WO2012105800A2 - 나노전력발전소자 및 이의 제조방법 - Google Patents

나노전력발전소자 및 이의 제조방법 Download PDF

Info

Publication number
WO2012105800A2
WO2012105800A2 PCT/KR2012/000748 KR2012000748W WO2012105800A2 WO 2012105800 A2 WO2012105800 A2 WO 2012105800A2 KR 2012000748 W KR2012000748 W KR 2012000748W WO 2012105800 A2 WO2012105800 A2 WO 2012105800A2
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
hexagonal boron
atomic layer
nitride atomic
electrode
Prior art date
Application number
PCT/KR2012/000748
Other languages
English (en)
French (fr)
Other versions
WO2012105800A3 (ko
WO2012105800A9 (ko
Inventor
김상우
이주혁
이강혁
이근영
이진영
승완철
Original Assignee
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교 산학협력단 filed Critical 성균관대학교 산학협력단
Publication of WO2012105800A2 publication Critical patent/WO2012105800A2/ko
Publication of WO2012105800A9 publication Critical patent/WO2012105800A9/ko
Publication of WO2012105800A3 publication Critical patent/WO2012105800A3/ko
Priority to US13/955,145 priority Critical patent/US9406864B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a nanopower device and a method of manufacturing the same, and more particularly to a nanopower device using a hexagonal boron nitride atomic layer and a method for manufacturing the same.
  • Non-Patent Document 1 relates to the identification and implementation of a piezoelectric mechanism using a one-dimensional ZnO nanostructure.
  • a piezoelectric mechanism using a one-dimensional ZnO nanostructure there is a problem of physical instability compared to a two-dimensional hexagonal boron nitride structure.
  • the piezoelectric properties are shown only by stress due to compression and tension.
  • Non-Patent Document 2 relates to the implementation of an atomic layer of hexagonal boron nitride (BN) using chemical vapor deposition, piezoelectric properties caused by stretching and twisting and the same There is no mention of the nanodevices used.
  • BN hexagonal boron nitride
  • Non-Patent Document 0001 Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Zhong Lin Wang and Jinhui Song, Science 14 April 2006: Vol. 312 no. 5771 pp. 242-246.
  • Non-Patent Document 0002 Atomic layers of hybridized boron nitride and graphene domains, Lijie Ci 1 et al, Nature Materials 9, 430-435 (2010).
  • the present invention provides a nano-power device using a hexagonal boron nitride atomic layer.
  • the present invention provides a method for manufacturing a nano power generation device using a hexagonal boron nitride atomic layer.
  • a nanopower generator includes a base substrate, an hexagonal boron nitride atomic layer provided on the base substrate, a first electrode and an hexagonal boron nitride atomic layer provided on the hexagonal boron nitride atomic layer. It may be provided in, and may include a second electrode spaced apart from the first electrode.
  • the base substrate may be a flexible substrate.
  • the method of manufacturing a nanopower generator according to the present invention includes forming a hexagonal boron nitride atomic layer on a base substrate and forming a first electrode and a second electrode on the hexagonal boron nitride atomic layer to be spaced apart from each other. It may include.
  • the step of forming a hexagonal boron nitride atomic layer on the base substrate to form a hexagonal boron nitride atomic layer on the copper foil the hexagonal boron nitride atomic layer Forming a polymethyl methacrylate layer for supporting the hexagonal boron nitride atomic layer on the formed copper foil, removing the copper foil, and forming the hexagonal boron nitride atomic layer and the polymethyl methacrylate Transferring the rate layer onto the base substrate and removing the polymethyl methacrylate layer.
  • the step of forming a hexagonal boron nitride atomic layer on the copper foil is a chemical vapor deposition process using the copper foil as a metal catalyst and ammonia borane (NH3-BH3) as a source It can be done through.
  • NH3-BH3 ammonia borane
  • the step of forming a hexagonal boron nitride atomic layer on the copper foil is carried out in an argon hydrogen mixed gas atmosphere, using nitrogen gas as a carrier gas for transporting vaporized ammonia borane Can be.
  • the nanopower generator according to the present invention includes a base substrate, a first electrode provided on the base substrate, a hexagonal boron nitride atomic layer and the hexagonal boron nitride atomic layer provided on the first electrode. It may include a second electrode.
  • a method of manufacturing a nanopower generator includes forming a first electrode on a base substrate, forming a hexagonal boron nitride atomic layer on the first electrode, and forming the first electrode on the hexagonal boron nitride atomic layer. Forming two electrodes may be included.
  • the step of forming a hexagonal boron nitride atomic layer on the first electrode to form a hexagonal boron nitride atomic layer on a copper foil the hexagonal boron nitride atomic layer Forming a polymethyl methacrylate layer for supporting the hexagonal boron nitride atomic layer on the formed copper foil, removing the copper foil, and forming the hexagonal boron nitride atomic layer and the polymethyl meta Transferring the acrylate layer onto the first electrode and removing the polymethyl methacrylate layer.
  • the nanopower generator is excellent in mechanical stability, and is not damaged by external forces such as bending, torsion, or curling. Since the nanopower generator uses the piezoelectric properties of the hexagonal boron nitride atomic layer, it can be driven continuously and independently. In addition, since the nano-power unit can be manufactured in a very small and ultra-thin, it is possible to efficiently generate electrical energy by using small physical energy such as wind, blood flow, heart rate. In addition, since the hexagonal boron nitride atomic layer is chemically stable, the nanopower generator can operate inside the body.
  • FIG. 1 is a perspective view for explaining a nano power generation device according to an embodiment of the present invention.
  • FIG. 2 is a plan view illustrating piezoelectric property changes according to atomic arrangement of hexagonal boron nitride shown in FIG. 1.
  • FIG. 3 is a perspective view illustrating a driving form according to various physical forces of the nanopower generator shown in FIG. 1.
  • FIG. 4 is a flowchart illustrating the fabrication of the nanopower generator shown in FIG. 1.
  • FIG. 5 is a flowchart illustrating formation of a hexagonal boron nitride atomic layer shown in FIG. 4.
  • FIG. 6 is a perspective view for explaining a nano power generation device according to another embodiment of the present invention.
  • FIG. 7 is a perspective view illustrating a driving form according to various physical forces of the nanopower generator shown in FIG. 6.
  • FIG. 8 is a flowchart illustrating the fabrication of the nanopower generator shown in FIG. 6.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a perspective view for explaining a nano power generation device according to an embodiment of the present invention
  • Figure 2 is a plan view for explaining the piezoelectric characteristics change according to the atomic arrangement of the hexagonal boron nitride shown in Figure 1
  • Figure 3 is a perspective view illustrating a driving form according to various physical forces of the nanopower generator shown in FIG. 1.
  • the nanopower generator 100 may include a base substrate 110, a hexagonal boron nitride atomic layer 120, a first electrode 130, and a second electrode 140. have.
  • the base substrate 110 may be a flexible substrate.
  • the base substrate 110 may be made of a polymer material that can be stretched, shrunk, and bent.
  • the polymer material include polyethylene naphthalate (PEN), polyethylene sulfonate (PES), polyethylene terephthalate (PET), and the like.
  • the hexagonal boron nitride atomic layer 120 may be located on the base substrate 100.
  • the hexagonal boron nitride atomic layer 120 has a single layer structure in which nitrogen atoms and boron atoms are bonded in a hexagon.
  • the hexagonal boron nitride atomic layer 120 exhibits chemically stable properties by sp2 bonding.
  • FIG. 2 when a physical force is applied to the hexagonal boron nitride atomic layer 120 and the hexagonal boron nitride atomic layer is deformed, a polarization phenomenon occurs due to a positional change of a nitrogen atom and a boron atom, and the electric Energy is generated. That is, the hexagonal boron nitride atomic layer 120 has a piezoelectric property capable of converting physical energy into electrical energy.
  • the first electrode 130 and the second electrode 140 may be positioned to be spaced apart from each other on the hexagonal boron nitride atomic layer 120.
  • the first electrode 130 and the second electrode 140 may have various shapes such as a polygonal flat plate and a disc.
  • the first electrode 130 and the second electrode 140 may be disposed at both ends in the long direction and at both ends in the unidirectional direction, respectively.
  • the 130 and the second electrode 140 are spaced apart from each other, they may be disposed at any position on the hexagonal boron nitride atomic layer 120.
  • the hexagonal boron nitride atomic layer 120 may be fixed to the base substrate 100 by the first electrode 130 and the second electrode 140. Alternatively, the hexagonal boron nitride atomic layer 120 may be fixed to the base substrate 100 by an adhesive member (not shown).
  • the first electrode 130 serves to transfer electrical energy generated from the hexagonal boron nitride atomic layer 120, that is, current and voltage.
  • the first electrode 130 may be made of a thin conductive material.
  • the conductive material may include a transparent conductive material and an opaque conductive material. Examples of the transparent conductive material include graphene, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and fluorescent doped tin oxide (FTO). Examples of the opaque conductive material include metals such as Au, Ag, and Pt.
  • the second electrode 140 serves to transfer electrical energy, that is, current and voltage generated in the hexagonal boron nitride atomic layer 120 when a physical force is applied to the hexagonal boron nitride atomic layer 120.
  • the second electrode 130 may be made of a thin conductive material.
  • the detailed description of the conductive material forming the second electrode 140 is substantially the same as the description of the conductive material forming the first electrode 130.
  • the first and second electrode layers 130 and 140 may be made of a conductive material having flexibility so that the hexagonal boron nitride atomic layer 120 can be easily bent or deformed.
  • the first and second electrode layers 130 and 140 may be made of a conductive polymer.
  • an insulating layer may be provided on the hexagonal boron nitride atomic layer 120 exposed because the first electrode 130 and the second electrode 140 are not provided.
  • the insulating layer may be disposed between the first electrode 130 and the second electrode 140 to protect the exposed hexagonal boron nitride atomic layer 120.
  • the insulating layer may be made of various materials having insulation. In this case, the height of the insulating layer may be substantially the same as or less than the height of the first electrode 130 and the second electrode 140.
  • the physical layer is also physically applied to the hexagonal boron nitride atomic layer 120 inside the nanopower generator 100. Force is applied. Electrical energy is generated in the hexagonal boron nitride atomic layer 120 by the piezoelectric characteristics of the hexagonal boron nitride atomic layer 120. The electrical energy may be transferred to the outside of the nano power generation device 100 through the first electrode 130 and the second electrode 140.
  • the nano power generation device 100 Since the nano power generation device 100 has excellent mechanical stability, it is not damaged by external forces such as bending, torsion, or curling. Since the nanopower power generation device 100 uses the piezoelectric properties of the hexagonal boron nitride atomic layer 120, it can be driven continuously and independently. In addition, since the nano-power generation device 100 may have a very small and ultra-sized size, it is possible to efficiently generate electrical energy using small physical energy such as wind, blood flow, and heartbeat. In addition, since the hexagonal boron nitride atomic layer 120 is chemically stable, the nanopower generator 100 may operate inside the body.
  • FIG. 4 is a flowchart illustrating the fabrication of the nanopower generator shown in FIG. 1.
  • a hexagonal boron nitride atomic layer 120 is formed on the base substrate 110 (S110).
  • the base substrate 110 may be a flexible substrate.
  • the base substrate 110 may be made of a polymer material that can be stretched, shrunk, and bent.
  • the polymer material include polyethylene naphthalate (PEN), polyethylene sulfonate (PES), polyethylene terephthalate (PET), and the like.
  • the hexagonal boron nitride atomic layer 120 is formed by using a chemical vapor deposition process on a copper foil, and then hexagonal nitride The boron atomic layer 120 is formed on the base substrate 110 using a wet transfer process.
  • FIG. 5 is a flowchart illustrating formation of a hexagonal boron nitride atomic layer shown in FIG. 4.
  • a hexagonal boron nitride atomic layer 120 is first formed on a copper foil (S111).
  • the hexagonal boron nitride atomic layer 120 may be formed by a chemical vapor deposition process using the copper foil as a metal catalyst and ammonia-borane (NH3-BH 3) as a source. Specifically, a hexagonal boron nitride atomic layer 120 is formed on the copper foil by supplying ammonia-borane (NH3-BH3) and nitrogen gas vaporized in an argon hydrogen mixed gas atmosphere.
  • the hexagonal boron nitride atomic layer 120 has a single layer structure in which nitrogen atoms and boron atoms are bonded in a hexagon.
  • polymethyl methacrylate PMMA, polymethyl methacrylate
  • a rate layer is formed (S112).
  • the polymethyl methacrylate may be applied onto the copper foil by a spin coating process.
  • the polymethyl methacrylate layer may surround the hexagonal boron nitride atomic layer 120. Accordingly, the polymethyl methacrylate layer may serve as a support layer for supporting the hexagonal boron nitride atomic layer 120.
  • the copper foil is selectively removed using a copper etchant. Thereafter, the copper etchant remaining on the surfaces of the hexagonal boron nitride atomic layer 120 and the polymethyl methacrylate layer is washed with deionized water.
  • the hexagonal boron nitride atomic layer 120 and the polymethyl methacrylate layer are transferred to the base substrate 110 (S114).
  • the deionized water remaining in the hexagonal boron nitride atomic layer 120 and the polymethyl methacrylate layer transferred to the base substrate 110 is completely dried.
  • the polymethyl methacrylate layer may be selectively removed by an organic solvent such as acetone, chloroform and the like.
  • an organic solvent such as acetone, chloroform and the like.
  • the hexagonal boron nitride atomic layer 120 may be formed on the base substrate 110.
  • the hexagonal boron nitride atomic layer 120 exhibits chemically stable properties by sp2 bonding.
  • a physical force is applied to the hexagonal boron nitride atomic layer 120 and the hexagonal boron nitride atomic layer is deformed, polarization occurs due to a change in position of the nitrogen atom and the boron atom, and electrical energy is generated by the polarization phenomenon.
  • the hexagonal boron nitride atomic layer 120 has a piezoelectric property capable of converting physical energy into electrical energy.
  • the first electrode 130 and the second electrode 140 are formed on the hexagonal boron nitride atomic layer 120 to be spaced apart from each other (S120).
  • the first electrode 130 and the second electrode 140 are formed by a thin film forming process.
  • the thin film forming process may include a sputtering process, a chemical vapor deposition process, an inkjet printing process, and the like.
  • the first electrode 130 and the second electrode 140 may be made of a thin conductive material.
  • the conductive material may include a transparent conductive material and an opaque conductive material.
  • the transparent conductive material may include graphene, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and fluorescent doped tin oxide (FTO).
  • the opaque conductive material include Au, Ag, Pt and the like.
  • the first electrode 130 and the second electrode 140 may be formed at the same time.
  • the first electrode 130 and the second electrode 140 may be formed by forming a conductive layer on the hexagonal boron nitride atomic layer 120 to be spaced apart from each other through a thin film forming process without a separate mask.
  • a mask pattern for dividing the hexagonal boron nitride atomic layer 120 into two parts is formed, and a thin conductive layer is formed on the hexagonal boron nitride atomic layer 120 having the mask pattern through a thin film forming process.
  • the first electrode 130 and the second electrode 140 may be formed by removing the mask pattern.
  • the center portion of the conductive layer is etched so that the conductive layer is divided into two parts.
  • the second electrode 140 may be formed.
  • the first electrode 130 and the second electrode 140 may be sequentially formed.
  • the first electrode 130 is first formed on the hexagonal boron nitride atomic layer 120 through a thin film formation process, and then the hexagonal boron nitride atomic layer 120 is spaced apart from the first electrode 130.
  • the second electrode 140 may be formed on the second electrode 140.
  • an insulating layer may be formed on the hexagonal boron nitride atomic layer 120 exposed between the first electrode 130 and the second electrode 140.
  • the height of the insulating layer may be substantially the same as or less than the height of the first electrode 130 and the second electrode 140.
  • the nanopower generator 100 including the base substrate 110, the hexagonal boron nitride atomic layer 120, the first electrode 130, and the second electrode 140 is completed.
  • the nanopower generator 100 formed by the above method is excellent in mechanical stability, and thus is not damaged by external forces such as bending, torsion, or curling. Since the nanopower generation device 100 uses the piezoelectric properties of the hexagonal boron nitride atomic layer 120, it can be driven continuously and independently. In addition, since the nano power generation device 100 is formed in a very small and ultra-thin, it can efficiently generate electrical energy by using small physical energy, such as wind, blood flow, heart rate. In addition, since the hexagonal boron nitride atomic layer 120 is chemically stable, the nanopower generator 100 may operate inside the body.
  • FIG. 6 is a perspective view illustrating a nanopower generator according to another exemplary embodiment of the present invention
  • FIG. 7 is a perspective view illustrating a driving form according to various physical forces of the nanopower generator illustrated in FIG. 6.
  • the nanopower generator 200 may include a base substrate 210, a first electrode 220, a hexagonal boron nitride atomic layer 230, and a second electrode 240. have.
  • the base substrate 210 may be a flexible substrate.
  • the base substrate 210 may be made of a polymer material that can be stretched, shrunk, and bent.
  • the polymer material include polyethylene naphthalate (PEN), polyethylene sulfonate (PES), polyethylene terephthalate (PET), and the like.
  • the first electrode 220 may be located on the base substrate 210. When the physical force is applied to the hexagonal boron nitride atomic layer 230, the first electrode 220 delivers electrical energy generated from the hexagonal boron nitride atomic layer 230, that is, current and voltage.
  • the first electrode 220 may be made of a thin conductive material.
  • the conductive material may include a transparent conductive material and an opaque conductive material. Examples of the transparent conductive material include graphene, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and fluorescent doped tin oxide (FTO). Examples of the opaque conductive material include Au, Ag, Pt, and the like.
  • the hexagonal boron nitride atomic layer 230 may be located on the first electrode 220.
  • the hexagonal boron nitride atomic layer 230 has a single layer structure in which nitrogen atoms and boron atoms are bonded in a hexagon.
  • the hexagonal boron nitride atomic layer 230 exhibits chemically stable properties by sp2 bonding.
  • polarization occurs due to a change in position of the nitrogen atom and the boron atom, and electrical energy is generated by the polarization phenomenon.
  • the hexagonal boron nitride atomic layer 230 has a piezoelectric property capable of converting physical energy into electrical energy.
  • the second electrode 240 may be located on the hexagonal boron nitride atomic layer 230. Like the first electrode 220, the second electrode 240 is configured to provide electrical energy, that is, current and voltage, generated in the hexagonal boron nitride atomic layer 230 when a physical force is applied to the hexagonal boron nitride atomic layer 230. It serves to convey.
  • the second electrode 240 may be made of a thin conductive material.
  • the conductive material may include a transparent conductive material and an opaque conductive material. Examples of the transparent conductive material include graphene, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and fluorescent doped tin oxide (FTO). Examples of the opaque conductive material include Au, Ag, Pt, and the like.
  • the physical layer is also physically applied to the hexagonal boron nitride atomic layer 230 inside the nanopower generator 200. Force is applied. Electrical energy is generated in the hexagonal boron nitride atomic layer 230 by the piezoelectric characteristics of the hexagonal boron nitride atomic layer 230. The electrical energy may be transferred to the outside of the nanopower generator 200 through the first electrode 220 and the second electrode 240.
  • the nano power generator 200 Since the nano power generator 200 has excellent mechanical stability, it is not damaged by external forces such as bending, torsion, or curling. Since the nanopower generation device 200 uses the piezoelectric properties of the hexagonal boron nitride atomic layer 230, it can be driven continuously and independently. In addition, since the nano-power generation device 200 may have a very small and ultra-sized size, it is possible to efficiently generate electrical energy using small physical energy such as wind, blood flow, and heartbeat. In addition, since the hexagonal boron nitride atomic layer 230 is chemically stable, the nanopower generator 200 may operate inside the body.
  • FIG. 8 is a flowchart illustrating the fabrication of the nanopower generator shown in FIG. 6.
  • a first electrode 220 is formed on the base substrate 210 to manufacture the nanopower generator 200 (S210).
  • the base substrate 210 may be a flexible substrate.
  • the base substrate 210 may be made of a polymer material that can be stretched, shrunk, and bent.
  • the polymer material include polyethylene naphthalate (PEN), polyethylene sulfonate (PES), polyethylene terephthalate (PET), and the like.
  • the first electrode 220 is formed by a thin film forming process.
  • the thin film forming process may include a sputtering process, a chemical vapor deposition process, an inkjet printing process, and the like.
  • the first electrode 220 may be made of a thin conductive material.
  • the conductive material may include a transparent conductive material and an opaque conductive material. Examples of the transparent conductive material include graphene, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and fluorescent doped tin oxide (FTO). Examples of the opaque conductive material include Au, Ag, Pt, and the like.
  • a hexagonal boron nitride atomic layer 230 is formed on the first electrode 220 (S220).
  • a hexagonal system In the process of forming the hexagonal boron nitride atomic layer 230 on the first electrode 220, after forming the hexagonal boron nitride atomic layer 230 by using a chemical vapor deposition process on a copper foil, a hexagonal system
  • the boron nitride atomic layer 230 is formed on the base substrate 210 using a wet transfer process.
  • a detailed description of the process of forming the hexagonal boron nitride atomic layer 230 on the first electrode 220 is a process of forming the hexagonal boron nitride atomic layer 120 on the base substrate 110 with reference to FIG. Are substantially the same and are omitted.
  • the hexagonal boron nitride atomic layer 230 exhibits chemically stable properties by sp2 bonding.
  • a physical force is applied to the hexagonal boron nitride atomic layer 230 and the hexagonal boron nitride atomic layer is deformed, polarization occurs due to a change in position of the nitrogen atom and the boron atom, and electrical energy is generated by the polarization phenomenon.
  • the hexagonal boron nitride atomic layer 230 has a piezoelectric property capable of converting physical energy into electrical energy.
  • the second electrode 240 is formed on the hexagonal boron nitride atomic layer 230 (S230).
  • a detailed description of the process of forming the second electrode 240 is omitted since it is substantially the same as the process of forming the first electrode 220.
  • the nanopower generator 200 including the base substrate 210, the first electrode 220, the hexagonal boron nitride atomic layer 230, and the second electrode 240 is completed.
  • the nanopower generator 200 formed by the above method is excellent in mechanical stability, and thus is not damaged by external forces such as bending, torsion, and curling. Since the nanopower generation device 200 uses the piezoelectric properties of the hexagonal boron nitride atomic layer 230, it can be driven continuously and independently. In addition, since the nano power generation device 200 is formed in a very small and ultra-thin, it is possible to efficiently generate electrical energy using small physical energy, such as wind, blood flow, heart rate. In addition, since the hexagonal boron nitride atomic layer 230 is chemically stable, the nanopower generator 200 may operate inside the body.
  • the nanopower generator according to the present invention has excellent mechanical and chemical stability, and can be driven continuously and independently using the piezoelectric properties of the hexagonal boron nitride atomic layer.
  • the nano-power generation device can be manufactured in a very small and ultra-thin, it is possible to efficiently generate electrical energy using a small physical energy.
  • the hexagonal boron nitride atomic layer is chemically stable, the nanopower generator can operate inside the body. Therefore, the nano-power unit is a small energy source can be used in various fields such as mechanical field, electronic field, medical field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

나노전력발전소자는 베이스 기판과, 상기 베이스 기판 상에 구비되는 육방정계 질화붕소 원자층과, 상기 육방정계 질화붕소 원자층 상에 구비되는 제1 전극 및 상기 육방정계 질화붕소 원자층 상에 구비되며, 상기 제1 전극과 이격되는 제2 전극을 포함한다. 육방정계 질화붕소 원자층의 압전 특성을 이용하여 나노전력발전소자가 지속적이고 독립적으로 구동할 수 있다.

Description

나노전력발전소자 및 이의 제조방법
본 발명은 나노전력발전소자 및 이의 제조방법에 관한 것으로, 보다 상세하게는 육방정계 질화붕소 원자층을 이용한 나노전력발전소자 및 이의 제조방법에 관한 것이다.
최근 나노기술의 발달로 인해 나노 크기의 소자를 쉽게 만들 수 있는 수준에 이르렀다. 하지만 현재 전력의 대부분을 차지하는 배터리는 나노 소자에 비해 큰 면적을 차지할 뿐만 아니라 제한된 수명으로 인해 나노 소자의 성능 및 독립적 구동을 제한시키는 단점이 있다. 이러한 나노 소자 관련 선행기술로는 다음과 같다.
비특허문헌 1은 1차원 ZnO 나노구조물을 이용한 압전 메카니즘 규명 및 소자 구현에 관한 것으로, 1차원 ZnO 나노구조물을 이용한 나노전력발전소자의 경우 2차원 육방정계 질화붕소 구조에 비해 물리적으로 불안정하다는 문제점이 있으며 압축과 인장에 의한 스트레스에 의해서만 압전특성을 나타낸다는 한계점이 있다.
또한, 비특허문헌 2는 화학증착법을 이용하여 육방정계 질화붕소(Boron nitride, BN)의 원자층(Atomic layer) 구현에 관한 것으로, 스트레칭과 뒤틀림(stretching & twisting)에 의한 발생하는 압전 특성 및 이를 이용한 나노 소자에 관해서는 전혀 언급된 바 없다.
[선행기술문헌]
[비특허문헌]
(비특허문헌 0001) Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Zhong Lin Wang and Jinhui Song, Science 14 April 2006: Vol. 312 no. 5771 pp. 242-246.
(비특허문헌 0002) Atomic layers of hybridized boron nitride and graphene domains, Lijie Ci1 et al, Nature Materials 9, 430-435 (2010).
본 발명은 육방정계 질화붕소 원자층을 이용한 나노전력발전소자를 제공한다.
또한, 본 발명은 육방정계 질화붕소 원자층을 이용한 나노전력발전소자를 제조하기 위한 방법을 제공한다.
본 발명에 따른 나노전력발전소자는 베이스 기판과, 상기 베이스 기판 상에 구비되는 육방정계 질화붕소 원자층과, 상기 육방정계 질화붕소 원자층 상에 구비되는 제1 전극 및 상기 육방정계 질화붕소 원자층 상에 구비되며, 상기 제1 전극과 이격되는 제2 전극을 포함할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 베이스 기판은 플렉서블 기판일 수 있다.
본 발명에 따른 나노전력발전소자 제조 방법은 베이스 기판 상에 육방정계 질화붕소 원자층을 형성하는 단계 및 상기 육방정계 질화붕소 원자층 상에 서로 이격되도록 제1 전극과 제2 전극을 형성하는 단계를 포함할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 베이스 기판 상에 육방정계 질화붕소 원자층을 형성하는 단계는 구리 포일 상에 육방정계 질화붕소 원자층을 형성하는 단계와, 상기 육방정계 질화붕소 원자층이 형성된 구리 포일 상에 상기 육방정계 질화붕소 원자층을 지지하기 위한 폴리메틸 메타크릴레이트 층을 형성하는 단계와, 상기 구리 포일을 제거하는 단계와, 상기 육방정계 질화붕소 원자층과 상기 폴리메틸 메타크릴레이트 층을 상기 베이스 기판 상으로 이송하는 단계 및 상기 폴리메틸 메타크릴레이트 층을 제거하는 단계를 포함할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 구리 포일 상에 육방정계 질화붕소 원자층을 형성하는 단계는 상기 구리 포일을 금속 촉매로 하고 암모니아 보레인(NH3-BH3)을 소스로 하여 화학기상증착 공정을 통해 이루어질 수 있다.
본 발명의 일 실시예들에 따르면, 상기 구리 포일 상에 육방정계 질화붕소 원자층을 형성하는 단계는 아르곤 수소 혼합가스 분위기에서 이루어지며, 질소 가스를 기화되는 암모니아 보레인을 이송하는 캐리어 가스로 사용할 수 있다.
본 발명에 따른 나노전력발전소자는 베이스 기판과, 상기 베이스 기판 상에 구비되는 제1 전극과, 상기 제1 전극 상에 구비되는 육방정계 질화붕소 원자층 및 상기 육방정계 질화붕소 원자층 상에 구비되는 제2 전극을 포함할 수 있다.
본 발명에 따른 나노전력발전소자 제조 방법은 베이스 기판 상에 제1 전극을 형성하는 단계와, 제1 전극 상에 육방정계 질화붕소 원자층을 형성하는 단계 및 상기 육방정계 질화붕소 원자층 상에 제2 전극을 형성하는 단계를 포함할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 제1 전극 상에 육방정계 질화붕소 원자층을 형성하는 단계는 구리 포일 상에 육방정계 질화붕소 원자층을 형성하는 단계와, 상기 육방정계 질화붕소 원자층이 형성된 구리 포일 상에 상기 육방정계 질화붕소 원자층을 지지하기 위한 폴리메틸 메타크릴레이트 층을 형성하는 단계와, 상기 구리 포일을 제거하는 단계와, 상기 육방정계 질화붕소 원자층과 상기 폴리메틸 메타크릴레이트 층을 상기 제1 전극 상으로 이송하는 단계 및 상기 폴리메틸 메타크릴레이트 층을 제거하는 단계를 포함할 수 있다.
본 발명에 따른 나노전력발전소자 및 그 제조 방법에 따르면, 나노전력발전소자는 기계적 안정성이 뛰어나므로, 밴딩, 비틀림, 둥글게 말림 등 외부 힘에 의해서 손상을 입지 않는다. 나노전력발전소자는 육방정계 질화붕소 원자층의 압전 특성을 이용하므로, 지속적이고 독립적으로 구동할 수 있다. 또한, 나노전력발전소자는 초소형 및 초박형으로 제조될 수 있으므로, 바람, 혈류의 움직임, 심장박동과 같은 작은 물리적 에너지를 이용하여 효율적으로 전기 에너지를 발생할 수 있다. 그리고, 육방정계 질화붕소 원자층이 화학적으로 안정하므로, 나노전력발전소자는 신체 내부에서 작동할 수 있다.
도 1은 본 발명의 일 실시예에 따른 나노전력발전소자를 설명하기 위한 사시도이다.
도 2는 도 1에 도시된 육방정계 질화붕소의 원자배열에 따른 압전 특성 변화를 설명하기 위한 평면도이다.
도 3은 도 1에 도시된 나노전력발전소자의 다양한 물리적 힘에 따른 구동 형태를 설명하기 위한 사시도이다.
도 4는 도 1에 도시된 나노전력발전소자의 제조를 설명하기 위한 흐름도이다.
도 5는 도 4에 도시된 육방정계 질화붕소 원자층 형성을 설명하기 위한 흐름도이다.
도 6은 본 발명의 다른 실시예에 따른 나노전력발전소자를 설명하기 위한 사시도이다.
도 7은 도 6에 도시된 나노전력발전소자의 다양한 물리적 힘에 따른 구동 형태를 설명하기 위한 사시도이다.
도 8은 도 6에 도시된 나노전력발전소자의 제조를 설명하기 위한 흐름도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 나노전력발전소자 및 이의 제조방법에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 일 실시예에 따른 나노전력발전소자를 설명하기 위한 사시도이고, 도 2는 도 1에 도시된 육방정계 질화붕소의 원자배열에 따른 압전 특성 변화를 설명하기 위한 평면도이고, 도 3은 도 1에 도시된 나노전력발전소자의 다양한 물리적 힘에 따른 구동 형태를 설명하기 위한 사시도이다.
도 1 내지 도 3을 참조하면, 나노전력발전소자(100)는 베이스 기판(110), 육방정계 질화붕소 원자층(120), 제1 전극(130) 및 제2 전극(140)을 포함할 수 있다.
베이스 기판(110)은 플렉서블(flexible) 기판일 수 있다. 일예로, 베이스 기판(110)은 연신되거나 수축될 수 있고 휘어질 수 있는 폴리머 물질로 이루어질 수 있다. 상기 폴리머 물질의 예로는 PEN(polyethylene naphthalate), PES(polyethylene sulfonate), PET(polyethylene terephthalate) 등을 들 수 있다.
육방정계 질화붕소 원자층(120)은 베이스 기판(100) 상에 위치할 수 있다. 육방정계 질화붕소 원자층(120)은 질소 원자와 붕소 원자가 육각형으로 결합된 단일층 구조를 가진다. 육방정계 질화붕소 원자층(120)은 sp2 본딩에 의해 화학적으로 안정한 특성을 나타낸다. 도 2와 같이 육방정계 질화붕소 원자층(120)에 물리적 힘이 인가되어 육방정계 질화붕소 원자층이 변형되면, 질소 원자와 붕소 원자의 위치 변화에 의해 분극 현상이 일어나고, 상기 분극 현상에 의해 전기에너지가 발생된다. 즉, 육방정계 질화붕소 원자층(120)은 물리적 에너지를 전기 에너지로 변환할 수 있는 압전 특성을 가진다.
제1 전극(130)과 제2 전극(140)은 육방정계 질화붕소 원자층(120) 상에 서로 이격되도록 위치할 수 있다. 제1 전극(130)과 제2 전극(140)은 다각형 평판, 원판 등 다양항 형상을 가질 수 있다. 일례로, 육방정계 질화붕소 원자층(120)이 사각형 형태를 갖는 경우, 제1 전극(130)과 제2 전극(140)은 장방향 양단이나 단방향 양단에 각각 배치될 수 있으며, 제1 전극(130)과 제2 전극(140)이 서로 이격되기만 하면 육방정계 질화붕소 원자층(120) 상의 어느 위치에도 배치될 수 있다. 육방정계 질화붕소 원자층(120)은 제1 전극(130)과 제2 전극(140)에 의해 베이스 기판(100)에 고정될 수 있다. 이와 달리, 육방정계 질화붕소 원자층(120)은 접착 부재(미도시)에 의해 베이스 기판(100)에 고정될 수도 있다.
제1 전극(130)은 육방정계 질화붕소 원자층(120)에 물리적 힘이 가해질 때 육방정계 질화붕소 원자층(120)에서 발생하는 전기 에너지, 즉 전류 및 전압을 전달하는 역할을 한다. 제1 전극(130)은 얇은 도전성 물질로 이루어질 수 있다. 상기 도전성 물질은 투명 도전성 물질과 불투명 도전성 물질을 포함할 수 있다. 상기 투명 도전성 물질의 예로는 그래핀, ITO(Indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), FTO(Flourine doped tin oxide) 등을 들 수 있다. 상기 불투명 도전성 물질의 예로는 Au, Ag, Pt 등의 금속을 들 수 있다.
제2 전극(140)은 육방정계 질화붕소 원자층(120)에 물리적 힘이 가해질 때 육방정계 질화붕소 원자층(120)에서 발생하는 전기 에너지, 즉 전류 및 전압을 전달하는 역할을 한다. 제2 전극(130)은 얇은 도전성 물질로 이루어질 수 있다. 제2 전극(140)을 형성하는 도전성 물질에 대한 구체적인 설명은 제1 전극(130)을 형성하는 도전성 물질에 대한 설명과 실질적으로 동일하다. 이 외에도 제1 및 제2 전극층(130, 140)은 육방정계 질화붕소 원자층(120)이 용이하게 휘어지거나 변형될 수 있도록 유연성을 가진 전도성 물질로 이루어질 수도 있다. 예를 들면, 제1 및 제2 전극층(130, 140)은 전도성 고분자 등으로 이루어질 수도 있다.
한편, 도시되지는 않았지만, 제1 전극(130)과 제2 전극(140)이 구비되지 않아 노출된 육방정계 질화붕소 원자층(120) 상에 절연층이 구비될 수도 있다. 상기 절연층은 제1 전극(130)과 제2 전극(140) 사이에 위치하여 노출된 육방정계 질화붕소 원자층(120)을 보호할 수 있다. 상기 절연층은 절연성을 갖는 다양한 물질로 이루어질 수 있다. 이때, 상기 절연층의 높이는 제1 전극(130)과 제2 전극(140)의 높이와 실질적으로 동일하거나 이보다 작을 수 있다.
도 3과 같이 나노전력발전소자(100)에 스트레칭과 뒤틀림(twisting)과 같은 외부의 물리적인 힘이 가해지면, 나노전력발전소자(100) 내부의 육방정계 질화붕소 원자층(120)에도 물리적인 힘이 가해진다. 육방정계 질화붕소 원자층(120)의 압전 특성에 의해 육방정계 질화붕소 원자층(120)에서 전기 에너지가 발생된다. 상기 전기 에너지는 제1 전극(130) 및 제2 전극(140)을 통해 나노전력발전소자(100)의 외부로 전달될 수 있다.
나노전력발전소자(100)는 기계적 안정성이 뛰어나므로, 밴딩, 비틀림, 둥글게 말림 등 외부 힘에 의해서 손상을 입지 않는다. 나노전력발전소자(100)는 육방정계 질화붕소 원자층(120)의 압전 특성을 이용하므로, 지속적이고 독립적으로 구동할 수 있다. 또한, 나노전력발전소자(100)는 초소형 및 초박형의 크기를 가질 수 있으므로, 바람, 혈류의 움직임, 심장박동과 같은 작은 물리적 에너지를 이용하여 효율적으로 전기 에너지를 발생할 수 있다. 그리고, 육방정계 질화붕소 원자층(120)이 화학적으로 안정하므로, 나노전력발전소자(100)는 신체 내부에서 작동할 수 있다.
도 4는 도 1에 도시된 나노전력발전소자의 제조를 설명하기 위한 흐름도이다.
도 4를 참조하면, 나노전력발전소자(100)를 제조하기 위해 우선 베이스 기판(110) 상에 육방정계 질화붕소 원자층(120)을 형성한다(S110).
베이스 기판(110)은 플렉스블 기판일 수 있다. 일예로, 베이스 기판(110)은 연신되거나 수축될 수 있고 휘어질 수 있는 폴리머 물질로 이루어질 수 있다. 상기 폴리머 물질의 예로는 PEN(polyethylene naphthalate), PES(polyethylene sulfonate), PET(polyethylene terephthalate) 등을 들 수 있다.
베이스 기판(110) 상에 육방정계 질화붕소 원자층(120)을 형성하는 공정은 구리 포일(foil)에 화학증착 공정을 이용하여 육방정계 질화붕소 원자층(120)을 형성시킨 후, 육방정계 질화붕소 원자층(120)을 습식 이송(wet transfer) 공정을 이용하여 베이스 기판(110) 상에 형성한다.
도 5는 도 4에 도시된 육방정계 질화붕소 원자층 형성을 설명하기 위한 흐름도이다.
도 5를 참조하면, 베이스 기판(110) 상에 육방정계 질화붕소 원자층(120)을 형성하기 위해 먼저 구리 포일(foil) 상에 육방정계 질화붕소 원자층(120)을 형성한다(S111).
육방정계 질화붕소 원자층(120)은 상기 구리 포일을 금속 촉매로 하고 암모니아 보레인(ammonia-borane, NH3-BH3)을 소스로 하여 화학기상증착 공정에 의해 형성될 수 있다. 구체적으로, 아르곤 수소 혼합가스 분위기에서 기화된 암모니아 보레인(ammonia-borane, NH3-BH3)과 질소 가스를 공급하여 상기 구리 포일에 육방정계 질화붕소 원자층(120)을 형성한다. 육방정계 질화붕소 원자층(120)은 질소 원자와 붕소 원자가 육각형으로 결합된 단일층 구조를 가진다.
상기 구리 포일에 육방정계 질화붕소 원자층(120)이 형성되면, 폴리메틸 메타크릴레이트(PMMA, polymethyl methacrylate)를 육방정계 질화붕소 원자층(120)이 형성된 구리 포일 상에 도포하여 폴리메틸 메타크릴레이트 층을 형성한다(S112).
상기 폴리메틸 메타크릴레이트는 스핀 코팅 공정에 의해 상기 구리 포일 상에 도포될 수 있다. 상기 폴리메틸 메타크릴레이트 층은 육방정계 질화붕소 원자층(120)을 감쌀 수 있다. 따라서, 상기 폴리메틸 메타크릴레이트 층은 육방정계 질화붕소 원자층(120)을 지지하는 지지층으로 작용할 수 있다.
이후, 상기 구리 포일을 제거한다(S113).
구체적으로, 구리 식각액을 이용하여 상기 구리 포일을 선택적으로 제거한다. 이후, 육방정계 질화붕소 원자층(120)과 폴리메틸 메타크릴레이트 층의 표면에 잔류하는 구리 식각액을 탈이온수로 세정한다.
다음으로, 육방정계 질화붕소 원자층(120)과 폴리메틸 메타크릴레이트 층을 베이스 기판(110)으로 이송한다(S114).
베이스 기판(110)으로 이송된 육방정계 질화붕소 원자층(120)과 폴리메틸 메타크릴레이트 층에 잔류하는 탈이온수를 완전히 건조시킨다.
다음으로, 상기 폴리메틸 메타크릴레이트 층을 제거한다(S115).
상기 폴리메틸 메타크릴레이트 층은 아세톤, 클로로포름 등과 같은 유기용매에 의해 선택적으로 제거될 수 있다. 상기 폴리메틸 메타크릴레이트 층이 제거되면, 베이스 기판(110) 상에 육방정계 질화붕소 원자층(120)을 형성할 수 있다.
육방정계 질화붕소 원자층(120)은 sp2 본딩에 의해 화학적으로 안정한 특성을 나타낸다. 육방정계 질화붕소 원자층(120)에 물리적 힘이 인가되어 육방정계 질화붕소 원자층이 변형되면, 질소 원자와 붕소 원자의 위치 변화에 의해 분극 현상이 일어나고, 상기 분극 현상에 의해 전기에너지가 발생된다. 즉, 육방정계 질화붕소 원자층(120)은 물리적 에너지를 전기 에너지로 변환할 수 있는 압전 특성을 가진다.
다시 도 4를 참조하면, 육방정계 질화붕소 원자층(120) 상에 서로 이격되도록 제1 전극(130)과 제2 전극(140)을 형성한다(S120),
제1 전극(130)과 제2 전극(140)은 박막 형성 공정에 의해 형성된다. 상기 박막 형성 공정의 예로는 스퍼터링 공정, 화학적 기상 증착 공정, 잉크젯 프린팅 공정 등을 들 수 있다. 제1 전극(130) 및 제2 전극(140)은 얇은 도전성 물질로 이루어질 수 있다. 상기 도전성 물질은 투명 도전성 물질과 불투명 도전성 물질을 포함할 수 있다. 상기 투명 도전성 물질의 예로는 그래핀, ITO(Indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), FTO(Flourine doped tin oxide) 등을 들 수 있다. 상기 불투명 도전성 물질의 예로는 Au, Ag, Pt 등을 들 수 있다.
일 예로, 제1 전극(130)과 제2 전극(140)은 동시에 형성될 수 있다. 예를 들면, 별도의 마스크 없이 박막 형성 공정을 통해 육방정계 질화붕소 원자층(120) 상에 서로 이격되도록 도전층을 형성함으로써 제1 전극(130)과 제2 전극(140)을 형성할 수 있다. 또한, 육방정계 질화붕소 원자층(120)을 두 부분으로 구분하는 마스크 패턴을 형성하고, 마스크 패턴이 형성된 육방정계 질화붕소 원자층(120) 상에 박막 형성 공정을 통해 얇은 도전층을 형성한 후, 상기 마스크 패턴을 제거하여 제1 전극(130)과 제2 전극(140)을 형성할 수 있다. 또한, 육방정계 질화붕소 원자층(120) 상에 박막 형성 공정을 통해 얇은 도전층을 형성한 후, 상기 도전층이 두 부분으로 구분되도록 상기 도전층의 중앙 부위를 식각하여 제1 전극(130)과 제2 전극(140)을 형성할 수 있다.
다른 예로, 제1 전극(130)과 제2 전극(140)은 순차적으로 형성될 수 있다. 예를 들면, 육방정계 질화붕소 원자층(120) 상에 박막 형성 공정을 통해 제1 전극(130)을 먼저 형성한 후, 제1 전극(130)과 이격되도록 육방정계 질화붕소 원자층(120) 상에 제2 전극(140)을 형성할 수 있다.
한편, 도시되지는 않았지만, 제1 전극(130)과 제2 전극(140) 사이에서 노출된 육방정계 질화붕소 원자층(120) 상에 절연층이 형성될 수도 있다. 이때, 상기 절연층의 높이는 제1 전극(130)과 제2 전극(140)의 높이와 실질적으로 동일하거나 이보다 작을 수 있다.
따라서, 베이스 기판(110), 육방정계 질화붕소 원자층(120), 제1 전극(130) 및 제2 전극(140)을 포함하는 나노전력발전소자(100)를 완성한다.
상기와 같은 방법에 의해 형성된 나노전력발전소자(100)는 기계적 안정성이 뛰어나므로, 밴딩, 비틀림, 둥글게 말림 등 외부 힘에 의해서 손상을 입지 않는다. 나노전력발전소자(100)는 육방정계 질화붕소 원자층(120)의 압전 특성을 이용하므로, 지속적이고 독립적으로 구동할 수 있다. 또한, 나노전력발전소자(100)는 초소형 및 초박형으로 형성될 있으므로, 바람, 혈류의 움직임, 심장박동과 같은 작은 물리적 에너지를 이용하여 효율적으로 전기 에너지를 발생할 수 있다. 그리고, 육방정계 질화붕소 원자층(120)이 화학적으로 안정하므로, 나노전력발전소자(100)는 신체 내부에서 작동할 수 있다.
도 6은 본 발명의 다른 실시예에 따른 나노전력발전소자를 설명하기 위한 사시도이고, 도 7은 도 6에 도시된 나노전력발전소자의 다양한 물리적 힘에 따른 구동 형태를 설명하기 위한 사시도이다.
도 6 및 도 7을 참조하면, 나노전력발전소자(200)는 베이스 기판(210), 제1 전극(220), 육방정계 질화붕소 원자층(230) 및 제2 전극(240)을 포함할 수 있다.
베이스 기판(210)은 플렉서블(flexible) 기판일 수 있다. 일예로, 베이스 기판(210)은 연신되거나 수축될 수 있고 휘어질 수 있는 폴리머 물질로 이루어질 수 있다. 상기 폴리머 물질의 예로는 PEN(polyethylene naphthalate), PES(polyethylene sulfonate), PET(polyethylene terephthalate) 등을 들 수 있다.
제1 전극(220)은 베이스 기판(210) 상에 위치할 수 있다. 제1 전극(220)은 육방정계 질화붕소 원자층(230)에 물리적 힘이 가해질 때 육방정계 질화붕소 원자층(230)에서 발생하는 전기 에너지, 즉 전류 및 전압을 전달하는 역할을 한다. 제1 전극(220)은 얇은 도전성 물질로 이루어질 수 있다. 상기 도전성 물질은 투명 도전성 물질과 불투명 도전성 물질을 포함할 수 있다. 상기 투명 도전성 물질의 예로는 그래핀, ITO(Indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), FTO(Flourine doped tin oxide) 등을 들 수 있다. 상기 불투명 도전성 물질의 예로는 Au, Ag, Pt 등을 들 수 있다.
육방정계 질화붕소 원자층(230)은 제1 전극(220) 상에 위치할 수 있다. 육방정계 질화붕소 원자층(230)은 질소 원자와 붕소 원자가 육각형으로 결합된 단일층 구조를 가진다. 육방정계 질화붕소 원자층(230)은 sp2 본딩에 의해 화학적으로 안정한 특성을 나타낸다. 육방정계 질화붕소 원자층(230)에 물리적 힘이 인가되어 육방정계 질화붕소 원자층이 변형되면, 질소 원자와 붕소 원자의 위치 변화에 의해 분극 현상이 일어나고, 상기 분극 현상에 의해 전기에너지가 발생된다. 즉, 육방정계 질화붕소 원자층(230)은 물리적 에너지를 전기 에너지로 변환할 수 있는 압전 특성을 가진다.
제2 전극(240)은 육방정계 질화붕소 원자층(230) 상에 위치할 수 있다. 제2 전극(240)은 제1 전극(220)과 마찬가지로 육방정계 질화붕소 원자층(230)에 물리적 힘이 가해질 때 육방정계 질화붕소 원자층(230)에서 발생하는 전기 에너지, 즉 전류 및 전압을 전달하는 역할을 한다. 제2 전극(240)은 얇은 도전성 물질로 이루어질 수 있다. 상기 도전성 물질은 투명 도전성 물질과 불투명 도전성 물질을 포함할 수 있다. 상기 투명 도전성 물질의 예로는 그래핀, ITO(Indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), FTO(Flourine doped tin oxide) 등을 들 수 있다. 상기 불투명 도전성 물질의 예로는 Au, Ag, Pt 등을 들 수 있다.
도 7과 같이 나노전력발전소자(200)에 스트레칭과 뒤틀림(twisting)과 같은 외부의 물리적인 힘이 가해지면, 나노전력발전소자(200) 내부의 육방정계 질화붕소 원자층(230)에도 물리적인 힘이 가해진다. 육방정계 질화붕소 원자층(230)의 압전 특성에 의해 육방정계 질화붕소 원자층(230)에서 전기 에너지가 발생된다. 상기 전기 에너지는 제1 전극(220) 및 제2 전극(240)을 통해 나노전력발전소자(200)의 외부로 전달될 수 있다.
나노전력발전소자(200)는 기계적 안정성이 뛰어나므로, 밴딩, 비틀림, 둥글게 말림 등 외부 힘에 의해서 손상을 입지 않는다. 나노전력발전소자(200)는 육방정계 질화붕소 원자층(230)의 압전 특성을 이용하므로, 지속적이고 독립적으로 구동할 수 있다. 또한, 나노전력발전소자(200)는 초소형 및 초박형의 크기를 가질 수 있으므로, 바람, 혈류의 움직임, 심장박동과 같은 작은 물리적 에너지를 이용하여 효율적으로 전기 에너지를 발생할 수 있다. 그리고, 육방정계 질화붕소 원자층(230)이 화학적으로 안정하므로, 나노전력발전소자(200)는 신체 내부에서 작동할 수 있다.
도 8은 도 6에 도시된 나노전력발전소자의 제조를 설명하기 위한 흐름도이다.
도 6을 참조하면, 나노전력발전소자(200)를 제조하기 위해 우선 베이스 기판(210) 상에 제1 전극(220)을 형성한다(S210).
베이스 기판(210)은 플렉스블 기판일 수 있다. 일예로, 베이스 기판(210)은 연신되거나 수축될 수 있고 휘어질 수 있는 폴리머 물질로 이루어질 수 있다. 상기 폴리머 물질의 예로는 PEN(polyethylene naphthalate), PES(polyethylene sulfonate), PET(polyethylene terephthalate) 등을 들 수 있다.
제1 전극(220)은 박막 형성 공정에 의해 형성된다. 상기 박막 형성 공정의 예로는 스퍼터링 공정, 화학적 기상 증착 공정, 잉크젯 프린팅 공정 등을 들 수 있다. 제1 전극(220)은 얇은 도전성 물질로 이루어질 수 있다. 상기 도전성 물질은 투명 도전성 물질과 불투명 도전성 물질을 포함할 수 있다. 상기 투명 도전성 물질의 예로는 그래핀, ITO(Indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), FTO(Flourine doped tin oxide) 등을 들 수 있다. 상기 불투명 도전성 물질의 예로는 Au, Ag, Pt 등을 들 수 있다.
이후, 제1 전극(220) 상에 육방정계 질화붕소 원자층(230)을 형성한다(S220).
제1 전극(220) 상에 육방정계 질화붕소 원자층(230)을 형성하는 공정은 구리 포일(foil)에 화학증착 공정을 이용하여 육방정계 질화붕소 원자층(230)을 형성시킨 후, 육방정계 질화붕소 원자층(230)을 습식 이송(wet transfer) 공정을 이용하여 베이스 기판(210) 상에 형성한다.
제1 전극(220) 상에 육방정계 질화붕소 원자층(230)을 형성하는 공정에 대한 구체적인 설명은 도 5를 참조한 베이스 기판(110) 상에 육방정계 질화붕소 원자층(120)을 형성하는 공정과 실질적으로 동일하므로 생략한다.
육방정계 질화붕소 원자층(230)은 sp2 본딩에 의해 화학적으로 안정한 특성을 나타낸다. 육방정계 질화붕소 원자층(230)에 물리적 힘이 인가되어 육방정계 질화붕소 원자층이 변형되면, 질소 원자와 붕소 원자의 위치 변화에 의해 분극 현상이 일어나고, 상기 분극 현상에 의해 전기에너지가 발생된다. 즉, 육방정계 질화붕소 원자층(230)은 물리적 에너지를 전기 에너지로 변환할 수 있는 압전 특성을 가진다.
다음으로, 육방정계 질화붕소 원자층(230) 상에 제2 전극(240)을 형성한다(S230),
제2 전극(240)을 형성하는 공정에 대한 구체적인 설명은 제1 전극(220)을 형성하는 공정과 실질적으로 동일하므로 생략한다.
따라서, 베이스 기판(210), 제1 전극(220), 육방정계 질화붕소 원자층(230) 및 제2 전극(240)을 포함하는 나노전력발전소자(200)를 완성한다.
상기와 같은 방법에 의해 형성된 나노전력발전소자(200)는 기계적 안정성이 뛰어나므로, 밴딩, 비틀림, 둥글게 말림 등 외부 힘에 의해서 손상을 입지 않는다. 나노전력발전소자(200)는 육방정계 질화붕소 원자층(230)의 압전 특성을 이용하므로, 지속적이고 독립적으로 구동할 수 있다. 또한, 나노전력발전소자(200)는 초소형 및 초박형으로 형성될 있으므로, 바람, 혈류의 움직임, 심장박동과 같은 작은 물리적 에너지를 이용하여 효율적으로 전기 에너지를 발생할 수 있다. 그리고, 육방정계 질화붕소 원자층(230)이 화학적으로 안정하므로, 나노전력발전소자(200)는 신체 내부에서 작동할 수 있다.
상술한 바와 같이, 본 발명에 따른 나노전력발전소자는 기계적 화학적 안정성이 뛰어나고, 육방정계 질화붕소 원자층의 압전 특성을 이용하여 지속적이고 독립적으로 구동할 수 있다. 또한, 나노전력발전소자는 초소형 및 초박형으로 제조될 수 있어 작은 물리적 에너지를 이용하여 효율적으로 전기 에너지를 발생할 수 있다. 그리고, 육방정계 질화붕소 원자층이 화학적으로 안정하므로, 나노전력발전소자는 신체 내부에서 작동할 수 있다. 그러므로, 나노전력발전소자는 소형 에너지원으로 기계 분야, 전자분야, 의학 분야 등 다양한 분야에서 사용될 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (9)

  1. 베이스 기판;
    상기 베이스 기판 상에 구비되는 육방정계 질화붕소 원자층;
    상기 육방정계 질화붕소 원자층 상에 구비되는 제1 전극; 및
    상기 육방정계 질화붕소 원자층 상에 구비되며, 상기 제1 전극과 이격되는 제2 전극을 포함하는 것을 특징으로 하는 나노전력발전소자.
  2. 제1항에 있어서, 상기 베이스 기판은 플렉서블 기판인 것을 특징으로 하는 나노전력발전소자.
  3. 베이스 기판 상에 육방정계 질화붕소 원자층을 형성하는 단계; 및
    상기 육방정계 질화붕소 원자층 상에 서로 이격되도록 제1 전극과 제2 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 나노전력발전소자 제조 방법.
  4. 제3항에 있어서, 상기 베이스 기판 상에 육방정계 질화붕소 원자층을 형성하는 단계는,
    구리 포일 상에 육방정계 질화붕소 원자층을 형성하는 단계;
    상기 육방정계 질화붕소 원자층이 형성된 구리 포일 상에 상기 육방정계 질화붕소 원자층을 지지하기 위한 폴리메틸 메타크릴레이트 층을 형성하는 단계;
    상기 구리 포일을 제거하는 단계;
    상기 육방정계 질화붕소 원자층과 상기 폴리메틸 메타크릴레이트 층을 상기 베이스 기판 상으로 이송하는 단계; 및
    상기 폴리메틸 메타크릴레이트 층을 제거하는 단계를 포함하는 것을 특징으로 하는 나노전력발전소자 제조 방법.
  5. 제4항에 있어서, 상기 구리 포일 상에 육방정계 질화붕소 원자층을 형성하는 단계는 상기 구리 포일을 금속 촉매로 하고 암모니아 보레인(NH3-BH3)을 소스로 하여 화학기상증착 공정을 통해 이루어지는 것을 특징으로 하는 나노전력발전소자 제조 방법.
  6. 제5항에 있어서, 상기 구리 포일 상에 육방정계 질화붕소 원자층을 형성하는 단계는 아르곤 수소 혼합가스 분위기에서 이루어지며, 질소 가스를 기화되는 암모니아 보레인을 이송하는 캐리어 가스로 사용하는 것을 특징으로 하는 나노전력발전소자 제조 방법.
  7. 베이스 기판;
    상기 베이스 기판 상에 구비되는 제1 전극;
    상기 제1 전극 상에 구비되는 육방정계 질화붕소 원자층; 및
    상기 육방정계 질화붕소 원자층 상에 구비되는 제2 전극을 포함하는 것을 특징으로 하는 나노전력발전소자.
  8. 베이스 기판 상에 제1 전극을 형성하는 단계;
    제1 전극 상에 육방정계 질화붕소 원자층을 형성하는 단계; 및
    상기 육방정계 질화붕소 원자층 상에 제2 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 나노전력발전소자 제조 방법.
  9. 제8항에 있어서, 상기 제1 전극 상에 육방정계 질화붕소 원자층을 형성하는 단계는,
    구리 포일 상에 육방정계 질화붕소 원자층을 형성하는 단계;
    상기 육방정계 질화붕소 원자층이 형성된 구리 포일 상에 상기 육방정계 질화붕소 원자층을 지지하기 위한 폴리메틸 메타크릴레이트 층을 형성하는 단계;
    상기 구리 포일을 제거하는 단계;
    상기 육방정계 질화붕소 원자층과 상기 폴리메틸 메타크릴레이트 층을 상기 제1 전극 상으로 이송하는 단계; 및
    상기 폴리메틸 메타크릴레이트 층을 제거하는 단계를 포함하는 것을 특징으로 하는 나노전력발전소자 제조 방법.
PCT/KR2012/000748 2011-01-31 2012-01-31 나노전력발전소자 및 이의 제조방법 WO2012105800A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/955,145 US9406864B2 (en) 2011-01-31 2013-07-31 Nanogenerator comprising boron nitride atomic layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0009837 2011-01-31
KR20110009837 2011-01-31
KR1020120009576A KR101259729B1 (ko) 2011-01-31 2012-01-31 나노전력발전소자 및 이의 제조방법
KR10-2012-0009576 2012-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/955,145 Continuation US9406864B2 (en) 2011-01-31 2013-07-31 Nanogenerator comprising boron nitride atomic layer

Publications (3)

Publication Number Publication Date
WO2012105800A2 true WO2012105800A2 (ko) 2012-08-09
WO2012105800A9 WO2012105800A9 (ko) 2012-10-18
WO2012105800A3 WO2012105800A3 (ko) 2012-12-13

Family

ID=46873837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000748 WO2012105800A2 (ko) 2011-01-31 2012-01-31 나노전력발전소자 및 이의 제조방법

Country Status (3)

Country Link
US (1) US9406864B2 (ko)
KR (1) KR101259729B1 (ko)
WO (1) WO2012105800A2 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140174496A1 (en) 2012-12-21 2014-06-26 Georgia Tech Research Corporation Hybrid generator using thermoelectric generation and piezoelectric generation
KR102395774B1 (ko) 2015-02-12 2022-05-09 삼성전자주식회사 이음매 없는 육방정계 질화붕소 원자모노층 박막 및 그 제조방법
KR101797182B1 (ko) * 2016-03-17 2017-11-13 한국표준과학연구원 대면적 단결정 단원자층 hBN의 제조 방법, 장치 및 이를 이용한 단원자층 그래핀 성장을 위한 기판
US10312705B2 (en) 2017-02-15 2019-06-04 At&T Intellectual Property I, L.P. Flexible battery
US11095234B2 (en) 2018-11-26 2021-08-17 Purdue Research Foundation Triboelectric nanogenerators
KR102118609B1 (ko) * 2018-11-28 2020-06-04 한국과학기술연구원 나노그루브를 이용한 이차원 소재의 다결정 박막 제조 방법
US11393976B2 (en) * 2020-01-10 2022-07-19 Massachusetts Institute Of Technology Carbon-based volatile and non-volatile memristors
KR102398007B1 (ko) 2020-03-03 2022-05-16 한국과학기술연구원 산화아연-질화붕소나노튜브 복합체 필름 및 이의 제조 방법
CN115678087A (zh) * 2022-10-24 2023-02-03 海宁市产业技术研究院 基于冷冻干燥技术的六方氮化硼掺杂聚乙烯醇压电薄膜、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043027A (ko) * 2002-11-15 2004-05-22 한국에너지기술연구원 압전소자의 저온소결방법
JP2006240942A (ja) * 2005-03-04 2006-09-14 National Institute For Materials Science 高純度窒化ホウ素ナノチューブの製造方法
JP2008266101A (ja) * 2007-04-25 2008-11-06 National Institute For Materials Science 窒化ホウ素ナノチューブ及びその製造方法
KR20100033964A (ko) * 2007-05-15 2010-03-31 내셔날 인스티튜트 오프 에어로스페이스 어소시에이츠 질화붕소 나노튜브

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020006708A (ko) * 2000-03-08 2002-01-24 요시카즈 나카야마 나노핀셋 및 나노매니퓰레이터
JP2002025638A (ja) 2000-07-11 2002-01-25 Nec Corp 電 池
CA2777666C (en) * 2009-10-13 2021-01-05 National Institute Of Aerospace Associates Energy conversion materials fabricated with boron nitride nanotubes (bnnts) and bnnt polymer composites
KR101090640B1 (ko) 2011-08-23 2011-12-08 김태환 광섬유 활용 태양광 발전장치
CN105051941B (zh) * 2013-03-19 2017-11-21 索尼公司 隔膜、电池、电池组、电子设备、电动车辆、电力储存装置以及电力系统
KR102026736B1 (ko) * 2013-03-29 2019-11-04 삼성전자주식회사 이종 적층 구조의 절연시트, 그의 제조방법 및 이를 구비하는 전기소자
US9088265B2 (en) * 2013-05-17 2015-07-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising a boron nitride piezoelectric layer
US20150167148A1 (en) * 2013-12-17 2015-06-18 Brookhaven Science Associates, Llc Method for Synthesis of Uniform Bi-Layer and Few-Layer Hexagonal Boron Nitride Dielectric Films
US20150181650A1 (en) * 2013-12-20 2015-06-25 Research & Business Foundation Sungkyunkwan University Graphene microheater and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043027A (ko) * 2002-11-15 2004-05-22 한국에너지기술연구원 압전소자의 저온소결방법
JP2006240942A (ja) * 2005-03-04 2006-09-14 National Institute For Materials Science 高純度窒化ホウ素ナノチューブの製造方法
JP2008266101A (ja) * 2007-04-25 2008-11-06 National Institute For Materials Science 窒化ホウ素ナノチューブ及びその製造方法
KR20100033964A (ko) * 2007-05-15 2010-03-31 내셔날 인스티튜트 오프 에어로스페이스 어소시에이츠 질화붕소 나노튜브

Also Published As

Publication number Publication date
WO2012105800A3 (ko) 2012-12-13
US20130313944A1 (en) 2013-11-28
US9406864B2 (en) 2016-08-02
KR101259729B1 (ko) 2013-04-30
WO2012105800A9 (ko) 2012-10-18
KR20120088599A (ko) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2012105800A2 (ko) 나노전력발전소자 및 이의 제조방법
Tee et al. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future
Li et al. Moisture-driven power generation for multifunctional flexible sensing systems
Lai et al. Stretchable organic memory: toward learnable and digitized stretchable electronic applications
Jeon et al. Highly flexible triboelectric nanogenerators fabricated utilizing active layers with a ZnO nanostructure on polyethylene naphthalate substrates
WO2015008905A1 (ko) 그래핀/실리콘 나노선 분자 센서 또는 이의 제조 방법과 이를 이용한 분자 확인 방법
WO2013094824A1 (ko) 메탈나노와이어 및 탄소나노튜브를 포함하는 적층형 투명전극
WO2011099831A2 (ko) 그래핀을 이용한 유연성 투명 발열체 및 이의 제조 방법
Park et al. Highly conductive PEDOT electrodes for harvesting dynamic energy through piezoelectric conversion
WO2013032233A2 (ko) 도핑된 폴리머층을 포함하는 그래핀 기반 적층체
KR101521694B1 (ko) 플렉서블/스트레처블 투명도전성 필름 및 그 제조방법
WO2017150771A1 (ko) 섬유형 전극 및 이를 이용한 슈퍼커패시터
WO2014109619A1 (ko) 자가점착 필름을 이용한 그래핀의 전사 방법
WO2014126298A1 (en) Method of manufacturing graphene film and graphene film manufactured thereby
Ma et al. Highly efficient and mechanically robust stretchable polymer solar cells with random buckling
WO2014193182A1 (ko) 마찰전기 발생장치
Sollami Delekta et al. Wet transfer of inkjet printed graphene for microsupercapacitors on arbitrary substrates
WO2013015573A2 (ko) 그라핀 옥사이드를 이용한 전계효과 트랜지스터 및 그 제조방법
WO2017000332A1 (zh) 一种掩膜板及其制造方法、oled器件封装方法
WO2014196776A1 (ko) 나노박막의 전사 및 접착방법
WO2013103263A1 (ko) 태양전지용 전기 도금을 위한 기판 캐리어 장치
CN103871684A (zh) 应用石墨烯的结构及其制造方法
WO2017119609A1 (ko) 플렉서블 디스플레이 장치 및 그의 제조 방법
WO2014112766A1 (ko) 나노 물질층을 포함하는 투명 전극, 그 제조 방법 및 이를 구비하는 광소자 장치, 디스플레이 장치, 터치 패널 장치
WO2017018621A1 (ko) 압력 센서, 그 제조 방법, 및 이를 이용한 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741713

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741713

Country of ref document: EP

Kind code of ref document: A2