni S. | Electrochemical cell comprising lamination of electrode and paper separator members |
GB0211164D0 (en) * | 2002-05-16 | 2002-06-26 | Accentus Plc | Electrochemical cell assembly |
DE10251194B4 (de) * | 2002-11-04 | 2006-12-14 | Dilo Trading Ag | Verfahren zur Herstellung eines Lithium-Polymer-Batterievorläufers und Verwendung des Verfahrens |
US7241817B2 (en) * | 2003-06-06 | 2007-07-10 | Arkema France | Process for grafting a fluoropolymer and multilayer structures comprising this grafted polymer |
DE102004014383A1 (de) * | 2004-03-18 | 2005-10-06 | Varta Microbattery Gmbh | Galvanisches Element |
US8784595B2 (en) | 2004-07-26 | 2014-07-22 | Bathium Canana Inc. | Process for laminating components of an electrochemical cell |
US10256498B2 (en) | 2011-06-23 | 2019-04-09 | Solvay Specialty Polymers Italy S.P.A. | Process for manufacturing battery components |
WO2012175417A1 (en) | 2011-06-23 | 2012-12-27 | Solvay Specialty Polymers Italy S.P.A. | Secondary batteries |
JP2014096326A (ja) * | 2012-11-12 | 2014-05-22 | Toyota Industries Corp | 二次電池用負極活物質、並びにこれを用いた負極及び二次電池 |
US11530306B2 (en) | 2016-06-20 | 2022-12-20 | Solvay Sa | Fluoropolymer film |
DE102017216570A1 (de) * | 2017-09-19 | 2019-03-21 | Robert Bosch Gmbh | Verfahren zur Herstellung einer Elektrodenanordnung |
PL3493300T3 (pl) * | 2017-11-30 | 2021-04-19 | Collin Lab & Pilot Solutions Gmbh | Sposób nanoszenia łat z polimerów na podłoże |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0145498A2 (en) * | 1983-12-15 | 1985-06-19 | Scimat Limited | Materials for electrical devices |
EP0730316A1 (en) * | 1995-03-03 | 1996-09-04 | Elf Atochem North America, Inc. | Polymeric electrode and electrolyte |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470357A (en) * | 1993-03-05 | 1995-11-28 | Bell Communications Research, Inc. | Method of making a laminated lithium-ion rechargeable battery cell |
US5460904A (en) * | 1993-08-23 | 1995-10-24 | Bell Communications Research, Inc. | Electrolyte activatable lithium-ion rechargeable battery cell |
JP3528210B2 (ja) * | 1993-08-24 | 2004-05-17 | 栗田工業株式会社 | 水処理用触媒 |
US5514461A (en) * | 1993-10-05 | 1996-05-07 | Kureha Chemical Industry Co., Ltd. | Vinylidene fluoride porous membrane and method of preparing the same |
JPH09109325A (ja) * | 1995-10-16 | 1997-04-28 | Nkk Corp | フッ素樹脂系フィルムラミネート鋼板 |
GB2309701B (en) * | 1996-01-31 | 1999-06-16 | Aea Technology Plc | Organic electrolyte composition |
US5772934A (en) * | 1996-05-24 | 1998-06-30 | W. R. Grace & Co.-Conn. | Process to produce lithium-polymer batteries |
-
1997
- 1997-07-23 GB GB9715392A patent/GB9715392D0/en not_active Ceased
-
1998
- 1998-07-20 AT AT98935173T patent/ATE215267T1/de not_active IP Right Cessation
- 1998-07-20 US US09/463,020 patent/US6409867B1/en not_active Expired - Lifetime
- 1998-07-20 EP EP98935173A patent/EP1008202B1/en not_active Expired - Lifetime
- 1998-07-20 KR KR1020007000693A patent/KR100566685B1/ko not_active IP Right Cessation
- 1998-07-20 JP JP2000504625A patent/JP2001511593A/ja active Pending
- 1998-07-20 WO PCT/GB1998/002167 patent/WO1999005744A1/en active IP Right Grant
- 1998-07-20 DE DE69804465T patent/DE69804465T2/de not_active Expired - Lifetime
- 1998-07-22 TW TW087111941A patent/TW409436B/zh not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0145498A2 (en) * | 1983-12-15 | 1985-06-19 | Scimat Limited | Materials for electrical devices |
EP0730316A1 (en) * | 1995-03-03 | 1996-09-04 | Elf Atochem North America, Inc. | Polymeric electrode and electrolyte |
Also Published As
Publication number | Publication date |
---|---|
DE69804465T2 (de) | 2002-10-10 |
US6409867B1 (en) | 2002-06-25 |
TW409436B (en) | 2000-10-21 |
KR20010022123A (ko) | 2001-03-15 |
GB9715392D0 (en) | 1997-09-24 |
EP1008202A1 (en) | 2000-06-14 |
DE69804465D1 (de) | 2002-05-02 |
WO1999005744A1 (en) | 1999-02-04 |
ATE215267T1 (de) | 2002-04-15 |
JP2001511593A (ja) | 2001-08-14 |
EP1008202B1 (en) | 2002-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0793286B1 (en) | Grafted polyvinylidene fluoride as a solid polymer electrolyte for eletrochemical cells, and electrochemical cell incorporating same | |
KR100613799B1 (ko) | 고체 전해질 이차 전지 | |
KR100566685B1 (ko) | 전지 부재의 제조방법, 당해 방법으로 제조된 전지 부재 및 당해 부재를 합체화한 전기화학 전지 | |
US20040029008A1 (en) | Method for producing rechargeable lithium-polymer batteries and a battery produced according to said method | |
US6617078B1 (en) | Lithium ion rechargeable batteries utilizing chlorinated polymer blends | |
CN100530809C (zh) | 有机电解溶液和使用该溶液的锂电池 | |
JP4247583B2 (ja) | 固体電解質二次電池およびその製造方法 | |
KR100371954B1 (ko) | 겔상 고체전해질형성용 플루오르화 비닐리덴계 공중합체,고체전해질 및 전지 | |
JP4942249B2 (ja) | リチウムイオン二次電池の製造方法 | |
GB2309701A (en) | Organic electrolyte composition | |
JP2002216849A (ja) | リチウムイオン二次電池の製造方法 | |
GB2309703A (en) | Polymer electrolyte | |
KR101812577B1 (ko) | 분리막 및 이를 포함하는 전기 화학 전지 | |
JPH1140128A (ja) | 電池用セパレータおよび電池 | |
JPH11238525A (ja) | シート状電解質およびリチウム2次電池 | |
KR20000003091A (ko) | 다성분계 고체고분자 전해질, 이의 제조방법, 이를 이용한 복합전극 및 리튬고분자 전지 | |
KR20000002282A (ko) | 삼성분계 고체고분자 전해질, 이의 제조방법, 이를 이용한 복합전극 및 리튬고분자 전지 | |
MXPA99011638A (en) | Solid electrolytic secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130314 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140313 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |