KR100252885B1 - Metal line of semiconductor device and method for forming the same - Google Patents

Metal line of semiconductor device and method for forming the same Download PDF

Info

Publication number
KR100252885B1
KR100252885B1 KR1019970067445A KR19970067445A KR100252885B1 KR 100252885 B1 KR100252885 B1 KR 100252885B1 KR 1019970067445 A KR1019970067445 A KR 1019970067445A KR 19970067445 A KR19970067445 A KR 19970067445A KR 100252885 B1 KR100252885 B1 KR 100252885B1
Authority
KR
South Korea
Prior art keywords
melting point
high melting
line
point metal
forming
Prior art date
Application number
KR1019970067445A
Other languages
Korean (ko)
Other versions
KR19990048681A (en
Inventor
조원철
Original Assignee
김영환
현대반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체주식회사 filed Critical 김영환
Priority to KR1019970067445A priority Critical patent/KR100252885B1/en
Publication of KR19990048681A publication Critical patent/KR19990048681A/en
Application granted granted Critical
Publication of KR100252885B1 publication Critical patent/KR100252885B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A metal interconnection of a semiconductor device, as well as a forming method thereof, is provided to improve reliability of the interconnection line by preventing the formation of voids and the short circuit of the interconnection line. CONSTITUTION: The metal interconnection line includes a conductive line(22a), the first and second refractory metal lines(21a,23a) respectively formed under and on the conductive line(22a), and a refractory sidewall(25a) formed on a lateral side of all the lines(21a,22a,23a). While the conductive line(22a) is preferably formed of aluminum, the refractory lines(21a,23a) and sidewall(25a) are preferably formed of titanium and titanium nitride. In the method, the first refractory metal line(21a), the conductive line(22a) and the second refractory metal line(23a) are sequentially formed and then selectively etched. Thereafter, the refractory sidewall(25a) is wholly formed thereon and then etched back.

Description

반도체 소자의 금속배선 및 그 형성방법Metal wiring of semiconductor device and method of forming the same

본 발명은 반도체 소자에 관한 것으로, 특히 배선의 신뢰성을 향상시키는데 적당한 반도체 소자의 금속배선 및 그 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly, to a metal wiring and a method of forming the semiconductor device suitable for improving the reliability of wiring.

일반적으로 반도체 제조공정시 가장 많이 사용하는 금속재료는 알루미늄과 알루미늄 합금이다. 그 이유는 전기전도성이 좋고, 산화막과의 접착력이 뛰어날 뿐만 아니라 성형하기 쉽기 때문이다.In general, the most used metal materials in the semiconductor manufacturing process are aluminum and aluminum alloys. The reason for this is that the electrical conductivity is good, the adhesion to the oxide film is excellent, and the molding is easy.

그러나 전기적 물질이동, 힐록(Hillock) 및 스파이크(Spike) 등의 문제점을 가지고 있다.However, there are problems such as electrical mass transfer, hillock, and spike.

상기 배선금속용 알루미늄에 전류를 흐르게 하면, 실리콘과의 접촉지역이나 계단 지역 등의 고전류밀도지역에서 알루미늄 원자의 확산이 일어나, 그 부위의 금속선이 얇아지고 결국은 단락 되는데 이런 현상을 전기적 물질이동이라 하며, 이러한 전기적 물질이동은 서서히 소량으로 확산되어 일어나므로 작동후, 상당한 시간이 경과한 후에 유발된다.When a current flows through the aluminum for the wiring metal, aluminum atoms diffuse in a high current density region such as a contact region with a silicon or a step region, and a metal wire becomes thinner and eventually short-circuited. In addition, the electrical movement is caused by a small amount of diffusion gradually occurs after the operation, a considerable time has elapsed.

상기와 같은 문제점을 해결하기 위해서는 알루미늄에 소량의 구리(Cu)를 첨가한 알루미늄-구리 합금을 사용하든가 스텝커버레이지(Stepcoverage)를 향상시키고, 접촉지역을 충분히 넓게 설계함으로써 해결할 수 있다.In order to solve the above problems, it is possible to solve the problem by using an aluminum-copper alloy in which a small amount of copper (Cu) is added to aluminum or by improving step coverage and designing a sufficiently wide contact area.

또 다른 문제는 합금화 공정시 유발되는데 즉, 열처리시 알루미늄박막으로 실리콘의 물질이동이 일어나며, 국부지역의 과잉반응으로 소자가 파괴되는데 이런 현상을 스파이크라 한다.Another problem arises during the alloying process, that is, the material transfer of silicon to the aluminum thin film during heat treatment, and the device is destroyed by overreaction in the local area. This phenomenon is called spike.

상기의 스파이크 문제는 용해도 이상으로 실리콘을 첨가한 알루미늄-실리콘 합금을 사용하던가, 알루미늄과 실리콘 사이에 얇은 금속층(TiW, PtSi 등)을 삽입시켜 확산장벽을 만듦으로써 해결할 수 있다.The spike problem can be solved by using an aluminum-silicon alloy in which silicon is added above solubility, or by forming a diffusion barrier by inserting a thin metal layer (TiW, PtSi, etc.) between aluminum and silicon.

이하, 첨부된 도면을 참고하여 종래의 반도체 소자의 금속배선을 설명하면 다음과 같다.Hereinafter, referring to the accompanying drawings, a metal wiring of a conventional semiconductor device will be described.

도 1은 종래의 반도체 소자의 금속배선을 나타낸 구조단면도이다.1 is a structural cross-sectional view showing a metal wiring of a conventional semiconductor device.

종래의 반도체 소자의 금속배선은 도 1에 도시한 바와같이 티타늄(Ti), 질화 티타늄(TiN), 티타늄(Ti)으로 이루어진 제 1 고융점 금속라인(Refractory Metal Line)(11)과, 상기 제 1 고융점 금속라인(11)상에 형성되는 알루미늄(Al)라인(12)과, 상기 알루미늄라인(12)상에 티타늄(Ti), 질화 티타늄(TiN)으로 이루어진 제 2 고융점 금속라인(13)을 포함하여 구성된다.As shown in FIG. 1, a metal wiring of a conventional semiconductor device includes a first high melting point metal line 11 made of titanium (Ti), titanium nitride (TiN), and titanium (Ti), and the first wiring. An aluminum (Al) line 12 formed on a first high melting point metal line 11 and a second high melting point metal line 13 made of titanium (Ti) and titanium nitride (TiN) on the aluminum line 12. It is configured to include).

상기와 같이 구성된 종래의 반도체 소자의 금속배선에 전류가 흐를 때 알루미늄라인(12)이 전기적물질이동에 의해 보이드(Void)(14)의 발생으로 배선의 레지스턴스(Resistance)를 증가시키는 경우에도 전류 경로(Current Path)는 알루미늄라인(12)이 아닌 제 1 고융점 금속라인(11)이나 제 2 고융점 금속라인(13)으로 형성되어 배선의 오픈(Open)되는 현상을 막아준다.When the current flows through the metal wiring of the conventional semiconductor device configured as described above, even when the aluminum line 12 increases the resistance of the wiring due to the generation of voids 14 due to the movement of electrical materials. The current path is formed of the first high melting point metal line 11 or the second high melting point metal line 13 instead of the aluminum line 12 to prevent the wiring from being opened.

한편, 알루미늄라인(12)의 Rs보다 제 1, 제 2 고융점 금속라인(11,13)의 Rs가 크고, 이에 따라 알루미늄라인(12)에만 전류 경로가 형성될 때보다 제 1, 제 2 고융점 금속라인(11,13)으로 전류 경로가 형성될 때 더 큰 줄 히터링(Joule Heating)이 발생하는데, 이 열 에너지(Thermal Energy)는 알루미늄라인(12)을 큐어(Cure)해 주는 역할을 한다.On the other hand, the Rs of the first and second high melting point metal lines 11 and 13 is larger than that of the aluminum line 12, and thus, the first and second high temperatures are higher than when the current path is formed only in the aluminum line 12. Larger Joule Heating occurs when a current path is formed through the melting point metal lines 11 and 13, which thermal energy plays a role in curing the aluminum line 12. do.

그러나 상기와 같은 종래의 반도체 소자의 금속배선에 있어서 알루미늄라인의 상부 혹은 하부로는 힐록(Hillock)의 영향을 줄일 수 있지만 알루미늄라인의 좌우 방향의 배선간의 힐록으로 인한 금속배선이 숏트(Short)되는 문제점이 있었다.However, in the metal wiring of the conventional semiconductor device as described above, the effect of hillock may be reduced to the upper or lower portion of the aluminum line, but the metal wiring is shorted due to the heel lock between the wires in the left and right directions of the aluminum line. There was a problem.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로 금속배선의 숏트를 방지하여 베선의 신뢰성을 향상시키도록 한 반도체 소자의 금속배선 및 그 형성방법을 제공하는 데 그 목적이 있다.Disclosure of Invention The present invention has been made to solve the above problems, and an object thereof is to provide a metal wiring of a semiconductor device and a method of forming the same, which prevents shorting of the metal wiring to improve reliability of the wire.

도 1은 종래의 반도체 소자의 금속배선을 나타낸 구조단면도1 is a structural cross-sectional view showing a metal wiring of a conventional semiconductor device

도 2는 본 발명에 의한 반도체 소자의 금속배선을 나타낸 구조단면도Figure 2 is a structural cross-sectional view showing a metal wiring of the semiconductor device according to the present invention

도 3a 내지 도 3d는 본 발명에 의한 반도체 소자의 금속배선 형성방법을 나타낸 공정단면도3A to 3D are cross-sectional views illustrating a method of forming metal wirings in a semiconductor device according to the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

21 : 제 1 고융점 금속층 22 : 알루미늄층21: first high melting point metal layer 22: aluminum layer

23 : 제 2 고융점 금속층 24 : 포토레지스트23: second high melting point metal layer 24: photoresist

25 : 제 3 고융점 금속층25: third high melting point metal layer

상기와 같은 목적을 달성하기 위한 본 발명에 의한 반도체 소자의 금속배선은 전도층 라인과, 상기 전도층 라인의 상부 및 하부에 형성되는 제 1, 제 2 고융점 금속라인과, 그리고 상기 제 1, 제 2 고융점 금속라인 및 전도층 라인의 양측면에 형성되는 제 3 고융점 측벽을 포함하여 구성됨을 특징으로 한다.Metal wiring of the semiconductor device according to the present invention for achieving the above object is a conductive layer line, the first and second high melting point metal lines formed on the upper and lower portions of the conductive layer line, and the first, And a third high melting point sidewall formed on both sides of the second high melting point metal line and the conductive layer line.

또한, 상기와 같은 목적을 달성하기 위한 본 발명에 의한 반도체 소자의 금속배선 형성방법은 제 1 고융점 금속층을 형성하는 단계와, 상기 제 1 고융점 금속층상에 전도층을 형성하는 단계와, 상기 전도층상에 제 2 고융점 금속층을 형성하는 단계와, 상기 제 2 고융점 금속층, 전도층, 제 1 고융점 금속층을 선택적으로 식각하여 제 2 고융점 금속라인, 전도층 라인, 제 1 고융점 금속라인을 형성하는 단계와, 그리고 전면에 제 3 고융점 금속층을 형성하고 에치백하여 제 2 고융점 금속라인, 전도층 라인, 제 1 고융점 금속라인의 양측면에 제 3 고융점 측벽을 형성하는 단계를 포함하여 형성함을 특징으로 한다.In addition, the metal wiring forming method of the semiconductor device according to the present invention for achieving the above object comprises the steps of forming a first high melting point metal layer, forming a conductive layer on the first high melting point metal layer, and Forming a second high melting point metal layer on the conductive layer, and selectively etching the second high melting point metal layer, the conductive layer, and the first high melting point metal layer to form a second high melting point metal line, a conductive layer line, and a first high melting point metal layer. Forming a line, and forming a third high melting point metal layer on the front surface and etching back to form third high melting point sidewalls on both sides of the second high melting point metal line, the conductive layer line, and the first high melting point metal line. It characterized in that it comprises a.

이하, 첨부된 도면을 참고하여 본 발명에 의한 반도체 소자의 금속배선 및 그 형성방법을 상세히 설명하면 다음과 같다.Hereinafter, metal wiring and a method of forming the semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 의한 반도체 소자의 금속배선을 나타낸 구조단면도이다.2 is a structural sectional view showing a metal wiring of a semiconductor device according to the present invention.

본 발명에 의한 반도체 소자의 금속배선은 도 2에 도시한 바와같이 티타늄(Ti), 질화 티타늄(TiN), 티타늄(Ti)으로 이루어진 제 1 고융점 금속라인(Refractory Metal Line)(21a)과, 상기 제 1 고융점 금속라인(21a)상에 형성되는 알루미늄(Al)라인(22a)과, 상기 알루미늄라인(22a)상에 티타늄(Ti), 질화 티타늄(TiN)으로 이루어진 제 2 고융점 금속라인(23a)과, 상기 제 1 고융점 금속라인(21a) 및 알루미늄라인(22a) 그리고 제 2 고융점 금속라인(23a)의 양측면에 형성되는 제 3 고융점 측벽(25a)을 포함하여 구성된다.As shown in FIG. 2, the metal wiring of the semiconductor device according to the present invention includes a first high melting point metal line 21a made of titanium (Ti), titanium nitride (TiN), and titanium (Ti); An aluminum (Al) line 22a formed on the first high melting point metal line 21a, and a second high melting point metal line consisting of titanium (Ti) and titanium nitride (TiN) on the aluminum line 22a. And a third high melting point sidewall 25a formed on both sides of the first high melting point metal line 21a and the aluminum line 22a and the second high melting point metal line 23a.

도 3a 내지 도 3d는 본 발명에 의한 반도체 소자의 금속배선 형성방법을 나타낸 공정단면도이다.3A to 3D are cross-sectional views illustrating a method of forming metal wirings in a semiconductor device according to the present invention.

도 3a에 도시한 바와같이 반도체 기판(도면에 도시하지 않음)상에 티타늄(Ti), 질화 티타늄(TiN), 티타늄(Ti)으로 이루어진 제 1 고융점 금속층(21)을 형성하고, 상기 제 1 고융점 금속층(21)상에 알루미늄층(22)을 형성한다.As shown in FIG. 3A, a first high melting point metal layer 21 made of titanium (Ti), titanium nitride (TiN), and titanium (Ti) is formed on a semiconductor substrate (not shown). The aluminum layer 22 is formed on the high melting point metal layer 21.

이어, 상기 알루미늄층(22)상에 티타늄(Ti), 질화 티타늄(TiN)으로 이루어진 제 2 고융점 금속층(23)을 형성한다.Subsequently, a second high melting point metal layer 23 made of titanium (Ti) and titanium nitride (TiN) is formed on the aluminum layer 22.

그리고 상기 제 2 고융점 금속층(23)상에 포토레지스트(Photo Resist)(24)를 도포한 후, 노광 및 현상공정으로 패터닝(Patterning)한다.Then, a photoresist 24 is applied onto the second high melting point metal layer 23, and then patterned by exposure and development processes.

도 3b에 도시한 바와같이 상기 패터닝된 포토레지스트(24)를 마스크로 이용하여 상기 제 2 고융점 금속층(23), 알루미늄층(22), 제 1 고융점 금속층(21)을 선택적으로 식각하여 제 2 고융점 금속라인(23a), 알루미늄라인(22a), 제 1 고융점 금속라인(21a)을 형성한다.As shown in FIG. 3B, the second high melting point metal layer 23, the aluminum layer 22, and the first high melting point metal layer 21 are selectively etched using the patterned photoresist 24 as a mask. 2 The high melting point metal line 23a, the aluminum line 22a, and the first high melting point metal line 21a are formed.

도 3c에 도시한 바와같이 상기 포토레지스트(24)를 제거하고, 상기 제 2 고융점 금속라인(23a), 알루미늄라인(22a), 제 1 고융점 금속라인(21a)을 포함한 전면에 티타늄(Ti), 질화 티타늄(TiN)으로 이루어진 제 3 고융점 금속층(25)을 형성한다.As shown in FIG. 3C, the photoresist 24 is removed, and titanium (Ti) is formed on the entire surface including the second high melting point metal line 23a, the aluminum line 22a, and the first high melting point metal line 21a. ) And a third high melting point metal layer 25 made of titanium nitride (TiN).

도 3d에 도시한 바와같이 상기 제 3 고융점 금속층(25)을 제 2 고융점 금속라인(23a), 알루미늄라인(22a), 제 1 고융점 금속라인(21a)의 양측면에만 남도록 에치백 공정을 실시하여 제 3 고융점 측벽(25a)을 형성한다.As shown in FIG. 3D, the etchback process is performed such that the third high melting point metal layer 25 remains only on both sides of the second high melting point metal line 23a, the aluminum line 22a, and the first high melting point metal line 21a. The third high melting point side wall 25a is formed.

여가서 상기 알루미늄라인(22a) 보다 상기 제 1, 제 2 고융점 금속라인(21a,23a) 및 제 3 고융점 측벽(25a)은 열 팽창 계수(Thermal Expansion Coefficient)가 작다.In this regard, the first and second high melting point metal lines 21a and 23a and the third high melting point sidewall 25a have a smaller thermal expansion coefficient than the aluminum line 22a.

이상에서 설명한 바와같이 본 발명에 의한 반도체 소자의 금속배선 및 그 형성방법에 있어서 다음과 같은 효과가 있다.As described above, the metal wiring and the method of forming the semiconductor device according to the present invention have the following effects.

첫째, 알루미늄라인의 상부와 하부 그리고 양측면에 고융점 금속라인을 형성함으로써 금속라인간의 일렉트로마이그레이션 발생으로 인한 금속배선의 숏트를 방지할 수 있다.First, by forming high melting point metal lines on the top, bottom and both sides of the aluminum line, it is possible to prevent shorting of the metal wiring due to the electromigration between the metal lines.

둘째, 알루미늄라인을 감싸도록 고융점 금속라인을 형성함으로써 히트-싸이클(Heat-Cycle)시 열 팽창 계수의 차이로 인해 보이드의 발생을 최소로 할 수 있다.Second, by forming a high melting point metal line to surround the aluminum line, it is possible to minimize the generation of voids due to the difference in the coefficient of thermal expansion during the heat cycle (Heat-Cycle).

Claims (4)

전도층 라인;Conductive layer lines; 상기 전도층 라인의 상부 및 하부에 형성되는 제 1, 제 2 고융점 금속라인;First and second high melting point metal lines formed above and below the conductive layer line; 상기 제 1, 제 2 고융점 금속라인 및 전도층 라인의 양측면에 형성되는 제 3 고융점 측벽을 포함하여 구성됨을 특징으로 하는 반도체 소자의 금속배선.And the third high melting point sidewalls formed on both sides of the first and second high melting point metal lines and the conductive layer line. 제 1 항에 있어서,The method of claim 1, 상기 제 1 고융점 금속라인은 Ti/TiN/Ti로 이루어지고, 상기 제 2 고융점 금속라인 및 제 3 고융점 측벽은 Ti/TiN으로 이루어짐을 특징으로 하는 반도체 소자의 금속배선.Wherein the first high melting point metal line is made of Ti / TiN / Ti, and the second high melting point metal line and the third high melting point sidewall are made of Ti / TiN. 제 1 항에 있어서,The method of claim 1, 상기 제 1, 제 2 고융점 금속라인 및 제 3 고융점 측벽은 상기 전도층 라인 보다 열 팽창 계수가 작음을 특징으로 하는 반도체 소자의 금속배선.And the first and second high melting point metal lines and the third high melting point sidewall have a smaller coefficient of thermal expansion than the conductive layer line. 제 1 고융점 금속층을 형성하는 단계;Forming a first high melting point metal layer; 상기 제 1 고융점 금속층상에 전도층을 형성하는 단계;Forming a conductive layer on the first high melting point metal layer; 상기 전도층상에 제 2 고융점 금속층을 형성하는 단계;Forming a second high melting point metal layer on the conductive layer; 상기 제 2 고융점 금속층, 전도층, 제 1 고융점 금속층을 선택적으로 식각하여 제 2 고융점 금속라인, 전도층 라인, 제 1 고융점 금속라인을 형성하는 단계; 그리고Selectively etching the second high melting point metal layer, the conductive layer, and the first high melting point metal layer to form a second high melting point metal line, a conductive layer line, and a first high melting point metal line; And 전면에 제 3 고융점 금속층을 형성하고 에치백하여 제 2 고융점 금속라인, 전도층 라인, 제 1 고융점 금속라인의 양측면에 제 3 고융점 측벽을 형성하는 단계를 포함하여 형성함을 특징으로 하는 반도체 소자의 금속배선 형성방법.And forming third high melting point sidewalls on both sides of the second high melting point metal line, the conductive layer line, and the first high melting point metal line by forming and etching back the third high melting point metal layer. A metal wiring forming method of a semiconductor device.
KR1019970067445A 1997-12-10 1997-12-10 Metal line of semiconductor device and method for forming the same KR100252885B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970067445A KR100252885B1 (en) 1997-12-10 1997-12-10 Metal line of semiconductor device and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970067445A KR100252885B1 (en) 1997-12-10 1997-12-10 Metal line of semiconductor device and method for forming the same

Publications (2)

Publication Number Publication Date
KR19990048681A KR19990048681A (en) 1999-07-05
KR100252885B1 true KR100252885B1 (en) 2000-04-15

Family

ID=19526935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970067445A KR100252885B1 (en) 1997-12-10 1997-12-10 Metal line of semiconductor device and method for forming the same

Country Status (1)

Country Link
KR (1) KR100252885B1 (en)

Also Published As

Publication number Publication date
KR19990048681A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
JP2700103B2 (en) Improved integrated circuit structure and method of forming improved integrated circuit structure
US6864124B2 (en) Method of forming a fuse
JPH05190549A (en) Semiconductor device and manufacture thereof
KR100252885B1 (en) Metal line of semiconductor device and method for forming the same
JP2000003959A (en) Semiconductor device possessed of dual damascene-type via contact structure and its manufacture
JP2000012688A (en) Semiconductor device and manufacture thereof
JPH08330427A (en) Wiring formation of semiconductor element
JPH0283978A (en) Semiconductor device
KR100268899B1 (en) Method for forming metal line of semiconductor device the same
KR100268900B1 (en) Method for forming metal line of semiconductor device the same
JP2821157B2 (en) Wiring formation method
KR100252868B1 (en) Method for forming metal line of semiconductor device
KR100207474B1 (en) Wiring film structure & manufacturing method of the same
JP3337758B2 (en) Method for manufacturing semiconductor device
JP2002353221A (en) Semiconductor device and its manufacturing method
KR100517350B1 (en) Method for fabricating hybrid metal interconnect
JP2000049228A (en) Dual damascene structure
TW544699B (en) Method of forming a fuse
JP3436672B2 (en) Semiconductor device and manufacturing method thereof
JPH0669205A (en) Semiconductor device and manufacture thereof
KR100555452B1 (en) Manufacturing method of semiconductor device which can reduce contact resistance
KR0139599B1 (en) Mechod of forming metal wiring in semiconducotr device
KR100568793B1 (en) Method of forming a matal wiring in a semiconductor
JP3533022B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
KR100259098B1 (en) Method for forming metal line of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091222

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee