KR100492935B1 - 압전소자의 저온소결방법 - Google Patents

압전소자의 저온소결방법 Download PDF

Info

Publication number
KR100492935B1
KR100492935B1 KR10-2002-0071020A KR20020071020A KR100492935B1 KR 100492935 B1 KR100492935 B1 KR 100492935B1 KR 20020071020 A KR20020071020 A KR 20020071020A KR 100492935 B1 KR100492935 B1 KR 100492935B1
Authority
KR
South Korea
Prior art keywords
sintering
pbo
pzt
mole
piezoelectric element
Prior art date
Application number
KR10-2002-0071020A
Other languages
English (en)
Other versions
KR20040043027A (ko
Inventor
김홍수
안영수
박주석
한문희
김준수
유윤종
노광수
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR10-2002-0071020A priority Critical patent/KR100492935B1/ko
Publication of KR20040043027A publication Critical patent/KR20040043027A/ko
Application granted granted Critical
Publication of KR100492935B1 publication Critical patent/KR100492935B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 압전소자의 저온소결방법에 관한 것으로, 그 목적은 900℃ 이하에서 소결이 가능한 PZT 조성을 개발함으로써, 950℃부터 발생하는 산화납(PbO)의 휘발을 방지하고, 장차 PZT를 후막화할 수 있도록 PbO, Pb(NO3)2, ZrO2, TiO 2를 주원료로 하여 하소함으로써 반응성이 우수한 PZT용 원료분말을 만들고 저온소결조제로서 PbO와 BN을 사용함으로써 PbO의 휘발이 일어나지 않는 저온에서 소결이 가능한 PZT 세라믹스의 제조방법을 제공하는데 있다.
본 발명의 구성은 압전소자를 제조할 때 일반적으로 사용되는 소결온도인 1200 ∼ 1300℃보다 낮은 온도에서 압전소자를 제조하기 위하여, 소결시 액상을 형성하는 산화납(PbO)와 질화붕소(BN)를 첨가하고, 또한 출발물질로서 일반적으로 사용하는 PbO 대신 Pb(NO3)2를 출발물질로 사용하여 소결시 사용되는 PZT 분말에 반응성을 증가시켜 제조하는 방법을 특징으로 한다.

Description

압전소자의 저온소결방법{Low temperature sintering of piezoelectric element}
본 발명은 압전소자의 저온소결방법에 관한 것으로, 특히 900℃ 이하에서 소결이 가능한 PZT 소자의 제조방법에 관한 것이다.
독일특허 DE 2314152에 의하면 PZT의 일종인 Pb(Ti,Zr(NiMgNb))O3를 고온 프로세싱(hot pressing)에 의해 1100℃이하에서 치밀하게 소결시킨 바 있다. 하지만 이 방법은 비싼 방법으로 상용화가 어렵다는 단점이 있다.
미국 특허 US 4,636,378에서는 졸-겔 프로세스(sol-gel process)를 이용하여 알콕사이드(alkoxide) 가수분해를 시켜 알칼리 토류(alkaline earth) PZT를 만들 수 있다거나, 유럽특허 EP 280033과 독일특허 DE 3727398과 같이 혼합 침전물(mixed precipitation)과 기본 침전물(basic precipitation)에 의해 매우 미세한 분말을 얻은 후, 낮은 온도에서 소결하는 것을 보고하고 있다. 그러나, 이와 같은 제조공정은 출발물질이 매우 비싸고, 싼 값으로 많은 양을 만들어 내기 힘들다는 단점이 있다.
일본의 Tashiro, S.는 과잉의 PbO 분말을 첨가하고 밀링(milling) 시간을 증가시켜 저온소결 PZT를 제조하였다. 이 때 출발물질의 평균입경이 0.38㎛였고, 밀링(milling) 시간은 120시간이었다. 이 방법의 단점은 밀링(milling) 시간이 너무 길어서, 밀링 미디어(milling media)의 마모에 의한 불순물의 혼입이 문제가 된다는 단점이 있다.
독일 특허 DE 427829에서는 다시 전통적인 방법으로 돌아가, Bi2O3/ZnO라는 산화물 혼합물을 첨가하여 PbO와 공융(정)점(eutectic)을 형성하도록 하여, 1020℃에서 소결하도록 하였다. 그러나 이 방법도 1000℃이하로 소결온도를 낮추지는 못했다는 단점이 있다.
독일 특허 DE 4416245와 DE 4416246의 경우, 액상소결을 촉진시키기 위하여 PbO/SiO2로 구성된 글래스 프리트(glass frit)를 제조해야 하므로 1300℃ 이상의 고온이 필요하게 되어 많은 에너지를 추가로 소비하게 된다. 또한 글래스 프리트(glass frit)를 제조할 때 발생하는 PbO 증기는 작업환경을 유해하게 하고 환경을 오염시킨다는 문제점이 있다.
대한민국 특허 207590에서는 PZT 조성을 혼합, 하소한 후에도 Na, K, Fe를 포함하는 저온 소결첨가제를 첨가하여 혼합하고 이들을 반응시킨 후 다시 분쇄 및 성형을 거쳐 소결을 실시하는 5단계를 거치도록 하였다. 이 방법은 소결온도를 1050℃까지 낮추기는 하였으나, 하소 후에 저온소결첨가제를 첨가하여 다시 반응시킴으로써 PZT 소자 제조시 에너지절약 효과가 크지 않다는 단점이 있다.
대한민국 특허 248193에서는 기본조성인, PbO, ZrO2, TiO2이외에 Sb2O3 , Mn(CO3)2, Nb2O5를 첨가하여 800∼1000℃에서 저온소결에 성공하였으나, 저온소결시킨 시편의 전기적 특성은 나타내지 않았다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 900℃ 이하에서 소결이 가능한 PZT 조성을 개발함으로써, 950℃부터 발생하는 산화납(PbO)의 휘발을 방지하고, 장차 PZT를 후막화할 수 있도록 PbO, Pb(NO3)2, ZrO2, TiO2 를 주원료로 하여 하소함으로써 반응성이 우수한 PZT용 원료분말을 만들고 저온소결조제로서 PbO와 BN을 사용함으로써 PbO의 휘발이 일어나지 않는 저온에서 소결이 가능한 PZT 세라믹스의 제조방법을 제공하는데 있다.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 출발물질로서 Pb 공급원인 산화납(PbO)만 사용하지 않고, 질산납(Pb(NO3)2)과 산화납(PbO)를 1 : 9 에서 9 : 1의 범위로 혼합한 분말을 PbO의 공급원으로 사용하고, 최종 화학식이 Pb(ZrxTi1-x)O3이 되도록 ZrO2와 TiO2의 첨가량을 결정한 후, 지르코니아, 알루미나, 텅스텐 카바이드로 만들어진 유성 모노 밀(planetary mono mill)에서 알코올, 증류수, 벤젠 등을 미디어(media: 매체)로 하여 1∼5시간 동안 혼합 및 분산 시킨 후 건조시켜 850∼950℃에서 1∼2시간 동안 하소한 분말을 액상소결조제인 질화붕소(BN)를 1∼ 10 mole % 첨가하여 다시 지르코니아, 알루미나, 텅스텐 카바이드로 된 유성 모노 밀(planetary mono mill)에서 1시간 동안 혼합 및 분쇄하여 건조시킴으로써 달성된다.
상기 질산납과 산화납의 비율이 1 : 9 이하로 되면 하소할 때 질산납이 분해되어 생성되는 산화납의 활성을 충분히 이용할 수 없으며, 질산납과 산화납의 비율이 9 : 1 이상으로 되면 하소할 때 질산납의 미분해로 인한 최종제품의 특성저하를 가져온다.
상기 유성 모노 밀(Planetary mono mill)에서 1시간 이하로 밀링(milling)하면 혼합 및 분쇄가 충분하지 않으며, 5시간 이상의 밀링(milling)은 혼합 및 분쇄의 효율을 저하시킬 뿐 아니라, 사용된 지르코니아 볼의 마모를 증가시켜 지르코니아 성분이 불순물로 혼입된다.
상기 하소조건을 850℃ 이하이거나 2시간 이하로 하면 아직 Pb(ZrxTi1-x)O3로 합성되지 못하고 남아있는 PbO 성분이 발견되며, 850℃ 이상이거나 2시간 이상은 에너지 소비량이 커서 바람직하지 않다.
상기 액상소결조제를 1 mole % 이하로 첨가하는 경우는 충분한 액상이 형성되지 않아 소결밀도가 충분하지 않으며, 10 mole % 이상으로 첨가한 경우는 최종 압전소자의 특성에 나쁜 영향을 미친다.
또한 액상소결조제의 생성량을 증가시키기 위하여 질화붕소 (BN) 1∼10 mole %를 첨가와 함께 산화납 (PbO)을 1∼5 mole % 동시에 첨가하는 것도 가능하다.
상기 산화납을 1 mole % 이하로 첨가하면, 산화납 첨가에 의한 추가의 액상소결효과가 나타나지 않으며, 5 mol % 이상으로 첨가하면, 오히려 액상생성이 억제되어 저온에서 치밀한 소결체를 얻을 수 없다.
상기 질화붕소는 공기분위기하에서 산화되어 B2O3로 변하며, B2O3 는 PbO-TiO2 시스템에서 액상을 형성하는 것으로 알려져 있다.
이하 본 발명의 실시예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.
도 1은 본 발명의 제조공정도로서, 원료분말을 평량하여 혼합한 후, 하소하고 하소한 분말에 저온소결조제로서 BN과 PbO를 첨가한 후 다시 혼합하고, 혼합이 완료된 분말은 성형하여 소결 후 전극처리하고, 이후 전기적 특성을 측정하는 단계를 나타낸 것이고, 도 2는 본 발명의 실시예대로 제조한 PZT 소자의 소결온도별 XRD 분석결과도이다.
도 2에서 볼 수 있는 바와 같이 700℃에서 소결했을 때 PbTiO3와 PbZrO3가 먼저 형성되었으며, 하소 온도가 높아짐에 따라 PbTiO3와 PbZrO3의 피크(peak)가 점점 낮아지면서 Pb(Zr,Ti)O3의 피크(peak)가 형성되고 있다.
또한, 850℃에서 소결한 시편의 모든 피크(peak)가 Pb(Zr,Ti)O3와 일치하고 있어서 본 발명에 의한 액상 소결 방법을 사용하면 850℃까지 소결온도를 낮출 수 있다는 것을 알 수 있다.
도 3은 BN을 1 mole %, PbO를 1 mole % 첨가한 시편의 850℃에서의 소결 후 SEM 사진으로 저온에서도 PZT 결정이 매우 크게 성장하였음을 알 수 있으며, 질화붕소와 산화납을 첨가했을 때 액상소결이 잘 일어나고 있음을 확인할 수 있다.
본 발명에서는 액상소결조제로 BN 혹은 BN과 PbO를 사용하면 700℃이하에서 생성되는 액상 때문에 소결온도를 크게 낮출 수 있게 된다.
기존의 액상소결에서는 저온에서 액상을 형성하는 유리상을 프리트(frit)로 제조하여 PZT 조성 분말과 혼합하는 방법을 사용하여 에너지 소비가 줄어들지 않았으나, 본 발명에서는 분말상의 액상소결조제를 사용하여 에너지 소비를 줄였다.
본 발명은 액츄에이터, 트랜스듀서, 캐패시터, 센서 등 모든 PZT 세라믹스에 사용할 수 있다.
기존의 방법은 유리상을 제조하여 프리트(frit)를 만든 후 이것을 액상소결조제로 사용하였지만 본 발명에서는 BN과 PbO등 쉽게 구할 수 있는 세라믹 분말을 액상소결조제로 사용하여 PZT 세라믹스의 소결온도를 800∼950℃까지 낮추는데 성공하였다.
따라서 Pb(ZrxTi1-x)O3의 조성을 가지는 PZT 세라믹스 뿐 만 아니라, PbO를 성분으로 가지는 PZT 세라믹스의 저온소결 기술 개발에 크게 기여할 수 있으며, 또한 PZT 후막 제조 기술에 있어 소결온도를 낮춤으로써 값비싼 백금/팔라듐 전극 대신 은 전극을 사용할 수 있다.
다음은 본 발명의 바람직한 실시예이다.
[실시예1]
PZT 소자를 제조하기 위하여 Pb(NO3)2를 65.22g, PbO를 43.95g, ZrO2를 25.60g, TiO2를 14.71g, Nb2O5를 0.52g, MnO2를 0.45g 평량하여 유성 밀(planetary mill)에서 에틸알코올을 용매로 사용하여 혼합 및 분쇄하였다.
얻어진 슬러리는 적외선 램프를 이용하여 건조하였으며, 건조분말을 알루미나 도가니에 넣고 850℃에서 2시간 동안 하소하였다.
하소한 분말에 액상소결조제로 질화붕소를 0.29g 첨가하여 다시 유성 밀(planetary mill)에서 에틸알코올을 용매로 사용하여 혼합 및 분쇄하였다.
건조된 분말은 10% PVA 용액을 5.4g 바인더로 첨가하여 직경 15mm인 몰드에 넣고 750 kg/cm2의 압력으로 일축가압성형하였다.
성형된 PZT 성형체는 전기로에서 800, 850, 900, 950, 1000, 1050, 1100℃로 소결온도를 변화시키고 소결온도까지 5℃/min의 속도로 승온하였으며, 소결온도에 도달한 후 1시간 유지하였다.
성형체에 포함된 PVA등 유기물질을 제거하기 위하여 성형체를 승온 도중 600℃에서 4시간 유지하였다.
소결을 마친 PZT 소결체는 기하학적인 방법과 아르키메데스 방법에 의해 밀도를 측정하였으며, 측정한 결과는 표 1과 같다.
소결체는 은전극을 도포하였으며, 80℃에서 5kV/mm의 전장을 5분간 걸어주어 폴링(poling)시켰다. 폴링(Poling) 후 측정한 전기적 특성은 표 1과 같다.
표 1 소결 시편의 밀도 및 전기적 특성
소결온도 및 소결시간 밀도 (g/cm3) k1 dissipation factor kp (%) d33
기하학적 방법 아르키메데스 방법
900℃, 1시간 6.25 7.91 574 0.39 23.9 184
950℃, 1시간 6.50 7.61 690 0.45 24.9 197
1000℃, 1시간 6.45 7.48 755 0.63 30.3 215
1050℃, 1시간 6.61 7.14 626 1.03 21.2 131
[실시예2]
실시예1과 같은 조성으로 하되 각 소결온도에서의 소결시간을 2시간으로 하였다. 폴링(Poling) 후 측정한 전기적 특성은 표2와 같다.
표 2 소결 시편의 밀도 및 전기적 특성
소결온도 및 소결시간 밀도 (g/cm3) k1 dissipation factor kp (%) d33
기하학적 방법 아르키메데스 방법
900℃, 2시간 6.51 7.65 655 0.43 26.2 196
950℃, 2시간 6.59 7.44 760 0.47 23.1 203
1000℃, 2시간 6.71 7.42 820 0.67 28.7 221
1050℃, 2시간 6.77 7.14 725 0.88 15.8 142
[실시예3]
실시예1과 같은 조성으로 하되 각 소결온도에서의 소결시간을 4시간으로 하였다. 폴링(Poling) 후 측정한 전기적 특성은 표 3과 같다.
표 3 소결 시편의 밀도 및 전기적 특성
소결온도 및 소결시간 밀도 (g/cm3) k1 dissipation factor kp (%) d33
기하학적 방법 아르키메데스 방법
900℃, 4시간 6.66 7.52 742 0.43 22.2 214
950℃, 4시간 6.74 7.37 848 0.52 24.4 220
1000℃, 4시간 6.74 6.89 668 0.66 19.3 235
1050℃, 4시간 5.69 7.26 641 0.67 20.5 132
[실시예4]
실시예1과 같은 조성으로 하되 각 소결온도에서의 소결시간을 10시간으로 하였다. 폴링(Poling) 후 측정한 전기적 특성은 표 4와 같다.
표 4 소결 시편의 밀도 및 전기적 특성
소결온도 및 소결시간 밀도 (g/cm3) k1 dissipation factor kp (%) d33
기하학적 방법 아르키메데스 방법
900℃, 10시간 6.81 7.36 669 0.45 20.6 225
950℃, 10시간 6.69 7.28 802 0.49 29.6 227
1000℃, 10시간 6.45 7.30 787 0.54 23.3 242
1050℃, 10시간 6.40 7.45 533 0.65 - -
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
상기와 같은 본 발명은 기존의 PZT 세라믹스의 소결온도인 1200 ∼ 1300℃보다 350 ∼ 450℃ 낮은 온도인 850℃에서 소결이 가능하게 함으로써, PZT 세라믹스 소결을 위한 에너지를 절약할 수 있다.
또한, 낮은 소결온도를 사용함으로써 PbO의 대량휘발을 방지하여, 작업환경을 크게 개선하여, 작업자의 건강을 보호할 수 있다.
저온소결에 의한 PbO의 휘발 방지는 계산된 양 만큼만 PbO 혹은 Pb(NO3)2등의 Pb 공급원을 원료에 첨가함으로써 PZT 세라믹스의 조성을 정밀하게 조절할 수 있다.
이와 동시에 PZT 세라믹스 성형체의 표면으로부터 PbO의 휘발을 방지함으로써 소결된 PZT 세라믹스의 표면과 내부의 조성의 농도구배가 발생하지 않게 된다.
또한, 소결온도를 은 전극의 사용온도인 1000℃ 이하로 낮춤으로써, 이 조성을 후막화 하였을 때, 은 전극과 동시소성(cofiring)이 가능한 장점이 있다.
도 1은 본 발명의 제조공정도이고,
도 2는 본 발명의 실시예대로 제조한 PZT 소자의 소결온도별 XRD 분석결과도,
도 3은 BN을 1 mole %, PbO를 1 mole % 첨가한 시편의 850℃에서의 소결 한 시편의 SEM 사진이다.

Claims (5)

  1. Pb(ZrxTi1-x)O3의 조성을 가지는 PZT 세라믹스를 소결하는 방법에 있어서,
    PZT 형성을 출발원료 중 Pb 공급원으로 산화납(PbO)과 질산납(Pb(NO3)2)을 혼합사용하여, 질산납으로부터 생성되는 산화납의 큰 활성을 이용하여 하소온도를 700 ~ 850℃로 낮추어 하소분말을 만든 후, 상기 하소분말에 1~10 mole%의 BN을 액상소결조제로 첨가하여 혼합분쇄 후, 성형 소결하는 방법을 특징으로 하는 PZT 압전소자의 저온소결방법.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 하소분말에 첨가되는 액상소결조제를 1∼10 mole %의 BN과 1∼10 mole %의 PbO로 첨가하여 혼합분쇄 후, 성형 소결하는 방법을 특징으로 하는 압전소자의 저온소결방법.
  4. Pb(ZrxTi1-x)O3의 조성을 가지는 PZT 세라믹스를 소결하는 방법에 있어서,
    출발물질로서 Pb 공급원으로 질산납(Pb(NO3)2)과 산화납(PbO)를 1:9 ~ 9:1의 비례범위로 혼합한 분말을 PbO의 공급원으로 사용하고, 최종 화학식이 Pb(ZrxTi1-x)O3이 되도록 ZrO2와 TiO2의 첨가량을 결정한 후, 지르코니아, 알루미나, 텅스텐 카바이드로 만들어진 유성 모노 밀(planetary mono mill)에서 알코올, 증류수, 벤젠 등을 미디어(media)로 하여 1~5 시간 동안 혼합 및 분산 시킨 후 건조시켜 850∼950℃에서 1~2 시간 동안 하소한 분말을 액상소결조제인 질화붕소(BN)를 1∼ 10 mole % 첨가하여 다시 지르코니아, 알루미나, 텅스텐 카바이드로 된 유성 모노 밀(planetary mono mill)에서 1∼5 시간동안 혼합 및 분쇄 후 건조시켜 제조하는 방법을 특징으로 하는 압전소자의 저온소결방법
  5. 제 4항에 있어서,
    상기 액상소결조제의 생성량을 증가시키기 위하여 질화붕소(BN) 1∼10 mole % 첨가와 함께 산화납(PbO) 1∼5 mole%를 동시에 첨가하는 방법을 특징으로 하는 압전소자의 저온소결방법
KR10-2002-0071020A 2002-11-15 2002-11-15 압전소자의 저온소결방법 KR100492935B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0071020A KR100492935B1 (ko) 2002-11-15 2002-11-15 압전소자의 저온소결방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0071020A KR100492935B1 (ko) 2002-11-15 2002-11-15 압전소자의 저온소결방법

Publications (2)

Publication Number Publication Date
KR20040043027A KR20040043027A (ko) 2004-05-22
KR100492935B1 true KR100492935B1 (ko) 2005-06-02

Family

ID=37339645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0071020A KR100492935B1 (ko) 2002-11-15 2002-11-15 압전소자의 저온소결방법

Country Status (1)

Country Link
KR (1) KR100492935B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105800A2 (ko) * 2011-01-31 2012-08-09 성균관대학교 산학협력단 나노전력발전소자 및 이의 제조방법
KR20240067429A (ko) * 2022-11-09 2024-05-17 주식회사 아모센스 압전 세라믹 대량생산 방법 및 압전 세라믹 대량 소성용 분리용 시트

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122124A (ja) * 1984-11-20 1986-06-10 Matsushita Electric Ind Co Ltd 圧電セラミツクス粉末の製造方法
US5091348A (en) * 1988-04-22 1992-02-25 Alcan International Limited Sol-gel method of making ceramics
KR950008430A (ko) * 1993-09-10 1995-04-17 우덕창 지르콘-티탄산납계 압전분말의 제조방법
KR100294850B1 (ko) * 1998-06-13 2001-07-12 윤덕용 부분용융물질을이용한pzt후막의제조방법
KR20020016318A (ko) * 2000-08-25 2002-03-04 김명호 밀링석출공정에 의한 압전 세라믹스 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122124A (ja) * 1984-11-20 1986-06-10 Matsushita Electric Ind Co Ltd 圧電セラミツクス粉末の製造方法
US5091348A (en) * 1988-04-22 1992-02-25 Alcan International Limited Sol-gel method of making ceramics
KR950008430A (ko) * 1993-09-10 1995-04-17 우덕창 지르콘-티탄산납계 압전분말의 제조방법
KR100294850B1 (ko) * 1998-06-13 2001-07-12 윤덕용 부분용융물질을이용한pzt후막의제조방법
KR20020016318A (ko) * 2000-08-25 2002-03-04 김명호 밀링석출공정에 의한 압전 세라믹스 제조방법

Also Published As

Publication number Publication date
KR20040043027A (ko) 2004-05-22

Similar Documents

Publication Publication Date Title
CN1116247C (zh) 可与银在降低的烧结温度下共烧结的低损耗pzt陶瓷组合物和其制备方法
CN106866135B (zh) 一种无铅高居里温度BaTiO3基正温度系数热敏陶瓷的制备方法
KR20120134928A (ko) 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
KR101333792B1 (ko) 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
US6627104B1 (en) Mechanochemical fabrication of electroceramics
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
KR100492935B1 (ko) 압전소자의 저온소결방법
JP3827131B2 (ja) 圧電材料およびその製造方法
JP2000272963A (ja) 圧電体磁器組成物
JPH11217262A (ja) 圧電磁器組成物
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
CN113563073A (zh) 一种高稳定的无铅压电陶瓷及其制备方法
JP2002348173A (ja) 圧電セラミック材料とその製造方法
EP0705804A1 (en) Production of dielectric ceramic material powder
JPH03126664A (ja) ペロブスカイト型酸化物磁器およびその製造方法
KR101110365B1 (ko) 압전 세라믹스 제조방법
CN114507070B (zh) 一种掺杂改性的铌酸铋钙基陶瓷材料及其制备方法
CN112759385B (zh) 一种钙钛矿陶瓷材料及其制备方法与应用
KR101261445B1 (ko) 비스무스(Bi)계 무연 압전 세라믹스 및 그 제조 방법
JPH0676258B2 (ja) セラミック誘電体の製造方法
JPH07206519A (ja) 圧電磁器
US3248328A (en) Piezoelectric ceramic composition of lead titanate and 0.1 to 5 mole percent calciumfluoride
KR960004400B1 (ko) Ba_1-xPb_xTiO_3계 PTC 분말의 제조방법
CN115340375A (zh) 一种宽温谱钛酸铋钠-钛酸钡基铁电陶瓷电介质材料及其制备方法和应用

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110404

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee