KR100446649B1 - 침탄 질화용 베어링강 제조방법 - Google Patents

침탄 질화용 베어링강 제조방법 Download PDF

Info

Publication number
KR100446649B1
KR100446649B1 KR10-2000-0082364A KR20000082364A KR100446649B1 KR 100446649 B1 KR100446649 B1 KR 100446649B1 KR 20000082364 A KR20000082364 A KR 20000082364A KR 100446649 B1 KR100446649 B1 KR 100446649B1
Authority
KR
South Korea
Prior art keywords
steel
bearing steel
less
bearing
wire rod
Prior art date
Application number
KR10-2000-0082364A
Other languages
English (en)
Other versions
KR20020052880A (ko
Inventor
유선준
우용택
한승규
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2000-0082364A priority Critical patent/KR100446649B1/ko
Publication of KR20020052880A publication Critical patent/KR20020052880A/ko
Application granted granted Critical
Publication of KR100446649B1 publication Critical patent/KR100446649B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

본 발명은 자동차 변속기에 사용되는 베어링을 제조하기 위한 내마모성과 피로특성이 우수한 침탄질화용 베어링강의 제조방법에 관한 것으로 C; 0.30-0.50 wt%, Si; 0.30-0.50 wt%, Mn; 0.90-1.30 wt%, P; 0.020 wt% 이하, S; 0.020 wt% 이하, Cr; 1.0-2.0 wt%, V; 0.08-0.40 wt%, Al; 0.010-0.050 wt%, O; 0.0015 wt%이하, N; 0.010-0.020 wt%, Ti; 0.004 wt%이하 그리고 기타 불가피한 불순물 및 잔부 Fe로 이루어진 베어링강을 용융하여 용강을 제조하고, 제조된 용강을 연속주조하여 불룸 또는 빌레트를 주조한 다음, 주조된 빌레트를 가열로에서 950-1250℃ 범위로 재가열하여 선재압연공정에서 압연하고, 750-950℃의 온도범위에서 권취하여 선재를 제조하는 공정을 포함한 침탄질화용 베어링강의 제조방법을 제공한다.

Description

침탄 질화용 베어링강 제조방법{Method For Manufacturing Carbonitriding Bearing Steel}
본 발명은 침탄 질화용 베어링강에 관한 것으로, 보다 상세하게는 자동차 변속기에 사용되는 베어링을 제조하기 위한 내마모성과 피로특성이 우수한 침탄질화용 베어링강의 제조방법에 관한 것이다.
베어링강은 볼 베어링(ball bearing) 또는 궤도륜에 사용되는 볼을 제조하는데 사용되는 강을 말한다. 이와 같은 베어링강으로는 침탄질화용 베어링강이 있다. 베어링강은 그 사용특성상 강도가 높으면서도 충격에 강하고 특히 전동피로수명이 길어야 하며 내마모성 또한 우수하여 사용 중에 치수의 변화가 없어야 한다.
침탄질화용 베어링강은 저탄소강에 니켈이나 크롬 또는 몰리브덴과 같은 특수원소를 소량 첨가한 후 강 표면을 침탄질화 처리한 것이다. 이러한 침탄질화용 베어링강은 표면에 잔류압축응력이 발생하여 전동피로에 강하기 때문에 베어링강으로 사용되기에 적합하다.
그러나 자동차 변속기에 사용되는 베어링강은 변속기의 사용환경이 고온이고 고하중이며 윤활유와 함께 작동된다. 따라서 베어링으로 사용 중에 변속기 내부의베어링 주위에 윤활유와 철계파편 등이 혼입되어 이러한 파편에 의하여 베어링, 베어링 링 또는 베어링 지지면의 표면에 크랙을 발생시킬 수 있다. 이와 같이 베어링 표면에 크랙이 발생하게 되면 크랙에 응력이 집중되어 표면을 박리시키게 된다.
따라서 자동차 변속기에 사용되는 베어링강은 이러한 이물환경에서도 파괴되지 않고 오래 동안 사용할 수 있는 내마모성과 내 피로성이 요구된다.
지금까지 사용되고 있는 자동차 변속기용 베어링강은 이물환경이 아닌 청정환경에서 고하중 장수명을 목표로 개발되어 왔다. 따라서 내마모성과 내부 기점형 박리에 의한 피로특성은 우수하지만 이물환경에서 발생되는 면기점 박리에 의한 피로 특성에는 취약하다는 단점이 있다.
그리고 침탄질화용 베어링강의 기계적 특성은 베어링강의 조성자체에 따라 영향을 받지만, 이와 더불어 침탄질화 열처리 조건에 의해서도 많은 영향을 받는다.
따라서, 자동차 변속기와 같은 이물환경에서 고내마모 특성과 내피로특성을 갖는 베어링강을 개발하기 위해서는 베어링강의 조성을 개선하고 침탄질화 열처리 조건을 개선할 필요가 있다.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 철계파편과 윤활유가 혼재된 이물환경에서도 면기점형 박리특성이 우수하고 내마모성과 내피로특성이 우수한 침탄질화용 베어링강용 강재와 이러한 침탄질화용 베어링강의 제조방법을 제공하는데 있다.
상기 목적을 달성하기 위한 본 발명은 C; 0.30-0.50 wt%, Si; 0.30-0.50 wt%, Mn; 0.90-1.30 wt%, P; 0.020 wt% 이하, S; 0.020 wt% 이하, Cr; 1.0-2.0 wt%, V; 0.08-0.40 wt%, Al; 0.010-0.050 wt%, O; 0.0015 wt%이하, N; 0.010-0.020 wt%, Ti; 0.004 wt%이하 그리고 기타 불가피한 불순물 및 잔부 Fe로 이루어진 침탄질화용 베어링강을 제공한다.
또한 본 발명은 이러한 조성을 갖는 베어링강을 용융하여 용강을 제조하고, 제조된 용강을 연속주조하여 불룸 또는 빌레트를 주조한 다음, 주조된 빌레트를 가열로에서 950-1250℃ 범위로 재가열하여 선재압연공정에서 압연하고, 750-950℃의 온도범위에서 권취하여 선재를 제조하는 공정을 포함한 침탄질화용 베어링강의 제조방법을 제공한다.
본 발명에 따라 침탄질화용 베어링강을 제조할 경우 연속주조기에서 빌레트로 바로 주조할 수도 있지만, 연속주조에서 불룸으로 주조할 수도 있다. 이때 불품으로 주조할 경우에는 주조된 불룸을 1100-1300℃ 범위에서 재가열하여 빌레트로 압연하는 것이 바람직하다.
이하 본 발명에 의한 침탄질화용 베어링강과 그 제조방법에 대하여 상세히 설명한다.
본 발명에 따른 침탄질화용 베어링강은 C; 0.30-0.50 wt%, Si; 0.30-0.50 wt%, Mn; 0.90-1.30 wt%, P; 0.020 wt% 이하, S; 0.020 wt% 이하, Cr; 1.0-2.0 wt%, V; 0.08-0.40 wt%, Al; 0.010-0.050 wt%, O; 0.0015 wt%이하, N; 0.010-0.020 wt%, Ti; 0.004 wt%이하 그리고 기타 불가피한 불순물 및 잔부 Fe로 이루어져 있다.
본 발명에서 탄소(C)는 0.30-0.50 wt%로 조절한다. 탄소가 0.30 wt%이하인 경우에는 침탄질화 열처리후 베어링강으로서 필요한 강도와 경화능을 확보하기 어렵고, 0.50 wt% 이상으로 조절될 경우 베어링강의 인성이 떨어져 베어링강으로 사용하기 어렵기 때문이다.
본 발명에서 규소(Si)는 0.30-0.50 wt%범위로 첨가하는 것이 바람직하다. 실리콘은 탈산원소로 작용하며, 최소 첨가량은 0.30 wt%이나 0.50 wt% 이상 첨가되면 실리콘은 강 중의 산소(O)와 반응하여 탈산생성물인 SiO2가 과다하게 생성되어 비금속개재물로 존재한다.
본 발명에서 망간(Mn)은 0.9-1.3 wt% 범위로 첨가하는 것이 바람직하다. 망간은 강의 경화능과 표면경도를 확보하기 위하여 첨가되며 용강의 탈산과 탈황제로도 작용한다. 이러한 기능을 하는 망간은 0.9 wt% 이하로 첨가될 경우 망간의 기능을 확보할 수 없고, 1.3 wt% 이상 첨가되면 경화능 제어가 곤란하고 피로수명을 저하시킨다.
본 발명에서 인(P)은 강재의 인성을 저하시키는 작용을 하므로 0.020wt% 이하로 제어하는 것이 바람직하다.
본 발명에서 황(S)는 강중의 망간과 반응하여 MnS와 같은 황화물을 형성하여 강중에 개재물로 존재하여 피로수명을 떨어뜨리는 원인으로 작용하고 이러한 황화물이 중심편석형태로 강재 내부에 존재할 경우 베어링 작용시 응력을 집중시켜 내부균열을 발생시키는 원인으로 작용한다. 따라서 황의 함유량은 0.02 wt% 이하로 제어하는 것이 바람직하다.
본 발명에서 크롬(Cr)은 침탄열처리시 크롬탄화물을 석출시켜 경화능을 향상시키는 원소로 작용한다. 이러한 크롬은 1.0 wt% 이상 첨가되어야 경화능 향상 효과를 발휘하며, 2.0 wt% 이상 첨가될 경우 결정입계에 크롬탄화물을 석출시켜 베어링의 피로수명을 단축시킨다. 따라서 크롬은 원소의 가격과 그 기능을 고려하여 1.0-2.0 wt% 범위로 첨가하는 것이 바람직하다.
본 발명에서 알루미늄(Al)은 탈산제로 작용하며 강중의 질소와 반응하여 AlN 화합물 형태로 석출되어 강재의 결정립을 미세화시키는 작용을 한다. 이러한 알루미늄은 0.010 wt% 이상 첨가되어야 결정립 미세화 효과를 발휘하며, 0.050 wt% 이상 첨가될 경우 강중에서 분리하여 부상되지 못하고 용강에 잔류하여 피로수명을 현저히 떨어뜨리는 요인으로 작용한다. 따라서 알루미늄의 첨가량은 0.010-0.050 wt% 범위로 하는 것이 바람직하다.
본 발명에서 바나듐(V)은 강중의 질소와 반응하여 VN 화합물로 석출되며, 선재 압연후 냉각시 바나듐카바이드로 석출되어 강재의 오스테나이트 결정입자를 미세화시키는 역할을 한다. 이러한 바나듐은 0.08 wt% 이상 첨가되어야 결정립 미세와 효과를 발휘하며, 바나듐은 고가의 원소인 점을 고려하여 0.08-0.40 wt% 범위로 첨가하는 것이 바람직하다.
본 발명에서 질소(N)는 알루미늄 또는 바나듐등과 반응하여 질소화합물을 형성하며, 이러한 질소화합물은 결정입자 또는 결정입계에 석출되어 오스테나이트 결정립의 입자성장을 방해하여 결정입자를 미세화시키는 역할을 한다. 그러나 질소 함유량이 증가하면 질소는 기지조직내에 고용질소로 존재하여 신선가공시 가공성을 떨어뜨리게 된다. 따라서 질소 함유량은 0.01-0.02 wt% 범위로 조절하는 것이 바람직하다.
본 발명에서 티타늄(Ti)은 강중의 질소와 반응하여 TiN과 같은 티탄질화물을 형성하고 이들 질화물은 결정입계에 석출되어 베어링강의 피로수명을 떨어뜨린다. 따라서 티타늄의 함유량은 0.004 wt% 이하로 조절하는 것이 바람직하다.
본 발명에서 산소(O)는 베어링강의 피로수명에 대단히 유해한 원소로 작용하는 산화물을 형성하여 강중에 개제물로 존재한다. 따라서 산소의 함유량은 0.0015 wt% 이하로 엄격히 제어하는 것이 바람직하다.
또한 본 발명의 베어링강은 강중에 잔류하는 구리나 니켈의 경우 그 함유량을 가능한 낮게 제어하는 것이 바람직하다.
이하에서는 이상과 같은 조성을 갖는 본 발명의 베어링강의 제조방법에 대하여 설명한다.
본 발명에 의한 조성을 갖는 용강을 제조한 다음 연속주조기에서 불룸(bloom)으로 주조하고 이를 압연하여 빌레트(Billet)를 제조할 수도 있고, 연속주조기에서 바로 빌레트로 주조할 수도 있다.
제조된 빌레트는 가열로에서 재가열하여 선재압연공정에서 단면을 축소하고 길이를 증대하는 압연을 하여 선재를 제조한다.
이때 가열로에서 재가열할 경우 재가열 온도는 950-1250℃ 범위에서 재가열 하는 것이 바람직하다. 재가열 온도가 950℃ 이하일 경우 가열온도가 낮아 선재로 압연하기에는 부하가 많이 소요되고 빌레트의 내외부 온도차이를 균일하게 하기 위한 균열에 시간이 많이 소요된다. 한편 재가열 온도가 1250℃이상일 경우 강재 내의 오스테나이트 조직이 입자를 성장시켜 오스테나이트 결정입도가 커지게 되며 이와 같이 고온으로 가열하게 되면 가열에 따른 부대비용이 증가하여 경제성이 떨어지게 된다.
이상과 같이 선재 압연을 하여 제조된 선재는 냉각과 동시에 코일형상으로 권취한다.
이때 선재의 권취온도(Laying Head)는 750-950℃의 온도범위에서 권취하는 것이 바람직하다. 선재의 권취온도가 750℃ 이하인 경우 권취온도가 낮아 선재의 표면에 흠이 발생하기 쉽고 형상이 불량하여 신선공정에서 단선이 발생하기 쉬워진다. 한편, 선재의 권취온도가 950℃이상일 경우 오스테나이트 결정입자가 성장하기 쉬워 오스테나이트 결정입자가 커지게 된다.
본 발명에 따른 제조공정은 선재압연시 오스테나이트 결정입자의 성장을 방해하는 공정조건을 제공하여 미세한 오스테나이트 결정입자, 바람직하게는 25㎛ 이하를 갖는 선재를 제조 할 수 있게 한다.
이와 같이 선재의 내부 미세 조직에서 오스테나이트 결정입자의 크기(Austenite Grain Size)가 감소하게 되면 2차 가공시 판상의 마르텐사이트 입자의 크기(Martensite Plate Size)를 작게하여 베어링강 내부에 미세한 크랙이 발생되는 것을 억제할 수 있다.
또한 본 발명의 제조공정에 따라 선재를 제조할 경우 선재내에 잔류 오스테나이트 량은 베어링강에서 요구하는 30-35 Vol. % 정도를 확보할 수 있다. 이와 같이 베어링강 내부에 적정량의 잔류 오스테나이트 량을 발생시키게 되면, 이러한 잔류 오스테나이트 조직은 이물환경에서 베어링강의 표면 박리에 의한 응력집중을 환화시켜 면기점에 의한 박리현상을 방지할 수 있어서 베어링의 피로수명을 향상시키게 된다. 베어링강에서 요구되는 바람직한 피료수명은 피로수명 L10을 기준으로 4.5×106cycle 이상이다. 그러나 필요 이상의 잔류 오스테나이트 량이 존재하게 되면 베어링 강의 강도와 내마모 특성을 저하시키므로 베어링강에서의 잔류 오스테나이트 량은 30-35 Vol. % 바람직하다.
이상과 같이 제조된 베어링강 제조용 선재는 2차 가공 단계에서 소둔처리한 다음 냉간드로잉(Cold Drawing)하여 바(bar) 형상으로 신선하고 일정한 길이로 절단한 다음, 3차 가공단계에서 열간단조와 베어링으로 선삭한후 침탄질화처리하고 이를 담금질하여 최종적으로 볼 형상의 베어링으로 제조된다.
다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.
[실시예]
본 실시예에서는 먼저, 아래 표 1의 조성을 갖는 베어링강 원료를 전로에서 용융하고 용융된 용강을 연속주조기에서 이론 응고온도에 15℃ 이하로 관리한 다음 0.70m/min 의 주조속도로 주조하여 250×330mm 크기의 불룸을 주조하였다.
구 분 C(wt%) Si(wt%) Mn(wt%) Cr(wt%) Al(wt%) V(wt%) P(wt%) S(wt%) Ti(wt%) N2(ppm) O2(ppm) Fe 비고
비교예 1 0.20 0.25 0.70 1.25 0.031 - 0.021 0.008 0.003 170 20 잔부 SCR 420
비교예 2 0.44 0.40 1.10 1.20 0.011 0.3 0.010 0.007 0.002 80 20 잔부 -
실시예 1 0.44 0.40 1.10 1.20 0.031 0.3 0.008 0.005 0.002 170 14 잔부 -
실시예 2 0.48 0.40 1.10 1.40 0.025 0.1 0.011 0.006 0.002 150 12 잔부 -
주조된 불룸은 가열로에서 1100-1300℃ 범위에서 재가열하고 압연공정에서 압연하여 160×160mm 크기의 빌레트로 제조하였다.
이와 같이 제조된 빌레트를 가열로에서 950-1250℃ 범위에서 가열한후 선재압연하여 38-42mmΦ 직경의 선재로 제조한 다음 서냉하였다. 선재제조후 선재를 서냉한 것은 마르텐사이트나 베이나이트와 같은 저온조직이 생성되는 것을 방지하기 위해서다.
이와 같이 제조된 선재는 일반적인 제조조건에 따라 다음과 같이 베어링으로 제조하였다. 즉, 본 실시예에 따라 제조된 선재를 2차 및 3차 가공단계에 넘겨져 38mmΦ는 36mmΦ로 42mmΦ는 40mmΦ로 각각 냉간드로잉하여 바소재로 제조한 다음 베어링으로 가공하고 침탄질화 열처리하였다.
이상과 같은 공정에 따라 제조된 베어링에 대하여 오스테나이트 결정입자의 크기와 잔류 오스테나이트 량을 측정하였으며, 피로수명을 평가하였다. 이러한 측정 및 평가 결과를 표 2에 나타내었다. 표 2에서 피로수명 L10은 마모시험기(Wear Test)에서 피로시험을 하였을 때 박리파괴가 10% 발생하는 사이클수를 나타내는 것이다.
구 분 오스테나이트 결정입자 크기(㎛) 잔류 오스테나이트 량(Vol.%) 피로수명 L10(×106Cycle)
비교예 1 28 28 3.5
비교예 2 22 37 4.3
실시예 1 20 35 5.0
실시예 2 23 32 4.7
표 2에서 알 수 있듯이 본 발명의 실시예에 따라 제조된 베어링은 비교예에 따라 제조된 베어링 보다 오스테나아트 결정입도의 크기가 감소하였으며, 잔류 오스테나이트의 량도 베어링강으로 사용하기에 적합한 32-35 Vol. %를 나타내고 있다. 또한 피로수명의 경우에도 본 발명에 따라 제조된 베어링은 종래의 강종(SCR 420)인 비교예 1 보다 매우 향상되었으며, 본 실시예의 조성과 유사한 비교예 2보다도 피로수명이 향상되었음을 알 수 있다.
따라서 본 발명의 실시예에따라 제조된 베어링은 이물환경에서도 내마모성을 확보하면서도 피로수명을 연장시킬 수 있었음을 알 수 있다.
상술한 바와 같이 본 발명은 침탄질화용 베어링강의 최적 조성을 제공하고 이러한 조성을 갖는 베어링강의 제조공정 조건을 제시하여, 철계파편과 윤활유가혼제된 상태에서 작동하여야 하는 자동차 변속기용 베어링강과 같이 이물환경에서도 표면기점 박리에 대한 피로특성을 개선할 수 있는 효과가 있다.
또한 본 발명에 따른 침탄질화용 베어링강은 이러한 피로특성 뿐만 아니라 내마모성 또한 우수한 효과가 있다.

Claims (3)

  1. 삭제
  2. C; 0.30-0.50 wt%, Si; 0.30-0.50 wt%, Mn; 0.90-1.30 wt%, P; 0.020 wt% 이하, S; 0.020 wt% 이하, Cr; 1.0-2.0 wt%, V; 0.08-0.40 wt%, Al; 0.010-0.050 wt%, O; 0.0015 wt%이하, N; 0.010-0.020 wt%, Ti; 0.004 wt%이하 그리고 기타 불가피한 불순물 및 잔부 Fe로 이루어진 조성을 갖도록 용융하여 용강을 제조하는 단계;
    상기 조성의 용강을 연속주조하여 불룸 또는 빌레트를 주조하는 단계;
    상기 빌레트를 가열로에서 950-1250℃ 범위로 재가열하여 선재압연공정에서 압연하고, 750-950℃의 온도범위에서 권취하여 선재를 제조하는 단계;
    를 포함하는 침탄질화용 베어링강의 제조방법.
  3. 청구항 2 에 있어서, 상기 빌레트를 주조하는 단계에서 연속주조에 의하여 불룸으로 주조할 경우 상기 불룸을 1100-1300℃ 범위에서 재가열하여 빌레트로 압연하는 것을 특징으로 하는 침탄질화용 베어링강의 제조방법.
KR10-2000-0082364A 2000-12-26 2000-12-26 침탄 질화용 베어링강 제조방법 KR100446649B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0082364A KR100446649B1 (ko) 2000-12-26 2000-12-26 침탄 질화용 베어링강 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0082364A KR100446649B1 (ko) 2000-12-26 2000-12-26 침탄 질화용 베어링강 제조방법

Publications (2)

Publication Number Publication Date
KR20020052880A KR20020052880A (ko) 2002-07-04
KR100446649B1 true KR100446649B1 (ko) 2004-09-04

Family

ID=27686287

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0082364A KR100446649B1 (ko) 2000-12-26 2000-12-26 침탄 질화용 베어링강 제조방법

Country Status (1)

Country Link
KR (1) KR100446649B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075889A1 (en) * 2006-12-19 2008-06-26 Seah Besteel Corporation Ultra high strength carburizing steel with high fatigue resistance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043324A (ko) * 2002-11-18 2004-05-24 에프에이지베어링코리아유한회사 베어링용 강재 및 그 열처리 방법
KR100946045B1 (ko) * 2002-12-28 2010-03-09 주식회사 포스코 고온 이물 피로수명이 우수한 베어링강의 제조방법
KR200453925Y1 (ko) * 2011-03-17 2011-06-02 주식회사모나미 봉상물 출납부재

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254739A (ja) * 1988-08-16 1990-02-23 Kobe Steel Ltd 加工性に優れ、かつ球状化焼鈍処理を簡略化または省略可能な軸受用鋼
JPH03254339A (ja) * 1990-03-03 1991-11-13 Kawasaki Steel Corp 転動疲労寿命に優れた軸受用素材の製造方法
JPH04143253A (ja) * 1990-10-04 1992-05-18 Kobe Steel Ltd 転動疲労特性に優れた軸受用鋼
JPH07299550A (ja) * 1994-05-09 1995-11-14 Daido Steel Co Ltd 軸受鋼の製造方法
JP2000054069A (ja) * 1998-07-30 2000-02-22 Nippon Steel Corp 転動疲労特性に優れた浸炭材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254739A (ja) * 1988-08-16 1990-02-23 Kobe Steel Ltd 加工性に優れ、かつ球状化焼鈍処理を簡略化または省略可能な軸受用鋼
JPH03254339A (ja) * 1990-03-03 1991-11-13 Kawasaki Steel Corp 転動疲労寿命に優れた軸受用素材の製造方法
JPH04143253A (ja) * 1990-10-04 1992-05-18 Kobe Steel Ltd 転動疲労特性に優れた軸受用鋼
JPH07299550A (ja) * 1994-05-09 1995-11-14 Daido Steel Co Ltd 軸受鋼の製造方法
JP2000054069A (ja) * 1998-07-30 2000-02-22 Nippon Steel Corp 転動疲労特性に優れた浸炭材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075889A1 (en) * 2006-12-19 2008-06-26 Seah Besteel Corporation Ultra high strength carburizing steel with high fatigue resistance

Also Published As

Publication number Publication date
KR20020052880A (ko) 2002-07-04

Similar Documents

Publication Publication Date Title
CN110863158B (zh) 一种高性能Mn-Cr系风电输出齿轮用钢及其生产方法
KR101113575B1 (ko) 가공성이 우수한 표면 경화 강관과 그 제조 방법
CN110846580B (zh) 一种高Mo高性能Mn-Cr系风电输出齿轮用钢及其生产方法
CN111394639B (zh) 一种高耐磨齿轮钢的制造方法
JPH05117804A (ja) 加工性および転動疲労性に優れた軸受用鋼
KR100428581B1 (ko) 강도 및 인성이 우수한 비조질강 및 이를 이용한 선재의 제조방법
CN115261715A (zh) 一种高温渗碳齿轴用钢及其制造方法
EP1048744A1 (en) Bearing steel excellent in rolling fatigue life
JP2001049388A (ja) 被削性に優れた軸受要素部品用の鋼線材、棒鋼及び鋼管
CN112981233B (zh) 一种适于冷锻加工的低硅中碳齿轮钢及其制造方法
KR100446649B1 (ko) 침탄 질화용 베어링강 제조방법
EP0336090B1 (en) Bainitic core grinding rod
JP5141313B2 (ja) 黒皮外周旋削性とねじり強度に優れた鋼材
JP3579558B2 (ja) 耐焼割れ性に優れた軸受鋼
JPH03183739A (ja) 高靭性熱間鍛造用非調質鋼およびその棒鋼・部品の製造方法
KR101149249B1 (ko) 조질탄소강급 V-Free비조질강의 제조방법
JPS6137333B2 (ko)
CN116555662B (zh) 一种大扭矩变速箱齿轮轴用冷挤压等温退火钢及制造方法
CN111334708B (zh) 一种抗拉强度≥2250MPa且疲劳性能优异的高强度弹簧钢及其生产方法
WO2023248556A1 (ja) 高周波焼入れ用鋼
KR101359125B1 (ko) 피로수명이 향상된 고탄소 크롬 베어링강용 선재의 제조방법, 상기 선재를 이용한 베어링강의 제조방법 및 그 방법에 의해 제조된 고탄소 크롬 베어링강
KR20010060754A (ko) 표면 탈탄깊이가 적은 고실리콘 첨가 고탄소강 선재의제조방법
KR100352607B1 (ko) 고응력 스프링용강 선재의 제조방법
JPH09256105A (ja) 軸受要素部品及びその製造方法
JPS63255345A (ja) 軸受用鋼

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120627

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130809

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140814

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150807

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160803

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170821

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 15