KR100365293B1 - 알릴화된 방향족 화합물 및 피라노쿠마린 화합물의 제조방법 - Google Patents

알릴화된 방향족 화합물 및 피라노쿠마린 화합물의 제조방법 Download PDF

Info

Publication number
KR100365293B1
KR100365293B1 KR1020000019995A KR20000019995A KR100365293B1 KR 100365293 B1 KR100365293 B1 KR 100365293B1 KR 1020000019995 A KR1020000019995 A KR 1020000019995A KR 20000019995 A KR20000019995 A KR 20000019995A KR 100365293 B1 KR100365293 B1 KR 100365293B1
Authority
KR
South Korea
Prior art keywords
formula
reaction
compound
aromatic compound
delete delete
Prior art date
Application number
KR1020000019995A
Other languages
English (en)
Other versions
KR20010096074A (ko
Inventor
김유승
강순방
금교창
조상원
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020000019995A priority Critical patent/KR100365293B1/ko
Publication of KR20010096074A publication Critical patent/KR20010096074A/ko
Application granted granted Critical
Publication of KR100365293B1 publication Critical patent/KR100365293B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/86Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/82Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
    • C07C49/825Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups all hydroxy groups bound to the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/82Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
    • C07C49/835Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups having unsaturation outside an aromatic ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 화학식 1로 표시되는 알릴 할라이드를 화학식 2로 표시되는 방향족 화합물 또는 화학식 4로 표시되는 방향족 화합물과 반응시켜 알릴화된 방향족 화합물 3 또는 5를 제조하는 방법에 관한 것이다. 보다 상세하게 말하자면, 본 발명은 재생가능한 금속 인듐을 촉매로 이용하여 화학식 2 또는 화학식 4의 방향족 화합물에 화학식 1로 표시되는 알릴화합물을 각각 반응시켜 생리활성이 있는 천연 쿠마린 화합물 제조에 유용한 화합물인 화학식 6의 전구물질인 화학식 3 또는 5로 표시되는 알릴화된 방향족 화합물의 제조방법에 관한 것이다.
본 발명은 또한 화학식 5로 표시되는 쿠마린 화합물에서 화학식 6으로 표시되는 피라노쿠마린 유도체를 제조하는 방법에 관한 것이다. 보다 상세하게 말하자면, 본 발명은 MMPP 또는 H2O2산화제를 이용하여 알릴화된 방향족 화합물 5를 산화시켜 화학식 6으로 표시되는 피라노쿠마린 유도체를 제조하는 방법에 관한 것이다.
반응식 1은 상기 반응을 도식적으로 표시한 것이다.
화학식 1의 화합물을 화학식 2 또는 4의 화합물과 반응시켜 화학식 3 또는 5의 화합물을 제조하는데 있어서, 금속 인듐을 촉매로 사용함에 의해 공기나 물 등에서도 안정하여 다루기 쉽고, 환경 친화적이며, 무엇보다 재생가능해서 경제적이다는 이점을 얻을 수 있다. 또한, 어려운 반응 공정을 거치지 않고 용이하게 생성물을 얻을 수 있으며, 고수율로 효율적이다는 이점이 있다.
그리고, 알릴화된 방향족 화합물 5를 산화시켜 화학식 6으로 표시되는 피라노쿠마린 유도체를 제조하는데 있어서, 값싸고 경제적인 산화제인 MMPP 또는 H2O2를 이용함에 의해 용이하게 생성물을 얻을 수 있으며, 경제성을 높일 수 있다는 장점이 있다.
따라서, 본 발명은 유기합성공업 및 의약제조등에 다양하게 응용될 수 있다.

Description

알릴화된 방향족 화합물 및 피라노쿠마린 화합물의 제조방법{A METHOD FOR PREPARING ALLYLATED AROMATIC COMPOUNDS AND PYRANOCOUMARINS}
본 발명은 화학식 1로 표시되는 알릴 할라이드를 화학식 2로 표시되는 방향족 화합물 또는 화학식 4로 표시되는 방향족 화합물과 반응시켜 알릴화된 방향족 화합물 3 또는 5를 제조하는 방법에 관한 것이다. 보다 상세하게 말하자면, 본 발명은 재생가능한 금속 인듐을 촉매로 이용하여 화학식 2 또는 화학식 4의 방향족 화합물에 화학식 1로 표시되는 알릴화합물을 각각 반응시켜 생리활성이 있는 천연 쿠마린 화합물 제조에 유용한 화합물인 화학식 6의 전구물질인 화학식 3 또는 5로 표시되는 알릴화된 방향족 화합물의 제조방법에 관한 것이다.
본 발명은 또한 화학식 5로 표시되는 쿠마린 화합물에서 화학식 6으로 표시되는 피라노쿠마린 유도체를 제조하는 방법에 관한 것이다. 보다 상세하게 말하자면, 본 발명은 산화제를 이용하여 알릴화된 방향족 화합물 5를 산화시켜 화학식 6으로 표시되는 피라노쿠마린 유도체를 제조하는 방법에 관한 것이다.
반응식 1은 상기 반응을 도식적으로 표시한 것이다.
[반응식 1]
일반적으로 쿠마린, 크로몬 그리고 플라본 유도체들은 식물에서 추출되는 천연물 유사체로서 약학적으로 중요한 화합물들이다. 이들 중에는 발암물질인 다중고리 방향족탄화수소(polycyclic aromatic hydrocarbon)가 암을 유발하는 것을 억제하는 것으로 알려져 있다 [Digiovanni, J. In modification of polycyclic aromatic hydrocarbon carcinogenesis, 1981, 259]. 이들 중 특히 쿠마린 화합물은 자연에 널리 분포하고 있고, 이 쿠마린 소단위체를 포함하고 있는 많은 천연물들은 항균제, 항응고제, 경련진정제 및 담즙분비장애 억제제 등의 역할을 하는 것으로 알려져 있다 [Ann. Biochem. Exp. Med. 1957, 17, 57; J. Pharmacol. 1963, 20, 29; J. Pharm. Sci. 1962, 51, 149].
그 중에서, 상기 화학식 3과 화학식 5의 화합물은 천연물 유도체 및 다양한 헤테로고리 화합물 제조에 사용될 수 있는 중요한 중간체이며, 이들로부터 화학식 6과 같은 피라노쿠마린 모핵을 제조하는 것과 다양한 치환기를 반응시켜 활성이 있는 천연 피라노쿠마린 유도체들을 제조하는 것이 알려져 있다 [ W. Steck,Can. J. Chem. 1971, 49, 2297].
또한, 상기 화학식 6의 화합물, 특히 그중에서 2,4-디히드록시-5-(3-메틸-2-부텐일)벤즈알데히드 (6, R1=R2=CH3, R3=H)는 천연 쿠마린(coumarin) 유도체인 데커신 (decursin) 7을 합성하는 중간체로 유용하다고 알려져 있는데(반응식 2), 얻어진 데커신 (decursin) 7은 C19H20O5의 분자식을 갖는 피라노쿠마린계열이며 중요한 한약재 중 한 가지인 참당귀의 주요 성분으로 알려져 있다 [J. Pharm. Soc. Korea 1967, 11, 22-26 및 1969, 13, 47-50].
당귀는 진통, 배농(排膿), 지혈, 강장작용이 있으므로 한방에서 복통, 종기, 타박상, 및 부인병 등에 애용되고 있는 중요한 한약재이며 암세포주에 대해 강한 치사작용을 나타내는 반면 정상세포에 대해서는 상기 암세포주들에 대한 치사작용에 비해 훨씬 낮은 치사작용을 나타내어 항암제로 사용할 수 있음이 알려져 있다 [생약학회지 1970, 1(1), 25-32 및 1982, 13(2), 55-61; Planta Medica 1996, 62, 7-9].
따라서 데커신을 비롯한 피라노쿠마린계열의 생리활성 유효성분 제조에서 필수적으로 사용될 수 있는 화학식 3과 5와 같은 중요 중간체를 효율적으로 합성할 수 있는 방법의 개발은, 천연자원의 고갈 및 환경오염에 따른 천연원료 확보의 어려움 해결과 함께 활성이 있는 다양한 화합물 제조에 필요한 원료물질의 원활한 공급을 위해 매우 중요하다 하겠다.
화학식 3의 화합물을 제조하는 공지의 방법으로는, Et2O·BF3(boron trifluoride ehterate) 하에서 3-히드록시-3-메틸-1-부텐을 사용하는 방법이 문헌 [W. Steck,Can. J. Chem. 1971, 49, 2297]에 있으나, 이 방법에서는 출발 물질의 전환율이 낮고 알릴치환기가 여러 자리로 결합된 몇 개의 유사한 부생성물들이 생성되므로 반응 수율이 현저히 떨어지고 부생성물들의 분리에 따른 비경제성 등의 단점이 있으며, 화학식 4의 화합물로부터 화학식 5의 화합물의 제조방법은 알려진 것이 없는 형편이다. 그리고, 산화-고리화 반응을 이용하여 화합물 5로부터 데커시놀 6을 합성하기 위한 공지의 방법은m-CPBA (3-chloroperoxybenzoic acid) 또는 DDQ(2,3-dichloro-5,6-dicyano-1,4-benzoquinone) 산화제를 사용하지만, 이들은 비싸고 불안정해서 다루기가 불편하다는 단점이 있어 왔었다.
따라서 본 발명의 목적은 데커신을 비롯한 중요 천연쿠마린 화합물 제조에 중요 중간체인 화학식 3의 화합물을 기존에 알려진 방법보다 고수율 고효율로 합성하는 방법을 제공하는 것이며, 더 나아가 간편하고 값싼 출발물질 4로부터 한 단계 반응으로 화학식 5로 표시되는 화합물을 합성하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 유용한 화합물인 데커신 7의 새롭고도 경제적인 합성공정을 완성하기 위해서 데커신의 전구물질인 데커시놀 6을, 값싼 산화제 시스템을 이용하여 합성할 수 있는 방법을 제공하는 것이다.
본 발명자들은 종래 기술의 단점을 해결한 효율적인 천연물 합성법 개발을 위해 예의 연구한 결과, 본 연구진들이 이미 확립하여 논문발표 [김유승 등, Tetrahedron Lett, 1999, 40, 1547] 및 특허출원[김유승 등, 한국특허 출원번호 99-30637 및 99-11595]한 기술을 이용하여 어려운 반응공정을 거치지 않고 경제적이고 진보된 방법으로 화학식 3 및 화학식 5의 화합물을 고수율로 제조하는 방법을 확립하고 본 발명을 완성하게 되었다.
본 발명은 공기나 물 등에서도 안정하여 다루기가 쉽고, 환경 친화적이며, 무엇보다도 재생 가능해서 경제적인 인듐 금속을 촉매로 사용하여 화학식 2의 화합물을 화학식 1의 화합물과 반응시켜, 쿠마린 유도체 제조의 중간체로 사용되는 화학식 3의 알릴 방향족 화합물을 효율적으로 제조하는 것을 특징으로 하며, 인듐 금속을 촉매로 사용함에 의해 반응과정에서 불가피하게 형성되는 부생성물을 최소화하여 화학식 3의 화합물을 높은 수율로 얻을 수 있다(반응식 3).
화학식 1에서 X는 할로겐 원자, 보다 바람직하게는 염소 또는 브롬이며, R1과 R2는 각각 수소, 직쇄 또는 측쇄의 C1-5탄화수소를 나타낸다. 화학식 2에 있어서 R3은 수소 또는 히드록시를 나타내며, R4는 수소, 메틸기 또는 페닐기를 나타낸다. 화학식 3에서 R1, R2, R3, 및 R4는 상기 화학식 1과 화학식 2의 것과 동일하다.
본 발명은 또한 중요한 천연물인 데커신의 효율적인 합성을 위해서 화학식 2로 표시되는 방향족 알데히드 대신 쉽게 구할 수 있는 화학식 4의 7-히드록시쿠마린에 화학식 1의 알릴할라이드 (R1=R2=CH3)를 위에서 언급한 방법과 같은 방법으로 반응시켜 데커신의 중요 전구물질인 화학식 5의 쿠마린 유도체를 손쉽게 합성할 수 있는 방법을 제공하는 것이다(반응식 4).
[화학식 1]
화학식 1에서 X는 할로겐 원자이며, R1과 R2는 각각 수소, 직쇄 또는 측쇄의 C1-5 탄화수소를 나타낸다. 화학식 5에서 R1및 R2의 정의는 상기 화학식 1과 동일하다.
화학식 1의 알릴 할로겐 화합물을 화학식 2 또는 화학식 4의 화합물과 반응시켜 방향족 화합물 3 또는 5를 제조하는 알릴화 반응의 촉매로 사용되는 인듐은 화학식 2 또는 화학식 4로 표시되는 방향족 화합물에 대해 통상 0.01 내지 2 당량의 양으로 사용되며, 이것은 회수가능하며, 재사용하여 사용할 수 있다.
그리고, 알릴화 반응에 사용되는 알릴 할로겐 화합물과 방향족 화합물의 몰비는 통상 10:1 내지 1:10 범위내에서 변화가능하며, 바람직하게는 1:2 내지 2:1이며, 가장 바람직하게는 1:1.5 내지 1.5:1의 범위 내이다.
상기 알릴화 반응에 사용될 수 있는 유기용매의 예로는 벤젠, 톨루엔 등과 같은 C6-7방향족 탄화수소, 메틸렌 클로라이드, 클로로포름, 아세토니트릴, 디옥센, 디에틸에테르 및 테트라히드로퓨란 등이 있으나, 반드시 이에 한정되는 것은 아니다.
상기 알릴화 반응은 통상 염기의 존재하에서 수행되며, 반응에 사용될 수 있는 염기의 예로는 OH-, CO3 2-또는 HCO3 -를 포함하는 금속 화합물을 들 수 있다. 금속의 예로는 Li, Na, K, Cs, Mg, Ca 또는 Ba를 들 수 있다. 반응에 사용되는 염기의 양은 통상 화학식 2 또는 화학식 4로 표시되는 방향족 화합물에 대해 2 당량 이하(단, 0은 포함하지 않는다)이다.
상기 반응에는 분자체(molecular sieve)를 첨가하는 것이 보다 바람직한 결과를 제공해주며, 그 예로는 4Å 분자체를 들 수 있으며, 첨가되는 양은 통상 화학식 2 또는 화학식 4로 표시되는 방향족 화합물에 대해 200 질량% 이하(단, 0은 포함하지 않는다)이다.
상기 알릴화 반응은 20 내지 150℃, 바람직하게는 30 내지 70℃, 가장 바람직하게는 35 내지 50℃ 범위내에서 수행되며, 반응 시간은 1 내지 48 시간, 바람직하게는 3 내지 6시간 범위내에서 조절가능하다.
상기 알릴화 반응을 보다 상세히 설명하면 다음과 같다. 화학식 2 또는 4로표시되는 방향족 화합물을 적당한 유기용매에 용해시킨 후, 화학식 1로 표시되는 알릴 할라이드를 천천히 적가하고, 이 혼합 용액에 인듐 금속원자 0.01 내지 2 당량, 적당한 염기 및 4Å 분자체를 가한 후, 20 - 150℃ 에서 1 - 48시간 동안 반응시키면 주생성물로 제조될 수 있다. 화학식 1로 표시되는 알릴 할라이드, 화학식 2 또는 4로 표시되는 방향족 화합물 및 인듐 촉매의 가장 바람직한 몰 비는 0.8:1:0.01이다. 유기 용매는 벤젠, 톨루엔, 디옥센, 아세토니트릴, 디에틸에테르 또는 테트라히드로퓨란 중에서 선택될 수 있으며, 이 때 상기 화학식 1의 치환기 X는 브롬과 염소 원자 모두 수율이 좋다. 본 발명에 사용되는 염기로는 Li, Na, K, Cs, Mg, Ca, Ba 등의 히드록시(OH-), 탄산(CO3 2-) 및 탄산수소(HCO3 -) 등을 포함한 금속 화합물을 고체 염기로 이용하여 인듐 촉매와 함께 병용하면 높은 수율로 목적화합물을 얻을 수 있으나, 바람직한 고체염기의 예로는 CaCO3/4Å 분자체 시스템이다. 바람직한 염기의 양과 4Å 분자체의 양은 각각 40 몰%와 5 질량% 이며, 4Å 분자체의 양이 감소하거나 없어도 원하는 생성물은 얻어진다. 반응이 진행될 수록 반응 용액의 색이 점점 진해진다. 그리고 반응액의 색 변화와 함께 얇은막크로마토그리피(TLC)로 반응 종결점을 확인할 수 있다. 반응 후 실온으로 냉각하고, 얻어진 생성물은 증발, 여과, 추출, 크로마토그래피 분리법 및 이들의 조합과 종래의 기술에 의해서 분리 정제할 수 있다. 예를 들면 모액을 얇은 층의 실리카겔로 여과한 후 감압하에서 농축 또는 증류한다. 생성물은1H-NMR과 GC/MSD 등의 종래의 방법으로확인할 수 있다.
본 발명은 또한 산화제를 사용하여 화학식 5의 화합물을 산화-고리화 반응시켜 화학식 6의 데커시놀을 경제적이고 효율적으로 제조하는 방법에 관한 것이다(반응식 5).
[화학식 5]
화학식 5 및 6에서 R1과 R2는 각각 수소, 직쇄 또는 측쇄의 C1-5탄화수소를 나타낸다.
산화-고리화 반응에 사용되는 산화제는 종래 사용되었던 m-CPBA 또는 DDQ와 달리 훨씬 경제적이고 다루기 쉬운 MMPP(magnesium monoperoxyphthalate hexahydrate) 또는 H2O2(hydrogen peroxide) 산화제이다. MMPP 또는 H2O2의 사용량은 통상 화학식 5의 화합물에 대해 0.1 내지 10 당량의 범위 내에서 조절가능하다.
산화제로 MMPP가 사용될 경우, 산촉매가 추가로 반응에 첨가될 수 있다. 산화-고리화 반응에 사용될 수 있는 산 촉매의 예로는 파라톨루엔술폰산 또는 피리디움파라톨루엔술포네이트을 들 수 있으나. 반드시 이에 한정하는 것은 아니다. 첨가되는 산 촉매의 양은 화학식 5의 화합물에 대해 1 당량 이하(단, 0은 포함하지 않는다)인 것이 바람직하다.
산화제가 H2O2인 경우, 상전이 촉매(phase transfer catalyst)가 추가로 반응에 첨가될 수 있다. 산화-고리화 반응에 사용될 수 있는 상전이 촉매의 예로는 테트라부틸암모늄설페이트, 테트라부틸암모늄요오드, 테트라부틸암모늄플루오라이드, 테트라부틸암모늄클로라이드 또는 테트라부틸암모늄브로마이드을 들 수 있으나. 반드시 이에 한정하는 것은 아니다. 첨가되는 상전이 촉매의 양은 화학식 5의 화합물에 대해 0.01 내지 1 당량의 범위 내에서 조절가능하다.
상기 산화 고리화 반응에 사용되는 유기용매의 예로는 클로로포름, 메틸렌클로라이드, 디에틸에테르 또는 에틸아세테이트를 들 수 있으나, 반드시 이에 한정하는 것은 아니다. 그리고 상기 반응의 반응 온도는 0 내지 150℃, 바람직하게는 10 내지 50℃, 가장 바람직하게는 20 내지 40℃의 범위내에서 조절될 수 있으며, 반응시간은 1 내지 48 시간의 범위내에서 조절가능하다.
상기 산화-고리화 반응을 보다 구체적으로 설명하면, 화학식 5의 화합물을 적당한 용매에 용해시킨 후, MMPP 산화제를 혼합 용액에 첨가하고, 0 내지 150℃ 에서 1 내지 48시간 동안 반응시키면 주생성물을 제조할 수 있다. 여기서 산화제만단독으로 사용하여도 반응은 진행된다. 유기용매는 클로로포름, 메틸렌클로라이드, 디에틸에테르 그리고 에틸아세테이트와 같은 유기용매에서 선택될 수 있으며 산 촉매로는 파라톨루엔술폰산과 피리디움파라톨루엔술포네이트가 적당하다. 반응의 종결은 얇은막크로마토그래피를 이용하여 확인할 수 있으며, 반응이 종결되면 일반적인 방법으로 원하는 생성물을 정제하여 얻을 수 있다. 화학식 6의 화합물은 또한 MMPP 산화제 대신 30%-H2O2산화제를 사용하여 제조할 수도 있는데, 이때 상전이 촉매를 0.01 내지 1 당량 첨가하면 반응을 촉진시킬 수 있다. 상전이 촉매로는 테트라부틸암모늄설페이트, 테트라부틸암모늄요오드, 테트라부틸암모늄플루오라이드, 테트라부틸암모늄클로라이드 그리고 테트라부틸암모늄브로마이드가 적당하다.
이하, 아래의 실시예를 들어 본 발명을 보다 상세히 설명할 것이나, 본 발명의 범위가 이들 실시에에 한정하지 아니한다. 본 실시예에서 특별한 언급이 없으면 백분율 또는 비율 등은 중량을 기준으로 한다.
실시예
실시예 1
2,4-디히드록시-5-(3-메틸-2-부텐일)-벤즈알데히드 3 (R1=R2=CH3, R3=R4=H)
2,4-디히드록시 벤즈알데히드 200 mg (1.448 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.7 mg (0.01 당량), 탄산칼슘 58 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)을 가한 후, 1-클로로-3-메틸-2-부텐 121.1 mg (1.158 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.
Rf= 0.59 (에틸아세테이트:n-헥산 = 1:2)
수율 : 0.253 g, 85%
m. p. 140.5 - 141.0 ℃
1H NMR (CDCl3): δ 11.23 (br, 2-OH), 9.66 (s, CHO), 7.20 (s, 1H, aromatic H-6), 6.34 (s, 1H, aromatic H-3), 6.19 (s, 4-OH), 5.26 (t, J= 7Hz, =CH), 3.28 (d, J= 7Hz, CH2), 1.76-1.80 (s, 2 vinyl methyls)
실시예 2
2,4-디히드록시-5-(3-메틸-2-부텐일)-벤즈알데히드 3 (R1=R2=CH3, R3=R4=H)
2,4-디히드록시 벤즈알데히드 200 mg (1.448 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.7 mg (0.01 당량), 탄산칼슘 58 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)을 가한 후, 4-브로모-2-메틸-2-부텐 172.6 mg (1.158 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.
Rf= 0.59 (에틸아세테이트:n-헥산 = 1:2)
수율 : 0.260 g, 87%
m. p. 140.5 - 141.0 ℃
1H NMR (CDCl3): δ 11.23 (br, 2-OH), 9.66 (s, CHO), 7.20 (s, 1H, aromatic H-6), 6.34 (s, 1H, aromatic H-3), 6.19 (s, 4-OH), 5.26 (t, J= 7Hz, =CH), 3.28 (d, J= 7Hz, CH2), 1.76-1.80 (s, 2 vinyl methyls)
실시예 3
2,4-디히드록시-5-(3-메틸-2-부텐일)-아세토페논 3 (R1=R2=R4=CH3, R3=H)
2,4-디히드록시 아세토페논 200 mg (1.314 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.5 mg (0.01 당량), 탄산칼슘 52.6 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)을 가한 후, 1-클로로-3-메틸-2-부텐 110.0 mg (1.051 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.
Rf= 0.61 (에틸아세테이트:n-헥산 = 1:2)
수율 : 0.240 g, 83%
m. p. 145 - 148 ℃
1H NMR (CDCl3): δ 11.23 (br, 2-OH), 9.66 (s, CHO), 7.23 (s, 1H, aromatic H-6), 6.31 (s, 1H, aromatic H-3), 6.19 (s, 4-OH), 5.26 (t, J= 7Hz, =CH), 3.28 (d, J= 7Hz, CH2), 2.5 (s, 3H,COCH3), 1.76-1.80 (s, 2 vinyl methyls)
실시예 4
2,4-디히드록시-5-(3-메틸-2-부텐일)-아세토페논 3 (R1=R2=R4=CH3, R3=H)
2,4-디히드록시 아세토페논 200 mg (1.314 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.5 mg (0.01 당량), 탄산칼슘 52.6 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)를 가한 후, 4-브로모-2-메틸-2-부텐 156.64 mg (1.051 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.
Rf= 0.61 (에틸아세테이트:n-헥산 = 1:2)
수율 : 0.243 g, 84%
m. p. 145 - 148 ℃
1H NMR (CDCl3): δ 11.23 (br, 2-OH), 9.66 (s, CHO), 7.23 (s, 1H, aromatic H-6), 6.31 (s, 1H, aromatic H-3), 6.19 (s, 4-OH), 5.26 (t, J= 7Hz, =CH), 3.28 (d, J= 7Hz, CH2), 2.5 (s, 3H, COCH3), 1.76-1.80 (s, 2 vinyl methyls)
실시예 5
2,4-디히드록시-5-(3-메틸-2-부텐일)-벤조페논 3 (R1=R2=CH3, R3=H, R4=Ph)
2,4-디히드록시 벤조페논 200 mg (0.934 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.07 mg (0.01 당량), 탄산칼슘 37.4 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)을 가한 후, 1-클로로-3-메틸-2-부텐 81.10 mg (0.747 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.
Rf= 0.63 (에틸아세테이트:n-헥산 = 1:2)
수율 : 0.198 g, 75%
m. p. 140.5 - 141.0 ℃
1H NMR (CDCl3): δ 10.23 (br, 2-OH), 7.70 (d, 2H, COPh), 7.45(t,1H, COPh), 7.36(t, 2H, COPh), 7.16 (s, 1H, aromatic H-6), 6.18 (s, 1H, aromatic H-3), 6.19 (s, 4-OH), 5.26 (t, J= 7Hz, =CH), 3.28 (d, J= 7Hz, CH2), 1.76-1.80 (s, 2 vinyl methyls)
실시예 6
2,4-디히드록시-5-(3-메틸-2-부텐일)-벤조페논 3 (R1=R2=CH3, R3=H, R4=Ph)
2,4-디히드록시 벤조페논 200 mg (0.934 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.07 mg (0.01 당량), 탄산칼슘 37.4 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)을 가한 후, 4-브로모-2-메틸-2-부텐 111.33 mg (0.747 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.
Rf= 0.63 (에틸아세테이트:n-헥산 = 1:2)
수율 : 0.208 g, 79%
m. p. 140.5 - 141.0 ℃
1H NMR (CDCl3): δ 10.23 (br, 2-OH), 7.70 (d, 2H, COPh), 7.45(t,1H,COPh), 7.36(t, 2H, COPh), 7.16 (s, 1H, aromatic H-6), 6.18 (s, 1H, aromatic H-3), 6.19 (s, 4-OH), 5.26 (t, J= 7Hz, =CH), 3.28 (d, J= 7Hz, CH2), 1.76-1.80 (s, 2 vinyl methyls)
실시예 7
2,4,6-트리히드록시-5-(3-메틸-2-부텐일)-벤즈알데히드 3 (R1=R2=CH3, R3=OH, R4=H)
2,4,6-트리히드록시 벤즈알데히드 200 mg (1.298 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.49 mg (0.01 당량), 탄산칼슘 59.7 mg (0.4 당량) 및4Å 분자체 10 mg (5 질량%)을 가한 후, 1-클로로-3-메틸-2-부텐 108.57 mg (1.038 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 진공건조하여 정량적으로 목적 화합물 3을 얻었다.
Rf= 0.38 (에틸아세테이트:n-헥산 = 1:2)
수율 :0.230 g, 80%
m. p. 200 - 203 ℃
1H NMR (CDCl3): δ 9.98 (s, CHO), 5.83(s, 1H, aromatic H-3 ), 5.80 (t,J= 7Hz, =CH), 3.22 (d, J= 7Hz, CH2), 1.71 (s, 2 vinyl methyls)
실시예 8
2,4,6-트리히드록시-5-(3-메틸-2-부텐일)-벤즈알데히드 3 (R1=R2=CH3, R3=OH, R4=H)
2,4,6-트리히드록시 벤즈알데히드 200 mg (1.298 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.49 mg (0.01 당량), 탄산칼슘 59.7 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)을 가하고, 4-브로모-2-메틸-2-부텐 154.70 mg (1.038 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 진공건조하여 정량적으로 목적 화합물 3을 얻었다.
Rf= 0.38 (에틸아세테이트:n-헥산 = 1:2)
수율 :0.239 g, 83%
m. p. 200 - 203 ℃
1H NMR (CDCl3): δ 9.98 (s, CHO), 5.83(s, 1H, aromatic H-3), 5.80 (t, J= 7Hz, =CH), 3.22 (d, J= 7Hz, CH2), 1.71 (s, 2 vinyl methyls)
실시예 9
2,4,6-트리히드록시-5-(3-메틸-2-부텐일)-아세토페논 3 (R1=R2=CH3, R3=OH, R4=CH3)
2,4,6-트리히드록시 아세토페논 200 mg (1.189 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.7 mg (0.01 당량), 탄산칼슘 29 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)를 가한 후, 1-클로로-3-메틸-2-부텐 99.46 mg (0.951 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.
Rf= 0.59 (에틸아세테이트:n-헥산 = 1:2)
수율 :0.219 g, 78%
m. p. 149.8 - 151.0 ℃
1H NMR (CDCl3): δ 12.3 (br, 2,4,6-OH), 5.80 (t, J= 7Hz, =CH), 5.55 (s, 1H, aromatic H-3), 3.25 (d, J= 7Hz, CH2), 2.6 (s,3H, COCH3), 1.72 (s, 2 vinyl methyls)
실시예 10
2,4,6-트리히드록시-5-(3-메틸-2-부텐일)-아세토페논 3 (R1=R2=CH3, R3=OH,R4=CH3)
2,4,6-트리히드록시 아세토페논 200 mg (1.189 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 1.7 mg (0.01 당량), 탄산칼슘 29 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)를 가한 후, 4-브로모-2-메틸-2-부텐 141.73 mg (0.951 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 3을 얻었다.
Rf= 0.59 (에틸아세테이트:n-헥산 = 1:2)
수율 :0.228 g, 81%
m. p. 149.8 - 151.0 ℃
1H NMR (CDCl3): δ 12.3 (br, 2,4,6-OH), 5.80 (t, J= 7Hz, =CH), 5.55 (s, 1H, aromatic H-3), 3.25 (d, J= 7Hz, CH2), 2.6 (s, 3H, COCH3), 1.72 (s, 2 vinyl methyls)
실시예 11
6-(3-메틸-2-부텐일)-7-히드록시쿠마린 5
7-히드록시쿠마린 4 200 mg (1.234 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 169 mg (1.2 당량), 탄산칼슘 49.4 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)를 가한 후, 1-클로로-3-메틸-2-부텐 103.2 mg (0.987 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 5를 얻었다.
Rf= 0.35 (에틸아세테이트:n-헥산 = 1:2)
수율 : 0.248 g, 85%
m. p. 129 - 133 ℃
1H NMR (CDCl3): δ7.65(d, J=9.5Hz, CH=CH), 7.44(s, 1H, aromatic H-5), 7.07(s, 1H, aromatic H-8), 6.23(d, J=9.5Hz, CH=CH), 5.32(t, J=7Hz, =CH), 3.38(d, J=7Hz, CH2), 1.75-1.80(s, 2 vinyl methyls)
실시예 12
6-(3-메틸-2-부텐일)-7-히드록시쿠마린 5
7-히드록시쿠마린 4 200 mg (1.234 mmol)을 벤젠 10 ml에 용해시키고, 여기에 인듐 169 mg (1.2 당량), 탄산칼슘 49.4 mg (0.4 당량) 및 4Å 분자체 10 mg (5 질량%)를 가한 후, 4-브로모-2-메틸-2-부텐 147.1 mg (0.987 mmol)을 천천히 적하하였다. 반응 온도를 40 ℃로 승온하고, 4시간 동안 교반하였다. 반응의 종결은 얇은막크로마토그래피(TLC)를 이용하여 확인하였으며, 반응이 종결되면 상온으로 냉각하였다. 반응 혼합물을 실리카젤을 얇게 채운 여과기에 통과시키고, 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/9)로 정제하여 목적 화합물 5를 얻었다.
Rf= 0.35 (에틸아세테이트:n-헥산 = 1:2)
수율 : 0.248 g, 85%
m. p. 129 - 133 ℃
1H NMR (CDCl3): δ7.65(d, J=9.5Hz, CH=CH), 7.44(s, 1H, aromatic H-5), 7.07(s, 1H, aromatic H-8), 6.23(d, J=9.5Hz, CH=CH), 5.32(t, J=7Hz, =CH), 3.38(d, J=7Hz, CH2), 1.75-1.80(s, 2 vinyl methyls)
실시예 13
7-히드록시-8,8-디메틸-7,8-디히드로-6H-피라노[3,2-g]-크로멘-2-온 (데커시놀 6)
6-(3-메틸-2-부텐일)-7-히드록시쿠마린 5 250 mg (1.086 mmol)을 클로로포름 20 ml에 용해시키고, 여기에 MMPP(magnesium monoperoxyphthalate hexahydrate) 산화제 250 mg (0.47 당량)과 파라톨루엔설포닐산 10mg(0.01 당량)을 가한 후 상온에서 24시간동안 교반하였다. 반응의 종결을 얇은막크로마토그래피로 확인하였으며, 반응이 종결되면 0.1M 탄산수소나트륨용액과 물로 씻은 후 무수황산마그네슘으로 수분을 제거하고 여과하였다. 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/15)로 정제하여 목적 화합물인 데커시놀 6을 얻었다.
Rf= 0.20 (에틸아세테이트:n-헥산 = 1:2)
수율 :0.237 g, 90%
m. p. 166 - 168 ℃
1H NMR (CDCl3): δ7.54(d, J=9.5Hz, CH=CH), 7.15(s, 1H, aromatic H-5), 6.76(s,1H, aromatic H-8), 6.19(d, J=9.5Hz, CH=CH), 3,86(dd, J=5,6Hz, CH2), 3.07(dd, J=5.16Hz, CHOH), 2.80(dd, J=5.16Hz, CHOH), 1.37 (s, gem-dimethyls)
실시예 14
7-히드록시-8,8-디메틸-7,8-디히드로-6H-피라노[3,2-g]-크로멘-2-온 (데커시놀 6)
6-(3-메틸-2-부텐일)-7-히드록시쿠마린 5 250 mg (1.086 mmol)을 클로로포름 20 ml에 용해시키고, 여기에 MMPP(magnesium monoperoxyphthalate hexahydrate) 산화제 250 mg (0.47 당량)과 피리디움파라톨루엔설포네이트15mg(0.01 당량)을 가한 후 상온에서 24시간동안 교반하였다. 반응의 종결을 얇은막크로마토그래피로 확인하였으며, 반응이 종결되면 0.1M 탄산수소나트륨용액과 물로 씻은 후 무수황산마그네슘으로 수분을 제거하고 여과하였다. 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/15)로 정제하여 목적 화합물인 데커시놀 6을 얻었다.
Rf= 0.20 (에틸아세테이트:n-헥산 = 1:2)
수율 :0.245 g, 92%
m. p. 166 - 168 ℃
1H NMR (CDCl3): δ7.54(d, J=9.5Hz, CH=CH), 7.15(s, 1H, aromatic H-5), 6.76(s,1H, aromatic H-8), 6.19(d, J=9.5Hz, CH=CH), 3,86(dd, J=5,6Hz, CH2), 3.07(dd, J=5.16Hz, CHOH), 2.80(dd, J=5.16Hz, CHOH), 1.37 (s, gem-di methyls)
실시예 15
7-히드록시-8,8-디메틸-7,8-디히드로-6H-피라노[3,2-g]-크로멘-2-온 (데커시놀 6)
6-(3-메틸-2-부텐일)-7-히드록시쿠마린 5 250 mg (1.086 mmol)을 메틸렌클로라이드 20 ml에 용해시키고, 여기에 과산화수소용액 30 질량% 73.9 mg (2.0 당량)과 테트라부틸암모늄설페이트 10mg(0.01 당량)을 넣고 상온에서 24시간동안 교반하였다. 반응의 종결을 얇은막크로마토그래피로 확인하였으며, 반응이 종결되면 0.1M 탄산수소나트륨용액과 물로 씻은 후 무수황산마그네슘으로 수분을 제거하고 여과하였다. 얻어진 여과액을 감압농축한 후 관크로마토그래피(전개용매: 에틸아세테이트/n-헥산 = 1/15)로 정제하여 목적 화합물인 데커시놀 6을 얻었다.
Rf= 0.20 (에틸아세테이트:n-헥산 = 1:2)
수율 :0.158 g, 60%
m. p. 166 - 168 ℃
1H NMR (CDCl3): δ7.54(d, J=9.5Hz, CH=CH), 7.15(s, 1H, aromatic H-5), 6.76(s,1H, aromatic H-8), 6.19(d, J=9.5Hz, CH=CH), 3,86(dd, J=5,6Hz, CH2), 3.07(dd, J=5.16Hz, CHOH), 2.80(dd, J=5.16Hz, CHOH), 1.37 (s, gem-dimethyls)
실시예 16
2,2-디메틸-8-옥소-3,4-디히드로-2H,8H-피라노[3,2-g]-크로멘-3-일 3-메틸-2-부테노익 에스테르 (데커신 7)
데커시놀 6 50 mg(0.203 mmol)을 피리딘 0.02 g(1.0 당량)에 용해시키고, 여기에 3-메틸크로토노일 클로라이드(senecioyl chloride) 24.0 mg(0.203 mmol)을 천천히 적하하고, 30 ℃에서 1시간동안 교반하였다. 반응 혼합물을 메틸렌 클로라이드로 묽힌 후, 0.1N 염화수소 수용액과 물로 씻어준 후 여액을 감압농축하고 에틸아세테이트-헥산하에서 재결정하여 목적 화합물 7을 얻었다.
Rf= 0.18 (에틸아세테이트:n-헥산 = 1:3)
수율 : 0.061 g, 92%
m. p. 110 - 111 ℃
1H NMR (CDCl3): δ7.54(d, J=9.5Hz, CH=CH), 7.16(s, 1H, aromatic H-5), 6.73(s,1H, aromatic H-8), 6.15(d, J=9.5Hz, CH=CH), 5.67(q, J=1Hz, =CH), 5.09(t, 2H, J=4.8Hz ,-CH2), 2.14(d, 3H,(CH 3 )2C-), 1.88(d, 3H,(CH 3 )2C-), 1.39(s,gem-dimethyls, J=5.16Hz)
화학식 1의 화합물을 화학식 2 또는 4의 화합물과 반응시켜 화학식 3 또는 5의 화합물을 제조하는데 있어서, 금속 인듐을 촉매로 사용함에 의해 공기나 물 등에서도 안정하여 다루기 쉽고, 환경 친화적이며, 무엇보다 재생가능해서 경제적이다는 이점을 얻을 수 있다. 또한, 어려운 반응 공정을 거치지 않고 용이하게 생성물을 얻을 수 있으며, 고수율로 효율적이다는 이점이 있다.
그리고, 알릴화된 방향족 화합물 5를 산화시켜 화학식 6으로 표시되는 피라노쿠마린 유도체를 제조하는데 있어서, 값싸고 경제적인 산화제인 MMPP 또는 H2O2를 이용함에 의해 용이하게 생성물을 얻을 수 있으며, 경제성을 높일 수 있다는 장점이 있다.
따라서, 본 발명은 유기합성공업 및 의약 제조 등에 다양하게 응용될 수 있다.

Claims (27)

  1. 금속 인듐을 촉매로 사용하여 유기 용매 존재 하에서 화학식 1의 알릴 할로겐 화합물을 화학식 2의 방향족 화합물과 반응시켜 화학식 3의 알릴 방향족 화합물을 제조하는 방법.
    [화학식 1]
    [화학식 2]
    [화학식 3]
    식 중, 화학식 1에서 X는 할로겐 원자이며, R1과 R2는 각각 수소, 직쇄 또는 측쇄의 C1-5 탄화수소를 나타낸다. 화학식 2에 있어서 R3은 수소 또는 히드록시를 나타내며, R4는 수소, 메틸기 또는 페닐기를 나타낸다. 화학식 3에서 R1, R2, R3, 및 R4는 상기 화학식 1과 화학식 2의 것과 동일하다.
  2. 삭제
  3. 제1항에 있어서, X가 브롬 또는 염소원자인 것을 특징으로 하는 방법.
  4. 삭제
  5. 제1항에 있어서, 상기 유기용매가 벤젠, 톨루엔, 메틸렌 클로라이드, 클로로포름, 아세토니트릴, 디옥센, 디에틸에테르 및 테트라히드로퓨란으로 구성되는 군에서 선택되는 것을 특징으로 하는 방법.
  6. 제1항에 있어서, 상기 반응이 염기 존재 하에서 수행되는 것을 특징으로 하는 방법.
  7. 제6항에 있어서, 염기가 OH-, CO3 2-또는 HCO3 -를 포함하는 금속 화합물인 것을 특징으로 하는 방법.
  8. 제7항에 있어서, 상기 금속이 Li, Na, K, Cs, Mg, Ca 또는 Ba인 것을 특징으로 하는 방법.
  9. 제8항에 있어서, 염기의 첨가량이 화학식 2로 표시되는 방향족 화합물에 대해 2 당량 이하(단, 0은 포함하지 않는다)인 것을 특징으로 하는 방법.
  10. 제7항에 있어서, 4Å 분자체가 추가로 첨가되는 것을 특징으로 하는 방법.
  11. 제10항에 있어서, 상기 4Å 분자체의 첨가량이 2로 표시되는 방향족 화합물에 대해 200 질량% 이하(단, 0은 포함하지 않는다)인 것을 특징으로 하는 방법.
  12. 제1항에 있어서, 알릴 할로겐 화합물과 방향족 화합물의 몰 비가 10:1 내지 1:10인 것을 특징으로 하는 방법.
  13. 제1항에 있어서, 인듐의 사용량이 화학식 2로 표시되는 방향족 화합물에 대해 0.01 내지 2 당량인 것을 특징으로 하는 방법.
  14. 제1항에 있어서, 상기 반응의 반응 온도가 20 내지 150℃인 것을 특징으로 하는 방법.
  15. 제1항에 있어서, 반응 시간이 1 내지 48 시간인 것을 특징으로 하는 방법.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
KR1020000019995A 2000-04-17 2000-04-17 알릴화된 방향족 화합물 및 피라노쿠마린 화합물의 제조방법 KR100365293B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000019995A KR100365293B1 (ko) 2000-04-17 2000-04-17 알릴화된 방향족 화합물 및 피라노쿠마린 화합물의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000019995A KR100365293B1 (ko) 2000-04-17 2000-04-17 알릴화된 방향족 화합물 및 피라노쿠마린 화합물의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0036479A Division KR100377327B1 (ko) 2002-06-27 2002-06-27 알릴화된 7-히드록시쿠마린 유도체의 제조방법

Publications (2)

Publication Number Publication Date
KR20010096074A KR20010096074A (ko) 2001-11-07
KR100365293B1 true KR100365293B1 (ko) 2002-12-18

Family

ID=19664726

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000019995A KR100365293B1 (ko) 2000-04-17 2000-04-17 알릴화된 방향족 화합물 및 피라노쿠마린 화합물의 제조방법

Country Status (1)

Country Link
KR (1) KR100365293B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042896A (ko) * 2000-12-01 2002-06-08 김상희 키랄 데커시놀의 제조방법
KR100821936B1 (ko) * 2006-12-20 2008-04-15 강원대학교산학협력단 유기 인듐을 이용하여 불포화 탄화수소 화합물 분자내탄소들간의 결합방법
KR100966027B1 (ko) * 2008-05-07 2010-06-24 경희대학교 산학협력단 데커신 및 데커신 유사체의 신규한 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235781A (en) * 1979-09-20 1980-11-25 Thomas C. Elder, Inc. 6 Or 8 Haloallyl substituted 7-hydroxycoumarins
JPS63255222A (ja) * 1987-04-14 1988-10-21 Nippon Petrochem Co Ltd クマリン類からなる虚血性心疾患治療用カルシウム拮坑剤
JPH02157273A (ja) * 1988-10-13 1990-06-18 Basf Ag アリールアルコキシクマリン、その製造方法及びこれを含有する治療剤
US5847165A (en) * 1995-02-21 1998-12-08 The University Of North Carolina At Chapel Hill Suksdorfin analogs, compositions thereof, and methods for making and using thereof
KR100288503B1 (ko) * 1999-04-02 2001-04-16 박호군 인듐을 이용한 알킬 방향족 화합물의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235781A (en) * 1979-09-20 1980-11-25 Thomas C. Elder, Inc. 6 Or 8 Haloallyl substituted 7-hydroxycoumarins
JPS63255222A (ja) * 1987-04-14 1988-10-21 Nippon Petrochem Co Ltd クマリン類からなる虚血性心疾患治療用カルシウム拮坑剤
JPH02157273A (ja) * 1988-10-13 1990-06-18 Basf Ag アリールアルコキシクマリン、その製造方法及びこれを含有する治療剤
US5847165A (en) * 1995-02-21 1998-12-08 The University Of North Carolina At Chapel Hill Suksdorfin analogs, compositions thereof, and methods for making and using thereof
KR100288503B1 (ko) * 1999-04-02 2001-04-16 박호군 인듐을 이용한 알킬 방향족 화합물의 제조방법

Also Published As

Publication number Publication date
KR20010096074A (ko) 2001-11-07

Similar Documents

Publication Publication Date Title
Mihigo et al. Total synthesis, antiprotozoal and cytotoxicity activities of rhuschalcone VI and analogs
CN114269717A (zh) 催化大麻素方法和前体
Asakawa et al. Prenyl bibenzyls from the liverwort Radula kojana
Demyttenaere et al. Synthesis of 6-methoxy-4H-1-benzopyran-7-ol, a character donating component of the fragrance of Wisteria sinensis
Guindon et al. Preparation of ethyl 5 (s), 6-epoxy-3 (r)-(methoxymethoxy) hexanoate: a key chiral intermediate for mevinolin and compactin.
KR100365293B1 (ko) 알릴화된 방향족 화합물 및 피라노쿠마린 화합물의 제조방법
Meyer et al. Plant antitumor agents, 21. Flavones, coumarins, and an alkaloid from Sargentia greggii
Al-Abed et al. Stereoselective synthesis of β-oxy-and α-methylene-γ-butyrolactones on pyranose templates
KR100377327B1 (ko) 알릴화된 7-히드록시쿠마린 유도체의 제조방법
JP2002534423A (ja) 5−(α−ヒドロキシアルキル)ベンゾ[1,3]ジオキソールの合成方法
US7205335B2 (en) Preparation of cis-fused 3,3a,8,12b-tetrahydro-2H-dibenzo[3,4:6,7]cyclohepta[1,2-b]furan derivatives
CN108440460B (zh) 紫苏烯及其类似物的制备方法
Bonacorso et al. Efficient entry to trifluoromethyl substituted chromanes from oxidative aromatization of tetrahydro-2H-chromen-5 (6H)-ones using iodine/alcohol with conventional and microwave methods
CN108947953B (zh) 一种黄酮类衍生物的合成方法
JP2823616B2 (ja) 「4,4,5,8−テトラメチル−1−オキサスピロ〔2.5〕オクタン、その製造法、及び2,2,3,6−テトラメチル−シクロヘキサン−カルブアルデヒド、その製造法」
JP3829273B2 (ja) 光学活性なフラバノン及びクロマノン類の製造法
US4764641A (en) Process for preparing optically active carbonyl compounds
Chenard et al. An efficient route to benzo [b] thiophenequinones, quinone bisketals, and quinone monoketals via anodic oxidation of methoxylated benzo [b] thiophenes. Studies directed at the synthesis of functionalized benzo [b] thiophene-4, 7-quinones
Tada et al. Formation of dendrolasin, sesquirosefuran, perillene and rosefuran by biomimetic autooxidation
FR2472572A1 (fr) Nouveaux composes polycycliques derives de l'anthracene et du naphtacene et procede pour leur preparation
CN116135848B (zh) 一种香豆素类化合物及其制备方法与应用
JPH0848677A (ja) ベンゾ複素環系の化合物、その製造方法及びそれを含有する組成物
CN118184610A (zh) 一种基于姜黄素类似物合成多取代2,3-二氢呋喃的方法
JP2675569B2 (ja) 2,3−ジヒドロベンゾフラン誘導体の製造方法
US4769478A (en) Preparation of (1,5) 6,6-dimethyl-4-hydroxy-3-oxabicyclo (3,1,0) hexan-2-one and its ethers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081201

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee