KR100299885B1 - Semiconductor device and method for producing the same - Google Patents

Semiconductor device and method for producing the same Download PDF

Info

Publication number
KR100299885B1
KR100299885B1 KR19980013880A KR19980013880A KR100299885B1 KR 100299885 B1 KR100299885 B1 KR 100299885B1 KR 19980013880 A KR19980013880 A KR 19980013880A KR 19980013880 A KR19980013880 A KR 19980013880A KR 100299885 B1 KR100299885 B1 KR 100299885B1
Authority
KR
South Korea
Prior art keywords
substrate
semiconductor chip
substrates
chip
semiconductor device
Prior art date
Application number
KR19980013880A
Other languages
Korean (ko)
Other versions
KR19980081522A (en
Inventor
노부아끼 다까하시
요시따까 교우고꾸
가쓰마사 하시모또
신이찌 미야자끼
Original Assignee
가네꼬 히사시
닛뽕덴끼 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가네꼬 히사시, 닛뽕덴끼 가부시끼가이샤 filed Critical 가네꼬 히사시
Publication of KR19980081522A publication Critical patent/KR19980081522A/en
Application granted granted Critical
Publication of KR100299885B1 publication Critical patent/KR100299885B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/074Stacked arrangements of non-apertured devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1023All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/1627Disposition stacked type assemblies, e.g. stacked multi-cavities

Abstract

반도체 칩 (2) 이 플립칩으로 탑재된 복수의 기판 (1) 을 적층을 위하여 제공된 솔더 범프 (7) 에 의해 적층한다. 칩의 상부면 (9) 과 기판 (1) 사이의 공간을 유연성 수지로 충전하여, 완충재층 (8) 을 형성한다. 이러한 유형의 3 차원 반도체 모듈 구조를 채택함으로서, 외부에서 가해지는 충격과 진동을 완충재층 (8) 이 흡수하여, 내충격성과 내진동성을 향상시킨다.The plurality of substrates 1 on which the semiconductor chips 2 are mounted with flip chips are laminated by solder bumps 7 provided for lamination. The space between the upper surface 9 of the chip and the substrate 1 is filled with a flexible resin to form the buffer layer 8. By adopting this type of three-dimensional semiconductor module structure, the shock absorbing material layer 8 absorbs external shocks and vibrations, thereby improving impact resistance and vibration resistance.

Description

반도체 장치 및 그의 제조방법{SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING THE SAME}Semiconductor device and manufacturing method therefor {SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING THE SAME}

본 발명은 반도체 장치에 관한 것으로, 보다 상세하게는 베어칩 (bare chip)을 탑재한 기판의 3 차원 적층구조를 갖는 반도체 장치에 관한 것이다.The present invention relates to a semiconductor device, and more particularly, to a semiconductor device having a three-dimensional stacked structure of a substrate on which a bare chip is mounted.

반도체 칩, 특히 반도체 메모리 장치의 패키지에 있어서, 보다 더 높은 고밀도화, 소형화(compactness) 및 대용량화을 달성하기 위해, 3 차원으로 칩을 적층하는 방법이 널리 사용되고 있다. 이러한 구조를 사용함으로서, 실장면적을 크게 줄일 수 있다.In the packaging of semiconductor chips, especially semiconductor memory devices, a method of stacking chips in three dimensions is widely used to achieve higher density, compactness, and large capacity. By using such a structure, the mounting area can be greatly reduced.

그러나, 3 차원으로 칩을 적층하면, 열팽창 계수의 차이 때문에, 열이력에 의해 발생하는 응력 (stress), 변형 (strain) 및 후속 불량 접속이 발생할 수 있다. 따라서, 이러한 방법을 우주선에 적용하는 경우, 내충격성 (耐衝擊性) 및 내진동성 (耐振動性) 을 고려해야 하므로, 이에 대한 몇 가지 방법이 제안되었다.However, stacking chips in three dimensions can cause stresses, strains and subsequent poor connections caused by thermal history due to differences in thermal expansion coefficients. Therefore, when such a method is applied to a spacecraft, it is necessary to consider impact resistance and vibration resistance, so several methods have been proposed.

예를 들어, 일본 특개평 6-275775 호에 개시되고, 도 3 에 도시된 바와 같이, TAB (tape automated bonding) 테이프에 칩 (2) 을 탑재하여, TAB 장치를 형성한 구조가 3 단 적층구조 (17A 내지 17C) 로 되어 있다.For example, disclosed in Japanese Patent Laid-Open No. 6-275775, and as shown in Fig. 3, a structure in which a chip 2 is mounted on a tape automated bonding (TAB) tape to form a TAB device is a three-stage laminated structure. (17A to 17C).

도 3 에서, 칩 (2) 은 범프 (13) 또는 플립칩 방법에 의해 리드 (lead; 11)에 접속되어 있고, 칩 (2) 의 TAB 테이프측의 부분은 보호수지 (12) 로 피복되어 있다. TAB 장치는 모듈 플레이트 (14) 에 탑재되어 있다. 모듈 플레이트 (14) 는 내열성이 높고 가급적 열전도성이 양호한 재료로 이루어진다.In Fig. 3, the chip 2 is connected to the lead 11 by the bump 13 or flip chip method, and the portion on the TAB tape side of the chip 2 is covered with the protective resin 12. . The TAB apparatus is mounted on the module plate 14. The module plate 14 is made of a material having high heat resistance and preferably good thermal conductivity.

TAB 장치를 모듈 플레이트 (14) 에 탑재하는 경우, 모듈 프레이트 (14) 의 요부 (凹部; depresssin) (15) 내에 열전도성이 양호한 접착재 (6) 를 사용하여 TAB 장치를 탑재함으로써, 칩 (2) 의 배면을 요부 (15) 의 내면과 접촉시킨다. TAB 장치 중 리드 (11) 의 외측 (outer) 리드부를 모듈 플레이트 (14) 의 외측면에 있는 접속 패턴에 접속시켜, TAB 장치와 모듈 플레이트 (14) 로 구성된 모듈 유니트 (17A∼17C) 를 형성한다.When the TAB device is mounted on the module plate 14, the chip 2 is mounted by mounting the TAB device using the adhesive material 6 having good thermal conductivity in the depresssin 15 of the module plate 14. The back side of the contact with the inner surface of the recess (15). The outer lead portion of the lead 11 of the TAB apparatus is connected to the connection pattern on the outer surface of the module plate 14 to form module units 17A to 17C composed of the TAB apparatus and the module plate 14. .

복수의 모듈 유니트 (17A∼17C) 사이에 완충부재 (18) 를 개재하여 서로 적층시킨다. 완충부재 (18) 는 이방성 도전수지 또는 이방성 도전고무로 이루어지고, 상하 방향으로만 도전성이 있기 때문에, 적층된 모듈 유니트들을 전기적으로 접속시킨다. 상술된 구조에 의해, 완충부재 (18) 가 외부에서 인가된 충격과 진동을 흡수하여, 장치의 내진동성을 향상시킬 수 있다.The plurality of module units 17A to 17C are laminated to each other with a buffer member 18 interposed therebetween. Since the shock absorbing member 18 is made of an anisotropic conductive resin or an anisotropic conductive rubber and is conductive only in the up and down direction, the laminated module units are electrically connected. By the above-described structure, the shock absorbing member 18 can absorb the shock and vibration applied from the outside, thereby improving the vibration resistance of the apparatus.

일본 특개평 2-42739 호에 다른 종래의 기술이 개시되어 있다. 도 4a 에 도시된 바와 같이, 절연기판 (1) 상에 유연성 접착제층 (20) 을 형성하고, 유연성 접착제층 (20) 상에 패드 (21) 와 배선패턴을 형성한다. 다음으로, 범프 (22) 에 의해 패드 (21) 상에 칩 (2) 을 접속시킨다.Japanese Patent Laid-Open No. 2-42739 discloses another conventional technique. As shown in FIG. 4A, the flexible adhesive layer 20 is formed on the insulating substrate 1, and the pad 21 and the wiring pattern are formed on the flexible adhesive layer 20. Next, the chip 2 is connected to the pad 21 by the bumps 22.

도 4b 에 도시된 바와 같이, 절연기판 (1) 상에 유연성 접착제층 (20) 을 형성한 후, 패드 (21) 와 배선패턴을 제외한 부분들을 에칭에 의해 제거한다. 그 다음에, 범프 (22) 에 의해 남아있는 패드 (21) 상에 칩 (2) 을 접속시킨다.As shown in FIG. 4B, after the flexible adhesive layer 20 is formed on the insulating substrate 1, portions other than the pad 21 and the wiring pattern are removed by etching. Then, the chip 2 is connected on the pad 21 remaining by the bumps 22.

상술한 바와 같은 구조를 채택함으로서, 칩 (2) 과 기판 (1) 사이에 개재된 유연성 접착제층 (20) 이 완충층으로서 작용하여, 그들간의 접속 신뢰성을 향상시킨다.By adopting the structure as described above, the flexible adhesive layer 20 interposed between the chip 2 and the substrate 1 acts as a buffer layer, thereby improving connection reliability therebetween.

일본 특개평 6-275775 호에 개시된 종래 기술에서, 모듈 유니트들을 적층시켜 그들간의 전기적 접속을 위한 물질로서 이방성 도전수지 또는 이방성 도전고무를 사용한다. 일반적으로, 이방성 도전수지 또는 이방성 도전고무는 금속에 비해 전기저항이 커서, 특히 메모리 칩들에 저전압 용도로 적용하기 어려운 문제점을 갖는다.In the prior art disclosed in Japanese Patent Laid-Open No. 6-275775, anisotropic conductive resin or anisotropic conductive rubber is used as a material for stacking module units and making an electrical connection therebetween. In general, anisotropic conductive resins or anisotropic conductive rubbers have a large electrical resistance compared to metals, and thus have difficulty in applying low voltage applications to memory chips.

일본 특개평 2-42739 호에 개시된 종래 기술에서는, 기판과 칩 사이를 접속하는데 솔더 (solder) 를 사용하지만, 실제로 그들간의 확실한 접속을 위하여 플럭스 (flux) 를 사용한다. 그러나, 플럭스내에 함유되어 있는 할로겐 이온이 잔류하면, 베어칩에 악영향을 미치는 문제가 있다.In the prior art disclosed in Japanese Patent Laid-Open No. 2-42739, solder is used for connecting between the substrate and the chip, but in practice, flux is used for reliable connection between them. However, if halogen ions contained in the flux remain, there is a problem of adversely affecting the bare chip.

이 때문에, 우주선에서 사용되는 정밀기기에서는 솔더의 사용을 피하고, 플럭스를 필요로 하지 않는 금 등의 재료를 사용하는 것이 바람직하다. 금으로 만들어진 범프들을 사용하여 플립칩 접속을 행하는 경우, 가열 뿐만 아니라 힘과 진동을 가하는 것은 필수이다. 이것이 행해질 때, 확실한 접속을 달성하기 위하여, 어느 정도의 경도 (hardness) 를 갖는 랜드 (land) 가 요구된다.For this reason, it is desirable to avoid the use of solder in precision instruments used in spacecraft and to use materials such as gold that do not require flux. In the case of flip chip connection using bumps made of gold, it is necessary to apply force and vibration as well as heating. When this is done, lands with some degree of hardness are required to achieve reliable connection.

그러나, 상술한 종래 기술에서는, 랜드 바로 하부에 있는 유연성 접착제로 인하여, 기판 상의 랜드와 금 등으로 만들어진 범프를 접속시키기 어렵다. 또한, 제조공정이 복잡하고 비용도 높다.However, in the above-described prior art, due to the flexible adhesive directly under the land, it is difficult to connect the bump on the substrate with the bump made of gold or the like. In addition, the manufacturing process is complicated and the cost is high.

상술한 종래기술의 결점을 고려하여, 본 발명의 목적은 내충격성과 내진동성을 향상시킬 수 있는 극히 간단한 구조를 갖는 반도체 장치를 제공하는 것이다.In view of the above-mentioned drawbacks of the prior art, an object of the present invention is to provide a semiconductor device having an extremely simple structure capable of improving impact resistance and vibration resistance.

따라서, 본 발명의 목적은, 복수의 기판을 적층하는 경우, 접속부를 비교적 낮은 레벨의 저항값으로 형성하여 비교적 낮은 전압레벨로 구동할 수 있는 반도체 장치를 제공하는 것이다.It is therefore an object of the present invention to provide a semiconductor device capable of driving at a relatively low voltage level by forming a connection portion with a relatively low level of resistance value when laminating a plurality of substrates.

도 1 은 본 발명의 일 실시예에 따른 반도체 장치의 실장구조의 단면도;1 is a cross-sectional view of a mounting structure of a semiconductor device according to an embodiment of the present invention;

도 2 는 본 발명의 다른 실시예에 따른 반도체 장치의 실장구조의 단면도;2 is a cross-sectional view of a mounting structure of a semiconductor device according to another embodiment of the present invention;

도 3 은 종래 기술에서의 반도체 장치의 실장구조의 단면도;3 is a cross-sectional view of a mounting structure of a semiconductor device in the prior art;

도 4 는 종래 기술에서의 반도체 장치의 실장구조의 단면도.4 is a cross-sectional view of a mounting structure of a semiconductor device in the prior art.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 : 기판 2 : 칩1: substrate 2: chip

3 : 금범프 4 : 내부 패드3: gold bump 4: inner pad

5 : 외부패드 6 : 밀봉수지5: outer pad 6: sealing resin

7 : 범프 8 : 완충재층7: bump 8: buffer layer

상술한 본 발명의 목적을 달성하기 위하여, 본 발명은 복수개의 기판이 적층되고 서로 전기적으로 상호 접속되어 있는 적층구조를 구비하는 반도체 장치로서, 기판의 표면 중 일 표면 상에 반도체 칩이 탑재되어 있으며, 이 적층구조는 반도체 칩의 상부면과 이 면에 대향하는 기판의 다른 표면 사이에 배치되어 충격과 진동을 흡수할 수 있는 완충재를 구비한다.In order to achieve the object of the present invention described above, the present invention is a semiconductor device having a laminated structure in which a plurality of substrates are stacked and electrically interconnected with each other, the semiconductor chip is mounted on one surface of the substrate The laminated structure is provided with a buffer material which is disposed between the upper surface of the semiconductor chip and another surface of the substrate opposite the surface to absorb shocks and vibrations.

그리고, 본 발명의 방법은 기판의 표면 중 일 표면 상에 반도체 칩이 탑재되어 있는 복수개의 기판이 적층되고 서로 전기적으로 상호 접속되어 있는 적층구조를 구비하는 반도체 장치를 제조하는 방법으로서, 반도체 칩의 표면상에 금속 범프를 형성하는 제 1 단계; 반도체 칩과 기판을 조립하도록 기판의 패드부를 금속으로 도포하는 제 2 단계; 플립칩 방법을 사용하여 반도체칩을 기판에 접속시키는 제 3 단계; 접속된 부분의 접속부를 밀봉수지로 밀봉하는 제 4 단계; 제 3 단계에서 각각 만들어지고 기판 사이에 솔더범프를 배치하여 복수개의 기판을 서로 적층하는 제 5 단계; 적층된 기판들을 서로 전기적으로 접속시키는 제 6 단계; 및 반도체 칩의 상부면과 기판의 다른 표면 사이에 충격과 진동을 흡수할 수 있는 완충재를 충전하는 제 7 단계를 구비한다.In addition, the method of the present invention is a method of manufacturing a semiconductor device having a laminated structure in which a plurality of substrates on which a semiconductor chip is mounted is laminated on one surface of the substrate and electrically connected to each other. Forming a metal bump on the surface; Applying a pad portion of the substrate with a metal to assemble the semiconductor chip and the substrate; A third step of connecting the semiconductor chip to the substrate using a flip chip method; A fourth step of sealing the connecting portion of the connected portion with a sealing resin; A fifth step of laminating a plurality of substrates by placing solder bumps between the substrates, each of which is made in a third step; A sixth step of electrically connecting the stacked substrates to each other; And a seventh step of filling a buffer material capable of absorbing shock and vibration between the upper surface of the semiconductor chip and the other surface of the substrate.

본 발명에 따른 반도체 장치는 적층구조로서, 칩들이 탑재되어 있는 제 1 기판과 제 2 기판을 구비하고, 제 2 기판은 제 1 기판상에 배치되며, 완충재는 제 1 기판 상에 있는 반도체 칩의 정면 (front surface) 과 제 2 기판의 이면 (rear surface) 사이에 제공된다.The semiconductor device according to the present invention has a stacked structure, comprising a first substrate and a second substrate on which chips are mounted, the second substrate is disposed on the first substrate, and the buffer material of the semiconductor chip is on the first substrate. It is provided between the front surface and the rear surface of the second substrate.

또한, 제 1 및 제 2 기판은 금속 전극인 범프들에 의해 상호 접속되고, 적층된 기판들 사이의 공간이 완충재로 충전된다.In addition, the first and second substrates are interconnected by bumps, which are metal electrodes, and the space between the stacked substrates is filled with a buffer material.

본 발명에 의하면, 칩이 적층되어 탑재된 기판들 사이에 유연성 완충재를 제공함으로써, 외부에서 가해지는 충격 및 진동을 흡수함으로써, 내충격성과 내진동성을 향상시킬 수 있는 효과가 있다.According to the present invention, by providing a flexible buffer between the substrate on which the chip is stacked, by absorbing the impact and vibration applied from the outside, there is an effect that can improve the impact resistance and vibration resistance.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention.

도 1 은 본 발명의 일 실시예에 따른 반도체 장치의 실장구조를 나타낸 단면도이다. 이하, 도 1 을 참조하여 제조방법을 설명한다. 예를 들어, 알루미나 또는 세라믹 등으로 이루어진 내부 패드 (4) 와 배선 패턴이 형성되어 있는 기판 (1) 과, 금범프 (3) 가 형성되어 있는 칩 (2) 을 플립칩 접속한다. 금범프 (3) 는, 예를 들어 금와이어를 이용한 볼 (ball) 방법에 의해 제조한다.1 is a cross-sectional view illustrating a mounting structure of a semiconductor device in accordance with an embodiment of the present invention. Hereinafter, a manufacturing method will be described with reference to FIG. 1. For example, flip chip connection is performed between the internal pad 4 made of alumina or ceramic, the substrate 1 on which the wiring pattern is formed, and the chip 2 on which the gold bumps 3 are formed. Gold bump 3 is manufactured by the ball method using a gold wire, for example.

기판 (1) 측의 내부 패드 (4) 상에는, 금범프 (3) 에 의한 접속을 확실히 하기 위하여, 플레이팅 (plating) 또는 스퍼터링 중 하나의 방법으로 미리 1 내지 5 ㎛ 의 두께로 금을 형성한다. 플립칩 접속을 행하는 경우, 가열과 가압 또는 진동 등을 병용하여 열압착 (hot-press bond) 을 행한다. 그 다음에, 칩 (2) 과 기판 (1) 사이에 밀봉수지 (6) 를 주입하여, 금범프 (3) 의 접속부 (C) 를 수지 (6) 로 피복하고, 이 수지 (6) 를 경화하여 밀봉을 형성한다.On the inner pad 4 on the side of the substrate 1, gold is formed to a thickness of 1 to 5 mu m in advance by either plating or sputtering in order to ensure connection by the gold bumps 3. . When flip chip connection is performed, hot-press bond is performed using heating, pressurization, or vibration in combination. Then, the sealing resin 6 is injected between the chip 2 and the substrate 1, the connection portion C of the gold bump 3 is covered with a resin 6, and the resin 6 is cured. To form a seal.

그 다음에, 유연성을 갖는 완충재층 (8) 을 칩 상부면 (9) 상에 형성하고, 반경화(semi-cured)시킨다. 본 발명에서는 완충재로서 유연성을 갖는 실리콘 수지 또는 에폭시 수지 등을 사용한다. 칩 (2) 이 탑재된 기판 (1) 의 외부패드 (5) 상에, 적층용 범프 (7) 를 형성한다. 적층용 범프 (7) 는, 예를 들어 플럭스 등의 점성을 이용하여 외부패드 (5) 상에 납주석 솔더볼들을 배치하고, 그들을 가열, 융해시켜 형성한다. 범프 (7) 의 높이는 솔더볼 크기를 선택함으로써, 기판 (1) 표면에서부터 완충재층 (8) 표면까지의 높이 이상으로 형성한다.Next, a flexible buffer layer 8 is formed on the chip upper surface 9 and semi-cured. In the present invention, a silicone resin or epoxy resin having flexibility is used as the cushioning material. On the outer pad 5 of the substrate 1 on which the chip 2 is mounted, the bumps for lamination 7 are formed. The stacking bumps 7 are formed by arranging lead tin solder balls on the outer pad 5 using, for example, viscosity such as flux, and heating and melting them. By selecting the solder ball size, the height of the bump 7 is formed above the height from the surface of the substrate 1 to the surface of the buffer layer 8.

다음으로, 칩 (2) 이 탑재되어 있는 기판 (1) 을 복수개 적층시키고, 리플로우 (reflow) 에 의해 솔더를 융해시켜 일괄적으로 접속시킨다. 동시에, 완충재층 (8) 을 완전히 경화시켜, 도 1 에 도시된 바와 같은 반도체용 실장구조를 형성한다. 또한, 적층 공정 이후에 수지를 주입하여 완충재층 (8) 을 형성할 수도 있다.Next, the board | substrate 1 in which the chip 2 is mounted is laminated | stacked, and solder is melted by reflow, and it connects collectively. At the same time, the buffer material layer 8 is completely cured to form a semiconductor mounting structure as shown in FIG. The buffer material layer 8 may be formed by injecting a resin after the lamination step.

상술한 반도체 실장구조를 채택함으로서, 칩 상부면 (9) 과 기판 (1) 사이에 수지로 이루어진 유연성 완충재층 (8) 이 있기 때문에, 외부에서 가해지는 충격과 진동을 흡수하여, 내충격성과 내진동성을 향상시킨다. 또한, 기판 (1) 들을 금속 (솔더) 범프 (7) 에 의해 접속하기 때문에, 전기 저항도 낮다. 또한, 기판의 내부 패드 (4) 하부에 유연성층이 없기 때문에, 금 등으로 이루어진 범프들에 의해 칩 (2) 과 기판 (1) 을 양호하게 접속시킬 수 있다.By adopting the semiconductor mounting structure described above, since there is a flexible buffer layer 8 made of resin between the chip upper surface 9 and the substrate 1, it absorbs shocks and vibrations applied from the outside, and thus impact resistance and vibration resistance To improve. In addition, since the substrates 1 are connected by the metal (solder) bumps 7, the electrical resistance is also low. In addition, since there is no flexible layer under the inner pad 4 of the substrate, the chip 2 and the substrate 1 can be satisfactorily connected by bumps made of gold or the like.

이 실시예에서는 칩 (2) 을 기판 (1) 에 접속하는데 금범프를 사용하였지만, 솔더 범프 등도 사용할 수 있다.In this embodiment, although gold bumps were used to connect the chip 2 to the substrate 1, solder bumps and the like can also be used.

도 2 는 본 발명의 다른 실시예에 따른 반도체 장치의 실장구조를 나타낸 단면도이다. 내부 패드 (4) 와 배선패턴이 형성되어 있는 기판 (1) 과 칩 (2) 을 플립칩 접속한다. 금범프 (3) 에 의한 접속을 확실히 하기 위하여, 기판 (1) 의 내부 패드상에 플레이팅 또는 스퍼터링 중 하나의 방법으로 금층을 미리 1 내지 5 ㎛ 의 두께로 형성한다. 플립칩 접속을 행하는 경우에는, 가열과 가압 또는진동 등을 병합하여 열압착 본딩을 행한다.2 is a cross-sectional view illustrating a mounting structure of a semiconductor device in accordance with another embodiment of the present invention. The chip | tip 2 and the board | substrate 1 in which the internal pad 4 and the wiring pattern are formed are flip-chip connected. In order to ensure the connection by the gold bumps 3, the gold layer is formed to a thickness of 1 to 5 탆 in advance by either plating or sputtering on the inner pad of the substrate 1. In the case of flip chip connection, thermocompression bonding is performed by combining heating, pressurization or vibration.

그 다음에, 밀봉용 수지 (6) 를 칩 (2) 과 기판 (1) 사이에 주입하고, 경화시킨다. 그 다음에, 칩 (2) 이 탑재되어 있는 기판의 외부 패드 (5) 상에, 적층범프 (7) 를 형성한다. 적층범프 (7) 는 예를 들어, 납주석 솔더로 이루어진다. 다음으로, 칩 (2) 이 탑재되어 있는 기판 (1) 을 복수개 적층시키고, 리플로우에 의해 솔더를 융해시켜 일괄적으로 접속시킨다. 다음으로, 유연성 수지를 주입하여 각 기판 (1) 사이의 공간을 충전하고, 이것을 경화시켜, 완충재층 (8) 을 형성하여, 도 2 에 도시된 반도체 실장구조를 얻는다.Next, the sealing resin 6 is injected between the chip 2 and the substrate 1 and cured. Next, the laminated bumps 7 are formed on the outer pads 5 of the substrate on which the chips 2 are mounted. The laminated bumps 7 are made of, for example, lead tin solder. Next, the board | substrate 1 with which the chip | tip 2 is mounted is laminated | stacked, and solder is fuse | melted by reflow, and it connects collectively. Next, the flexible resin is injected to fill the space between the respective substrates 1, and this is cured to form the buffer layer 8, thereby obtaining the semiconductor mounting structure shown in FIG.

기판 (1) 의 저면과 칩의 상면 (9) 사이의 공간이 너무 협소하여 수지를 충분히 주입할 수 없는 경우에는, 제 1 실시예에서와 동일한 방식으로 칩 (2) 을 구비하는 기판 (1) 을 형성한 후에, 유연성 수지를 기판 (1) 들 사이의 공간내에 주입하여, 이것을 완충재층 (8) 으로서 사용하여, 도 2 에 도시된 반도체 실장구조를 얻는다.When the space between the bottom face of the substrate 1 and the top surface 9 of the chip is too narrow to sufficiently inject the resin, the substrate 1 having the chip 2 in the same manner as in the first embodiment After the formation, the flexible resin is injected into the space between the substrates 1 and used as the buffer material layer 8 to obtain the semiconductor mounting structure shown in FIG.

상술된 반도체 실장구조를 채택함으로서, 적층된 각 기판 사이에 유연성 완충재층 (8) 이 존재하기 때문에, 외부에서 인가된 충격과 진동을 흡수하여, 내충격성과 내진동성을 향상시킨다. 또한, 기판 (1) 들을 금속 (솔더) 으로 접속시키기 때문에, 전기저항도 낮다. 또한, 기판 (1) 의 내부 패드 (4) 하부에 유연성층이 없기 때문에, 금 등으로 이루어진 범프들에 의해 칩 (2) 과 기판 (1) 간에 양호한 접속을 형성할 수 있다.By adopting the semiconductor mounting structure described above, since the flexible buffer layer 8 exists between each stacked substrate, the shock and vibration applied from the outside are absorbed to improve impact resistance and vibration resistance. Moreover, since the board | substrate 1 is connected with a metal (solder), electrical resistance is also low. In addition, since there is no flexible layer under the inner pad 4 of the substrate 1, it is possible to form a good connection between the chip 2 and the substrate 1 by bumps made of gold or the like.

이 실시예에서는 기판 (1) 에 칩 (2) 을 접속하는데 금범프를 사용하였지만,솔더 범프 등도 사용할 수 있다.Although gold bumps were used to connect the chip 2 to the substrate 1 in this embodiment, solder bumps and the like can also be used.

상술된 본 발명에 따르면, 솔더 범프에 의해 적층, 접속된 칩탑재가 완료된 기판들 사이에, 유연성 완충재를 제공함으로써, 외부에서 가해지는 충격과 진동을 흡수하여, 내충격성과 내진동성을 향상시킨다. 이에 따라, 우주선과 차량 등의 충격과 진동을 받는 것에 3 차원 적층 모듈을 적용할 수 있다.According to the present invention described above, by providing a flexible cushioning material between the chip-mounted substrates stacked and connected by solder bumps, shocks and vibrations applied from the outside are absorbed, thereby improving impact resistance and vibration resistance. Accordingly, the three-dimensional stacked module can be applied to the shock and vibration of the spacecraft and the vehicle.

Claims (5)

기판의 표면 중 일 표면 상에 반도체 칩이 탑재되어 있는 복수개의 상기 기판이 적층되고 서로 전기적으로 상호 접속되어 있는 적층구조를 포함하며,A laminated structure in which a plurality of the substrates on which a semiconductor chip is mounted on one of the surfaces of the substrates are stacked and electrically connected to each other; 상기 적층구조는The laminated structure 상기 반도체칩의 하부면 상에 배치되어 상기 반도체칩과 상기 기판을 서로 접속시키는 금속범프;A metal bump disposed on a lower surface of the semiconductor chip to connect the semiconductor chip and the substrate to each other; 상기 기판과 상기 반도체칩의 접속부를 봉지하는 밀봉수지; 및A sealing resin encapsulating a connection portion between the substrate and the semiconductor chip; And 상기 반도체 칩의 상부면과 상기 상부면에 대향하는 상기 기판의 다른 표면 사이에 배치되어, 충격과 진동을 흡수할 수 있는 완충재층을 포함하는 것을 특징으로 하는 반도체 장치.And a buffer layer disposed between an upper surface of the semiconductor chip and another surface of the substrate opposite the upper surface, the buffer layer capable of absorbing shock and vibration. 제 1 항에 있어서, 상기 금속범프는 금으로 이루어진 것을 특징으로 하는 반도체 장치.The semiconductor device of claim 1, wherein the metal bumps are made of gold. 기판의 표면 중 일 표면상에 반도체 칩이 탑재되어 있는 복수개의 기판이 적층되고 서로 전기적으로 상호 접속되어 있는 적층 구조를 구비하는 반도체 장치의 제조방법으로서,A method of manufacturing a semiconductor device having a laminated structure in which a plurality of substrates on which a semiconductor chip is mounted is stacked on one surface of the substrate and electrically connected to each other. 상기 반도체 칩의 하부면 상에 금속 범프를 형성하는 제 1 단계;Forming a metal bump on a lower surface of the semiconductor chip; 상기 반도체 칩과 상기 기판을 조립하도록 상기 기판의 패드부를 금속으로도포하는 제 2 단계;A second step of coating the pad portion of the substrate with a metal to assemble the semiconductor chip and the substrate; 상기 반도체칩을 플립칩 방법을 사용하여 상기 기판에 접속시키는 제 3 단계;Connecting the semiconductor chip to the substrate using a flip chip method; 상기 반도체칩과 상기 기판의 접속부를 밀봉수지로 밀봉하는 제 4 단계;A fourth step of sealing a connection portion between the semiconductor chip and the substrate with a sealing resin; 상기 제 3 단계에서 각각 만들어진 상기 기판 사이에 솔더 범프를 배치하고 복수개의 상기 기판을 서로 적층하는 제 5 단계;A fifth step of arranging solder bumps between the substrates formed in the third step and stacking a plurality of the substrates together; 상기 적층된 기판들을 서로 전기적으로 접속시키는 제 6 단계; 및A sixth step of electrically connecting the stacked substrates to each other; And 상기 반도체 칩의 상부면과 상기 기판의 다른 표면 사이에 충격과 진동을 흡수할 수 있는 완충재를 충전하는 제 7 단계를 구비하는 것을 특징으로 하는 반도체 장치의 제조방법.And a seventh step of filling a shock absorbing material capable of absorbing shock and vibration between an upper surface of the semiconductor chip and another surface of the substrate. 제 3 항에 있어서, 상기 금속 범프 및 상기 금속 패드는 금으로 형성하는 것을 특징으로 하는 반도체 장치의 제조방법.The method of claim 3, wherein the metal bump and the metal pad are formed of gold. 기판의 표면 중 일 표면 상에 반도체 칩이 탑재되어 있는 복수개의 상기 기판이 적층되고 서로 전기적으로 상호 접속되어 있는 적층구조를 구비하는 반도체 장치의 제조방법으로서,A manufacturing method of a semiconductor device having a laminated structure in which a plurality of the substrates on which a semiconductor chip is mounted on one of the surfaces of the substrate is laminated and electrically connected to each other. 상기 반도체 칩의 하부면 상에 금속 범프를 형성하는 제 1 단계;Forming a metal bump on a lower surface of the semiconductor chip; 상기 반도체 칩과 상기 기판을 조립하도록 상기 기판의 패드부를 금속으로 도포하는 제 2 단계;Applying a pad portion of the substrate with a metal to assemble the semiconductor chip and the substrate; 상기 반도체 칩을 플립칩 방법을 사용하여 상기 기판에 접속시키는 제 3 단계;Connecting the semiconductor chip to the substrate using a flip chip method; 상기 반도체 칩과 상기 기판의 접속부를 밀봉수지로 밀봉하는 제 4 단계;A fourth step of sealing a connection portion between the semiconductor chip and the substrate with a sealing resin; 상기 제 3 단계에서 각각 만들어진 상기 기판 사이에 솔더 범프를 배치하고 복수개의 상기 기판을 서로 적층하고, 상기 반도체 칩의 상부면과 상기 기판 사이에 충격과 진동을 흡수할 수 있는 완충재를 추가로 충전하는 제 5 단계; 및Arranging solder bumps between the substrates formed in the third step, stacking the plurality of substrates with each other, and further filling a buffer material capable of absorbing shock and vibration between the upper surface of the semiconductor chip and the substrate; A fifth step; And 상기 적층된 기판들을 서로 전기적으로 접속시키고 상기 완충재를 경화시키는 제 6 단계를 구비하는 것을 특징으로 하는 반도체 장치의 제조방법.And a sixth step of electrically connecting the stacked substrates to each other and curing the buffer material.
KR19980013880A 1997-04-17 1998-04-17 Semiconductor device and method for producing the same KR100299885B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9099502A JPH10294423A (en) 1997-04-17 1997-04-17 Semiconductor device
JP97-99502 1997-04-17

Publications (2)

Publication Number Publication Date
KR19980081522A KR19980081522A (en) 1998-11-25
KR100299885B1 true KR100299885B1 (en) 2001-09-06

Family

ID=14249057

Family Applications (1)

Application Number Title Priority Date Filing Date
KR19980013880A KR100299885B1 (en) 1997-04-17 1998-04-17 Semiconductor device and method for producing the same

Country Status (3)

Country Link
US (2) US6025648A (en)
JP (1) JPH10294423A (en)
KR (1) KR100299885B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734540B1 (en) 2010-07-07 2017-05-11 엘지이노텍 주식회사 Power board and electronic components including thereof

Families Citing this family (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294423A (en) * 1997-04-17 1998-11-04 Nec Corp Semiconductor device
US6441495B1 (en) * 1997-10-06 2002-08-27 Rohm Co., Ltd. Semiconductor device of stacked chips
US6274929B1 (en) 1998-09-01 2001-08-14 Texas Instruments Incorporated Stacked double sided integrated circuit package
JP3257500B2 (en) * 1998-02-27 2002-02-18 ティーディーケイ株式会社 Magnetic head device
JP3055619B2 (en) * 1998-04-30 2000-06-26 日本電気株式会社 Semiconductor device and manufacturing method thereof
US6414391B1 (en) * 1998-06-30 2002-07-02 Micron Technology, Inc. Module assembly for stacked BGA packages with a common bus bar in the assembly
US6313522B1 (en) * 1998-08-28 2001-11-06 Micron Technology, Inc. Semiconductor structure having stacked semiconductor devices
DE19852967B4 (en) * 1998-11-17 2004-05-27 Micronas Gmbh Measuring device with a semiconductor arrangement
JP2000223645A (en) * 1999-02-01 2000-08-11 Mitsubishi Electric Corp Semiconductor device
JP2001007472A (en) * 1999-06-17 2001-01-12 Sony Corp Electronic circuit device and its manufacture
JP3526788B2 (en) 1999-07-01 2004-05-17 沖電気工業株式会社 Method for manufacturing semiconductor device
US6122171A (en) 1999-07-30 2000-09-19 Micron Technology, Inc. Heat sink chip package and method of making
JP3619395B2 (en) * 1999-07-30 2005-02-09 京セラ株式会社 Semiconductor device built-in wiring board and manufacturing method thereof
TW417839U (en) * 1999-07-30 2001-01-01 Shen Ming Tung Stacked memory module structure and multi-layered stacked memory module structure using the same
JP2001102523A (en) * 1999-09-28 2001-04-13 Sony Corp Thin-film device and manufacturing method therefor
JP2001144218A (en) * 1999-11-17 2001-05-25 Sony Corp Semiconductor device and method of manufacture
JP3798597B2 (en) 1999-11-30 2006-07-19 富士通株式会社 Semiconductor device
KR100401019B1 (en) * 1999-12-30 2003-10-08 앰코 테크놀로지 코리아 주식회사 semiconductor package and its manufacturing method
US6369448B1 (en) * 2000-01-21 2002-04-09 Lsi Logic Corporation Vertically integrated flip chip semiconductor package
JP3752949B2 (en) * 2000-02-28 2006-03-08 日立化成工業株式会社 Wiring substrate and semiconductor device
JP2001339011A (en) * 2000-03-24 2001-12-07 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method
US7247932B1 (en) * 2000-05-19 2007-07-24 Megica Corporation Chip package with capacitor
JP2002009192A (en) * 2000-06-23 2002-01-11 Shinko Electric Ind Co Ltd Multi-layer wiring board and semiconductor device
JP3405456B2 (en) * 2000-09-11 2003-05-12 沖電気工業株式会社 Semiconductor device, method of manufacturing semiconductor device, stack type semiconductor device, and method of manufacturing stack type semiconductor device
JP3842548B2 (en) * 2000-12-12 2006-11-08 富士通株式会社 Semiconductor device manufacturing method and semiconductor device
JP2002231885A (en) * 2001-02-06 2002-08-16 Mitsubishi Electric Corp Semiconductor device
US8143108B2 (en) 2004-10-07 2012-03-27 Stats Chippac, Ltd. Semiconductor device and method of dissipating heat from thin package-on-package mounted to substrate
US20020121707A1 (en) * 2001-02-27 2002-09-05 Chippac, Inc. Super-thin high speed flip chip package
USRE44438E1 (en) 2001-02-27 2013-08-13 Stats Chippac, Ltd. Semiconductor device and method of dissipating heat from thin package-on-package mounted to substrate
US20040070080A1 (en) * 2001-02-27 2004-04-15 Chippac, Inc Low cost, high performance flip chip package structure
TW479339B (en) * 2001-03-01 2002-03-11 Advanced Semiconductor Eng Package structure of dual die stack
US6472747B2 (en) * 2001-03-02 2002-10-29 Qualcomm Incorporated Mixed analog and digital integrated circuits
US6479321B2 (en) * 2001-03-23 2002-11-12 Industrial Technology Research Institute One-step semiconductor stack packaging method
US6762487B2 (en) * 2001-04-19 2004-07-13 Simpletech, Inc. Stack arrangements of chips and interconnecting members
JP3999945B2 (en) * 2001-05-18 2007-10-31 株式会社東芝 Manufacturing method of semiconductor device
US6477058B1 (en) * 2001-06-28 2002-11-05 Hewlett-Packard Company Integrated circuit device package including multiple stacked components
JP2003078109A (en) * 2001-09-03 2003-03-14 Mitsubishi Electric Corp Laminated memory device
DE10164800B4 (en) * 2001-11-02 2005-03-31 Infineon Technologies Ag Method for producing an electronic component with a plurality of chips stacked on top of one another and contacted with one another
TW523887B (en) 2001-11-15 2003-03-11 Siliconware Precision Industries Co Ltd Semiconductor packaged device and its manufacturing method
JP2003318361A (en) * 2002-04-19 2003-11-07 Fujitsu Ltd Semiconductor device and method of manufacturing the same
KR20030085868A (en) * 2002-05-02 2003-11-07 삼성전기주식회사 Method for mounting component by multi-layer and device thereby
JP3678212B2 (en) * 2002-05-20 2005-08-03 ウシオ電機株式会社 Super high pressure mercury lamp
US6972481B2 (en) 2002-09-17 2005-12-06 Chippac, Inc. Semiconductor multi-package module including stacked-die package and having wire bond interconnect between stacked packages
US7064426B2 (en) * 2002-09-17 2006-06-20 Chippac, Inc. Semiconductor multi-package module having wire bond interconnect between stacked packages
US7205647B2 (en) * 2002-09-17 2007-04-17 Chippac, Inc. Semiconductor multi-package module having package stacked over ball grid array package and having wire bond interconnect between stacked packages
US7053476B2 (en) * 2002-09-17 2006-05-30 Chippac, Inc. Semiconductor multi-package module having package stacked over die-down flip chip ball grid array package and having wire bond interconnect between stacked packages
US20040061213A1 (en) * 2002-09-17 2004-04-01 Chippac, Inc. Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect between stacked packages
US7034387B2 (en) * 2003-04-04 2006-04-25 Chippac, Inc. Semiconductor multipackage module including processor and memory package assemblies
EP1556895A4 (en) * 2002-10-08 2009-12-30 Chippac Inc Semiconductor stacked multi-package module having inverted second package
TW567601B (en) * 2002-10-18 2003-12-21 Siliconware Precision Industries Co Ltd Module device of stacked semiconductor package and method for fabricating the same
US7339276B2 (en) * 2002-11-04 2008-03-04 Intel Corporation Underfilling process in a molded matrix array package using flow front modifying solder resist
US6755700B2 (en) * 2002-11-12 2004-06-29 Modevation Enterprises Inc. Reset speed control for watercraft
JP3891123B2 (en) * 2003-02-06 2007-03-14 セイコーエプソン株式会社 SEMICONDUCTOR DEVICE, ELECTRONIC DEVICE, ELECTRONIC DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP4110992B2 (en) * 2003-02-07 2008-07-02 セイコーエプソン株式会社 Semiconductor device, electronic device, electronic apparatus, semiconductor device manufacturing method, and electronic device manufacturing method
JP2004253518A (en) * 2003-02-19 2004-09-09 Renesas Technology Corp Semiconductor device and method of manufacturing same
JP2004259886A (en) * 2003-02-25 2004-09-16 Seiko Epson Corp Semiconductor device, electronic device, electronic equipment, manufacturing method of semiconductor device, and manufacturing method of electronic device
JP2004281818A (en) * 2003-03-17 2004-10-07 Seiko Epson Corp Semiconductor device, electronic device, electronic apparatus, method for manufacturing carrier substrate, method for manufacturing semiconductor device, and method for manufacturing electronic device
JP2004281920A (en) * 2003-03-18 2004-10-07 Seiko Epson Corp Semiconductor device, electronic device, electronic apparatus, process for producing semiconductor device, and process for producing electronic device
JP4096774B2 (en) * 2003-03-24 2008-06-04 セイコーエプソン株式会社 SEMICONDUCTOR DEVICE, ELECTRONIC DEVICE, ELECTRONIC DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP2004349495A (en) * 2003-03-25 2004-12-09 Seiko Epson Corp Semiconductor device and its manufacturing method, and electronic device and electronic equipment
TWI311353B (en) * 2003-04-18 2009-06-21 Advanced Semiconductor Eng Stacked chip package structure
US7371607B2 (en) 2003-05-02 2008-05-13 Seiko Epson Corporation Method of manufacturing semiconductor device and method of manufacturing electronic device
JP3912318B2 (en) 2003-05-02 2007-05-09 セイコーエプソン株式会社 Semiconductor device manufacturing method and electronic device manufacturing method
JP2004335624A (en) * 2003-05-06 2004-11-25 Hitachi Ltd Semiconductor module
US20040247925A1 (en) * 2003-06-06 2004-12-09 Cromwell Stephen Daniel Method and system for adjusting a curvature of a load plate based on a target load
US20040262728A1 (en) * 2003-06-30 2004-12-30 Sterrett Terry L. Modular device assemblies
US7323358B1 (en) 2003-08-13 2008-01-29 Hewlett-Packard Development Company, L.P. Method and system for sizing a load plate
US7180165B2 (en) * 2003-09-05 2007-02-20 Sanmina, Sci Corporation Stackable electronic assembly
US20050056946A1 (en) * 2003-09-16 2005-03-17 Cookson Electronics, Inc. Electrical circuit assembly with improved shock resistance
WO2005059967A2 (en) * 2003-12-17 2005-06-30 Chippac, Inc. Multiple chip package module having inverted package stacked over die
US20050258527A1 (en) * 2004-05-24 2005-11-24 Chippac, Inc. Adhesive/spacer island structure for multiple die package
US8552551B2 (en) * 2004-05-24 2013-10-08 Chippac, Inc. Adhesive/spacer island structure for stacking over wire bonded die
US20050269692A1 (en) * 2004-05-24 2005-12-08 Chippac, Inc Stacked semiconductor package having adhesive/spacer structure and insulation
EP1775768A1 (en) * 2004-06-04 2007-04-18 ZyCube Co., Ltd. Semiconductor device having three-dimensional stack structure and method for manufacturing the same
US7253511B2 (en) * 2004-07-13 2007-08-07 Chippac, Inc. Semiconductor multipackage module including die and inverted land grid array package stacked over ball grid array package
JP2006041438A (en) * 2004-07-30 2006-02-09 Shinko Electric Ind Co Ltd Semiconductor chip built-in substrate, and its manufacturing method
US7906363B2 (en) * 2004-08-20 2011-03-15 Zycube Co., Ltd. Method of fabricating semiconductor device having three-dimensional stacked structure
JP2006073843A (en) * 2004-09-03 2006-03-16 Nec Electronics Corp Semiconductor device and its manufacturing method
US20060073635A1 (en) * 2004-09-28 2006-04-06 Chao-Yuan Su Three dimensional package type stacking for thinner package application
KR100573302B1 (en) * 2004-10-07 2006-04-24 삼성전자주식회사 three-dimensional package stack using wire bonding and manufacturing method thereof
JP2006114604A (en) * 2004-10-13 2006-04-27 Toshiba Corp Semiconductor device and assembly method thereof
JP2006120935A (en) * 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US20060119263A1 (en) * 2004-12-07 2006-06-08 Au Optronics Corporation Double-side display device and method of making same
JP2006196709A (en) * 2005-01-13 2006-07-27 Sharp Corp Semiconductor device and manufacturing method thereof
US7999376B2 (en) * 2005-01-25 2011-08-16 Panasonic Corporation Semiconductor device and its manufacturing method
US7372141B2 (en) * 2005-03-31 2008-05-13 Stats Chippac Ltd. Semiconductor stacked package assembly having exposed substrate surfaces on upper and lower sides
US7364945B2 (en) * 2005-03-31 2008-04-29 Stats Chippac Ltd. Method of mounting an integrated circuit package in an encapsulant cavity
WO2006118720A2 (en) * 2005-03-31 2006-11-09 Stats Chippac Ltd. Semiconductor assembly including chip scale package and second substrate and having exposed substrate surfaces on upper and lower sides
US7545031B2 (en) * 2005-04-11 2009-06-09 Stats Chippac Ltd. Multipackage module having stacked packages with asymmetrically arranged die and molding
US7196427B2 (en) * 2005-04-18 2007-03-27 Freescale Semiconductor, Inc. Structure having an integrated circuit on another integrated circuit with an intervening bent adhesive element
US7429786B2 (en) * 2005-04-29 2008-09-30 Stats Chippac Ltd. Semiconductor package including second substrate and having exposed substrate surfaces on upper and lower sides
US7354800B2 (en) * 2005-04-29 2008-04-08 Stats Chippac Ltd. Method of fabricating a stacked integrated circuit package system
US7582960B2 (en) * 2005-05-05 2009-09-01 Stats Chippac Ltd. Multiple chip package module including die stacked over encapsulated package
US7394148B2 (en) * 2005-06-20 2008-07-01 Stats Chippac Ltd. Module having stacked chip scale semiconductor packages
KR100751094B1 (en) * 2005-07-28 2007-08-21 엠텍비젼 주식회사 Method for sharing non-volatile memory and apparatus having multimedia platform comprising a plurality of memories in one-chip
DE102005039365B4 (en) * 2005-08-19 2022-02-10 Infineon Technologies Ag Gate-controlled fin resistive element operating as a pinch - resistor for use as an ESD protection element in an electrical circuit and a device for protecting against electrostatic discharges in an electrical circuit
JP5116268B2 (en) * 2005-08-31 2013-01-09 キヤノン株式会社 Multilayer semiconductor device and manufacturing method thereof
US7640655B2 (en) * 2005-09-13 2010-01-05 Shinko Electric Industries Co., Ltd. Electronic component embedded board and its manufacturing method
US7385282B2 (en) * 2005-10-19 2008-06-10 Chipmos Technologies Inc. Stacked-type chip package structure
TWI305410B (en) * 2005-10-26 2009-01-11 Advanced Semiconductor Eng Multi-chip package structure
JP4512545B2 (en) * 2005-10-27 2010-07-28 パナソニック株式会社 Multilayer semiconductor module
JP4528715B2 (en) * 2005-11-25 2010-08-18 株式会社東芝 Semiconductor device and manufacturing method thereof
US7768125B2 (en) * 2006-01-04 2010-08-03 Stats Chippac Ltd. Multi-chip package system
US7456088B2 (en) 2006-01-04 2008-11-25 Stats Chippac Ltd. Integrated circuit package system including stacked die
JP2007201254A (en) * 2006-01-27 2007-08-09 Ibiden Co Ltd Built-in semiconductor-element including board, and built-in semiconductor-element including multilayer circuit board
US7750482B2 (en) * 2006-02-09 2010-07-06 Stats Chippac Ltd. Integrated circuit package system including zero fillet resin
US8704349B2 (en) * 2006-02-14 2014-04-22 Stats Chippac Ltd. Integrated circuit package system with exposed interconnects
TWI292947B (en) * 2006-06-20 2008-01-21 Unimicron Technology Corp The structure of embedded chip packaging and the fabricating method thereof
TWI314774B (en) * 2006-07-11 2009-09-11 Siliconware Precision Industries Co Ltd Semiconductor package and fabrication method thereof
DE102006033702B3 (en) * 2006-07-20 2007-12-20 Infineon Technologies Ag Producing package-on-package electronic circuits, involves sticking a chip on a bottom package to an interposer using radiation-curable thermoplastic adhesive, soldering on a top package and irradiating the adhesive
US7868440B2 (en) * 2006-08-25 2011-01-11 Micron Technology, Inc. Packaged microdevices and methods for manufacturing packaged microdevices
TWI332702B (en) * 2007-01-09 2010-11-01 Advanced Semiconductor Eng Stackable semiconductor package and the method for making the same
KR100887475B1 (en) * 2007-02-26 2009-03-10 주식회사 네패스 Semiconductor package and fabrication method thereof
JP2007318182A (en) * 2007-09-03 2007-12-06 Rohm Co Ltd Semiconductor device
US20090166889A1 (en) * 2007-12-31 2009-07-02 Rajen Murugan Packaged integrated circuits having surface mount devices and methods to form packaged integrated circuits
US8288205B2 (en) * 2008-03-19 2012-10-16 Stats Chippac Ltd. Package in package system incorporating an internal stiffener component
US8779570B2 (en) * 2008-03-19 2014-07-15 Stats Chippac Ltd. Stackable integrated circuit package system
US20090268422A1 (en) * 2008-04-29 2009-10-29 Bailey Mark J Scalable electronic package assembly for memory devices and other terminated bus structures
JP2010147153A (en) * 2008-12-17 2010-07-01 Shinko Electric Ind Co Ltd Semiconductor apparatus and method of manufacturing the same
US8105915B2 (en) * 2009-06-12 2012-01-31 Stats Chippac, Ltd. Semiconductor device and method of forming vertical interconnect structure between non-linear portions of conductive layers
US8471154B1 (en) * 2009-08-06 2013-06-25 Amkor Technology, Inc. Stackable variable height via package and method
TWI416700B (en) * 2009-12-29 2013-11-21 Chipmos Technologies Inc Chip-stacked package structure and method for manufacturing the same
US9385095B2 (en) 2010-02-26 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
JP5589462B2 (en) * 2010-03-16 2014-09-17 カシオ計算機株式会社 Semiconductor device and manufacturing method of semiconductor device
FR2964786B1 (en) * 2010-09-09 2013-03-15 Commissariat Energie Atomique METHOD FOR PRODUCING CHIP ELEMENTS WITH WIRE INSERTION GROOVES
US8378477B2 (en) * 2010-09-14 2013-02-19 Stats Chippac Ltd. Integrated circuit packaging system with film encapsulation and method of manufacture thereof
US20120085575A1 (en) * 2010-10-08 2012-04-12 Nobuhiro Yamamoto Electronic Apparatus Manufacturing Method, Electronic Component, and Electronic Apparatus
JP2011044755A (en) * 2010-12-03 2011-03-03 Rohm Co Ltd Semiconductor device
US8927391B2 (en) 2011-05-27 2015-01-06 Taiwan Semiconductor Manufacturing Company, Ltd. Package-on-package process for applying molding compound
US20140264733A1 (en) * 2013-03-14 2014-09-18 GLOBALFOUNDERS Singapore Pte. Ltd. Device with integrated passive component
US10083932B2 (en) * 2014-01-17 2018-09-25 Nvidia Corporation Package on package arrangement and method
KR101622453B1 (en) * 2014-01-22 2016-05-31 앰코 테크놀로지 코리아 주식회사 Semiconductor device and manufacturing method thereof
US20150221570A1 (en) * 2014-02-04 2015-08-06 Amkor Technology, Inc. Thin sandwich embedded package
US9768090B2 (en) * 2014-02-14 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US10026671B2 (en) 2014-02-14 2018-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9935090B2 (en) 2014-02-14 2018-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9653443B2 (en) 2014-02-14 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal performance structure for semiconductor packages and method of forming same
US10056267B2 (en) 2014-02-14 2018-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9564416B2 (en) 2015-02-13 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same
JP6571398B2 (en) * 2015-06-04 2019-09-04 リンテック株式会社 Protective film for semiconductor, semiconductor device and composite sheet
JP7125547B2 (en) * 2018-12-29 2022-08-24 深南電路股▲ふん▼有限公司 Printed circuit board that can be assembled in various ways and its manufacturing method
CN109743856A (en) * 2018-12-29 2019-05-10 积高电子(无锡)有限公司 A kind of packaging technology of sensor
CN113707621B (en) * 2021-10-29 2022-02-08 甬矽电子(宁波)股份有限公司 Semiconductor packaging structure and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183426A (en) * 1993-11-18 1995-07-21 Samsung Electron Co Ltd Semiconductor device and manufacture thereof
JPH08236694A (en) * 1995-02-24 1996-09-13 Nec Corp Semiconductor package and manufacture thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709468A (en) * 1986-01-31 1987-12-01 Texas Instruments Incorporated Method for producing an integrated circuit product having a polyimide film interconnection structure
JPH0242739A (en) * 1988-08-01 1990-02-13 Toagosei Chem Ind Co Ltd Cob mounting printed-circuit board
US5001542A (en) * 1988-12-05 1991-03-19 Hitachi Chemical Company Composition for circuit connection, method for connection using the same, and connected structure of semiconductor chips
JPH03270030A (en) * 1990-03-19 1991-12-02 Hitachi Ltd Electronic device
JPH03278511A (en) * 1990-03-28 1991-12-10 Mitsubishi Electric Corp Chip-type laminated ceramic capacitor
JPH04280667A (en) * 1991-03-08 1992-10-06 Hitachi Ltd High integrated semiconductor device
US5404044A (en) * 1992-09-29 1995-04-04 International Business Machines Corporation Parallel process interposer (PPI)
US5727310A (en) * 1993-01-08 1998-03-17 Sheldahl, Inc. Method of manufacturing a multilayer electronic circuit
JP2842753B2 (en) * 1993-03-17 1999-01-06 日本電気株式会社 Semiconductor device
EP0658937A1 (en) * 1993-12-08 1995-06-21 Hughes Aircraft Company Vertical IC chip stack with discrete chip carriers formed from dielectric tape
US5886408A (en) * 1994-09-08 1999-03-23 Fujitsu Limited Multi-chip semiconductor device
JP2570628B2 (en) * 1994-09-21 1997-01-08 日本電気株式会社 Semiconductor package and manufacturing method thereof
US5715144A (en) * 1994-12-30 1998-02-03 International Business Machines Corporation Multi-layer, multi-chip pyramid and circuit board structure
JP2905736B2 (en) * 1995-12-18 1999-06-14 株式会社エイ・ティ・アール光電波通信研究所 Semiconductor device
JP2806357B2 (en) * 1996-04-18 1998-09-30 日本電気株式会社 Stack module
US5817530A (en) * 1996-05-20 1998-10-06 Micron Technology, Inc. Use of conductive lines on the back side of wafers and dice for semiconductor interconnects
JPH10163386A (en) * 1996-12-03 1998-06-19 Toshiba Corp Semiconductor device, semiconductor package and mounting circuit device
US6054337A (en) * 1996-12-13 2000-04-25 Tessera, Inc. Method of making a compliant multichip package
US5786635A (en) * 1996-12-16 1998-07-28 International Business Machines Corporation Electronic package with compressible heatsink structure
US5994166A (en) * 1997-03-10 1999-11-30 Micron Technology, Inc. Method of constructing stacked packages
JPH10294423A (en) * 1997-04-17 1998-11-04 Nec Corp Semiconductor device
US5790384A (en) * 1997-06-26 1998-08-04 International Business Machines Corporation Bare die multiple dies for direct attach
US5798567A (en) * 1997-08-21 1998-08-25 Hewlett-Packard Company Ball grid array integrated circuit package which employs a flip chip integrated circuit and decoupling capacitors
JP2000286380A (en) * 1999-03-30 2000-10-13 Nec Corp Packaging structure and manufacture of semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183426A (en) * 1993-11-18 1995-07-21 Samsung Electron Co Ltd Semiconductor device and manufacture thereof
JPH08236694A (en) * 1995-02-24 1996-09-13 Nec Corp Semiconductor package and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734540B1 (en) 2010-07-07 2017-05-11 엘지이노텍 주식회사 Power board and electronic components including thereof

Also Published As

Publication number Publication date
KR19980081522A (en) 1998-11-25
US6287892B1 (en) 2001-09-11
US6025648A (en) 2000-02-15
JPH10294423A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
KR100299885B1 (en) Semiconductor device and method for producing the same
US6214642B1 (en) Area array stud bump flip chip device and assembly process
KR100856609B1 (en) A semiconductor device and a method of manufacturing the same
KR100868419B1 (en) Semiconductor device and manufacturing method thereof
US7026188B2 (en) Electronic device and method for manufacturing the same
US6779260B1 (en) Overmolded electronic package including circuit-carrying substrate
US6969636B1 (en) Semiconductor package with stress inhibiting intermediate mounting substrate
US7276784B2 (en) Semiconductor device and a method of assembling a semiconductor device
KR100743342B1 (en) A method of manufacturing a semiconductor device
US20080157327A1 (en) Package on package structure for semiconductor devices and method of the same
US6081038A (en) Semiconductor chip package structure
KR101153693B1 (en) A semiconductor device
KR100669830B1 (en) Stack package using acf
US7663254B2 (en) Semiconductor apparatus and method of manufacturing the same
KR101096330B1 (en) Package for a semiconductor device
JP2907188B2 (en) Semiconductor device, method of mounting semiconductor device, and method of manufacturing semiconductor device
JP3666576B2 (en) Multilayer module and manufacturing method thereof
KR100674501B1 (en) Method for attaching semiconductor chip using flip chip bonding technic
US6649833B1 (en) Negative volume expansion lead-free electrical connection
KR100533847B1 (en) Stacked flip chip package using carrier tape
KR100617071B1 (en) Stack semiconductor package ? manufacturing technique the same
JP2002237566A (en) Three-dimensional mounting structure of semiconductor device, and method of manufacturing the same
KR101179514B1 (en) Stack semiconductor package and method for fabricating the same
JP4117480B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
KR100780694B1 (en) Flip chip package

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140522

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150515

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160517

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 17

EXPY Expiration of term