KR100356706B1 - Hot rolled steel sheet with excellent workability and weather resistance and manufacturing method - Google Patents
Hot rolled steel sheet with excellent workability and weather resistance and manufacturing method Download PDFInfo
- Publication number
- KR100356706B1 KR100356706B1 KR1019980060190A KR19980060190A KR100356706B1 KR 100356706 B1 KR100356706 B1 KR 100356706B1 KR 1019980060190 A KR1019980060190 A KR 1019980060190A KR 19980060190 A KR19980060190 A KR 19980060190A KR 100356706 B1 KR100356706 B1 KR 100356706B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- temperature
- rolled steel
- weather resistance
- hot rolled
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 70
- 239000010959 steel Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000005096 rolling process Methods 0.000 claims abstract description 26
- 238000005266 casting Methods 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052718 tin Inorganic materials 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 230000006698 induction Effects 0.000 claims abstract description 8
- 238000004804 winding Methods 0.000 claims abstract description 8
- 239000002253 acid Substances 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 238000002844 melting Methods 0.000 claims description 17
- 230000008018 melting Effects 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 34
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 32
- 239000010949 copper Substances 0.000 description 28
- 229910052742 iron Inorganic materials 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000009749 continuous casting Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000003923 scrap metal Substances 0.000 description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 230000008719 thickening Effects 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 241000219307 Atriplex rosea Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052840 fayalite Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B2001/225—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B15/00—Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B2015/0057—Coiling the rolled product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/20—Temperature
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명은 중량 %로 C: 0.03% 내지 0.06%, Mn: 0.25% 내지 0.70%, Si: 0.4% 이하, P: 0.05% 내지 0.15%, S: 0.006% 이하, Cr: 0.6% 이하, Ni: 0.4% 이하, Cu: 0.5% 이하, Sn: 0.001% 내지 0.04%, 산가공용 Al: 0.04% 내지 0.10%, N: 150ppm 이하, Ca: 0.0002% 내지 0.008%, 나머지는 Fe 및 불가피한 불순물로 조성되며, Mn/S의 비≥30(1), Cu/Ni≥0.5(2)의 조건을 만족하는 가공성 및 내후성이 우수한 열연강판을 제공하며, 상술한 조성성분 및 조건을 만족하는 강을 용해한 후 연속으로 주조하여 슬라브로 제조한 후 슬라브를 1차 압연하는 단계와, 유도가열로에서 1080℃ 이하의 온도에서 열연강대를 가열하는 단계와, 코일 박스 분위기 온도를 1080℃ 이하로 유지하고 870℃ 이상의 온도조건에서 마무리 압연을 실시하는 단계와, 550℃ 이상의 온도에서 권취하는 단계를 실시함으로서 가공성 및 내후성이 우수한 열연강판의 제조방법을 제시한다.In the present invention, C: 0.03% to 0.06%, Mn: 0.25% to 0.70%, Si: 0.4% or less, P: 0.05% to 0.15%, S: 0.006% or less, Cr: 0.6% or less, Ni: 0.4% or less, Cu: 0.5% or less, Sn: 0.001% to 0.04%, acid processing Al: 0.04% to 0.10%, N: 150ppm or less, Ca: 0.0002% to 0.008%, the rest is composed of Fe and inevitable impurities , Providing a hot rolled steel sheet with excellent workability and weather resistance satisfying the conditions of Mn / S ratio ≥30 (1) and Cu / Ni≥0.5 (2), and continuously dissolving steel satisfying the above-mentioned composition components and conditions Firstly rolling the slabs after casting them into slabs, heating the hot-rolled steel strip at a temperature of 1080 ° C. or lower in an induction furnace, and maintaining a coil box atmosphere temperature of 1080 ° C. or lower and a temperature of 870 ° C. or higher. Hot rolled steel excellent in workability and weather resistance by performing a finish rolling under the conditions and winding at a temperature of 550 ° C. or higher. The method of manufacturing the plate is presented.
Description
본 발명은 가공성 및 내후성이 우수한 열연강판 및 그 제조방법에 관한 것으로서, 트램프 원소를 내후성 및 표면 크랙을 억제하는 유용원소로 이용하고 함유량이 높은 질소를 강도 보강원으로 이용한 표면성상 및 내후성이 우수한 열연강판 및 그 제조방법에 관한 것이다.The present invention relates to a hot rolled steel sheet having excellent workability and weather resistance, and a method for manufacturing the same, wherein the hot rolled steel sheet has excellent surface properties and weather resistance using a tramp element as a useful element for suppressing weather resistance and surface cracks and a high content of nitrogen as a strength reinforcement source. And to a method for producing the same.
미니밀 공정은 고로방식의 제철방법과는 달리 전기로에서 고철을 용해하여 연속주조기를 이용하여 100mm 이하의 박 슬라브로 주조하고 중간설비를 통하여 압연온도를 확보, 직송열간압연을 실시하는 에너지 저감형, 환경친화적인 공정이다. 최근에 자동차 폐차후의 고철 발생이 증가하는 추세에 있으며, 이러한 고철은 Cu, Sn, Pb, Ni 등 정련이 어려운 트램프 원소를 함유하고 있다. 이러한 자동차류의 고철을 철원으로 사용할 경우 트램프 원소가 강중에 잔존하여 트램프 원소에 의한 강도 상승과 저융점 원소인 Cu, Sn, Pb 등에 의한 표면 크랙 발생가능성이 커지며, 열간가공후 권취과정에서 트램프 원소는 결정립계에 편석을 일으켜 가공성 등을 저하시키기 때문에 이러한 트램프 원소의 적절한 제어가 필요하다.Unlike the blast furnace method of steelmaking, the mini mill process melts scrap metal in an electric furnace and casts it into a thin slab of 100 mm or less using a continuous casting machine, and secures a rolling temperature through an intermediate facility to perform direct hot rolling. It is a friendly process. In recent years, the generation of scrap metal after automobile scrapping has been on the rise, and such scrap metal contains hard-to-refining tramp elements such as Cu, Sn, Pb, and Ni. When the scrap metal of automobiles is used as an iron source, the tramp elements remain in the steel, which increases the strength due to the tramp elements and increases the possibility of surface cracks due to the low melting point elements Cu, Sn, and Pb. Since segregation occurs in the grain boundary and the workability is lowered, proper control of these tramp elements is necessary.
그러나, 이러한 트램프 원소는 Fe에 비하여 열역학적으로 안정하기 때문에 정련공정중에서 정련할 수 없는 난정련 원소라는 것이 문제점으로 대두된다. 따라서 철원인 고철을 잘 분류하여 적정한 트램프 원소를 함유하는 고철을 철원으로 사용하여야 한다. 또한 전기로 정련은 전로 방식을 이용한 정련과는 달리 기체를 제거하는 설비 등이 적이 대기중에서 유입된 질소의 제어가 어렵다. 또한 고로밀에 비하여 강중 질소농도가 높기 때문에 항복강도 및 인장강도가 높아지고 연신율이 높아지는 문제점이 발생한다.However, the problem is that these tramp elements are poorly refined elements that cannot be refined during the refining process because they are thermodynamically stable compared to Fe. Therefore, it is necessary to classify scrap iron as an iron source and use scrap iron containing an appropriate tramp element as an iron source. In addition, in the electric furnace refining, unlike the refining using the converter method, it is difficult to control nitrogen introduced into the atmosphere by a facility that removes gas. In addition, since the nitrogen concentration in steel is higher than that of blast furnace, there is a problem in that yield strength and tensile strength increase and elongation increases.
따라서, 미니밀 공정에서 일반 가공용 열연강판을 제조하는 것은 고로밀에 비하여 불리한 입장에 놓여있다. 위와같이 고로밀과 대비하여 미니밀 공정의 취약점을 미니밀 공정의 강점으로 변화시키는 노력이 필요하며, 상술한 바와 같이 미니밀공정의 철원으로 사용되는 고철에 함유된 Cu, Ni, Mo Cr 등의 트램프 원소를 이용하는 강종 개발이 필요하다.Therefore, manufacturing hot rolled steel sheets for general processing in a mini mill process is at a disadvantage compared to blast furnace mills. As described above, efforts to change the weakness of the mini mill process to strengths of the mini mill process in comparison with the blast furnace mill are necessary, and as described above, it is necessary to use tram elements such as Cu, Ni, and Mo Cr contained in the scrap metal used as the iron source of the mini mill process. Steel grade development is needed.
본 발명은 기존의 미니밀 공정의 문제점을 해결하고, 고철중에 함유된 Cu, Cr 등의 원소를 내식성 원소로, Ni 등을 표면 크랙억제 원소로, 강중 고농도 질소를 강도상승원으로 각각 활용한 열연강판 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention solves the problems of the conventional mini-mill process, hot-rolled steel sheet using the elements such as Cu, Cr, etc. contained in the scrap metal as a corrosion resistance element, Ni as a surface crack suppression element, high concentration nitrogen in the steel as a strength increase source And its manufacturing method.
본 발명은 강의 합금 성분 및 그 함량, 1차 압연후의 가열온도 및 코일 박스 유지조건, 마무리 압연 및 권취온도를 적절하게 제어함으로서 가공성 및 내후성이 우수한 열연강판을 제공한다.The present invention provides a hot rolled steel sheet excellent in workability and weather resistance by appropriately controlling the alloy component of steel and its content, heating temperature after primary rolling and coil box holding conditions, finishing rolling and winding temperature.
본 발명에 따른 열연 강판은 중량 %로 C: 0.03% 내지 0.06%, Mn: 0.25% 내지 0.70%, Si: 0.4% 이하, P: 0.05% 내지 0.15%, S: 0.006% 이하, Cr: 0.6% 이하, Ni: 0.4% 이하, Cu: 0.5% 이하, Sn: 0.001% 내지 0.04%, 산가공용 Al: 0.04% 내지 0.10%, N: 150ppm 이하, Ca: 0.0002% 내지 0.008%, 나머지는 Fe 및 불가피한 불순물로 조성되며, Mn/S의 비≥30(1), Cu/Ni≥0.5(2)의 조건을 만족한다.Hot rolled steel sheet according to the present invention by weight% C: 0.03% to 0.06%, Mn: 0.25% to 0.70%, Si: 0.4% or less, P: 0.05% to 0.15%, S: 0.006% or less, Cr: 0.6% Ni: 0.4% or less, Cu: 0.5% or less, Sn: 0.001% to 0.04%, acid processing Al: 0.04% to 0.10%, N: 150 ppm or less, Ca: 0.0002% to 0.008%, the rest is Fe and inevitable It is composed of impurities and satisfies the conditions of the ratio of Mn / S ≧ 30 (1) and Cu / Ni ≧ 0.5 (2).
본 발명에 따른 열연강판은 중량 %로 C: 0.03% 내지 0.06%, Mn: 0.25% 내지 0.70%, Si: 0.4% 이하, P: 0.05% 내지 0.15%, S: 0.006% 이하, Cr: 0.6% 이하, Ni: 0.4% 이하, Cu: 0.5% 이하, Sn: 0.001% 내지 0.04%, 산가공용 Al: 0.04% 내지 0.10%, N: 150ppm 이하, Ca: 0.0002% 내지 0.008%, 나머지는 Fe 및 불가피한 불순물로 조성되며, Mn/S의 비≥30(1), Cu/Ni≥0.5(2)의 조건을 만족하는 강을 용해한 후 연속으로 주조하여 슬라브로 제조한 후 슬라브를 1차 압연하는 단계와, 유도가열로에서 1080℃ 이하의 온도에서 열연강대를 가열하는 단계와, 코일 박스 분위기 온도를 1080℃ 이하로 유지하고 870℃ 이상의 온도조건에서 마무리 압연을 실시하는 단계와, 550℃ 이상의 온도에서 권취하는 단계를 거침으로서 제조된다.Hot rolled steel sheet according to the present invention by weight% C: 0.03% to 0.06%, Mn: 0.25% to 0.70%, Si: 0.4% or less, P: 0.05% to 0.15%, S: 0.006% or less, Cr: 0.6% Ni: 0.4% or less, Cu: 0.5% or less, Sn: 0.001% to 0.04%, acid processing Al: 0.04% to 0.10%, N: 150 ppm or less, Ca: 0.0002% to 0.008%, the rest is Fe and inevitable It is composed of impurity, melting the steel that satisfies the condition of the ratio of Mn / S ≥ 30 (1), Cu / Ni ≥ 0.5 (2) and then cast continuously to make a slab and to firstly roll the slab and Heating the hot-rolled steel strip at a temperature of 1080 ° C. or lower in an induction furnace, maintaining a coil box atmosphere temperature of 1080 ° C. or lower, and performing finish rolling at a temperature condition of 870 ° C. or higher, and winding at a temperature of 550 ° C. or higher. It is prepared by taking the step of taking.
도 1은 미니밀 공정에서의 온도 경향을 도시한 그래프도.1 is a graph depicting temperature trends in a minimill process.
본 발명에 따른 열연 강판은 중량 %로 C: 0.03% 내지 0.06%, Mn: 0.25% 내지 0.70%, Si: 0.4% 이하, P: 0.05% 내지 0.15%, S: 0.006% 이하, Cr: 0.6% 이하, Ni: 0.4% 이하, Cu: 0.5% 이하, Sn: 0.001% 내지 0.04%, 산가공용 Al: 0.04% 내지 0.10%, N: 150ppm 이하, Ca: 0.0002% 내지 0.008%, 나머지는 Fe 및 불가피한 불순물로 조성되며, Mn/S의 비≥30(1), Cu/Ni≥0.5(2)의 조건을 만족한다.Hot rolled steel sheet according to the present invention by weight% C: 0.03% to 0.06%, Mn: 0.25% to 0.70%, Si: 0.4% or less, P: 0.05% to 0.15%, S: 0.006% or less, Cr: 0.6% Ni: 0.4% or less, Cu: 0.5% or less, Sn: 0.001% to 0.04%, acid processing Al: 0.04% to 0.10%, N: 150 ppm or less, Ca: 0.0002% to 0.008%, the rest is Fe and inevitable It is composed of impurities and satisfies the conditions of the ratio of Mn / S ≧ 30 (1) and Cu / Ni ≧ 0.5 (2).
상기와 같이 열연 강판을 구성하는 각 성분을 한정한 이유에 대하여 설명하면 다음과 같다.The reason which limited each component which comprises a hot rolled sheet steel as above is demonstrated.
1. C는 강중에 함유되어 있는 침입형 원소로서, 강도향상을 위한 원소이다. 그러나, 100mm 이하의 박 슬라브를 제조하는 연속주조는 기존 주조법에 비하여 슬라브가 얇고 주조속도가 빠르기 때문에 무결함 주편을 제조하기가 어렵다. 특히 C가 0.06% 이상에서는 응고중 포정반응시 슬라브 수축이 일어나고, 일부분이 동판주조몰드와 유리되어 열전달이 억제된다. 이때 응고층이 재용해되어 반응고층이 파괴되므로 주편이 파열되는 원인이 된다. 따라서 박슬라브 연주법에 의한 저탄소강 제조시 C의 함유량을 0.06% 이하로 제한하였다.1. C is an invasive element contained in steel and is an element for improving strength. However, continuous casting for producing thin slabs of 100 mm or less is difficult to manufacture flawless casts because the slabs are thinner and the casting speed is faster than conventional casting methods. In particular, when C is more than 0.06%, slab shrinkage occurs during the solidification reaction during solidification, and part is released from the copper casting mold to suppress heat transfer. At this time, the solidification layer is re-dissolved and the reaction solid layer is destroyed, which causes the cast iron to rupture. Therefore, the content of C in the production of low carbon steel by the thin slab casting method was limited to 0.06% or less.
2. Mn은 강중에 함유되어 강도를 향상시키는 원소이며, 강중 불순물로서 존재하는 S를 MnS로 고정하여 열간압연중 저융점 화합물인 S화합물에 의해 발생하는 크랙을 억제하는 역할을 수행한다. 박슬라브 주조법은 연속주조 직후 고온에서 중간압연을 실시하기 때문에 기존 연주법에 비하여 S화합물에 의한 에지 크랙발생이 심각해지며, 따라서 Mn/S의 비를 30 이상으로 설정하였다.2. Mn is an element which is contained in steel and improves strength. It fixes S, which is an impurity in steel, with MnS to suppress cracks caused by S compound which is a low melting point compound during hot rolling. In the thin slab casting method, since the intermediate rolling is performed at a high temperature immediately after continuous casting, edge cracking due to the S compound is more serious than the conventional casting method. Therefore, the Mn / S ratio is set to 30 or more.
3. Si는 강중에 함유되어 강도상승 및 내후성을 향상시키는 원소로서, 열연 스케일 형성과 연관성이 존재하기 때문에 0.4% 이하로 제한하였다. Si가 다량 함유된 강에서는 연속주조공정 및 고온의 노 분위기에서 fayalite가 형성되고, 이 Si 화합물의 융점인 1,180℃ 이상에서는 융융되어 스케일과 지철계면에 존재하게 된다. 따라서 수분사에 의한 열연 스케일 제거시 스케일 제거가 힘들어 최종 열연강판에 1차 스케일 형태나 적스케일 형태로 남아 표면형상을 나쁘게 하는 원소이다. 하지만 내후성 향상과 강도상승을 위하여 효율적인 원소이므로 0.4% 이하로 제한하였다.3. Si is an element contained in steel to improve strength and weather resistance. Since Si is associated with hot rolled scale formation, it is limited to 0.4% or less. In steels containing a large amount of Si, fayalite is formed in a continuous casting process and a high-temperature furnace atmosphere, and melts at a melting point of 1,180 ° C. or higher of the Si compound to exist on the scale and the ferrous interface. Therefore, it is difficult to remove the scale when the hot rolled scale is removed by water sand, and the element remains in the form of primary scale or red scale in the final hot rolled steel sheet, thereby deteriorating the surface shape. However, it is limited to 0.4% or less because it is an efficient element for improving weather resistance and strength.
4. P는 강중에 함유되어 내후성을 증대시키는 효과적인 원소이다. 강중 함유된 P는 열연강판이 대기폭로에 의한 녹 발생시 발생녹을 비정질화하는 촉진원소로 작용하며, 발생된 녹층에 더 이상의 수분 및 산소공급을 억제하여 부식을 억제한다. 하지만 강중 함유된 P는 연속주조시 Fe3P와 같은 저융점 공정화합물을 형성하기 때문에 연속주조시 주편파율을 심화시키는 요인으로 작용하여 용접성을 저하시키는 원소이다. 따라서 내후성을 증대시키면서 용접성을 확보할수 있도록 0.05% 내지 0.15% 로 제한하였다.4. P is an effective element contained in steel to increase weather resistance. P contained in the steel acts as an accelerating element to amorphize rust generated when the hot rolled steel sheet is rusted by atmospheric exposure, and inhibits corrosion by inhibiting supply of moisture and oxygen to the rust layer. However, P contained in steel forms a low melting process compound such as Fe 3 P during continuous casting, which acts as a factor in deepening the polarization rate during continuous casting, thereby decreasing weldability. Therefore, it was limited to 0.05% to 0.15% to secure the weldability while increasing the weather resistance.
5. Cu는 P와 더불어 강의 내후성을 증대시키는 효과적인 원소이다. 강중 함유된 Cu는 대기폭로시 열역학적 안정성에 의하여 녹발생을 억제하거나, 발생된 녹을 비정질화하는 원소로 작용하여 발생된 녹층에 더 이상의 수분 및 산소공급을 억제, 부식을 억제한다. 하지만 강중 Cu는 가열시 Fe에 비하여 열역학적으로 안정하기 때문에 Fe 기지층의 산화시에도 산화가 진행되지 않아 열연 스케일층과 지철 사이에서 농화된 Cu층을 형성한다. 형성된 농화 Cu층은 융점이 낮아 융점 이상에서 열간변형이 수행될 경우 액상 Cu층이 결정립계를 우선 침범하고, 액상이 침범된 침투된 결정립계가 응력에 의해 크랙이 발생되면서 열간 가공 크랙을 수반한다.5. Cu, together with P, is an effective element that increases the weather resistance of steel. Cu contained in steel suppresses rust generation by thermodynamic stability during atmospheric exposure, or acts as an element to amorphize rust generated, thereby further suppressing water and oxygen supply to the rust layer generated and inhibiting corrosion. However, because Cu is thermodynamically stable compared to Fe when heated, oxidation does not proceed even when the Fe base layer is oxidized to form a concentrated Cu layer between the hot rolled scale layer and the branch iron. When the thickened Cu layer has a low melting point and hot deformation is performed above the melting point, the liquid Cu layer invades the grain boundaries first, and the infiltrated grain boundaries in which the liquid phase is infiltrated are accompanied by hot working cracks as cracks are generated by stress.
따라서 이러한 선택산화, 저융점 Cu 농화층에 의한 표면 크랙은 Cu 함유량을 조정하는 방법이 제시되지만, Cu는 내후성을 향상시키는 탁월한 원소이기 때문에 Ni 등의 첨가에 따른 농화층의 용융온도 상승에 의한 열간 가공 크랙 억제방법이 있다. 따라서, 본 발명에서는 내후성이 가장 우수할수 있도록 Cu의 함량을 0.5% 이하로 제한하였다.Therefore, the surface cracking by the selective oxidation and low melting point Cu thickening layer is proposed to adjust the Cu content, but since Cu is an excellent element for improving weather resistance, it is hot due to the increase in the melting temperature of the thickening layer due to the addition of Ni. There is a process crack suppression method. Therefore, in the present invention, the content of Cu is limited to 0.5% or less so as to have the best weather resistance.
6. Ni는 Cu 등의 선택산화에 의한 저융점 농화층 생성에 따른 열간 표면크랙을 억제하는 원소이다. 고철중 잔존하는 Cu, Sn, Pb 등은 Fe에 비하여 열역학적으로 안정하여 지철의 산화과정시 철이 선택산화되고, 이들 원소는 농화되어 스케일과 지철계면에 농화된다. 이 원소들의 농화층은 저융점 물질로서 열간압연온도에서 용융상태로 존재하다가 변형 수반시 오스테나이트 입계를 침식하여 열간 크랙을 유발한다. 이러한 저융점 농화층은 Ni의 첨가시 전율 고용되어 농화층의 용융점을 상승시켜 열간변형온도에서 고상으로 존재하므로서 열간 크랙을 억제하는 역할을 수행한다. 하지만, Ni이 0.04%를 넘으면 상기 작용이 포화점에 이르게 되어 경제성을 상실한다. 따라서 Ni 함유량을 0.4% 이하로 한정하였다. Ni 함유량이 증가할 경우 스케일과 지철 사이의 형상이 거칠게 되어 디스케일성을 방해한다.6. Ni is an element that suppresses hot surface cracks due to the formation of a low melting concentration layer by selective oxidation of Cu and the like. Cu, Sn, Pb, etc. remaining in the scrap iron is thermodynamically stable compared to Fe, iron is selectively oxidized during the oxidation of the iron, these elements are concentrated and concentrated on the scale and the surface of the iron. The concentrated layer of these elements is a low melting point material, which exists in a molten state at a hot rolling temperature, and induces hot cracks by eroding austenite grain boundaries when the deformation is accompanied. The low melting point thickening layer is electrothermally dissolved when Ni is added, thereby increasing the melting point of the thickening layer and thus acting as a solid at hot deformation temperature, thereby suppressing hot cracking. However, when Ni exceeds 0.04%, the action reaches a saturation point, thereby losing economical efficiency. Therefore, Ni content was limited to 0.4% or less. When the Ni content increases, the shape between the scale and the iron is rough, which hinders descaling.
7. Al은 강 정련공정에서 탈산제로 작용하며, 강중 산소함량을 낮추는 역할을 수행한다. 여분의 강중 Al은 질소를 AlN으로 고정시켜 시효현상의 억제 및 항복강도 저하, 권취시 비정상 입성장에 의한 조대립 발생 등을 억제하는 역할을 수행한다. 따라서 산가용 Al을 0.03% 내지 0.10%로 한정하였다.7. Al acts as a deoxidizer in the steel refining process and lowers the oxygen content in the steel. The extra Al in the nitrogen is fixed to AlN to suppress the aging phenomenon, lowering the yield strength, and to suppress the occurrence of coarse grains due to abnormal grain growth during winding. Therefore, the acid value Al was limited to 0.03% to 0.10%.
8. Ca는 개재물 형상을 조정하여 연주 노즐 막힘을 억제하는 작용을 한다. 박슬라브 연속주조의 경우 노즐의 기존 고로밀에 비하여 직경이 작기 때문에 노즐 막힘이 심각하다. 따라서 Ca를 첨가하여 개재물을 구형화함으로서 연주성을 향상시키며, 그 함유량은 0.002% 내지 0.08%가 바람직하다.8. Ca acts to suppress the clogging of the playing nozzle by adjusting the shape of the inclusions. In the case of thin slab continuous casting, nozzle clogging is serious because the diameter is smaller than that of the conventional blast furnace mill. Therefore, the playability is improved by adding Ca to spherical inclusions, and the content thereof is preferably 0.002% to 0.08%.
9. S는 유화물계 개재물을 형성하여 가공성을 저하시키는 불순물이다. 또한 박슬라브 연주법에서는 열간가공시 유화물계 저융점 화합물을 형성하여 에지크랙을 일으키는 원소이다. 또한 미니밀 공정에서는 강중 Cu를 Cu2S 계통의 화합물로 석출시켜 Cu의 내후성 향상효과를 억제한다. 따라서 Mn에 의하여 MnS로 고정하거나, S를 80ppm 이하로 관리하는 것이 좋다.9. S is an impurity which forms an emulsion-based inclusion and degrades workability. In addition, in the thin slab casting method, an element causing edge cracks is formed by forming an emulsion-based low melting point compound during hot working. In addition, in the mini mill process, Cu is precipitated as a compound of the Cu 2 S-based steel to suppress the effect of improving the weather resistance of Cu. Therefore, it is good to fix MnS by Mn or to manage S below 80ppm.
상기와 같은 성분범위를 조정함에 따라 미니밀 공정에서 가공성 및 내후성이 우수한 열연강판을 제조하는 것이 가능하다. 또한 열간압연시 Cu에 의한 열간표면 크랙이 발생하는 것을 억제하여 표면 품질이 양호한 열연강판을 생산할수 있다.By adjusting the component range as described above it is possible to manufacture a hot rolled steel sheet excellent in workability and weather resistance in the mini-mill process. In addition, it is possible to produce hot rolled steel sheet having good surface quality by suppressing occurrence of hot surface cracks due to Cu during hot rolling.
이상과 같은 특성을 갖는 열연강판은 다음과 같은 과정을 거쳐 제조된다.The hot rolled steel sheet having the above characteristics is manufactured through the following process.
상기 성분조성범위 내에서 성분 조정된 강을 전기로에서 용해, 박슬라브 연속주조기에서 슬라브로 연속주조하고, 슬라브를 Ar3 온도 이상에서 중간압연한다. 이후 950℃ 이하의 마무리 온도 확보를 위해 유도가열로에서 1,100℃ 이하까지 가열하고, 1,080℃ 이하 온도의 코일박스에서 바 코일 상태로 권취하며, Ar3 온도 이상에서 마무리 압연을 실시한다. 이후 550℃ 내지 650℃ 범위의 온도에서 열연코일을 권취한다. 이상과 같은 각 과정에서의 온도는 다음과 같은 이유로 설정되었다.The steel whose composition is adjusted within the above composition range is dissolved in an electric furnace, continuously cast into slabs in a thin slab continuous casting machine, and the slabs are intermediately rolled above the Ar3 temperature. Then, in order to ensure a finishing temperature of 950 ℃ or less in the induction heating furnace heated to 1,100 ℃ or less, coiled in a bar coil state in a coil box of 1,080 ℃ or less temperature, and finish rolling at an Ar3 temperature or more. Thereafter, the hot rolled coil is wound at a temperature in the range of 550 ° C to 650 ° C. The temperature in each process as mentioned above was set for the following reason.
1. 중간압연온도1. Medium rolling temperature
중간압연공정은 연속주조된 슬라브를 1차 압연하여 바 상태로 압연하는 공정으로서, 바의 열간 가공상태에 따라 열연강판의 최종 품질에 많은 영향을 미친다. 중간아연 온도 범위에서 나타나기 쉬운 열간가공 크랙은 최종 열연강판에 표면 크랙을 유발하게 하거나, 에지부 크랙은 톱귀 등을 유발한다. 중간압연공정이 Ar3 온도 이하에서 이루어질 경우 우선 변태된 페라이트에 응력이 집중되어 페라이트와 오스테나이트 계면에서 크랙이 유발되어 에지 크랙이나 표면 크랙을 발생시킬수 있다. 따라서 중간압연은 Ar3 온도 이상에서 실시한다.The intermediate rolling process is a process of firstly rolling a continuously cast slab to a bar state, and affects the final quality of the hot rolled steel sheet according to the hot working state of the bar. Hot work cracks, which tend to appear in the mid-zinc temperature range, cause surface cracks in the final hot rolled steel sheet, or edge cracks induce saw saws and the like. If the intermediate rolling process is carried out below the Ar3 temperature, the stress is concentrated in the transformed ferrite first, causing cracks at the ferrite and austenite interface, which may cause edge cracks or surface cracks. Therefore, intermediate rolling is carried out above the Ar3 temperature.
2. 유도가열로의 가열온도2. Heating temperature of induction furnace
미니밀 공정에 있어서 유도가열로를 통한 가열공정은 적정 마무리 압연온도를 확보하기 위한 공정으로서, 재질 및 표면에 미치는 영향이 크기 때문에 중요한 공정이다. 중간압연후 냉각된 바를 가열하여 마무리 압연온도를 확보하고 선택산화에 의하여 생성된 저융점 농화층으로 인한 표면 크랙을 억제하기 위하여 1,100 ℃ 이하까지 가열하는 것이 필요하다. 따라서 본 발명에서는 유도가열로의 가열온도를 1,100 ℃ 이하로 설정하였다.In the mini mill process, the heating process through an induction furnace is an important process because it has a great influence on the material and the surface as a process for securing an appropriate finishing rolling temperature. After the intermediate rolling, it is necessary to heat the cooled bar to 1,100 ° C. or less in order to secure the finish rolling temperature and to suppress the surface cracks caused by the low melting concentrated layer produced by selective oxidation. Therefore, in the present invention, the heating temperature of the induction furnace is set to 1,100 ℃ or less.
3. 코일박스 가열온도3. Coil box heating temperature
미니밀 공정에서는 중간압연된 바를 바상태로 권취하여 중간압연과 마무리 압연공정 사이의 공간을 획기적으로 줄이고, 바 코일 온도 하락을 억제하기 위하여 코일박스 설비를 이용한다. 코일 박스 온도는 바 온도를 결정하고 표면선택 산화후 발생하는 저융점 농화층의 용해현상에 영향을 미치기 때문에 적절하게 관리하여야 한다. 적정 마무리 온도 확보 및 저융점 농화층의 용해를 억제하기 위하여 코일박스를 1,080℃ 이하로 가열하는 것이 필요하다.In the mini mill process, a coil box facility is used to wind up the intermediate rolled bar in the bar state to drastically reduce the space between the intermediate rolling and the finish rolling process and to suppress the bar coil temperature drop. The coil box temperature should be properly controlled because it determines the bar temperature and affects the dissolution of the low melting thickening layer that occurs after surface selective oxidation. It is necessary to heat the coil box to 1,080 ° C. or lower in order to secure a proper finishing temperature and to suppress dissolution of the low melting concentration layer.
4. 마무리 압연온도4. Finish rolling temperature
본 발명에서는 마무리 압연을 Ar3 온도 이상에서 실시한다. 마무리 압연온도가 Ar3 온도 이하인 경우 변형조직이다 조대립, 혼립 등이 잔존하기 때문에 가공성을 저해한다. 따라서 마무리 압연온도의 하한선을 Ar3 온도로 설정하였다.In the present invention, finish rolling is performed at an Ar3 temperature or more. If the finish rolling temperature is less than the Ar3 temperature, it is a strained structure, since coarse grains and mixed grains remain, which impairs workability. Therefore, the lower limit of finish rolling temperature was set to Ar3 temperature.
5. 권취온도5. Winding temperature
마무리 압연을 행한 열연강판의 양호한 내후성 및 가공성을 확보하기 위하여을 550℃ 이상 650℃ 이하의 온도에서 권취한다.In order to ensure the favorable weather resistance and workability of the hot rolled steel sheet which finish-rolled, it winds up at the temperature of 550 degreeC or more and 650 degrees C or less.
첨부된 도 1은 상술한 각 공정에서의 온도를 도시한 그래프도로서, 공정에 따라 변화화는 온도의 추이를 나타낸다.1 is a graph showing the temperature in each of the above-described processes, wherein the change in temperature shows the change in temperature.
실시예Example
이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.
표 1은 본 발명강과 비교강의 구성성분을 나타내고 있다.Table 1 shows the components of the inventive steel and the comparative steel.
(온도단위 : ℃)(Temperature unit: ℃)
상기 표 2는 도 1의 구성성분을 각각 갖는 본 발명강과 비교강을 제조하는 공정에서의 온도조건을 나타내는 표로서, 상기 조건에서 제조된 본 발명강과 비교강(열연강판)의 인장-연신특성, 내후성 및 표면품질을 각각 나타낸다.Table 2 is a table showing the temperature conditions in the process of manufacturing the inventive steel and comparative steel each having the components of Figure 1, the tensile-stretching characteristics of the inventive steel and comparative steel (hot-rolled steel sheet) prepared under the above conditions, Weather resistance and surface quality are shown, respectively.
이때, 인장시험은 C방향에 대해서 JIS 5호 인장심험편을 채취하여 실시하였으며, 내후성 특성은 부식촉진시험법으로 측정하여 일반강과 비교하였다. 또한 표면품질은 열간압연 표면에 발생하는 표면 크랙 유무에 따라 판단하였다.At this time, the tensile test was carried out by collecting the JIS No. 5 tensile test specimen in the C direction, and the weather resistance characteristics were measured by the corrosion promoting test method and compared with the general steel. In addition, the surface quality was determined by the presence of surface cracks occurring on the hot-rolled surface.
상기 표 2를 통하여 알수 있듯이, 본 발명강은 기본적으로 표면크랙이 전무한 상태에서 인장강도≥53kgf/mm2, 연신율≥30%를 확보하였으며, 내후성 특성은 비교강에 배하여 2배 이상 양호한 상태이다.As can be seen from Table 2, the steel of the present invention basically secured tensile strength ≥ 53kgf / mm 2 , elongation ≥ 30% in the state of no surface cracks, weather resistance is more than twice as good as the comparative steel .
저탄소 성분계를 기본으로 내후성 향상원소인 Cu, P를 첨가하고, 표면 크랙 억제방안으로 Ni을 첨가하여 제조한 발명강 1은 양호한 내후성 및 가공성을 가진 열연강판이며, P의 성분을 줄이고 Cu의 성분을 높인 발명강 2, Cr 성분을 높인 발명강 3, 저온권취를 실행한 발명강 4에서도 양호한 특성을 나타내었다.Invented steel 1 manufactured by adding Cu and P, which are weather resistance enhancing elements based on low carbon component, and Ni, as a method of suppressing surface cracks, is a hot-rolled steel sheet having good weatherability and workability. Good characteristics were also exhibited in the invention steel 2, the invention steel 3 with the Cr component increased, and the invention steel 4 with low temperature winding.
반면, 표면크랙이 다발하는 비교강 1, 포정반응에 의한 주조불량이 발생하는 비교강 2는 미니밀 공정에서 제조가 불가능하였다. 비교강 3은 일반강으로서, 내후성이 열악함을 보여준다.On the other hand, Comparative Steel 1, which has a large number of surface cracks, and Comparative Steel 2, in which casting defects are caused by a shot reaction, cannot be manufactured in a mini mill process. Comparative steel 3 is a general steel and shows poor weather resistance.
상술한 바와같은 본 발명은 강 성분의 적절한 조합 및 연속압연공정조건의 적절한 제어에 의하여 내후성과 가공성이 우수한 열연강판을 제조할 수 있다. 기존 고로밀에 비하여 고철을 사용하는 미니밀의 특성을 적극적으로 활용하여 고로밀에 대한 경쟁력있는 열연강판을 제조하므로서 경쟁력을 향상시키는 효과를 얻을수 있다.The present invention as described above can produce a hot rolled steel sheet excellent in weatherability and workability by appropriate combination of steel components and appropriate control of continuous rolling process conditions. Compared to the existing blast furnace mills, by actively utilizing the characteristics of mini mills using scrap steel, it is possible to obtain a competitive effect by manufacturing a competitive hot rolled steel sheet for blast mills.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980060190A KR100356706B1 (en) | 1998-12-29 | 1998-12-29 | Hot rolled steel sheet with excellent workability and weather resistance and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980060190A KR100356706B1 (en) | 1998-12-29 | 1998-12-29 | Hot rolled steel sheet with excellent workability and weather resistance and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000043769A KR20000043769A (en) | 2000-07-15 |
KR100356706B1 true KR100356706B1 (en) | 2002-12-18 |
Family
ID=19567025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980060190A KR100356706B1 (en) | 1998-12-29 | 1998-12-29 | Hot rolled steel sheet with excellent workability and weather resistance and manufacturing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100356706B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020040213A (en) * | 2000-11-24 | 2002-05-30 | 이구택 | A METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEET OF TENSILE STRENGTH 80kg/㎟ GRADE WITH EXCELLENT WEATHER RESISTANCE AND WORKABILITY |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100371960B1 (en) * | 2000-09-29 | 2003-02-14 | 주식회사 포스코 | High atmosphere corrosion resting and workability hot rolled strip having tensile strength of 60 kg/㎟ and method for manufacturing it |
KR20030002578A (en) * | 2001-06-29 | 2003-01-09 | 주식회사 포스코 | Manufacturing method for high atmosperic corrosion resisting |
KR20030054336A (en) * | 2001-12-24 | 2003-07-02 | 주식회사 포스코 | Steel wire for pre-stressed concrete and method for manufacturing thereof |
KR101350185B1 (en) * | 2007-08-20 | 2014-01-09 | 기아자동차주식회사 | Process for manufacturing high strength steel sheets |
CN102836976B (en) * | 2012-09-19 | 2015-05-27 | 赵冰 | Preparation method for steel plate |
-
1998
- 1998-12-29 KR KR1019980060190A patent/KR100356706B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020040213A (en) * | 2000-11-24 | 2002-05-30 | 이구택 | A METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEET OF TENSILE STRENGTH 80kg/㎟ GRADE WITH EXCELLENT WEATHER RESISTANCE AND WORKABILITY |
Also Published As
Publication number | Publication date |
---|---|
KR20000043769A (en) | 2000-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5893770B2 (en) | Manufacturing method of 700MPa class high strength weathering steel by continuous strip casting method | |
JP5893769B2 (en) | Method for producing 550 MPa class high strength weathering steel strip by strip casting method | |
JP5893768B2 (en) | Manufacturing method of 700MPa class high strength weathering steel by strip casting method | |
JP4518029B2 (en) | High-tensile hot-rolled steel sheet and manufacturing method thereof | |
JP4644076B2 (en) | High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof | |
JPH09512061A (en) | Mixed grain stainless steel and manufacturing method thereof | |
JP2003293083A (en) | Hot rolled steel sheet and method of producing hot rolled steel sheet and cold rolled steel sheet | |
JP4644075B2 (en) | High-strength steel sheet with excellent hole expansibility and manufacturing method thereof | |
KR100957992B1 (en) | High Manganese Steel Sheet having Excellent Pickling Property and Manufacturing Method Thereof | |
JP4248430B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP6816516B2 (en) | Non-oriented electrical steel sheet | |
KR100356706B1 (en) | Hot rolled steel sheet with excellent workability and weather resistance and manufacturing method | |
JP7332859B2 (en) | Slab manufacturing method | |
CN116949357A (en) | 850 MPa-level environment-friendly pickling-free low-density high-strength steel and preparation method thereof | |
JP4415933B2 (en) | Method for producing non-oriented electrical steel sheet for rotor | |
JP4010131B2 (en) | Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof | |
KR100627475B1 (en) | Method for manufacturing a high-strength hot rolled steel sheet havigng superior surface properties by using mini mill process | |
KR100946068B1 (en) | High strength hypereutectoid steel and method for manufacturing hypereutectoid steel rod wire using the same | |
KR100414625B1 (en) | Manufacturing method of high strength cold rolled enamel steel sheet with excellent fish scale resistance and adhesion | |
KR100370579B1 (en) | Hot rolled steel sheet with excellent surface properties and workability and manufacturing method by mini mill process | |
JPH07268467A (en) | Production of hot coil for steel tube having high toughness and sour resistance | |
JPS63203721A (en) | Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance | |
JPH04358025A (en) | Production of high toughness seamless steel tube having fine-grained structure | |
CN117265415B (en) | Acid-washing-free low-density steel and preparation method thereof | |
KR101299328B1 (en) | High strength steel sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120917 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20130927 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140930 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20151001 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20160928 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20170928 Year of fee payment: 16 |
|
LAPS | Lapse due to unpaid annual fee |