KR100268788B1 - Metal wiring formation method of semiconductor device - Google Patents

Metal wiring formation method of semiconductor device Download PDF

Info

Publication number
KR100268788B1
KR100268788B1 KR1019970030281A KR19970030281A KR100268788B1 KR 100268788 B1 KR100268788 B1 KR 100268788B1 KR 1019970030281 A KR1019970030281 A KR 1019970030281A KR 19970030281 A KR19970030281 A KR 19970030281A KR 100268788 B1 KR100268788 B1 KR 100268788B1
Authority
KR
South Korea
Prior art keywords
aluminum alloy
alloy layer
temperature
cvd
pvd aluminum
Prior art date
Application number
KR1019970030281A
Other languages
Korean (ko)
Other versions
KR19990006059A (en
Inventor
김헌도
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019970030281A priority Critical patent/KR100268788B1/en
Priority to TW087109821A priority patent/TW387136B/en
Priority to JP17605698A priority patent/JP3288010B2/en
Publication of KR19990006059A publication Critical patent/KR19990006059A/en
Application granted granted Critical
Publication of KR100268788B1 publication Critical patent/KR100268788B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers

Abstract

PURPOSE: A metal interconnection formation method is provided to prevent voids and to improve a surface roughness by depositing aluminum alloys using CVD(chemical vapor deposition) and PVD(physical VD). CONSTITUTION: An anti-diffusion layer(3) is formed on a planarized insulator(2). An adhesive layer(4) and a CVD aluminum alloy(5) are sequentially deposited on the anti-diffusion layer(3). A low temperature PVD aluminum alloy(6) and a high temperature PVD aluminum alloy(7) are sequentially deposited on the CVD aluminum alloy(5) by in-situ. Then, an anti-diffusion layer is formed on the resultant structure. The CVD aluminum alloy(5) is deposited at the temperature of 100-0250 °C, the low temperature PVD aluminum alloy(6) is deposited at the temperature of room temperature-100 °C, and the high temperature PVD aluminum alloy(7) is deposited at the temperature of 400-0550 °C.

Description

반도체소자의 금속배선 형성방법Metal wiring formation method of semiconductor device

본 발명은 반도체소자의 금속배선 형성방법에 관한 것으로, 특히 금속배선 물질인 알루미늄합금의 평탄화에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming metal wiring in a semiconductor device, and more particularly, to planarization of an aluminum alloy, which is a metal wiring material.

일반적으로, 소자간이나 소자와 외부회로 사이를 전기적으로 접속시키기 위한 반도체소자의 배선은, 배선을 위한 소정의 콘택홀 및 비아홀을 배선재료로 매립하여 배선층을 형성하고 후속공정을 거쳐 이루어지며, 낮은 저항을 필요로 하는 곳에는 금속배선을 사용한다.In general, the wiring of a semiconductor device for electrically connecting between devices or between an element and an external circuit is made through a subsequent process by filling a predetermined contact hole and via hole for wiring with a wiring material and forming a wiring layer. Metal wiring is used where resistance is required.

상기 금속배선은 알루미늄(Al)에 소량의 실리콘이나 구리가 포함되거나 실리콘과 구리가 모두 포함되어 비저항이 낮으면서 가공성이 우수한 알루미늄합금을 배선재료로 하여 PVD 방법의 스퍼터링으로 상기의 콘택홀 및 비아홀을 매립하는 방법이 가장 널리 이용되고 있다.The metal wiring includes a small amount of silicon or copper in aluminum (Al), or both silicon and copper, and has a low resistivity and excellent workability. Landfilling is the most widely used.

종래기술에서 널리 이용되는 물리기상증착방법은 그 과정이 화학적 반응없이 물리적 기구에 의하여 증착이 이루어진다. 그리고, 상기 물리기상증착방법의 일종인 스퍼터링방법은 외부인가전압에 의해 저압의 기체를 이온화, 즉 플라즈마화시켜 기체이온을 형성하며, 상기 기체이온은 전위차에 의해 가속되어 음극 타겟을 때린다. 이때, 상기 기체이온의 충돌에 의해 타겟의 원자가 튀어나와 모재 표면에서 응집, 성장하여 박막을 형성한다. 일반적으로, 상기 저압의 기체는 아르곤이 사용된다.In the physical vapor deposition method widely used in the prior art, the process is carried out by physical apparatus without chemical reaction. In addition, the sputtering method, which is a kind of physical vapor deposition method, ionizes, ie, plasmas, a gas of low pressure by an external applied voltage to form gas ions, and the gas ions are accelerated by a potential difference to hit the negative electrode target. At this time, the atoms of the target are protruded by the collision of the gas ions to aggregate and grow on the surface of the base material to form a thin film. In general, argon is used as the low pressure gas.

상기 스퍼터링방법은, 화학기상증착방법에 비하여 저온에서 실시되며 공정이 단순하다는 장점이 있다.The sputtering method has an advantage that the process is performed at a low temperature compared to the chemical vapor deposition method, and the process is simple.

그러나, 금속박막내에 결함의 증가로 금속박막의 비저항이 높아지는 문제가 있고, 디자인룰이 작아짐에 따라 금속배선의 저항값이 커지게 되어 금속박막에 일렉트로 마이그레이션(EM) 현상과 같은 신뢰성 측면과 알씨(RC) 딜레이 등과 같은 소자 특성 측면에 좋지않은 영향을 준다.However, there is a problem that the specific resistance of the metal thin film is increased due to the increase of defects in the metal thin film, and as the design rule becomes smaller, the resistance value of the metal wiring becomes large, and the reliability aspects such as the electromigration (EM) phenomenon to the metal thin film and RC) adversely affects device characteristics such as delay.

이를 해결하기 위하여 CVD 방법과 PVD 방법을 이용한 알루미늄합금 평탄화공정은 표면 거칠기가 문제로 대두되어 마스크를 이용한 식각공정을 어렵게 하는 문제점이 있다.In order to solve this problem, the aluminum alloy planarization process using the CVD method and the PVD method has a problem that the surface roughness becomes a problem, making the etching process using the mask difficult.

따라서, 본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, 평탄화된 금속배선을 형성하여 후속공정을 용이하게 함으로써 반도체소자의 특성 및 신뢰성을 향상시킬 수 있는 반도체소자의 금속배선 형성방법을 제공하는데 그 목적이 있다.Accordingly, the present invention provides a method for forming a metal wiring of a semiconductor device that can improve the characteristics and reliability of the semiconductor device by forming a flattened metal wiring to facilitate the subsequent process in order to solve the above problems of the prior art. The purpose is.

제1(a)도 내지 제1(d)도는 본 발명의 실시예에 반도체소자의 금속배선 형성방법을 도시한 단면도.1 (a) to 1 (d) are cross-sectional views showing a metal wiring formation method of a semiconductor device in an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반도체기판 2 : 평탄화절연막1 semiconductor substrate 2 planarization insulating film

3 : 확산방지막 4 : 젖음층3: diffusion barrier 4: wet layer

5 : CVD 알루미늄합금층 6 : 저온 PVD 알루미늄합금층5: CVD aluminum alloy layer 6: low temperature PVD aluminum alloy layer

7 : 고온 PVD 알루미늄합금층 8 : 평탄화된 알루미늄합금층7: high temperature PVD aluminum alloy layer 8: flattened aluminum alloy layer

9 : 반사방지막9: antireflection film

이상의 목적을 달성하기 위해 본 발명에 따른 반도체소자의 금속배선 형성방법은,In order to achieve the above object, a metal wiring forming method of a semiconductor device according to the present invention,

콘택홀이 형성된 평탄화 절연막 상부에 확산방지막을 형성하는 공정과,Forming a diffusion barrier over the planarization insulating film on which the contact hole is formed;

상기 확산방지막 상부에 젖음층과 CVD 알루미늄합금층을 순차적으로 적층하는 공정과,Sequentially depositing a wet layer and a CVD aluminum alloy layer on the diffusion barrier;

상기 CVD 알루미늄합금층 상부에 진공파괴없이 저온 PVD 알루미늄합금층과 고온 PVD 알루미늄합금층을 순차적으로 형성하는 공정과,Forming a low-temperature PVD aluminum alloy layer and a high-temperature PVD aluminum alloy layer sequentially on the CVD aluminum alloy layer without vacuum destruction;

상기 고온 PVD 알루미늄합금층 상부에 반사방지막을 형성하는 공정을 포함하는 것을 특징으로 하는 것이다.It characterized in that it comprises a step of forming an anti-reflection film on the high temperature PVD aluminum alloy layer.

이하, 첨부된 도면을 참고로 하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제1(a)도 내지 제1(d)도는 본 발명의 실시예에 따른 반도체소자의 금속배선 형성방법을 도시한 단면도이다.1 (a) to 1 (d) are cross-sectional views illustrating a method for forming metal wirings of a semiconductor device according to an embodiment of the present invention.

먼저, 반도체기판(1) 상부에 콘택홀이 형성된 평탄화절연막(2)을 형성하고, 전처리공정을 실시한 다음, 전체표면 상부에 확산방지막(3)을 형성한다.First, a planarization insulating film 2 having contact holes formed on the semiconductor substrate 1 is formed, a pretreatment process is performed, and then a diffusion barrier 3 is formed on the entire surface.

이때, 상기 평탄화절연막(2)은 소자분리막, 워드라인, 비트라인 및 캐패시터를 형성한 다음, 유동성이 우수한 절연물질로 형성한다.At this time, the planarization insulating film 2 is formed of an isolation material, a word line, a bit line and a capacitor, and then formed of an insulating material having excellent fluidity.

그리고, 상기 확산방지막(3)은 TiN, WN, TaN과 같은 질화막 계열의 화합물이나 TiSiN, WSiN 등과 같은 실리콘질화막 계통의 화합물로 형성한다.(제1(a)도)The diffusion barrier 3 is formed of a nitride film-based compound such as TiN, WN, TaN, or a silicon nitride film-based compound such as TiSiN, WSiN, or the like (FIG. 1 (a)).

그 다음에, 상기 확산방지막(3) 상부에 젖음층(4)과 CVD 알루미늄합금층(5)을 순차적으로 형성한다.Then, the wet layer 4 and the CVD aluminum alloy layer 5 are sequentially formed on the diffusion barrier 3.

이때, 상기 젖음층(4)은 Ti 등과 같은 물질로 형성한다. 그리고, 상기 CVD 알루미늄합금층(5)은 CVD 방법을 이용하여 100~250℃ 정도의 온도에서 400~1000Å 정도의 두께로 형성한다.(제1(b)도)At this time, the wet layer 4 is formed of a material such as Ti. Then, the CVD aluminum alloy layer 5 is formed to a thickness of about 400 ~ 1000 Pa at a temperature of about 100 ~ 250 ℃ by using a CVD method (Fig. 1 (b)).

그 다음에, 상기 CVD 알루미늄합금층(5) 상부에 저온 PVD 알루미늄합금층(6)과 고온 PVD 알루미늄합금층(7)을 순차적으로 적층한다.Next, the low-temperature PVD aluminum alloy layer 6 and the high-temperature PVD aluminum alloy layer 7 are sequentially stacked on the CVD aluminum alloy layer 5.

이때, 상기 저온 PVD 알루미늄합금층(5) 상부에 저온 PVD 알루미늄합금층(6)과 고온 PVD 알루미늄합금층(7)을 순차적으로 적층한다.At this time, the low-temperature PVD aluminum alloy layer 6 and the high-temperature PVD aluminum alloy layer 7 are sequentially stacked on the low-temperature PVD aluminum alloy layer 5.

이때, 상기 저온 PVD 알루미늄합금층(6)과 고온 PVD 알루미늄합금층(7) 형성공정은, 상기 CVD 알루미늄합금층(5)의 증착후 진공 파괴없이 고온 고진공으로 유지된 스퍼터링 챔버로 이동하여 반도체기판(1), 즉 웨이퍼의 가열없이 5~25kW 정도의 높은 파워(power)로 짧은 시간에 증착한 다음, 상기 웨이퍼를 충분히 가열하고 고온에서 0.1~5kW 이하의 낮은 증착 파워로 알루미늄합금을 증착하여 평탄화된 알루미늄합금층(8)의 형성을 가능하게 한다.At this time, the process of forming the low-temperature PVD aluminum alloy layer 6 and the high-temperature PVD aluminum alloy layer 7 is moved to a sputtering chamber maintained at high temperature and high vacuum without vacuum destruction after deposition of the CVD aluminum alloy layer 5 to thereby provide a semiconductor substrate. (1) That is, it is deposited in a short time with a high power of about 5 to 25 kW without heating the wafer, and then the wafer is sufficiently heated and flattened by depositing an aluminum alloy with a low deposition power of 0.1 to 5 kW or less at high temperature. It is possible to form the aluminum alloy layer 8 thus formed.

그리고, 상기 저온 PVD 알루미늄합금층(6)과 고온 PVD 알루미늄합금층(7)의 증착공정은, 하나의 챔버에서 형성할 수도 있고, 온도가 조절된 두 개의 챔버를 이용하여 형성할 수도 있다.In addition, the deposition process of the low-temperature PVD aluminum alloy layer 6 and the high-temperature PVD aluminum alloy layer 7 may be formed in one chamber, or may be formed using two chambers whose temperature is controlled.

그리고, 상기 저온 PVD 알루미늄합금층(6)과 고온 PVD 알루미늄합금층(7) 형성공정은, 각각 실온~100℃ 정도와 400~550℃ 정도의 온도에서 실시한다. 이때, 상기 400~550℃ 정도의 온도는 콘택의 단차비에 따라 조절 가능한 것이다.(제1(c)도)The low-temperature PVD aluminum alloy layer 6 and the high-temperature PVD aluminum alloy layer 7 are formed at temperatures of about room temperature to about 100 ° C. and about 400 to 550 ° C., respectively. At this time, the temperature of about 400 ~ 550 ° C is adjustable according to the step ratio of the contact (Fig. 1 (c)).

그 다음에, 상기 평탄화된 알루미늄합금층(8) 상부에 패터닝공정을 위한 반사방지막(9)을 형성한다.(제1(d)도)Next, an antireflection film 9 for patterning is formed on the planarized aluminum alloy layer 8 (FIG. 1 (d)).

본 발명의 다른 실시예로 다층의 금속배선을 형성하는 방법은, 웨이퍼 디가싱(degassing)/콘택 하부 산화막제거/젖음층이나 아웃가싱(out-gassing) 방지막증착/CVD 알루미늄합금층 증착/저온 PVD 알루미늄합금층 증착/고온 PVD 알루미늄합금층 증착/반사방지막 증착 등으로 이루어진다.In another embodiment of the present invention, a method of forming a multi-layered metal wiring includes: wafer degassing / contact oxide removal / wet layer or outgassing prevention film deposition / CVD aluminum alloy layer deposition / low temperature. PVD aluminum alloy layer deposition / high temperature PVD aluminum alloy layer deposition / antireflection film deposition and the like.

이상에서 설명한 바와같이 본 발명에 따른 반도체소자의 금속배선 형성방법은, CVD와 PVD 방법으로 알루미늄합금층을 증착하여 보이드의 유발을 방지하고, 고온과 저온에서 알루미늄합금층을 증착하여 표면 거칠기를 감소시킴으로써 후속공정을 용이하게 하여 반도체소자의 특성 및 신뢰성을 향상시킬 수 있는 효과가 있다.As described above, in the method of forming a metal wiring of the semiconductor device according to the present invention, deposition of an aluminum alloy layer by CVD and PVD method prevents induction of voids, and deposition of an aluminum alloy layer at high and low temperatures reduces surface roughness. This facilitates the subsequent process, thereby improving the characteristics and reliability of the semiconductor device.

Claims (7)

콘택홀이 형성된 평탄화 절연막 상부에 확산방지막을 형성하는 공정과, 상기 확산방지막 상부에 젖음층과 CVD 알루미늄합금층을 순차적으로 적층하는 공정과, 상기 CVD 알루미늄합금층 상부에 진공파괴없이 저온 PVD 알루미늄합금층과 고온 PVD 알루미늄합금층을 순차적으로 형성하는 공정과, 상기 고온 PVD 알루미늄합금층 상부에 반사방지막을 형성하는 공정을 포함하는 반도체소자의 금속배선 형성방법.Forming a diffusion barrier over the planarization insulating film on which the contact hole is formed; sequentially depositing a wet layer and a CVD aluminum alloy layer over the diffusion barrier; and a low temperature PVD aluminum alloy without vacuum destruction on the CVD aluminum alloy layer And forming a layer and a high temperature PVD aluminum alloy layer sequentially, and forming an anti-reflection film on the high temperature PVD aluminum alloy layer. 제1항에 있어서, 상기 확산방지막은 질화막 계통이나 실리콘 질화막 계통의 금속박막으로 형성하는 것을 특징으로 하는 반도체소자의 금속배선 형성방법.The method of claim 1, wherein the diffusion barrier is formed of a metal thin film of a nitride film system or a silicon nitride film system. 제1항에 있어서, 상기 CVD 알루미늄합금층은 100~250℃ 온도에서 400~1000Å 두께로 형성하는 것을 특징으로 하는 반도체소자의 금속배선 형성방법.The method of claim 1, wherein the CVD aluminum alloy layer is formed to have a thickness of 400 to 1000 kPa at a temperature of 100 to 250 ° C. 7. 제1항에 있어서, 상기 저온 PVD 알루미늄합금층은 5~25kW 파워(power)로 실온~100℃ 온도에서 형성하는 것을 특징으로 하는 반도체소자의 금속배선 형성방법.The method of claim 1, wherein the low-temperature PVD aluminum alloy layer is formed at room temperature to 100 ° C. at a power of 5 to 25 kW. 제1항에 있어서, 상기 고온 PVD 알루미늄합금층은 0.1~5kW 증착 파워로 400~550℃ 온도에서 형성하는 것을 특징으로 하는 반도체소자의 금속배선 형성방법.The method of claim 1, wherein the high temperature PVD aluminum alloy layer is formed at a temperature of 400 ° C. to 550 ° C. with a deposition power of 0.1 to 5 kW. 제1항, 제4항 및 제5항중 어느 한 항에 있어서, 상기 저온, 고온 PVD 알루미늄합금층은 하나의 증착챔버에서 형성하는 것을 특징으로 하는 반도체소자의 금속배선 형성방법.6. The method of claim 1, 4, or 5, wherein the low temperature and high temperature PVD aluminum alloy layer is formed in one deposition chamber. 제1항, 제4항 및 제5항중 어느 한 항에 있어서, 상기 저온, 고온 PVD 알루미늄합금층은 두께의 증착챔버에서 각각 형성하는 것을 특징으로 하는 반도체소자의 금속배선 형성방법.6. The method of claim 1, 4 or 5, wherein the low temperature and high temperature PVD aluminum alloy layers are formed in a deposition chamber having a thickness, respectively.
KR1019970030281A 1997-06-30 1997-06-30 Metal wiring formation method of semiconductor device KR100268788B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019970030281A KR100268788B1 (en) 1997-06-30 1997-06-30 Metal wiring formation method of semiconductor device
TW087109821A TW387136B (en) 1997-06-30 1998-06-19 Method of forming a metal wire of a semiconductor device
JP17605698A JP3288010B2 (en) 1997-06-30 1998-06-23 Method for forming metal wiring of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970030281A KR100268788B1 (en) 1997-06-30 1997-06-30 Metal wiring formation method of semiconductor device

Publications (2)

Publication Number Publication Date
KR19990006059A KR19990006059A (en) 1999-01-25
KR100268788B1 true KR100268788B1 (en) 2000-11-01

Family

ID=19513017

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970030281A KR100268788B1 (en) 1997-06-30 1997-06-30 Metal wiring formation method of semiconductor device

Country Status (3)

Country Link
JP (1) JP3288010B2 (en)
KR (1) KR100268788B1 (en)
TW (1) TW387136B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399417B1 (en) * 2001-01-08 2003-09-26 삼성전자주식회사 A method for preparing of integrated circuit of semiconductor
KR20030002522A (en) * 2001-06-29 2003-01-09 주식회사 하이닉스반도체 Method for forming a metal line
TWI512860B (en) * 2013-06-17 2015-12-11 China Steel Corp Wire structure and fabrication method thereof

Also Published As

Publication number Publication date
KR19990006059A (en) 1999-01-25
TW387136B (en) 2000-04-11
JP3288010B2 (en) 2002-06-04
JPH1187508A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
US5747360A (en) Method of metalizing a semiconductor wafer
US7799693B2 (en) Method for manufacturing a semiconductor device
KR19990063873A (en) Improved interface between titanium and aluminum alloys in metal stacks for integrated circuits
US6124205A (en) Contact/via force fill process
US7645698B2 (en) Method for forming barrier layer
US7224065B2 (en) Contact/via force fill techniques and resulting structures
KR100268788B1 (en) Metal wiring formation method of semiconductor device
KR100361207B1 (en) A method of forming a metal line in a semiconductor device
KR100451493B1 (en) Metal wiring formation method of semiconductor device
KR100307827B1 (en) Metal wiring contact formation method of semiconductor device
KR100753120B1 (en) Method for forming teneray diffusion barrier in copper itnerconnection
KR100458297B1 (en) Method for forming metal interconnection of semiconductor device to avoid generation of overhang and improve quality of layer and step coverage in contact hole
KR100778866B1 (en) Method for forming metal dffusion barrier with tisin
KR100257154B1 (en) Method of forming metal wiring in semiconductor device
KR100215830B1 (en) Forming method for metal wiring
KR100454629B1 (en) Method for forming conductive interconnection of semiconductor device to improve diffusion preventing ability
KR100252896B1 (en) Method for forming contact metal line of semiconductor device
KR100376259B1 (en) Method of forming a copper wiring in a semiconductor device
KR100275331B1 (en) Method for manufacturing metal interconnection of semiconductor device
KR100369352B1 (en) Semiconductor device and manufacturing method thereof
KR20000003456A (en) Aluminium metal wire forming method of semiconductor device
KR100268802B1 (en) Metal wiring formation method of semiconductor device
KR20010011307A (en) Method for forming metal wire using zirconiumdiboride layer as diffusion barrier
KR100353534B1 (en) Method for forming metal interconnection layer in semiconductor device
KR20040001872A (en) Method for forming contact in semiconductor device using tungsten layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090624

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee