JPWO2020166517A1 - Polymer compositions, gels, films and particles - Google Patents

Polymer compositions, gels, films and particles Download PDF

Info

Publication number
JPWO2020166517A1
JPWO2020166517A1 JP2020572224A JP2020572224A JPWO2020166517A1 JP WO2020166517 A1 JPWO2020166517 A1 JP WO2020166517A1 JP 2020572224 A JP2020572224 A JP 2020572224A JP 2020572224 A JP2020572224 A JP 2020572224A JP WO2020166517 A1 JPWO2020166517 A1 JP WO2020166517A1
Authority
JP
Japan
Prior art keywords
group
polymer
water
particles
polymer composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020572224A
Other languages
Japanese (ja)
Other versions
JP7518773B2 (en
Inventor
明士 藤田
敦 稲富
康成 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2020166517A1 publication Critical patent/JPWO2020166517A1/en
Application granted granted Critical
Publication of JP7518773B2 publication Critical patent/JP7518773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

硬化性と安全性に優れたポリマー組成物と、機械的強度が高く、広範な用途に適用可能なゲル、フィルムおよび粒子を提供する。架橋性基を有する水溶性ポリマーおよびガラス転移温度が40℃以下である重合体粒子を含むポリマー組成物。好ましくは、前記架橋性基が、ビニル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニルフェニル基、ノルボルネニル基、およびこれらの誘導体であり、より好ましくは、前記架橋性基の導入率が、前記架橋性基を有する水溶性ポリマーの繰り返し単位に対して0.01〜10mol%である。Provided are polymer compositions having excellent curability and safety, and gels, films and particles having high mechanical strength and applicable to a wide range of applications. A polymer composition containing a water-soluble polymer having a crosslinkable group and polymer particles having a glass transition temperature of 40 ° C. or lower. Preferably, the crosslinkable group is a vinyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinylphenyl group, a norbornenyl group, and a derivative thereof, and more preferably, the introduction of the crosslinkable group. The ratio is 0.01 to 10 mol% with respect to the repeating unit of the water-soluble polymer having a crosslinkable group.

Description

本発明は、ポリマー組成物、ゲル、フィルムおよび粒子に関する。 The present invention relates to polymer compositions, gels, films and particles.

ゲルは架橋された親水性高分子からなる材料であり、水を含む形態および含まない(乾燥)形態を問わず、従来から高吸水性樹脂(Super Absorbent Polymer(SAP))、コンタクトレンズ、ドラッグデリバリー基材、衝撃吸収材料、制振・防音材料、コーティング材料など生活、医療、食品、土木など多岐の用途で利用されてきた。しかし、従来のゲルは機械的強度が低く、応用範囲が限られるという問題があった。これを解決するため、2種類の親水性高分子の網目構造が相互に侵入したダブルネットワークゲルなどが提案されている(特許文献1)。 The gel is a material composed of a crosslinked hydrophilic polymer, and has conventionally been used as a super absorbent polymer (SAP), contact lens, or drug delivery regardless of whether it contains water or not (dry). It has been used in a wide range of applications such as daily life, medical care, food, and civil engineering, such as base materials, shock absorbing materials, vibration damping / soundproofing materials, and coating materials. However, the conventional gel has a problem that the mechanical strength is low and the range of application is limited. In order to solve this problem, a double network gel in which the network structures of two types of hydrophilic polymers intrude into each other has been proposed (Patent Document 1).

近年、3Dプリンターに代表されるAdditive Manufacturingと言われる材料の造形手法の開発が活発になっており、これらに適応した材料への要求が高まってきている。特に3Dプリンターにゲルを対応させるには活性エネルギー線などの刺激により一段階で素早く硬化するといった「刺激硬化性」が求められる。さらに医療分野では、刺激硬化性ゲルを患者の患部で硬化させて治療する方法(特許文献2)や、3Dプリンターを用いて手術練習等に用いる臓器モデルや再生医療用の精密スキャホールド(非特許文献1)の製造などへの応用が期待されている。 In recent years, the development of a material modeling method called Adaptive Manufacturing represented by a 3D printer has become active, and the demand for materials adapted to these has been increasing. In particular, in order to make a gel compatible with a 3D printer, "stimulation curability" is required, in which the gel is quickly cured in one step by stimulation with active energy rays or the like. Furthermore, in the medical field, a method of curing and treating a stimulating curable gel in the affected area of a patient (Patent Document 2), an organ model used for surgical practice using a 3D printer, and a precision scaffold for regenerative medicine (non-patented). It is expected to be applied to the manufacture of Document 1).

前記ダブルネットワークゲルは強度と柔軟性を兼ね備えた従来にないゲルを製造できるため、例えば3Dプリンター用ゲルとしても活用できる。しかし、ダブルネットワークゲルは重合を終えたゲルをモノマー溶液で膨潤させなければならないことや、モノマーを重合させるため硬化性に欠けるなど、3Dプリンターへの適用性に問題があった。 Since the double network gel can produce an unprecedented gel having both strength and flexibility, it can be used as a gel for a 3D printer, for example. However, the double network gel has problems in applicability to a 3D printer, such as the need to swell the polymerized gel with a monomer solution and the lack of curability due to the polymerization of the monomer.

以上のダブルネットワークゲルの課題を解決するため、ゲルに架橋ゲル粒子を添加することにより刺激硬化性を向上させる試みがなされている。これはダブルネットワークゲルを構成する2種類の親水性高分子のうち第1の親水性高分子からなる架橋ゲル微粒子を製造し、この架橋ゲル微粒子と第2の親水性高分子を構成するモノマーを混合して硬化させる方法である(特許文献3〜5、非特許文献2〜4)。この方法であれば一段階でダブルネットワークゲルが製造できるため、3Dプリンターへの適用性もより高いと考えられる。このような考えから、架橋ゲル粒子を添加したゲルを3Dプリンターに応用することも最近提案された(特許文献6、非特許文献5)。 In order to solve the above problems of the double network gel, attempts have been made to improve the stimulus curability by adding crosslinked gel particles to the gel. This produces crosslinked gel fine particles composed of the first hydrophilic polymer among the two types of hydrophilic polymers constituting the double network gel, and the crosslinked gel fine particles and the monomer constituting the second hydrophilic polymer are used. This is a method of mixing and curing (Patent Documents 3 to 5, Non-Patent Documents 2 to 4). With this method, a double network gel can be produced in one step, so that it is considered to be more applicable to a 3D printer. Based on this idea, it has recently been proposed to apply a gel to which crosslinked gel particles are added to a 3D printer (Patent Document 6 and Non-Patent Document 5).

国際公開第2003/093337号International Publication No. 2003/0933337 特表2008−510021号公報Japanese Patent Publication No. 2008-50021 特開2008−163055号公報Japanese Unexamined Patent Publication No. 2008-163055 特開2010−260929号公報Japanese Unexamined Patent Publication No. 2010-260929 特開2015−96560号公報Japanese Unexamined Patent Publication No. 2015-96560 特開2017−26680号公報Japanese Unexamined Patent Publication No. 2017-26680 特表平10−513408号公報Special Table No. 10-513408 Gazette 特表2002−506813号公報Special Table 2002-506813 Gazette

Chemical Reviews, 116, (2016) 1496−1539Chemical Reviews, 116, (2016) 1496-1539 Macromolecules, 44, (2011) 7775−7781Macromolecules, 44, (2011) 7775-7781 Macromolecules, 45, (2012) 5218−5228Macromolecules, 45, (2012) 5218-5228 Macromolecules, 45, (2012) 9445−9451Macromolecules, 45, (2012) 9445-9451 Journal of Solid Mechanics and Materials Engineering, 7, (2013) 163−168Journal of Solid Mechanicals and Materials Engineering, 7, (2013) 163-168

特許文献3〜6、非特許文献2〜5に記載されるゲルにおいて架橋ゲル微粒子とモノマーを混合することにより、一段階で機械的強度に優れるダブルネットワークゲルを製造することが可能となったが、モノマーを重合させるため硬化性には依然として課題が残っていた。加えてモノマーとしてアクリルアミドを使用することが多く、このモノマー自体の毒性が非常に高いことから、医療用途に使用できないなどの課題もあった。 By mixing the crosslinked gel fine particles and the monomer in the gels described in Patent Documents 3 to 6 and Non-Patent Documents 2 to 5, it has become possible to produce a double network gel having excellent mechanical strength in one step. , There was still a problem with curability due to the polymerization of the monomer. In addition, acrylamide is often used as a monomer, and since the monomer itself is extremely toxic, there is a problem that it cannot be used for medical purposes.

一方、架橋性基を有する水溶性ポリマーは前記モノマーと比較すると毒性が低く、医療用途を含む種々の用途に使用されている(特許文献7、特許文献8)。しかし、水溶性ポリマーを硬化させるだけでは機械的強度が低いゲルしか製造できないという課題があった。 On the other hand, the water-soluble polymer having a crosslinkable group has lower toxicity than the above-mentioned monomer and is used for various uses including medical use (Patent Documents 7 and 8). However, there is a problem that only a gel having low mechanical strength can be produced only by curing the water-soluble polymer.

本発明は前記課題を解決するためになされたものであり、硬化性と安全性に優れたポリマー組成物と、機械的強度が高く、広範な用途に適用可能なゲル、フィルムおよび粒子を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a polymer composition having excellent curability and safety, and a gel, film and particles having high mechanical strength and applicable to a wide range of applications. The purpose is.

本発明者らが鋭意検討を行った結果、架橋性基を有する水溶性ポリマーに特定の重合体粒子を添加することにより、ダブルネットワーク化が十分に起こらなくても機械的強度の高いゲルが得られることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。 As a result of diligent studies by the present inventors, by adding specific polymer particles to a water-soluble polymer having a crosslinkable group, a gel having high mechanical strength can be obtained even if double networking does not occur sufficiently. Based on this finding, further studies were carried out to complete the present invention.

すなわち本発明は、
[1]架橋性基を有する水溶性ポリマー、およびガラス転移温度が40℃以下である重合体粒子(x)を含む、ポリマー組成物;
[2]前記架橋性基がエチレン性不飽和基である、上記[1]に記載のポリマー組成物;
[3]前記エチレン性不飽和基が、ビニル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニルフェニル基、ノルボルネニル基、およびこれらの誘導体から選ばれる少なくとも1種である、上記[2]に記載のポリマー組成物;
[4]前記架橋性基の導入率が、前記架橋性基を有する水溶性ポリマーの繰り返し単位に対して0.01〜10mol%である、上記[1]〜[3]のいずれかに記載のポリマー組成物;
[5]前記重合体粒子(x)の平均粒子径が0.01〜10μmである、上記[1]〜[4]のいずれかに記載のポリマー組成物;
[6]前記重合体粒子(x)が、共役ジエン、芳香族ビニル化合物および(メタ)アクリル酸エステルからなる群から選ばれる少なくとも1種の単量体単位を含む重合体粒子である、上記[1]〜[5]のいずれかに記載のポリマー組成物;
[7]上記[1]〜[6]のいずれかに記載のポリマー組成物を架橋してなるゲル;
[8]上記[1]〜[6]のいずれかに記載のポリマー組成物を乾燥および架橋してなるフィルム;
[9]上記[1]〜[6]のいずれかに記載のポリマー組成物を乾燥および架橋してなる粒子;に関する。
That is, the present invention
[1] A polymer composition containing a water-soluble polymer having a crosslinkable group and polymer particles (x) having a glass transition temperature of 40 ° C. or lower;
[2] The polymer composition according to the above [1], wherein the crosslinkable group is an ethylenically unsaturated group;
[3] The ethylenically unsaturated group is at least one selected from a vinyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinylphenyl group, a norbornenyl group, and derivatives thereof. 2] The polymer composition according to;
[4] The above-mentioned [1] to [3], wherein the introduction rate of the crosslinkable group is 0.01 to 10 mol% with respect to the repeating unit of the water-soluble polymer having the crosslinkable group. Polymer composition;
[5] The polymer composition according to any one of the above [1] to [4], wherein the polymer particles (x) have an average particle size of 0.01 to 10 μm;
[6] The polymer particles (x) are polymer particles containing at least one monomer unit selected from the group consisting of conjugated diene, aromatic vinyl compound and (meth) acrylic acid ester. 1] The polymer composition according to any one of [5];
[7] A gel obtained by cross-linking the polymer composition according to any one of the above [1] to [6];
[8] A film obtained by drying and cross-linking the polymer composition according to any one of the above [1] to [6];
[9] The present invention relates to particles obtained by drying and cross-linking the polymer composition according to any one of the above [1] to [6].

本発明によれば、硬化性と安全性に優れたポリマー組成物と、機械的強度が高く、広範な用途に適用可能なゲル、フィルムおよび粒子が得られる。 According to the present invention, a polymer composition having excellent curability and safety, and a gel, film and particles having high mechanical strength and applicable to a wide range of applications can be obtained.

以下、本発明について、詳細に説明する。なお、本明細書において「(メタ)アクリル」とは「メタクリル」と「アクリル」との総称を意味する。 Hereinafter, the present invention will be described in detail. In addition, in this specification, "(meth) acrylic" means a generic term of "methacrylic" and "acrylic".

本発明のポリマー組成物には、架橋性基を有する水溶性ポリマーおよびガラス転移温度が40℃以下である重合体粒子(x)が含まれる。 The polymer composition of the present invention contains a water-soluble polymer having a crosslinkable group and polymer particles (x) having a glass transition temperature of 40 ° C. or lower.

本発明における架橋とは、活性エネルギー線、熱および混合から選ばれる少なくとも1種の刺激により架橋されることを指す。前記架橋性基を有する水溶性ポリマーは光重合開始剤又は熱重合開始剤の添加により、それぞれ活性エネルギー線又は熱を刺激として硬化させることが可能である。また熱重合開始剤のうちレドックス系重合開始剤の場合は、過酸化物系重合開始剤と還元剤の混合を刺激として硬化させることも可能である。 Cross-linking in the present invention refers to cross-linking by at least one stimulus selected from active energy rays, heat and mixing. The water-soluble polymer having a crosslinkable group can be cured by stimulating active energy rays or heat, respectively, by adding a photopolymerization initiator or a thermal polymerization initiator. Further, in the case of the redox-based polymerization initiator among the thermal polymerization initiators, it is also possible to cure by stimulating the mixture of the peroxide-based polymerization initiator and the reducing agent.

なお、本明細書において活性エネルギー線とは、光線、電磁波、粒子線およびこれらの組み合わせを意味する。光線としては遠紫外線、紫外線(UV)、近紫外線、可視光線、赤外線などが挙げられ、電磁波としてはX線、γ線などが挙げられ、粒子線としては電子線(EB)、プロトン線(α線)、中性子線などが挙げられる。硬化速度、照射装置の入手性、価格等の観点から、これらの活性エネルギー線の中でも紫外線、電子線が好ましく、紫外線がより好ましい。 In the present specification, the active energy ray means a light ray, an electromagnetic wave, a particle beam, or a combination thereof. Examples of the light beam include far ultraviolet rays, ultraviolet rays (UV), near ultraviolet rays, visible rays, infrared rays, and the like, examples of electromagnetic waves include X-rays and γ rays, and examples of particle beams include electron beams (EB) and proton rays (α). Rays), neutron beams, etc. Among these active energy rays, ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable, from the viewpoints of curing speed, availability of irradiation device, price, and the like.

<架橋性基を有する水溶性ポリマー>
架橋性基を有する水溶性ポリマーは、原料となる水溶性ポリマーの側鎖や末端に架橋性基を含有するものを指す。
<Water-soluble polymer with crosslinkable group>
The water-soluble polymer having a crosslinkable group refers to a water-soluble polymer containing a crosslinkable group at the side chain or the end of the water-soluble polymer as a raw material.

(水溶性ポリマー)
架橋性基を有する水溶性ポリマーの原料となる水溶性ポリマーとしては合成ポリマーおよび天然ポリマーを問わず利用できる。
(Water-soluble polymer)
As the water-soluble polymer which is a raw material of the water-soluble polymer having a crosslinkable group, both synthetic polymers and natural polymers can be used.

合成ポリマーの例としては、ポリビニルアルコール(以下、PVAと略称することがある)、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド、ポリ(N,N−ジメチル(メタ)アクリルアミド)、ポリ(N,N−ジエチル(メタ)アクリルアミド)、ポリ(N−イソプロピル(メタ)アクリルアミド)、ポリビニルピロリドン、ポリヒドロキシエチル(メタ)アクリルアミド、ポリヒドロキシエチル(メタ)アクリレート、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンイミン、ポリアリルアミンおよびこれらの誘導体などが挙げられる。 Examples of synthetic polymers include polyvinyl alcohol (hereinafter abbreviated as PVA), poly (meth) acrylic acid, poly (meth) acrylamide, poly (N, N-dimethyl (meth) acrylamide), and poly (N). , N-diethyl (meth) acrylamide), poly (N-isopropyl (meth) acrylamide), polyvinylpyrrolidone, polyhydroxyethyl (meth) acrylamide, polyhydroxyethyl (meth) acrylate, polyethylene oxide, polypropylene oxide, polyethyleneimine, poly Examples thereof include allylamine and derivatives thereof.

これらの合成ポリマーは水溶性を損なわない範囲で他のモノマーと共重合されていてもよい。他のモノマーの含有率は合成ポリマーを構成する全構造単位に対して50mol%未満であることが好ましく、30mol%未満であることがより好ましい。 These synthetic polymers may be copolymerized with other monomers as long as the water solubility is not impaired. The content of the other monomers is preferably less than 50 mol%, more preferably less than 30 mol%, based on the total structural units constituting the synthetic polymer.

合成ポリマーのうち、例えばポリアクリルアミド、ポリ(N,N−ジメチル(メタ)アクリルアミド)、ポリ(N,N−ジエチルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)等のポリ(メタ)アクリルアミド誘導体;およびポリビニルピロリドンなど、アミノ基、水酸基、およびカルボキシル基などの架橋性基の導入のための官能基を含有しない合成ポリマーは、架橋性基の導入のための官能基を有するモノマー、例えばヒドロキシエチルメタクリレートやメタクリル酸などと共重合し、架橋性基の導入のための官能基を側鎖に導入する必要がある。架橋性基の導入のための官能基を有するモノマーの含有率は合成ポリマーを構成する全構造単位に対して20mol%未満であることが好ましく、10mol%未満であることがより好ましい。 Among synthetic polymers, poly (meth) acrylamide derivatives such as polyacrylamide, poly (N, N-dimethyl (meth) acrylamide), poly (N, N-diethylacrylamide), poly (N-isopropylacrylamide); and polyvinyl. Synthetic polymers that do not contain functional groups for the introduction of crosslinkable groups such as pyrrolidone, amino groups, hydroxyl groups, and carboxyl groups are those with functional groups for the introduction of crosslinkable groups, such as hydroxyethyl methacrylate and methacryl. It is necessary to introduce a functional group for introducing a crosslinkable group into the side chain by copolymerizing with an acid or the like. The content of the monomer having a functional group for introducing a crosslinkable group is preferably less than 20 mol% and more preferably less than 10 mol% with respect to all the structural units constituting the synthetic polymer.

天然ポリマーの例としては、水溶性多糖類および水溶性タンパク質が利用できる。水溶性多糖類の例としては、アルギン酸、アルギン酸プロピレングリコールエステル、アガロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等の水溶性セルロース誘導体;グアーガム、カラギーナン、寒天、キトサン、ジェランガム、デキストラン、デンプン、ヒアルロン酸、プルラン、ヘパリンなどが挙げられる。また、水溶性タンパク質の例としてはコラーゲン、ゼラチン、アルブミンなどが挙げられる。 Water-soluble polysaccharides and water-soluble proteins are available as examples of natural polymers. Examples of water-soluble polysaccharides are water-soluble cellulose derivatives such as alginic acid, propylene glycol alginate, agarose, hydroxyethyl cellulose, and carboxymethyl cellulose; guar gum, carrageenan, agar, chitosan, gellan gum, dextran, starch, hyaluronic acid, pullulan, heparin. And so on. Examples of water-soluble proteins include collagen, gelatin, albumin and the like.

以上に例示した水溶性多糖類のうち、例えばアルギン酸はカルシウムイオンを添加することにより硬化する。また、アガロース、ジェランガム、ゼラチンなども熱水に溶解し、冷却することで硬化する。このように天然ポリマー自体の硬化特性を活用することも可能であるが、硬化のための刺激の選択や成形の自由度、3Dプリンターへの適用を考慮すると架橋性基が天然ポリマーに結合していることが必須である。 Among the water-soluble polysaccharides exemplified above, for example, alginic acid is cured by adding calcium ions. In addition, agarose, gellan gum, gelatin, etc. are also dissolved in hot water and cured by cooling. Although it is possible to utilize the curing properties of the natural polymer itself in this way, the crosslinkable group is bonded to the natural polymer in consideration of the selection of the stimulus for curing and the degree of freedom of molding and the application to the 3D printer. It is essential to be there.

(架橋性基)
架橋性基としては活性エネルギー線、熱、レドックス系重合開始剤等により前記水溶性ポリマー鎖間で架橋を形成することができるエチレン性不飽和基を用いることが好ましく、ラジカル重合性基を用いることがより好ましい。ラジカル重合性基としては、例えば、ビニル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニルフェニル基、シクロヘキセニル基、シクロペンテニル基、ノルボルネニル基、ジシクロペンテニル基等の環式不飽和炭化水素基、およびこれらの誘導体が挙げられる。これらのエチレン性不飽和基は、水溶性ポリマーの側鎖や末端のいずれに存在してもよい。
(Crosslinkable group)
As the crosslinkable group, it is preferable to use an ethylenically unsaturated group capable of forming a crosslink between the water-soluble polymer chains by using an active energy ray, heat, a redox-based polymerization initiator or the like, and a radical polymerizable group is used. Is more preferable. Examples of the radically polymerizable group include a vinyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinylphenyl group, a cyclohexenyl group, a cyclopentenyl group, a norbornenyl group, a dicyclopentenyl group and the like. Saturated hydrocarbon groups and derivatives thereof are mentioned. These ethylenically unsaturated groups may be present on either the side chain or the terminal of the water-soluble polymer.

前記ラジカル重合性基の中でも、本発明のポリマー組成物の硬化性や、後述するゲルやフィルムなどの機械的強度を向上させる観点から、ビニル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニルフェニル基、ノルボルネニル基、およびこれらの誘導体からなる群より選択される少なくとも1種が好ましい。また、反応性の観点からは、末端不飽和炭素結合を有する官能基が好ましく、(メタ)アクリロイルオキシ基がより好ましい。 Among the radically polymerizable groups, a vinyl group, a (meth) acryloyloxy group, and a (meth) acryloylamino are used from the viewpoint of improving the curability of the polymer composition of the present invention and the mechanical strength of gels and films described later. At least one selected from the group consisting of a group, a vinylphenyl group, a norbornenyl group, and a derivative thereof is preferable. From the viewpoint of reactivity, a functional group having a terminal unsaturated carbon bond is preferable, and a (meth) acryloyloxy group is more preferable.

このような架橋性基は水溶性ポリマーの側鎖や末端官能基、例えば水酸基、アミノ基、カルボキシル基、1,2−ジオール基、1,3−ジオール基などを介して導入できる。水酸基やアミノ基に対しては、例えばアクリル酸無水物やグリシジルメタクリレートを塩基存在下で反応させることにより(メタ)アクリロイルオキシ基を導入可能である。即ち、水酸基に対してはエステル化により(メタ)アクリロイルオキシ基、アミノ基に対してはアミド化により(メタ)アクリロイルアミノ基を導入できる。水酸基やアミノ基に対しては、例えばアリルグリシジルエーテルを塩基存在下で反応させることによりビニル基の1種であるアリルエーテル基も導入できる。アミノ基に対しては、例えばアジピン酸ジビニルを塩基存在下で反応させることによりビニル基の1種であるビニルエステル基を導入できる。カルボキシル基に対しては、例えばグリシジルメタクリレートを酸性条件で反応させることでエステル化によりメタクリロイルオキシ基を導入できる。さらに1,2−ジオール基や1,3−ジオール基に対しては、例えばアクロレイン、5−ノルボルネン−2−カルボキシアルデヒドや7−オクテナールなどを酸触媒存在下で反応させることでアセタール化によりビニル基を導入できる。同様にアセタール化により、3−ビニルベンズアルデヒドや4−ビニルベンズアルデヒドなどを反応させることでビニルフェニル基を、N−(2,2−ジメトキシエチル)(メタ)アクリルアミドなどを反応させることで(メタ)アクリロイルアミノ基を導入できる。水溶性ポリマーへの架橋性基の導入は例示された反応以外も用いることができ、2種類以上の反応を組み合わせて使用してもよい。 Such a crosslinkable group can be introduced via a side chain or a terminal functional group of a water-soluble polymer, for example, a hydroxyl group, an amino group, a carboxyl group, a 1,2-diol group, a 1,3-diol group, or the like. A (meth) acryloyloxy group can be introduced into a hydroxyl group or an amino group by, for example, reacting an acrylate anhydride or a glycidyl methacrylate in the presence of a base. That is, a (meth) acryloyloxy group can be introduced to a hydroxyl group by esterification, and a (meth) acryloylamino group can be introduced to an amino group by amidation. For hydroxyl groups and amino groups, for example, an allyl ether group, which is one of vinyl groups, can be introduced by reacting allyl glycidyl ether in the presence of a base. For the amino group, for example, a vinyl ester group, which is one of the vinyl groups, can be introduced by reacting divinyl adipic acid in the presence of a base. For the carboxyl group, for example, a methacryloyloxy group can be introduced by esterification by reacting with glycidyl methacrylate under acidic conditions. Further, for the 1,2-diol group and the 1,3-diol group, for example, acrolein, 5-norbornene-2-carboxyaldehyde, 7-octenal and the like are reacted in the presence of an acid catalyst to form a vinyl group by acetalization. Can be introduced. Similarly, by acetalization, a vinylphenyl group is reacted by reacting 3-vinylbenzaldehyde, 4-vinylbenzaldehyde, etc., and (meth) acryloyl is reacted by reacting with N- (2,2-dimethoxyethyl) (meth) acrylamide, etc. Amino groups can be introduced. The introduction of the crosslinkable group into the water-soluble polymer can be used in addition to the reactions exemplified, and two or more kinds of reactions may be used in combination.

架橋性基を有する水溶性ポリマーとしては、架橋性基を有するPVA;架橋性基を有するポリアクリルアミド、ポリ(N,N−ジメチル(メタ)アクリルアミド)、ポリ(N,N−ジエチルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)等のポリアクリルアミド誘導体;架橋性基を有するポリヒドロキシエチル(メタ)アクリレート;架橋性基を有するポリエチレングリコール;架橋性基を有する水溶性セルロース誘導体が好ましく、架橋性基が(メタ)アクリル基、ビニル基および(メタ)アクリロイルアミノ基であることが好ましい。 Examples of the water-soluble polymer having a crosslinkable group include PVA having a crosslinkable group; polyacrylamide having a crosslinkable group, poly (N, N-dimethyl (meth) acrylamide), poly (N, N-diethylacrylamide), and poly. A polyacrylamide derivative such as (N-isopropylacrylamide); a polyhydroxyethyl (meth) acrylate having a crosslinkable group; a polyethylene glycol having a crosslinkable group; a water-soluble cellulose derivative having a crosslinkable group is preferable, and the crosslinkable group is (). It is preferably a (meth) acrylic group, a vinyl group and a (meth) acryloylamino group.

但し、前記架橋性基のうちビニル基を用いると硬化しにくい場合があるため、例えば1分子内に2つ以上のチオール基を有するポリチオールを、ビニル基を有する水溶性ポリマーに添加して、チオール−エン反応を利用してもよい。前記ポリチオールとしては水溶性を示すものが好ましく、例えば3,6−ジオキサ−1,8−オクタンジチオール、ジチオスレイトール、ポリエチレングリコールジチオールおよびマルチアームポリエチレングリコールの末端チオール化物などが挙げられる。チオール−エン反応はビニル基とチオール基が1対1で反応するため、チオール基がビニル基に対して等モル以下となるように前記のポリチオールを添加することが必要である。この添加量であれば後述するゲルやフィルムなどの強度などを制御するため、任意に前記ポリチオールの添加量を制御できる。 However, if a vinyl group is used among the crosslinkable groups, it may be difficult to cure. Therefore, for example, a polythiol having two or more thiol groups in one molecule is added to a water-soluble polymer having a vinyl group to form a thiol. -The enreaction may be used. The polythiol is preferably water-soluble, and examples thereof include terminal thiols of 3,6-dioxa-1,8-octanedithiol, dithiothreitol, polyethylene glycol dithiol, and multi-arm polyethylene glycol. Since the thiol-ene reaction has a one-to-one reaction between a vinyl group and a thiol group, it is necessary to add the above-mentioned polythiol so that the thiol group is equimolar or less with respect to the vinyl group. With this addition amount, the strength of the gel or film, which will be described later, is controlled, so that the addition amount of the polythiol can be arbitrarily controlled.

架橋性基の導入率は、架橋性基を有する水溶性ポリマーの繰り返し単位に対して好ましくは10mol%以下、より好ましくは5mol%以下、さらに好ましくは3mol%以下である。また、好ましくは0.01mol%以上、より好ましくは0.1mol%以上である。架橋性基の導入率が高くなりすぎると、後述するゲルやフィルムなどの機械的強度が向上する一方で非常に脆くなる。 The introduction rate of the crosslinkable group is preferably 10 mol% or less, more preferably 5 mol% or less, still more preferably 3 mol% or less, based on the repeating unit of the water-soluble polymer having a crosslinkable group. Further, it is preferably 0.01 mol% or more, more preferably 0.1 mol% or more. If the introduction rate of the crosslinkable group becomes too high, the mechanical strength of the gel or film described later is improved, but the material becomes very brittle.

本発明における水溶性ポリマーのポリマー鎖に含まれる繰り返し単位数である重合度については特に限定されるものではなく、種々の重合度のものが利用できる。しかし、水溶性ポリマーの重合度が小さすぎると後述するゲルやフィルムなどが脆くなる傾向がある。また、水溶性ポリマーの重合度が大きくなりすぎると水溶液粘度が高くなり、加工が困難になる傾向がある。従って、水溶性ポリマーの重合度は4以上が好ましく、9以上がより好ましく、14以上がさらに好ましい。また、30000以下が好ましく、10000以下がより好ましく、5000以下がさらに好ましい。 The degree of polymerization, which is the number of repeating units contained in the polymer chain of the water-soluble polymer in the present invention, is not particularly limited, and those having various degrees of polymerization can be used. However, if the degree of polymerization of the water-soluble polymer is too small, the gel or film described later tends to become brittle. Further, if the degree of polymerization of the water-soluble polymer becomes too large, the viscosity of the aqueous solution becomes high, which tends to make processing difficult. Therefore, the degree of polymerization of the water-soluble polymer is preferably 4 or more, more preferably 9 or more, and even more preferably 14 or more. Further, 30,000 or less is preferable, 10,000 or less is more preferable, and 5,000 or less is further preferable.

本明細書における重合度は、極限粘度[η]を測定し、Mark−Houink式から計算された粘度平均分子量をポリマー鎖に含まれる繰り返し単位の分子量で除することで求めることができる。例えば、水溶性ポリマーとして例示したPVAの重合度は、JIS K 6726:1994に準じて測定される。すなわち、PVAを再けん化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求められる。
重合度=([η]×10/8.29)(1/0.62)
The degree of polymerization in the present specification can be obtained by measuring the ultimate viscosity [η] and dividing the viscosity average molecular weight calculated from the Mark-Hoink equation by the molecular weight of the repeating unit contained in the polymer chain. For example, the degree of polymerization of PVA exemplified as a water-soluble polymer is measured according to JIS K 6726: 1994. That is, it is obtained by the following formula from the ultimate viscosity [η] measured in water at 30 ° C. after re-sewing and purifying PVA.
Degree of polymerization = ([η] × 10 3 / 8.29) (1 / 0.62)

本発明における架橋性基を有する水溶性ポリマーはイオン性基を含有してもよく、その含有率は水溶性ポリマーの繰り返し単位に対して20mol%以下であることが好ましい。イオン性基を20mol%超含有すると吸水力が高くなり、後述するゲルやフィルムなどの強度や寸法安定性が低下することがある。イオン性基としては特に限定されないが、例えばカチオン性基およびアニオン性基が利用でき、カチオン性基としてはアンモニウム塩、アニオン性基としてはカルボン酸塩やスルホン酸塩が利用できる。 The water-soluble polymer having a crosslinkable group in the present invention may contain an ionic group, and the content thereof is preferably 20 mol% or less with respect to the repeating unit of the water-soluble polymer. If it contains more than 20 mol% of ionic groups, the water absorption capacity becomes high, and the strength and dimensional stability of gels and films described later may decrease. The ionic group is not particularly limited, and for example, a cationic group and an anionic group can be used, an ammonium salt can be used as the cationic group, and a carboxylate or a sulfonate can be used as the anionic group.

<重合体粒子(x)>
重合体粒子(x)を構成する重合体は1種の単量体単位からなる重合体でもよく、複数種の単量体単位からなる共重合体でもよい。また、複数の重合体の混合物であってもよい。
<Polymer particles (x)>
The polymer constituting the polymer particles (x) may be a polymer composed of one kind of monomer unit or a copolymer composed of a plurality of kinds of monomer units. Further, it may be a mixture of a plurality of polymers.

前記単量体としては、例えば、ブタジエン、イソプレン等の共役ジエン;スチレン、α−メチルスチレン、tert−ブチルスチレン等の芳香族ビニル化合物;(メタ)アクリル酸およびその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソプロピル、ジシクロペンタニル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート等の(メタ)アクリル酸エステル;(メタ)アクリルアミド;N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体;(メタ)アクリロニトリル等のニトリル;メチルビニルエーテル、エチルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル;酢酸ビニル、n−プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;無水マレイン酸、無水イタコン酸等の不飽和ジカルボン酸無水物;エテン、プロペン、n−ブテン、イソブテン等のモノオレフィン;臭化ビニル、臭化ビニリデン、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化エチレン;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸およびその塩;マレイン酸エステル、イタコン酸エステル等の不飽和ジカルボン酸エステル;トリメトキシシラン等のビニルシリル化合物;シクロペンタジエン、ノルボルナジエン等の環状ジエン;インデン、テトラヒドロインデン等のインデン類;エチレンオキシド、プロピレンオキシド、オキセタン、テトラヒドロフラン等の環状エーテル;チイラン、チエタン等の環状スルフィド;アジリジン、アゼチジン等の環状アミン;1,3−ジオキソラン、1,3,5−トリオキサン、スピロオルソエステル等の環状アセタール;2−オキソザリン、イミノエーテル等の環状イミノエーテル;β−プロピオラクトン、δ−バレロラクトン、ε−カプロラクトン等のラクトン;エチレンカーボネート、プロピレンカーボネート等の環状カーボネート;ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等の環状シロキサン;などが挙げられる。 Examples of the monomer include conjugated diene such as butadiene and isoprene; aromatic vinyl compounds such as styrene, α-methylstyrene and tert-butylstyrene; (meth) acrylic acid and salts thereof; and methyl (meth) acrylate. , (Meta) ethyl acrylate, (meth) n-propyl acrylate, (meth) n-butyl acrylate, (meth) isopropyl acrylate, dicyclopentanyl (meth) acrylate, trimethyl propantri (meth) acrylate , (Meta) acrylic acid esters such as allyl (meth) acrylate; (meth) acrylamide; (meth) acrylamide derivatives such as N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide; nitriles such as (meth) acrylonitrile Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether; vinyl esters such as vinyl acetate, vinyl n-propionate, vinyl butyrate, vinyl pivalate; unsaturated dicarboxylic acids such as maleic anhydride and itaconic anhydride. Acrylic acid anhydride; monoolefin such as ethene, propene, n-butene, isobutene; ethylene halide such as vinyl bromide, vinylidene bromide, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride; allyl acetate, allyl chloride Allyl compounds such as; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid and salts thereof; unsaturated dicarboxylic acid esters such as maleic acid ester and itaconic acid ester; vinylsilyl compounds such as trimethoxysilane; cyclopentadiene, norbornadiene. Cyclic diene such as inden, tetrahydroinden and the like; cyclic ether such as ethylene oxide, propylene oxide, oxetane and tetrahydrofuran; cyclic sulfide such as thiirane and thietan; cyclic amine such as azylidine and azetidine; 1,3-dioxolane, 1 , 3,5-Trioxane, cyclic acetal such as spiroorthoester; cyclic iminoether such as 2-oxozarin, iminoether; lactone such as β-propiolactone, δ-valerolactone, ε-caprolactone; ethylene carbonate, propylene carbonate And the like; cyclic siloxane such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane; and the like.

これらの中でも、生産性の観点から共役ジエン、芳香族ビニル化合物および(メタ)アクリル酸エステルからなる群から選ばれる少なくとも1種の単量体が好ましい。 Among these, at least one monomer selected from the group consisting of conjugated diene, aromatic vinyl compound and (meth) acrylic acid ester is preferable from the viewpoint of productivity.

重合体粒子(x)のガラス転移温度は、後述するゲルやフィルムなどへの外的応力を効率的に緩和および/又は散逸させるため、40℃以下であり、25℃以下であることが好ましく、10℃以下であることがより好ましい。また、−100℃以上であることが好ましい。なお、本明細書において、ガラス転移温度は示差走査熱量測定によって求めることができる。 The glass transition temperature of the polymer particles (x) is preferably 40 ° C. or lower, preferably 25 ° C. or lower, in order to efficiently relax and / or dissipate external stress on the gel or film described later. It is more preferably 10 ° C. or lower. Further, it is preferably −100 ° C. or higher. In the present specification, the glass transition temperature can be obtained by differential scanning calorimetry.

後述するゲルやフィルムなどの内部にガラス転移温度が40℃以下である重合体粒子(x)が含まれると、外的な応力がかかった際に重合体粒子(x)が応力を分散、犠牲的に変形することで応力を緩和および/又は崩壊し、応力を散逸することでゲルやフィルムなどに発生する微小なクラックの進展を止めることができる。このため、ゲル全体やフィルム全体が崩壊することを防ぎ、機械的強度が向上すると推測している。 When polymer particles (x) having a glass transition temperature of 40 ° C. or lower are contained inside a gel or film described later, the polymer particles (x) disperse and sacrifice the stress when an external stress is applied. By deforming the polymer, the stress can be relaxed and / or collapsed, and by dissipating the stress, the growth of minute cracks generated in the gel or film can be stopped. Therefore, it is presumed that the entire gel or the entire film is prevented from collapsing and the mechanical strength is improved.

40℃を超える範囲にガラス転移温度を持つ硬質粒子などを添加すると、ゲルの弾性率や破断強度自体の向上が見られる場合があるが、柔軟性を向上させることは難しい。 When hard particles having a glass transition temperature or the like are added in a range exceeding 40 ° C., the elastic modulus of the gel and the breaking strength itself may be improved, but it is difficult to improve the flexibility.

重合体粒子(x)は、ガラス転移温度が40℃以下であれば特に限定されないが、架橋性基を有する水溶性ポリマーと水溶媒中で混合させるため、水に分散できることが好ましい。 The polymer particles (x) are not particularly limited as long as the glass transition temperature is 40 ° C. or lower, but it is preferable that the polymer particles (x) can be dispersed in water because they are mixed with a water-soluble polymer having a crosslinkable group in an aqueous solvent.

本発明の重合体粒子(x)としては、水への分散性の観点から、表面が界面活性剤等により親水化された重合体粒子、および被覆重合体粒子が好ましい。被覆重合体粒子の具体例としては、後述するような重合体粒子(x)の少なくとも一部を被覆する重合体被膜(y)を有する被覆重合体粒子が挙げられる。 As the polymer particles (x) of the present invention, polymer particles whose surface is hydrophilic with a surfactant or the like and coated polymer particles are preferable from the viewpoint of dispersibility in water. Specific examples of the coated polymer particles include coated polymer particles having a polymer film (y) that covers at least a part of the polymer particles (x) as described later.

(被覆重合体粒子)
重合体粒子(x)は、重合体粒子(x)の少なくとも一部を被覆する重合体被膜(y)を有する被覆重合体粒子であってもよい。重合体被膜(y)を構成する重合体は1種の単量体単位からなる重合体でもよく、複数種の単量体単位からなる共重合体でもよい。また、複数の重合体の混合物であってもよい。
(Coated polymer particles)
The polymer particles (x) may be coated polymer particles having a polymer film (y) that covers at least a part of the polymer particles (x). The polymer constituting the polymer film (y) may be a polymer composed of one kind of monomer unit or a copolymer composed of a plurality of kinds of monomer units. Further, it may be a mixture of a plurality of polymers.

前記単量体としては、重合体粒子(x)において挙げたものが挙げられ、好ましいものも同様である。 Examples of the monomer include those mentioned in the polymer particles (x), and the same applies to preferred ones.

重合体被膜(y)のガラス転移温度は、粒子同士の融着を防止することや水への分散安定性の観点から、30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。また、250℃以下であることが好ましい。 The glass transition temperature of the polymer film (y) is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, from the viewpoint of preventing fusion between particles and dispersion stability in water. , 50 ° C. or higher is more preferable. Further, it is preferably 250 ° C. or lower.

被覆重合体粒子における重合体被膜(y)の含有率は、後述するゲルやフィルムなどへの外的応力を効率的に緩和および/又散逸させる観点から、被覆重合体粒子全体の質量に基づいて、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。また、80質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。 The content of the polymer film (y) in the coated polymer particles is based on the mass of the entire coated polymer particles from the viewpoint of efficiently relaxing and / or dissipating external stress on the gel or film described later. 1% by mass or more is preferable, 3% by mass or more is more preferable, and 5% by mass or more is further preferable. Further, it is preferably 80% by mass or less, more preferably 60% by mass or less, and further preferably 50% by mass or less.

また、重合体被膜(y)は重合体粒子(x)の全体を被覆するものであることが好ましい。 Further, it is preferable that the polymer film (y) covers the entire polymer particles (x).

重合体粒子(x)の平均粒子径、および重合体粒子(x)が被覆重合体粒子の場合は重合体被膜(y)も含む被覆重合体粒子全体の平均粒子径は、好ましくは0.01〜10μmであり、より好ましくは0.02〜1μmであり、さらに好ましくは0.04〜0.5μmである。平均粒子径が大きい場合は、ゲル自体が白濁して透明性が失われる傾向があり、かつ、粒子が沈降し易くなるが、少量の含有量であっても後述するゲルやフィルムなど強度の向上が期待できる。一方、平均粒子径が小さい場合は、後述するゲルやフィルムなど強度の向上のためには含有量を増やす必要があるが、高い透明性を発現する傾向がある。なお、本発明における平均粒子径とは、後述する動的光散乱測定装置で測定した平均分散粒子径を指す。 The average particle size of the polymer particles (x) and the average particle size of the entire coated polymer particles including the polymer film (y) when the polymer particles (x) are coated polymer particles are preferably 0.01. It is 10 μm, more preferably 0.02 to 1 μm, and even more preferably 0.04 to 0.5 μm. When the average particle size is large, the gel itself tends to become cloudy and lose its transparency, and the particles tend to settle, but even if the content is small, the strength of gels and films, which will be described later, is improved. Can be expected. On the other hand, when the average particle size is small, it is necessary to increase the content in order to improve the strength of gels and films described later, but there is a tendency to develop high transparency. The average particle size in the present invention refers to the average dispersed particle size measured by a dynamic light scattering measuring device described later.

(重合体粒子(x)の製造方法)
重合体粒子(x)の製造方法は特に限定されないが、例えば乳化重合、懸濁重合、樹脂の自己乳化や機械的乳化などにより製造することができる。
(Method for producing polymer particles (x))
The method for producing the polymer particles (x) is not particularly limited, but the polymer particles (x) can be produced by, for example, emulsion polymerization, suspension polymerization, self-emulsification of a resin, mechanical emulsification, or the like.

重合体粒子(x)の製造方法にかかる乳化重合においては、通常乳化剤を用いる。かかる乳化剤としては、例えばアルキルアリルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルエーテル酢酸、アルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、高級脂肪酸ナトリウム、ロジン系ソープ等のアニオン系界面活性剤;アルキルポリエチレングリコール、ノニルフェノールエトキシレート等のノニオン系界面活性剤;塩化ジステアリルジメチルアンモニウム、塩化ベンザルコニウム等のカチオン系界面活性剤;コカミドプロピルベタイン、コカミドプロピルヒドロキシスルタイン等の両性界面活性剤等を用いることができる。また部分けん化PVA(けん化度70〜90mol%)、メルカプト基変性PVA(けん化度70〜90mol%)、β−ナフタレンスルフォン酸ホルマリン縮合物塩、(メタ)アクリル酸エチルコポリマーなどの高分子界面活性剤を用いることも可能である。ここで、前記高分子界面活性剤は乳化重合終了後に重合体粒子(x)を被覆する重合体被膜(y)と同様に機能することができる。これら乳化剤は1種を単独で用いても、2種以上を併用してもよい。かかる乳化剤の使用量は、水に対して0.01〜40質量%が好ましく、0.05〜20質量%がより好ましい。 In the emulsion polymerization according to the method for producing the polymer particles (x), an emulsifier is usually used. Examples of such emulsifiers include anionic surfactants such as sodium alkylallyl sulfosuccinate, polyoxyethylene lauryl ether acetic acid, sodium alkylbenzene sulfonate, sodium lauryl sulfate, higher fatty acid sodium, and rosin-based soap; alkyl polyethylene glycol and nonylphenol ethoxylate. Nonionic surfactants such as; cationic surfactants such as distearyldimethylammonium chloride and benzalconium chloride; amphoteric surfactants such as cocamidopropyl betaine and cocamidopropyl hydroxysultaine can be used. In addition, polymer surfactants such as partially saponified PVA (saponification degree 70 to 90 mol%), mercapto group-modified PVA (saponification degree 70 to 90 mol%), β-naphthalene sulphonic acid formalin condensate salt, and (meth) ethyl acrylate copolymer. It is also possible to use. Here, the polymer surfactant can function in the same manner as the polymer coating film (y) that coats the polymer particles (x) after the completion of emulsion polymerization. These emulsifiers may be used alone or in combination of two or more. The amount of the emulsifier used is preferably 0.01 to 40% by mass, more preferably 0.05 to 20% by mass with respect to water.

前記乳化重合においては、通常ラジカル重合開始剤を用いる。かかるラジカル重合開始剤としては、水溶性無機系重合開始剤、水溶性アゾ系重合開始剤、油溶性アゾ系重合開始剤、有機過酸化物などが挙げられる。また、ラジカル重合開始剤としてレドックス系重合開始剤を用いてもよい。 In the emulsion polymerization, a radical polymerization initiator is usually used. Examples of such radical polymerization initiators include water-soluble inorganic polymerization initiators, water-soluble azo-based polymerization initiators, oil-soluble azo-based polymerization initiators, and organic peroxides. Further, a redox-based polymerization initiator may be used as the radical polymerization initiator.

水溶性無機系重合開始剤としては、過酸化水素、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム(過硫酸カリウム)などが挙げられる。水溶性アゾ系開始剤としては、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]ジヒドロクロリド、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]ジサルフェートジハイドレート、2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド、2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]ハイドレート、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2−2’−アゾビス(1−イミノ−1−ピロリジノ−2−メチルプロパン)ジヒドロクロリド、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]などが挙げられる。 Examples of the water-soluble inorganic polymerization initiator include hydrogen peroxide, sodium peroxodisulfate, potassium peroxodisulfate (potassium persulfate) and the like. Examples of the water-soluble azo-based initiator include 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride and 2,2'-azobis [2- (2-imidazolin-2-yl). Propane] disulfate dihydrate, 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] hydrate, 2 , 2'-azobis [2- (2-imidazolin-2-yl) propane], 2-2'-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride, 2,2'-azobis [ 2-Methyl-N- (2-hydroxyethyl) propionamide] and the like.

油溶性アゾ系重合開始剤としては、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、1−[(1−シアノ−1−メチルエチル)アゾ]ホルムアミド、2,2’−アゾビス[N−(2−プロペニル)−2−メチルプロピオンアミド]、2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)、ジメチル2,2−アゾビス(イソブチレート)などが挙げられる。 Examples of the oil-soluble azo-based polymerization initiator include 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'. -Azobis (isobutyronitrile), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methyl) Ethyl) azo] formamide, 2,2'-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2'-azobis (N-butyl-2-methylpropionamide), dimethyl 2,2 -Azobis (isobutyrate) and the like can be mentioned.

有機過酸化物としては、ビス−3,5,5−トリメチルヘキサノイルパーオキシド、ジラウロイルパーオキシド、ジベンジルパーオキシド等のジアシルパーオキシド;1,1,3,3−テトラメチルブチルヒドロパーオキシド、クメンヒドロパーオキシド、t−ブチルヒドロパーオキシド等のヒドロパーオキシド;ジクミルパーオキシド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、t−ブチルクミルパーオキシド、ジ−t−ブチルパーオキシド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3等のジアルキルパーオキシド;2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ジ−t−ブチルパーオキシシクロヘキサン、2,2−ジ−t−ブチルパーオキシブタン等のパーオキシケタール;1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、α−クミルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシネオヘプタノエート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、t−アミルパーオキシ2−エチルヘキサノエート、t−ブチルパーオキシ2−エチルヘキサノエート、ジ−t−ブチルパーオキシヘキサヒドロテレフタレート、t−アミルパーオキシ3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシ3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート等のアルキルパーオキシエステル;ジ−2−エチルヘキシルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ2−エチルヘキシルカーボネート、1,6−ビス(t−ブチルパーオキシカルボニルオキシ)ヘキサン等のパーオキシカーボネートなどが挙げられる。 Examples of the organic peroxide include diacyl peroxides such as bis-3,5,5-trimethylhexanoyl peroxide, dilauroyl peroxide, and dibenzyl peroxide; 1,1,3,3-tetramethylbutylhydroperoxide. , Cumenhydroperoxide, hydroperoxides such as t-butylhydroperoxide; dicumylperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 1,3-bis (t). -Dialkyl peroxides such as benzene (butylperoxyisopropyl) benzene, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexin-3; Peroxy such as 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane, 1,1-di-t-butylperoxycyclohexane, 2,2-di-t-butylperoxybutane, etc. Ketal; 1,1,3,3-tetramethylbutylperoxyneodecanoate, α-cumylperoxyneodecanoate, t-butylperoxyneodecanoate, t-butylperoxyneoheptanoeate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy2-ethylhexanoate, t-butylperoxy2-ethylhexanoate Noate, di-t-butylperoxyhexahydroterephthalate, t-amylperoxy3,5,5-trimethylhexanoate, t-butylperoxy3,5,5-trimethylhexanoate, t-butylper Alkyl peroxy esters such as oxyacetate and t-butyl peroxybenzoate; di-2-ethylhexyl peroxy dicarbonate, diisopropyl peroxy dicarbonate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy 2-ethylhexyl carbonate, Examples thereof include peroxycarbonates such as 1,6-bis (t-butylperoxycarbonyloxy) hexane.

前記ラジカル重合開始剤の使用量は、水に対して0.0001〜1質量%が好ましく、0.001〜0.5質量%がより好ましい。 The amount of the radical polymerization initiator used is preferably 0.0001 to 1% by mass, more preferably 0.001 to 0.5% by mass with respect to water.

また、生産性の観点から、レドックス系重合開始剤を用いてもよく、該レドックス系重合開始剤としては、前記有機過酸化物と遷移金属塩の併用が好ましい。有機過酸化物と併用する遷移金属塩としては、例えば、硫酸鉄(II)、チオ硫酸鉄(II)、炭酸鉄(II)、塩化鉄(II)、臭化鉄(II)、ヨウ化鉄(II)、水酸化鉄(II)、酸化鉄(II)等の鉄化合物;硫酸銅(I)、チオ硫酸銅(I)、炭酸銅(I)、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)、水酸化銅(I)、酸化銅(I)等の銅化合物、又はそれらの水和物などが使用できる。これらのうち、生産性の観点から、クメンヒドロパーオキシドと鉄化合物との併用が好ましく、クメンヒドロパーオキシドと硫酸鉄(II)の水和物との併用がより好ましい。 Further, from the viewpoint of productivity, a redox-based polymerization initiator may be used, and the redox-based polymerization initiator is preferably a combination of the organic peroxide and a transition metal salt. Examples of the transition metal salt used in combination with the organic peroxide include iron (II) sulfate, iron (II) thiosulfate, iron (II) carbonate, iron (II) chloride, iron (II) bromide, and iron iodide. Iron compounds such as (II), iron (II) hydroxide, iron (II) oxide; copper (I) sulfate, copper (I) thiosulfate, copper (I) carbonate, copper (I) chloride, copper bromide (II). Copper compounds such as I), copper iodide (I), copper (I) hydroxide, and copper (I) oxide, or hydrates thereof, can be used. Of these, from the viewpoint of productivity, the combined use of cumene hydroperoxide and an iron compound is preferable, and the combined use of cumene hydroperoxide and iron (II) sulfate hydrate is more preferable.

また、前記ラジカル重合開始剤とともに還元剤を用いてもよい。かかる還元剤としては、塩化鉄(II)、硫酸鉄(II)等の鉄化合物;硫酸水素ナトリウム、重亜硫酸ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、炭酸水素ナトリウム等のナトリウム塩;アスコルビン酸、ロンガリット、亜ジオチン酸ナトリウム、トリエタノールアミン、グルコース、フルクトース、グリセルアルデヒド、ラクトース、アラビノース、マルトース等の有機系還元剤などが挙げられる。このうち、鉄化合物と有機系還元剤を併用することが好ましい。かかる還元剤の使用量は、水に対して0.0001〜1質量%の範囲が好ましく、0.001〜0.5質量%の範囲がより好ましい。 Further, a reducing agent may be used together with the radical polymerization initiator. Examples of such reducing agents include iron compounds such as iron (II) chloride and iron (II) sulfate; sodium salts such as sodium hydrogensulfate, sodium bisulfite, sodium bisulfite, sodium hydrogensulfite, and sodium hydrogencarbonate; ascorbic acid, longalit, and the like. Examples thereof include organic reducing agents such as sodium bisulfite, triethanolamine, glucose, fructose, glyceraldehyde, lactose, arabinose, and maltose. Of these, it is preferable to use an iron compound and an organic reducing agent in combination. The amount of the reducing agent used is preferably in the range of 0.0001 to 1% by mass, more preferably in the range of 0.001 to 0.5% by mass with respect to water.

前記製造方法において、乳化重合の系内に必要に応じて金属イオンキレート剤を添加してもよい。具体的には、エチレンジアミン四酢酸二水素二ナトリウム等の金属イオンキレート剤が挙げられる。 In the above-mentioned production method, a metal ion chelating agent may be added to the emulsion polymerization system as needed. Specific examples thereof include metal ion chelating agents such as ethylenediaminetetraacetic acid disodium dihydrogen.

前記製造方法において、乳化重合の系内に必要に応じて増粘抑制剤として電解質を添加してもよい。具体的には、塩化ナトリウム、酢酸ナトリウム、硫酸ナトリウム、リン酸三ナトリウム等の電解質が挙げられる。前記製造方法において、乳化剤と増粘抑制剤とを併用する場合、増粘抑制剤の使用量は、乳化液中のミセルの安定性の観点から、乳化剤に対して20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。 In the above-mentioned production method, an electrolyte may be added to the emulsion polymerization system as a thickening inhibitor, if necessary. Specific examples thereof include electrolytes such as sodium chloride, sodium acetate, sodium sulfate and trisodium phosphate. When the emulsifier and the thickening inhibitor are used in combination in the above-mentioned production method, the amount of the thickening inhibitor used is preferably 20% by mass or less with respect to the emulsifier from the viewpoint of the stability of micelles in the emulsion. It is more preferably mass% or less, and further preferably 5 mass% or less.

前記還元剤、金属イオンキレート剤および電解質は、重合反応中に添加してもよいが、乳化重合当初から水中に添加しておくことが好ましい。 The reducing agent, metal ion chelating agent and electrolyte may be added during the polymerization reaction, but it is preferable that the reducing agent, the metal ion chelating agent and the electrolyte are added to water from the beginning of emulsion polymerization.

前記製造方法において、乳化重合の系内に必要に応じて連鎖移動剤を添加してもよい。連鎖移動剤としては、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、ヘキサデシルメルカプタン、n−オクタデシルメルカプタン等のメルカプタン;メルカプト酢酸、メルカプト酢酸2−エチルヘキシル、メルカプト酢酸メトキシブチル、β−メルカプトプロピオン酸、β−メルカプトプロピオン酸メチル、β−メルカプトプロピオン酸2−エチルヘキシル、β−メルカプトプロピオン酸3−メトキシブチル、メルカプトエタノール、3−メルカプト−1,2−プロパンジオール等のチオール類;α−メチルスチレンダイマー等の連鎖移動定数の大きい炭化水素化合物などが使用できる。 In the above-mentioned production method, a chain transfer agent may be added to the emulsion polymerization system as needed. Examples of the chain transfer agent include mercaptans such as n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, hexadecyl mercaptan, and n-octadecyl mercaptan; mercaptoacetic acid, mercaptoacetate 2-ethylhexyl, mercaptoacetate methoxybutyl, β-mercapto. Thiols such as propionic acid, methyl β-mercaptopropionate, 2-ethylhexyl β-mercaptopropionic acid, 3-methoxybutyl β-mercaptopropionic acid, mercaptoethanol, 3-mercapto-1,2-propanediol; α-methyl A hydrocarbon compound having a large chain transfer constant such as a styrene dimer can be used.

水溶性のラジカル重合開始剤を用いる場合は水溶液として添加すればよいが、水に難溶なラジカル重合開始剤を用いる場合は、水および乳化剤を用いてラジカル重合開始剤の乳化液をあらかじめ調製し、これを添加してもよい。この場合、使用する乳化剤は乳化重合で用いるものと同じでもよいし、異なっていてもよい。また、2種以上の乳化剤を組み合わせてもよい。 When using a water-soluble radical polymerization initiator, it may be added as an aqueous solution, but when using a radical polymerization initiator that is sparingly soluble in water, an emulsion of the radical polymerization initiator is prepared in advance using water and an emulsifier. , This may be added. In this case, the emulsifier used may be the same as or different from that used in the emulsion polymerization. Further, two or more kinds of emulsifiers may be combined.

乳化重合の重合温度は、通常0〜100℃の範囲が好ましく、重合率を高める観点から、50〜90℃が望ましい。 The polymerization temperature of emulsion polymerization is usually preferably in the range of 0 to 100 ° C, and preferably 50 to 90 ° C from the viewpoint of increasing the polymerization rate.

本発明において、重合体粒子(x)を用いる際は乳化重合後の乳化液をそのまま使用してもよいし、塩析、酸析、凍結、溶剤添加等の公知の方法により重合体粒子(x)を回収して用いてもよい。またこうして回収した重合体粒子(x)をさらに洗浄、再沈殿、スチームストリッピング等の公知の方法によって精製してもよい。 In the present invention, when the polymer particles (x) are used, the emulsion after emulsion polymerization may be used as it is, or the polymer particles (x) may be used by known methods such as salting out, acidification, freezing, and solvent addition. ) May be recovered and used. Further, the polymer particles (x) thus recovered may be further purified by a known method such as washing, reprecipitation, steam stripping and the like.

本発明において、重合体粒子(x)の劣化を抑制する観点から、乳化重合後の乳化液、又は回収処理後や精製処理後の重合体粒子(x)に老化防止剤を添加してもよい。老化防止剤は、重合反応後の重合体粒子(x)の回収処理や精製処理における劣化を抑制する観点からは、乳化重合後の乳化液に老化防止剤を添加した後、重合体粒子(x)を回収処理又は精製処理をしてもよい。また、得られた重合体粒子(x)の使用中の劣化を抑制する観点からは、重合体粒子(x)の回収処理後や精製処理後の重合体粒子(x)に、老化防止剤を添加してもよい。ただし、老化防止剤を乳化重合後の乳化液に加えた場合は、重合体粒子(x)の回収処理又は精製処理によって、添加した老化防止剤が除去されることがあるため、重合体粒子(x)の回収処理後や精製処理後に再度添加することが望ましい。 In the present invention, from the viewpoint of suppressing deterioration of the polymer particles (x), an antiaging agent may be added to the emulsion after emulsion polymerization or the polymer particles (x) after the recovery treatment or the purification treatment. .. From the viewpoint of suppressing deterioration in the recovery treatment and purification treatment of the polymer particles (x) after the polymerization reaction, the anti-aging agent is added to the emulsion after emulsion polymerization and then the polymer particles (x). ) May be recovered or purified. Further, from the viewpoint of suppressing deterioration of the obtained polymer particles (x) during use, an antiaging agent is applied to the polymer particles (x) after the recovery treatment and the purification treatment of the polymer particles (x). It may be added. However, when the anti-aging agent is added to the emulsion after emulsion polymerization, the added anti-aging agent may be removed by the recovery treatment or the purification treatment of the polymer particles (x), so that the polymer particles ( It is desirable to add it again after the recovery treatment or purification treatment of x).

老化防止剤としては、一般的な材料を使用することができる。具体的には、ヒドロキノン、ヒドロキノンモノメチルエーテル、2,5−ジ−t−ブチルフェノール、2,6−ジ(t−ブチル)−4−メチルフェノール、モノ(又はジ、又はトリ)(α−メチルベンジル)フェノール等のフェノール系化合物;2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)等のビスフェノール系化合物;2−メルカプトベンズイミダゾール、2−メルカプトメチルベンズイミダゾール等のベンズイミダゾール系化合物;6−エトキシ−1,2−ジヒドロ−2,2,4−トリメチルキノリン、ジフェニルアミンとアセトンの反応物、2,2,4−トリメチル−1,2−ジヒドロキノリン重合体等のアミン−ケトン系化合物;N−フェニル−1−ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミン、p−(p−トルエンスルホニルアミド)ジフェニルアミン、N,N’−ジフェニル−p−フェニレンジアミン等の芳香族二級アミン系化合物;1,3−ビス(ジメチルアミノプロピル)−2−チオ尿素、トリブチルチオ尿素等のチオウレア系化合物などが使用できる。 As the anti-aging agent, a general material can be used. Specifically, hydroquinone, hydroquinone monomethyl ether, 2,5-di-t-butylphenol, 2,6-di (t-butyl) -4-methylphenol, mono (or di, or tri) (α-methylbenzyl). ) Phenolic compounds such as phenol; 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 4,4'-thiobis Bisphenol compounds such as (3-methyl-6-t-butylphenol); benzimidazole compounds such as 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole; 6-ethoxy-1,2-dihydro-2,2, Amine-ketone compounds such as 4-trimethylquinoline, a reaction product of diphenylamine and acetone, 2,2,4-trimethyl-1,2-dihydroquinoline polymer; N-phenyl-1-naphthylamine, alkylated diphenylamine, octylation. Aromatic secondary amine compounds such as diphenylamine, 4,4'-bis (α, α-dimethylbenzyl) diphenylamine, p- (p-toluenesulfonylamide) diphenylamine, N, N'-diphenyl-p-phenylenediamine; Thiourea compounds such as 1,3-bis (dimethylaminopropyl) -2-thiourea and tributylthiourea can be used.

また、重合体粒子(x)の製造方法としては、天然ゴム、スチレン−ブタジエン共重合体、ポリブタジエン、ポリイソプレン、イソブチレン−イソプレン共重合体、スチレン−イソプレン共重合体、スチレン−イソプレン−ブタジエン共重合体、ハロゲン化イソブチレン−イソプレン共重合体、エチレン−プロピレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体の部分水素添加物、ポリクロロプレン等のゴムなどの重合体を予め製造しておき、これらを水中に乳化又は懸濁させてスプレードライ等により取り出す方法によっても製造することができる。ガラス転移温度が25℃以下の重合体粒子を前記方法によって製造すると粒子同士が融着して水などに再分散しにくくなるため、乳化剤として例えば高分子界面活性剤である部分けん化PVAなどを用いて乳化させることが好ましい方法である。 As a method for producing the polymer particles (x), natural rubber, styrene-butadiene copolymer, polybutadiene, polyisoprene, isobutylene-isoprene copolymer, styrene-isoprene copolymer, styrene-isoprene-butadiene co-weight. Polymers such as coalesced, halogenated isobutylene-isoprene copolymer, ethylene-propylene-butadiene copolymer, acrylonitrile-butadiene copolymer, partially hydrogenated acrylonitrile-butadiene copolymer, and rubber such as polychloroprene are previously prepared. It can also be produced by a method of producing them, emulsifying or suspending them in water, and taking them out by spray drying or the like. When polymer particles having a glass transition temperature of 25 ° C. or lower are produced by the above method, the particles fuse with each other and are difficult to redisperse in water or the like. It is a preferable method to emulsify.

<ポリマー組成物>
本発明のポリマー組成物は、例えば、前記架橋性基を有する水溶性ポリマーおよび前記重合体粒子(x)を溶媒中で混合することにより得られる。
<Polymer composition>
The polymer composition of the present invention can be obtained, for example, by mixing the water-soluble polymer having a crosslinkable group and the polymer particles (x) in a solvent.

本発明のポリマー組成物における架橋性基を有する水溶性ポリマーの濃度は、ポリマー組成物に対して1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。また、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下がさらに好ましい。架橋性基を有する水溶性ポリマーの濃度が1質量%未満では後述するゲルやフィルムなどの強度が低く、70質量%を越えるとポリマー組成物の粘度が高く成形が困難になる傾向がある。 The concentration of the water-soluble polymer having a crosslinkable group in the polymer composition of the present invention is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, based on the polymer composition. Further, 70% by mass or less is preferable, 60% by mass or less is more preferable, and 50% by mass or less is further preferable. If the concentration of the water-soluble polymer having a crosslinkable group is less than 1% by mass, the strength of the gel or film described later is low, and if it exceeds 70% by mass, the viscosity of the polymer composition tends to be high and molding tends to be difficult.

本発明のポリマー組成物における重合体粒子(x)の含有量は、架橋性基を有する水溶性ポリマーに対して1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましい。また、300質量%以下が好ましく、200質量%以下がより好ましい。重合体粒子(x)の含有量が1質量%以上であれば後述するゲルやフィルムなどの機械的強度が増す傾向があり、300質量%以下であれば架橋性基を有する水溶性ポリマーの硬化を阻害しない。 The content of the polymer particles (x) in the polymer composition of the present invention is preferably 1% by mass or more, more preferably 2% by mass or more, and further preferably 3% by mass or more, based on the water-soluble polymer having a crosslinkable group. preferable. Further, 300% by mass or less is preferable, and 200% by mass or less is more preferable. If the content of the polymer particles (x) is 1% by mass or more, the mechanical strength of gels and films described later tends to increase, and if it is 300% by mass or less, the water-soluble polymer having a crosslinkable group is cured. Does not inhibit.

本発明のポリマー組成物には溶媒が含まれていてもよく、溶媒としては水が好ましい。さらに、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン等の非プロトン性極性溶媒;メタノール、エタノール、プロパノール、イソプロパノール、等のモノアルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン等の多価アルコールなどの水溶性溶媒を混合して使用してもよい。 The polymer composition of the present invention may contain a solvent, and water is preferable as the solvent. Further, aprotonic polar solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide and N-methylpyrrolidone; monoalcohols such as methanol, ethanol, propanol and isopropanol; polyhydric such as ethylene glycol, diethylene glycol, triethylene glycol and glycerin. A water-soluble solvent such as alcohol may be mixed and used.

<重合開始剤>
本発明のポリマー組成物には、重合開始剤が含まれることが好ましい。重合開始剤としては、例えば、光重合開始剤や熱重合開始剤などが挙げられる。
<Polymerization initiator>
The polymer composition of the present invention preferably contains a polymerization initiator. Examples of the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator.

熱重合開始剤としては、ラジカル重合で一般的なアゾ系重合開始剤や過酸化物系重合開始剤が使用できるが、透明性や物性に優れたゲルやフィルムなどを得るためには気体を発生しない過酸化物系重合開始剤が好ましい。また、還元剤と組み合わせたレドックス系重合開始剤を使用してもよい。前記のとおり、レドックス系重合開始剤であれば過酸化物系重合開始剤と還元剤の混合という刺激により架橋させることが可能である。 As the thermal polymerization initiator, an azo-based polymerization initiator or a peroxide-based polymerization initiator that is generally used in radical polymerization can be used, but a gas is generated in order to obtain a gel or film having excellent transparency and physical properties. A peroxide-based polymerization initiator that does not use is preferable. Further, a redox-based polymerization initiator combined with a reducing agent may be used. As described above, if it is a redox-based polymerization initiator, it can be crosslinked by stimulation of mixing a peroxide-based polymerization initiator and a reducing agent.

ポリマー組成物に水溶媒を用いる場合は、水溶性の高い過酸化物系重合開始剤が好ましい。具体的には、例えば過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウムなどの無機過酸化物が挙げられる。レドックス系重合開始剤として組み合わせる還元剤としては既知の還元剤が使用できるが、これらの中でも水溶性の高いN,N,N’,N’−テトラメチルエチレンジアミン、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ハイドロサルファイトナトリウムなどが好ましい例として挙げられる。 When an aqueous solvent is used in the polymer composition, a peroxide-based polymerization initiator having a high water solubility is preferable. Specific examples thereof include inorganic peroxides such as ammonium persulfate, potassium persulfate, and sodium persulfate. Known reducing agents can be used as the reducing agent to be combined as a redox-based polymerization initiator. Among these, highly water-soluble N, N, N', N'-tetramethylethylenediamine, sodium sulfite, sodium hydrogen sulfite, and hydrosal Phytosodium and the like are preferred examples.

既に述べたように、気体を発生しない過酸化物系重合開始剤が好ましく使用されるが、特にゲルやフィルムなどの透明性や物性が問われない場合は水溶性のアゾ系重合開始剤を用いてもよい。具体的には、例えば2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二塩酸塩(商品名「VA−044」、和光純薬工業(株)製)、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二硫酸塩二水和物(商品名「VA−044B」、和光純薬工業(株)製)、2,2’−アゾビス[2−メチルプロピオンアミジン]二塩酸塩(商品名「V−50」、和光純薬工業(株)製)、2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]四水和物(商品名「VA−057」、和光純薬工業(株)製)、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン](商品名「VA−061」、和光純薬工業(株)製)、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド](商品名「VA−086」、和光純薬工業(株)製)、2,2’−アゾビス(4−シアノペンタン酸)(商品名「V−501」、和光純薬工業(株)製)などが挙げられる。 As already mentioned, a peroxide-based polymerization initiator that does not generate a gas is preferably used, but a water-soluble azo-based polymerization initiator is used especially when transparency and physical properties of gels and films are not required. You may. Specifically, for example, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (trade name "VA-044", manufactured by Wako Pure Chemical Industries, Ltd.), 2, 2'-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate (trade name "VA-044B", manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis [2-Methylpropion amidine] dihydrochloride (trade name "V-50", manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine ] Tetrahydrate (trade name "VA-057", manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis [2- (2-imidazolin-2-yl) propane] (trade name "VA-" 061 ", manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] (trade name" VA-086 ", Wako Pure Chemical Industries, Ltd. ), 2,2'-azobis (4-cyanopentanoic acid) (trade name "V-501", manufactured by Wako Pure Chemical Industries, Ltd.) and the like.

光重合開始剤としては、紫外線(UV)や可視光線などの光線によって重合を開始させるものであれば特に問題なく使用できるが、水溶性を示すものが好ましい。具体的には、例えばα−ケトグルタル酸、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名「Irgacure2959」、BASF社製)、フェニル(2,4,6−トリメチルベンゾイル)ホスフィン酸リチウム塩(商品名「L0290」、東京化成工業(株)製)、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド](商品名「VA−086」、和光純薬工業(株)製)、エオジンYなどが挙げられる。 As the photopolymerization initiator, any agent that initiates polymerization by light rays such as ultraviolet rays (UV) and visible light can be used without any particular problem, but those exhibiting water solubility are preferable. Specifically, for example, α-ketoglutaric acid, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one (trade name "Irgacure2959", BASF). , Phenyl (2,4,6-trimethylbenzoyl) phosphinic acid lithium salt (trade name "L0290", manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2,2'-azobis [2-methyl-N- (2-methyl-N-) Hydroxyethyl) propionamide] (trade name "VA-086", manufactured by Wako Pure Chemical Industries, Ltd.), Eodine Y and the like.

光重合開始剤を含むポリマー組成物を硬化させる場合、ポリマー組成物は光吸収剤を含んでいてもよい。光吸収剤は、光造形法の3Dプリンターによる造形の際に精密性を確保するために必要となることが多い。光吸収剤としては、水溶性を示すものであれば特に限定されないが、ケミプロ化成(株)製「KEMISORB111」、「KEMISORB11S」やBASF社製「Tinuvin477−DW」、「UVA805」、「Tinuvin1130」などが挙げられる。 When the polymer composition containing the photopolymerization initiator is cured, the polymer composition may contain a light absorber. A light absorber is often required to ensure precision when modeling with a stereolithography 3D printer. The light absorber is not particularly limited as long as it exhibits water solubility, but is limited to "KEMIPRO B111" and "KEMISOR B11S" manufactured by Chemipro Kasei Co., Ltd., "Tinuvin 477-DW", "UVA805" and "Tinuvin 1130" manufactured by BASF. Can be mentioned.

光重合開始剤を含むポリマー組成物を硬化させる場合、ポリマー組成物はさらに重合禁止剤を含んでいてもよい。重合禁止剤としては水溶性を示すヒドロキノンやp−メトキシフェノールなどが例示できるが、これ以外の重合禁止剤も利用できる。重合禁止剤を添加することによりポリマー組成物の保存安定性を高めることができる。 When the polymer composition containing the photopolymerization initiator is cured, the polymer composition may further contain a polymerization inhibitor. Examples of the polymerization inhibitor include hydroquinone and p-methoxyphenol showing water solubility, but other polymerization inhibitors can also be used. The storage stability of the polymer composition can be enhanced by adding a polymerization inhibitor.

<共存モノマー>
本発明のポリマー組成物には、さらに共存モノマーが含まれていてもよい。共存モノマーとしては水溶性のラジカル重合性モノマーである2−アクリルアミド−2−メチルプロパンスルホン酸、アクリルアミド、N,N−ジメチルアクリルアミド、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、N−イソプロピルアクリルアミド、ビニルピリジン、ヒドロキシエチル(メタ)アクリレート、スチレンスルホン酸、ポリエチレングリコールモノ(メタ)アクリレートなどが挙げられる。
<Coexistence monomer>
The polymer composition of the present invention may further contain a coexisting monomer. The coexisting monomers include 2-acrylamide-2-methylpropanesulfonic acid, acrylamide, N, N-dimethylacrylamide, (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid, and fumaric acid, which are water-soluble radically polymerizable monomers. , N-isopropylacrylamide, vinylpyridine, hydroxyethyl (meth) acrylate, styrene sulfonic acid, polyethylene glycol mono (meth) acrylate and the like.

<架橋剤>
本発明のポリマー組成物には、架橋剤が含まれていてもよい。架橋剤としては、特に水溶性を示すものが好ましく、ラジカル重合性の不飽和基を2個以上有するN,N’−メチレンビス(メタ)アクリルアミド、エチレングリコールジ(メタ)アクリレート、N,N’−ジエチレングリコールジ(メタ)アクリレートなどが挙げられる。
<Crosslinking agent>
The polymer composition of the present invention may contain a cross-linking agent. The cross-linking agent is particularly preferably one showing water solubility, and N, N'-methylenebis (meth) acrylamide, ethylene glycol di (meth) acrylate, N, N'- having two or more radically polymerizable unsaturated groups. Examples thereof include diethylene glycol di (meth) acrylate.

<無機粒子>
本発明のポリマー組成物には、水不溶性の無機粒子が含まれていてもよい。水不溶性の無機粒子としては、例えば沈降シリカ、ゲル状シリカ、気相法シリカ、コロイダルシリカ等のシリカ;アルミナ、ヒドロキシアパタイト、ジルコニア、酸化亜鉛、チタン酸バリウム等のセラミック;ゼオライト、タルク、モンモリロナイト等の鉱物;硫酸カルシウム等の石膏;酸化カルシウム、酸化鉄等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;ケイソウ土、土壌、粘土、砂、砂利などが挙げられる。これらの無機粒子は1種を単独で使用しても、2種以上を併用してもよい。水不溶性の無機粒子を添加することで、後述するゲルやフィルムなどに高い機械物性や磁性などの機能を付与することができる。また、無機粒子を含むゲルを乾燥、さらには焼結などを行うことにより成形された無機焼結体を得ることも可能である。
<Inorganic particles>
The polymer composition of the present invention may contain water-insoluble inorganic particles. Examples of water-insoluble inorganic particles include silica such as precipitated silica, gelled silica, vapor phase silica, colloidal silica; ceramics such as alumina, hydroxyapatite, zirconia, zinc oxide and barium titanate; zeolite, talc, montmorillonite and the like. Minerals; gypsum such as calcium sulfate; metal oxides such as calcium oxide and iron oxide; metal carbonates such as calcium carbonate and magnesium carbonate; These inorganic particles may be used alone or in combination of two or more. By adding water-insoluble inorganic particles, it is possible to impart functions such as high mechanical properties and magnetism to gels and films described later. It is also possible to obtain a molded inorganic sintered body by drying a gel containing inorganic particles and further performing sintering or the like.

無機粒子のポリマー組成物への含有量は特に制限されないが、好ましくは99.5質量%以下、より好ましくは99質量%以下、さらに好ましくは95質量%以下である。さらに、無機粒子の添加効果を得るためには、無機粒子の含有量は0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上である。 The content of the inorganic particles in the polymer composition is not particularly limited, but is preferably 99.5% by mass or less, more preferably 99% by mass or less, still more preferably 95% by mass or less. Further, in order to obtain the effect of adding the inorganic particles, the content of the inorganic particles is 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more.

前記ポリマー組成物には、本発明の効果を損なわない範囲内で、色素、防腐剤、防黴剤などの添加剤が含まれていてもよい。これらは、1種を単独で使用しても、2種以上を併用してもよい。 The polymer composition may contain additives such as dyes, preservatives and fungicides as long as the effects of the present invention are not impaired. These may be used alone or in combination of two or more.

<ゲル>
本発明のゲルは、前記ポリマー組成物を架橋することにより得られる。架橋方法としては、ポリマー組成物を所定の型枠等に流し込んだあと、活性エネルギー線、熱および混合から選ばれる少なくとも1種の刺激により架橋する方法が挙げられる。また、3Dプリンターのように材料押出堆積法やインクジェット法を用いる場合は、ポリマー組成物をシリンジやプリンターヘッドから吐出した後、刺激により架橋させ、所望の形状に成形することが可能である。さらに、光造形法では光重合開始剤を含むポリマー組成物をバスタブ型の容器に入れ、光造形することで所望の形状に成形することが可能である。
<Gel>
The gel of the present invention is obtained by cross-linking the polymer composition. Examples of the cross-linking method include a method in which the polymer composition is poured into a predetermined mold or the like and then cross-linked by at least one stimulus selected from active energy rays, heat and mixing. Further, when a material extrusion deposition method or an inkjet method is used as in a 3D printer, the polymer composition can be ejected from a syringe or a printer head and then crosslinked by stimulation to form a desired shape. Further, in the stereolithography method, a polymer composition containing a photopolymerization initiator is placed in a bathtub-shaped container and stereolithographically formed to form a desired shape.

本発明のゲルはそのまま使用することもできるが、水などの溶媒に浸漬して平衡膨潤状態にした後に使用してもよい。浸漬操作によって未反応原料や未架橋ポリマー成分を除去する効果も期待できる。未反応原料や未架橋の水溶性ポリマー成分を更に除きたい場合は、溶媒を交換して浸漬操作を繰り返せばよい。しかし、本発明のポリマー組成物は架橋性基を有する水溶性ポリマーを用いるため、そのまま使用しても通常モノマーが示す毒性をほとんど示さないという特長がある。 The gel of the present invention can be used as it is, but it may be used after being immersed in a solvent such as water to bring it into an equilibrium swelling state. The effect of removing unreacted raw materials and uncrosslinked polymer components by the dipping operation can also be expected. If it is desired to further remove the unreacted raw material and the uncrosslinked water-soluble polymer component, the solvent may be exchanged and the dipping operation may be repeated. However, since the polymer composition of the present invention uses a water-soluble polymer having a crosslinkable group, it has a feature that even if it is used as it is, it hardly shows the toxicity normally exhibited by a monomer.

<フィルム、粒子>
本発明のフィルムおよび粒子は、前記ポリマー組成物を架橋および乾燥にすることにより得られる。架橋および乾燥方法としては、例えば、上述のようにポリマー組成物を架橋してゲルを得た後に乾燥して、本発明のフィルムおよび粒子を得る方法が挙げられる。または、ポリマー組成物を成形した後、乾燥し、その後、架橋することにより、本発明のフィルムおよび粒子を得ることも可能である。ポリマー組成物を成形した後、乾燥する方法としては、溶液キャスト法による皮膜形成やスプレードライ法による粒子形成後に、乾燥する方法などが挙げられる。
<Film, particles>
The films and particles of the present invention are obtained by cross-linking and drying the polymer composition. Examples of the cross-linking and drying method include a method of cross-linking the polymer composition as described above to obtain a gel and then drying to obtain the film and particles of the present invention. Alternatively, the film and particles of the present invention can also be obtained by molding the polymer composition, drying it, and then cross-linking it. Examples of the method of forming the polymer composition and then drying it include a method of forming a film by a solution casting method and a method of forming particles by a spray-drying method and then drying.

本発明のフィルムおよび粒子は、水などに浸漬することで再度吸水して膨潤し、含水したゲルにすることも可能である。 The film and particles of the present invention can be immersed in water or the like to absorb water again and swell to form a water-containing gel.

本発明のゲル、フィルムおよび粒子の用途としては、例えば紙おむつや生理用品などの衛生用品、コンタクトレンズや創傷被覆材などの体外で使用する医療機器、衝撃吸収材料、制振・防音材料などに限らず、医療機器の表面コーティングや人工臓器などのより高度な医療機器、現場施工が必要な土壌改良材などの土木・建築用材料、保水材料などの農業用資材、オンディマンドで成形する3Dプリンター用の硬化性原料などが挙げられる。 The use of the gel, film and particles of the present invention is limited to sanitary products such as paper diapers and sanitary products, medical devices used outside the body such as contact lenses and wound dressings, shock absorbing materials, vibration damping / soundproofing materials, and the like. For more advanced medical equipment such as surface coating of medical equipment and artificial organs, civil engineering and construction materials such as soil improvement materials that require on-site construction, agricultural materials such as water retention materials, and 3D printers that are molded on demand. Examples include curable raw materials.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。 Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

合成例、実施例および比較例において使用した各成分は以下の通りである。
(単量体)
・アクリル酸n−ブチル:日本触媒(株)製
・トリメチロールプロパントリメタクリレート:商品名「ライトエステルTMP」、共栄社化学(株)製
・アリルメタクリレート:東京化成工業(株)製
・ジシクロペンタニルメタクリレート:商品名「ファンクリルFA−513M」、日立化成(株)製
・ブタジエン:JSR(株)製
・スチレン:キシダ化学(株)製
(水溶性ポリマー)
・ポリビニルアルコール:商品名「PVA117」、(株)クラレ製
・ポリビニルアルコール:商品名「PVA105」、(株)クラレ製
(架橋剤)
・N,N’−メチレンビスアクリルアミド:東京化成工業(株)製
(連鎖移動剤)
・n−ドデシルメルカプタン:アルドリッチジャパン(株)製
・t−ドデシルメルカプタン:東京化成工業(株)製
(乳化剤)
・アルキルアリルスルホコハク酸ナトリウム:商品名「エレミノール JS−20」三洋化成工業(株)製
・メルカプト基変性PVA(重合度500、けん化度88mol%):(株)クラレ製
・ラウリル硫酸ナトリウム:商品名「エマール2FG」、花王(株)製
・ポリオキシエチレンラウリルエーテル酢酸:商品名「カオーアキポ RLM−100」花王(株)製
(ラジカル重合開始剤)
・ペルオキソ二硫酸ナトリウム:和光純薬工業(株)製
・過酸化水素水溶液:和光純薬工業(株)製
・クメンヒドロパーオキシド:商品名「パークミルH−80」、日油(株)製
・ペルオキソ二硫酸カリウム(過硫酸カリウム):和光純薬工業(株)製
(遷移金属塩)
・硫酸鉄(II)(7水和物):和光純薬工業(株)製
(金属イオンキレート剤)
・エチレンジアミン四酢酸二水素二ナトリウム:関東化学(株)製
(増粘抑制剤)
・塩化ナトリウム:和光純薬工業(株)製
・酢酸ナトリウム:和光純薬工業(株)製
(老化防止剤)
・オリゴマー型ヒンダードフェノール:商品名「セロゾールK−840」、中京油脂(株)製
(溶媒)
・イオン交換水:電気伝導率0.08×10−4S/m以下のイオン交換水
(硬質粒子)
・コロイダルシリカ:商品名「スノーテックス ST−C」(濃度20質量%)、日産化学工業(株)製
The components used in the synthetic examples, examples and comparative examples are as follows.
(Monomer)
・ N-butyl acrylate: manufactured by Nippon Catalyst Co., Ltd. ・ Trimethylol propantrimethacrylate: trade name “Light Ester TMP”, manufactured by Kyoeisha Chemical Co., Ltd. ・ Allyl methacrylate: manufactured by Tokyo Chemical Industry Co., Ltd. ・ Dicyclopentanyl Ester: Trade name "Funkril FA-513M", manufactured by Hitachi Chemical Co., Ltd. ・ butadiene: manufactured by JSR Co., Ltd. ・ Stylium: manufactured by Kishida Chemical Co., Ltd. (water-soluble polymer)
-Polyvinyl alcohol: trade name "PVA117", manufactured by Kuraray Co., Ltd.-Polyvinyl alcohol: trade name "PVA105", manufactured by Kuraray Co., Ltd. (crosslinking agent)
・ N, N'-methylenebisacrylamide: manufactured by Tokyo Chemical Industry Co., Ltd. (chain transfer agent)
・ N-dodecyl mercaptan: manufactured by Aldrich Japan Co., Ltd. ・ t-dodecyl mercaptan: manufactured by Tokyo Chemical Industry Co., Ltd. (emulsifier)
-Sodium alkylallyl sulfosuccinate: trade name "eleminol JS-20" manufactured by Sanyo Kasei Kogyo Co., Ltd.-Mercapt group-modified PVA (polymerization degree 500, saponification degree 88 mol%): manufactured by Kuraray Co., Ltd.-Sodium lauryl sulfate: trade name "Emar 2FG", manufactured by Kao Co., Ltd., polyoxyethylene lauryl ether acetic acid: trade name "Kao Akipo RLM-100" manufactured by Kao Co., Ltd. (radical polymerization initiator)
・ Sodium peroxodisulfate: manufactured by Wako Pure Chemical Industries, Ltd. ・ Hydrogen peroxide solution: manufactured by Wako Pure Chemical Industries, Ltd. ・ Kumenhydroperoxide: trade name “Park Mill H-80”, manufactured by Nichiyu Co., Ltd. Potassium peroxodisulfate (potassium persulfate): manufactured by Wako Pure Chemical Industries, Ltd. (transition metal salt)
-Iron sulfate (II) (hepatic hydrate): manufactured by Wako Pure Chemical Industries, Ltd. (metal ion chelating agent)
-Ethylenediaminetetraacetic acid disodium dihydrogen: manufactured by Kanto Chemical Co., Inc. (thickening inhibitor)
・ Sodium chloride: manufactured by Wako Pure Chemical Industries, Ltd. ・ Sodium acetate: manufactured by Wako Pure Chemical Industries, Ltd. (anti-aging agent)
-Oligomer type hindered phenol: trade name "Cerozol K-840", manufactured by Chukyo Yushi Co., Ltd. (solvent)
-Ion-exchanged water: Ion-exchanged water with an electrical conductivity of 0.08 x 10 -4 S / m or less (hard particles)
・ Colloidal silica: Product name "Snowtex ST-C" (concentration 20% by mass), manufactured by Nissan Chemical Industries, Ltd.

合成例において、各種分析条件は以下に示す方法に従って行った。 In the synthesis example, various analytical conditions were carried out according to the method shown below.

[乳化液中の平均粒子径]
重合体粒子(x)の乳化液(0.1mL)とイオン交換水(10mL)の混合液を動的光散乱測定装置(装置名:FPAR−1000、大塚電子(株)製)を用いて粒子の粒度分布を体積基準で測定し、メディアン径を平均分散粒子径として測定し、乳化液中の平均粒子径とした。
[Average particle size in emulsion]
Particles of a mixed solution of an emulsion (0.1 mL) of polymer particles (x) and ion-exchanged water (10 mL) using a dynamic light scattering measuring device (device name: FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.). The particle size distribution was measured on a volume basis, and the median diameter was measured as the average dispersed particle diameter, which was used as the average particle diameter in the emulsion.

[架橋性基を有する水溶性ポリマーの重合度]
下記合成例において得られた架橋性基を有する水溶性ポリマーの重合度は、JIS K 6726:1994に準じて測定した。
[Degree of polymerization of water-soluble polymer having crosslinkable group]
The degree of polymerization of the water-soluble polymer having a crosslinkable group obtained in the following synthetic example was measured according to JIS K 6726: 1994.

[架橋性基の導入率]
下記合成例において得られた架橋性基を有する水溶性ポリマーの架橋性基の導入率は、プロトンNMRにより測定した。架橋性基のシグナルと水溶性ポリマーのシグナルの積分値の比から導入率が求められる。
(プロトンNMR測定条件)
装置:日本電子株式会社製 核磁気共鳴装置「JNM−ECX400」
温度:25℃
実施例および比較例における評価は、以下に示す方法に従って行った。
[Introduction rate of crosslinkable groups]
The introduction rate of the crosslinkable group of the water-soluble polymer having the crosslinkable group obtained in the following synthetic example was measured by proton NMR. The introduction rate is determined from the ratio of the integrated value of the signal of the crosslinkable group and the signal of the water-soluble polymer.
(Proton NMR measurement conditions)
Equipment: Nuclear magnetic resonance equipment "JNM-ECX400" manufactured by JEOL Ltd.
Temperature: 25 ° C
Evaluation in Examples and Comparative Examples was performed according to the method shown below.

[刺激硬化性]
下記実施例1〜9および比較例1〜5により作製したポリマー組成物を硬化させた際に、一体感のあるゲルを形成したものは「良:good」、弱いが何とか一体感を示すゲルを形成したものは「可:fair」、全体が硬化せずゲルとして取り扱えないものは「不良:poor」とした。
[Stimulation hardening]
When the polymer compositions prepared in Examples 1 to 9 and Comparative Examples 1 to 5 below were cured, a gel having a sense of unity was formed as "good", and a gel having a weak but somehow showing a sense of unity was obtained. The formed one was "OK: fair", and the one that could not be treated as a gel because the whole was not cured was "Defective: better".

[ゲルの引張物性の評価]
実施例1〜9および比較例1〜5で得られたゲルの引張物性を次の手順により測定した。JIS K 6251の3号ダンベルカッターを用いて、2mm厚で作製した各ゲルシートから試験片を切り出した。白色テープを使用して試験片に標点を2つ付け、ノギスでその標点間距離を測定し、マイクロメータで試験片の幅と厚みを測定した。その後、イーストン社製引張試験機に試験片をセットして、画像データを取得しながら100mm/分の速度で引張破断応力および破断歪を測定した。なお、1%、100%の歪に対応するそれぞれの応力から簡易的に初期弾性率を求めた。
[Evaluation of gel tensile characteristics]
The tensile characteristics of the gels obtained in Examples 1 to 9 and Comparative Examples 1 to 5 were measured by the following procedure. A test piece was cut out from each gel sheet prepared with a thickness of 2 mm using a JIS K 6251 No. 3 dumbbell cutter. Two gauge points were attached to the test piece using white tape, the distance between the gauge points was measured with a caliper, and the width and thickness of the test piece were measured with a micrometer. Then, the test piece was set in an Easton tensile tester, and the tensile stress and fracture strain were measured at a speed of 100 mm / min while acquiring image data. The initial elastic modulus was simply obtained from the respective stresses corresponding to the strains of 1% and 100%.

[フィルムの引張物性の評価]
実施例10、11および比較例6、7で得られたフィルムの引張物性を次の手順により測定した。温度23℃、相対湿度45%にて14日間フィルムを平衡化した後、JIS K 6251の1号ダンベルカッターを用いて、作製したフィルムから試験片を切り出した。白色テープを使用して試験片に標点を2つ付け、ノギスでその標点間距離を測定し、マイクロメータで試験片の幅と厚みを測定した。その後、イーストン社製引張試験機に試験片をセットして、画像データを取得しながら破断歪を測定した。なお、0.05〜0.25%の歪に対応するそれぞれの応力から初期弾性率を求めた。
[Evaluation of tensile properties of film]
The tensile characteristics of the films obtained in Examples 10 and 11 and Comparative Examples 6 and 7 were measured by the following procedure. After equilibrating the film at a temperature of 23 ° C. and a relative humidity of 45% for 14 days, a test piece was cut out from the produced film using a JIS K 6251 No. 1 dumbbell cutter. Two gauge points were attached to the test piece using white tape, the distance between the gauge points was measured with a caliper, and the width and thickness of the test piece were measured with a micrometer. After that, the test piece was set in an Easton tensile tester, and the fracture strain was measured while acquiring image data. The initial elastic modulus was obtained from each stress corresponding to the strain of 0.05 to 0.25%.

[合成例1]
(アクリル酸n−ブチル(BA)/ジシクロペンタニルメタクリレート(TCDMA)粒子)
(工程1)
乾燥させた2Lの耐圧重合槽にイオン交換水240g、「エレミノール JS−20」91.368g、ペルオキソ二硫酸ナトリウム1.08gを添加した後、30分間窒素ガスにてバブリングすることで脱酸素処理を行い、水溶液を得た。該水溶液を60℃に昇温した後、重合体粒子(x)を形成する単量体混合物(アクリル酸n−ブチル:トリメチロールプロパントリメタクリレート:アリルメタクリレート=360:1.8:3.6(質量比))365.4gを脱酸素処理した後、10mL/分の速度で連続的に添加した。
[Synthesis Example 1]
(N-butyl (BA) acrylate / dicyclopentanyl methacrylate (TCDMA) particles)
(Step 1)
After adding 240 g of ion-exchanged water, 91.368 g of "Eleminor JS-20" and 1.08 g of sodium peroxodisulfate to a dried 2 L pressure-resistant polymerization tank, deoxidization treatment is performed by bubbling with nitrogen gas for 30 minutes. And an aqueous solution was obtained. After raising the temperature of the aqueous solution to 60 ° C., a monomer mixture (n-butyl acrylate: trimethylolpropane trimethacrylate: allyl methacrylate = 360: 1.8: 3.6) forming polymer particles (x). Mass ratio)) 365.4 g was deoxidized and then continuously added at a rate of 10 mL / min.

(工程2)
総単量体転化率が99質量%を超えたことを確認した時点で、前記工程1で得られた乳化液に、重合体被膜(y)を形成するジシクロペンタニルメタクリレート45gを脱酸素処理した後、10mL/分の速度で連続的に添加した。
(Step 2)
When it was confirmed that the total monomer conversion rate exceeded 99% by mass, 45 g of dicyclopentanyl methacrylate forming the polymer film (y) was deoxidized in the emulsion obtained in step 1. After that, it was added continuously at a rate of 10 mL / min.

(工程3)
総単量体転化率が99質量%を超えたことを確認した時点で、前記工程2で得られた乳化液を100℃に昇温し、2時間撹拌することで残留重合開始剤の分解処理を行った。重合槽を25℃まで冷却して、被覆重合体粒子(BA/TCDMA粒子)の乳化液を取り出した。乳化液中の平均粒子径は47.4nm、固形分濃度は28質量%であった。重合体粒子(x)のガラス転移温度は−55℃、重合体被膜(y)のガラス転移温度は175℃であった。
(Step 3)
When it was confirmed that the total monomer conversion rate exceeded 99% by mass, the emulsion obtained in the above step 2 was heated to 100 ° C. and stirred for 2 hours to decompose the residual polymerization initiator. Was done. The polymerization tank was cooled to 25 ° C., and the emulsified solution of the coated polymer particles (BA / TCDMA particles) was taken out. The average particle size in the emulsion was 47.4 nm, and the solid content concentration was 28% by mass. The glass transition temperature of the polymer particles (x) was −55 ° C., and the glass transition temperature of the polymer film (y) was 175 ° C.

[合成例2]
(BA/メルカプト基変性PVA粒子)
(工程1)
乾燥させた2Lのガラス製重合槽に、メルカプト基変性PVAの2質量%水溶液537.12g、硫酸鉄(II)(7水和物)0.0059g、酢酸ナトリウム0.145gを添加し、1規定硫酸水溶液でpH5.0に調整した後、30分間窒素ガスにてバブリングすることで脱酸素処理を行い、水溶液を得た。該水溶液を70℃に昇温した後、アクリル酸n−ブチル133.16g、n−ドデシルメルカプタン0.66gからなる混合物を脱酸素処理した後、一括で添加した。この後0.9質量%過酸化水素水溶液86.74gを2.48mL/分の速度で連続的に添加し、40分間かけて添加が終了するまで撹拌しながら重合を行った。
[Synthesis Example 2]
(BA / mercapto group-modified PVA particles)
(Step 1)
To a dried 2 L glass polymerization tank, 537.12 g of a 2% by mass aqueous solution of mercapto group-modified PVA, 0.0059 g of iron (II) sulfate (heptahydrate), and 0.145 g of sodium acetate were added to 1N. After adjusting the pH to 5.0 with an aqueous sulfuric acid solution, deoxidation treatment was performed by bubbling with nitrogen gas for 30 minutes to obtain an aqueous solution. After raising the temperature of the aqueous solution to 70 ° C., a mixture consisting of 133.16 g of n-butyl acrylate and 0.66 g of n-dodecyl mercaptan was deoxidized and then added all at once. After that, 86.74 g of a 0.9 mass% hydrogen peroxide aqueous solution was continuously added at a rate of 2.48 mL / min, and polymerization was carried out over 40 minutes with stirring until the addition was completed.

(工程2)
前記工程1で得られた乳化液に、1規定硫酸水溶液でpH5.0に調整したメルカプト基変性PVAの10質量%水溶液107.42gを脱酸素処理した後、一括で添加した。続いて、アクリル酸n−ブチル133.16g、n−ドデシルメルカプタン0.66gからなる混合物を脱酸素処理した後、一括で添加した。この後0.9質量%過酸化水素水溶液86.74gを2.48mL/分の速度で連続的に添加し、40分間かけて添加が終了するまで撹拌しながら重合を行った。
(Step 2)
To the emulsion obtained in the above step 1, 107.42 g of a 10% by mass aqueous solution of mercapto group-modified PVA adjusted to pH 5.0 with a 1N sulfuric acid aqueous solution was deoxidized and then added all at once. Subsequently, a mixture consisting of 133.16 g of n-butyl acrylate and 0.66 g of n-dodecyl mercaptan was deoxidized and then added all at once. After that, 86.74 g of a 0.9 mass% hydrogen peroxide aqueous solution was continuously added at a rate of 2.48 mL / min, and polymerization was carried out over 40 minutes with stirring until the addition was completed.

(工程3)
前記工程2で得られた乳化液に、工程2と同様の操作を行った。
(Step 3)
The same operation as in Step 2 was performed on the emulsion obtained in Step 2.

(工程4)
前記工程3で得られた乳化液に、工程3と同様の操作を行った後、4時間撹拌し、総単量体転化率が99.5%を超えたことを確認した時点で、重合槽を25℃まで冷却して、重合体粒子(BA/メルカプト基変性PVA粒子)の乳化液を取り出した。乳化液中の平均粒子径は306.3nm、固形分濃度は33質量%であった。重合体粒子(x)のガラス転移温度は−55℃であった。
(Step 4)
The emulsion obtained in step 3 was subjected to the same operation as in step 3, and then stirred for 4 hours. When it was confirmed that the total monomer conversion rate exceeded 99.5%, the polymerization tank was used. Was cooled to 25 ° C., and an emulsified solution of polymer particles (BA / mercapto group-modified PVA particles) was taken out. The average particle size in the emulsion was 306.3 nm, and the solid content concentration was 33% by mass. The glass transition temperature of the polymer particles (x) was −55 ° C.

[合成例3]
(ブタジエン/スチレン粒子)
クメンヒドロパーオキシド3.45g、ラウリル硫酸ナトリウム3.75g、イオン交換水150gからなる乳化液に脱酸素処理を行い、ラジカル重合開始剤乳化液を得た。乾燥させた0.5Lの耐圧重合槽にイオン交換水200g、ラウリル硫酸ナトリウム5g、硫酸鉄(II)(7水和物)0.032g、エチレンジアミン四酢酸二水素二ナトリウム0.02g、塩化ナトリウム0.2gを添加した後、30分間窒素ガスにてバブリングすることで脱酸素処理を行い、水溶液を得た。該水溶液を60℃に昇温した後、脱酸素処理した重合体粒子(x)を形成するブタジエン78gを添加した。次いで、前記ラジカル重合開始剤乳化液を0.02mL/分の速度で連続的に添加することで重合を開始した。単量体転化率が95質量%を超えたことを確認した時点で、得られた乳化液に前記ラジカル重合開始剤乳化液を0.02mL/分の速度でフィードしながら、脱酸素処理した重合体被膜(y)を形成する単量体混合物(ブタジエン:スチレン:トリメチロールプロパントリメタクリレート=2.8:19:0.2(質量比))22gを1.7mL/分の速度で連続的に添加した。単量体混合物の添加後、単量体転化率が95質量%を超えたことを確認した時点で、前記ラジカル重合開始剤乳化液の添加を停止させ、重合停止剤であるヒドロキノンの脱酸素水溶液を添加した。重合槽を25℃まで冷却して、被覆重合体粒子(ブタジエン/スチレン粒子)の乳化液を取り出した。
[Synthesis Example 3]
(Butadiene / styrene particles)
An emulsion consisting of 3.45 g of cumene hydroperoxide, 3.75 g of sodium lauryl sulfate, and 150 g of ion-exchanged water was deoxidized to obtain an emulsion of a radical polymerization initiator. 200 g of ion-exchanged water, 5 g of sodium lauryl sulfate, 0.032 g of iron (II) sulfate (7hydrate), 0.02 g of disodium dihydrogen tetraacetate of ethylenediamine, 0 g of sodium chloride in a dried 0.5 L pressure-resistant polymerization tank. After adding 2 g, deoxidation treatment was performed by bubbling with nitrogen gas for 30 minutes to obtain an aqueous solution. After raising the temperature of the aqueous solution to 60 ° C., 78 g of butadiene forming deoxidized polymer particles (x) was added. Next, the polymerization was started by continuously adding the radical polymerization initiator emulsion at a rate of 0.02 mL / min. When it was confirmed that the monomer conversion rate exceeded 95% by mass, the obtained emulsion was deoxidized while feeding the emulsion of the radical polymerization initiator at a rate of 0.02 mL / min. 22 g of a monomer mixture (butadiene: styrene: trimethylolpropane trimethacrylate = 2.8: 19: 0.2 (mass ratio)) forming a coalesced film (y) continuously at a rate of 1.7 mL / min. Added. After adding the monomer mixture, when it was confirmed that the monomer conversion rate exceeded 95% by mass, the addition of the radical polymerization initiator emulsion was stopped, and the deoxidized aqueous solution of hydroquinone, which is a polymerization terminator, was stopped. Was added. The polymerization tank was cooled to 25 ° C., and the emulsion of the coated polymer particles (butadiene / styrene particles) was taken out.

なお、重合開始から重合停止剤添加までの重合時間は10時間であった。該乳化液に老化防止剤として「セロゾールK−840」を0.5g添加し、乳化液中の平均粒子径は48nm、固形分濃度は34質量%であった。重合体粒子(x)のガラス転移温度は−76℃、重合体被膜(y)のガラス転移温度は62℃であった。 The polymerization time from the start of polymerization to the addition of the polymerization terminator was 10 hours. 0.5 g of "Cerozol K-840" was added to the emulsion as an antiaging agent, the average particle size in the emulsion was 48 nm, and the solid content concentration was 34% by mass. The glass transition temperature of the polymer particles (x) was −76 ° C., and the glass transition temperature of the polymer film (y) was 62 ° C.

[合成例4]
(BA粒子)
「カオーアキポ RLM−100」を3.73gとイオン交換水41.7gを容器に入れ、撹拌しながら炭酸ナトリウム0.44gを仕込み、室温で十分に撹拌し、分散剤を得た。該分散剤を還流管付の反応容器に入れた後、イオン交換水255gを添加し、内容物を室温で30分間窒素ガスにてバブリングすることで脱酸素処理を行った後、70℃に昇温した。その後、予め別の容器でイオン交換水30gにペルオキソ二硫酸カリウム(過硫酸カリウム)(重合開始剤)0.1gを溶解させて前記同様の方法で脱酸素処理を行ったペルオキソ二硫酸カリウム(過硫酸カリウム)水溶液3.01gを添加した。
[Synthesis Example 4]
(BA particles)
3.73 g of "Kao Akipo RLM-100" and 41.7 g of ion-exchanged water were placed in a container, 0.44 g of sodium carbonate was charged while stirring, and the mixture was sufficiently stirred at room temperature to obtain a dispersant. After putting the dispersant in a reaction vessel equipped with a reflux tube, 255 g of ion-exchanged water was added, and the contents were bubbling with nitrogen gas for 30 minutes at room temperature to perform deoxidation treatment, and then the temperature was raised to 70 ° C. It was warm. Then, 0.1 g of potassium persulfate (potassium persulfate) (polymerization initiator) was previously dissolved in 30 g of ion-exchanged water in another container, and deoxidized treatment was performed by the same method as described above. 3.01 g of an aqueous solution of potassium sulfate) was added.

次いで、アクリル酸n−ブチルとt−ドデシルメルカプタンとを混合した溶液(脱酸素処理済み)を、フィードポンプを用いて85分かけて連続添加した。添加終了後、1時間保持し、さらに90℃に昇温して2時間加熱した。重合槽を25℃まで冷却して、重合体粒子(BA粒子)の乳化液を取り出した。乳化液中の平均粒子径は93nm、固形分濃度は31質量%であった。重合体粒子(x)のガラス転移温度は−55℃であった。 Then, a solution (deoxidized) in which n-butyl acrylate and t-dodecyl mercaptan were mixed was continuously added over 85 minutes using a feed pump. After the addition was completed, the mixture was held for 1 hour, further heated to 90 ° C. and heated for 2 hours. The polymerization tank was cooled to 25 ° C., and the emulsion of the polymer particles (BA particles) was taken out. The average particle size in the emulsion was 93 nm, and the solid content concentration was 31% by mass. The glass transition temperature of the polymer particles (x) was −55 ° C.

[合成例5]
[架橋性基を有する水溶性ポリマーの合成1]
40g(モノマー繰り返し単位:911mmol)の「PVA117」を1Lのジムロート冷却管を備えたセパラブルフラスコに入れ、350mLのDMSOを加えてメカニカルスターラーにて撹拌を開始した。ウオーターバスにより80℃まで温度を上昇させて、撹拌を4時間続けた。PVAが溶解したことを目視で確認し、加熱撹拌しながらメタクリル酸ビニル1.2g(10.8mmol)を直接加え、さらに80℃で3時間撹拌した。放冷後、2Lのメタノール中に撹拌しながら反応溶液を注ぎいれた。撹拌を止め、1時間そのまま放置した。得られた固体を回収した後、さらに1Lのメタノールに1時間浸漬して洗浄した。この洗浄作業を合計3回行った。回収した固体を室温で一晩真空乾燥してメタクリロイルオキシ化PVAを得た。メタクリロイルオキシ基導入率はPVAのモノマー繰り返し単位に対して1.2mol%であった(以下、MA−PVA117(1.2)と略称する)。
[Synthesis Example 5]
[Synthesis of water-soluble polymer with crosslinkable group 1]
40 g (monomer repeating unit: 911 mmol) of "PVA117" was placed in a separable flask equipped with a 1 L Dimroth condenser, 350 mL of DMSO was added, and stirring was started with a mechanical stirrer. The temperature was raised to 80 ° C. by a water bath, and stirring was continued for 4 hours. After visually confirming that PVA had dissolved, 1.2 g (10.8 mmol) of vinyl methacrylate was directly added while heating and stirring, and the mixture was further stirred at 80 ° C. for 3 hours. After allowing to cool, the reaction solution was poured into 2 L of methanol with stirring. Stirring was stopped and the mixture was left as it was for 1 hour. After recovering the obtained solid, it was further immersed in 1 L of methanol for 1 hour for washing. This cleaning work was performed a total of three times. The recovered solid was vacuum dried overnight at room temperature to obtain methacryloyloxylated PVA. The methylenedioxy group introduction rate was 1.2 mol% with respect to the monomer repeating unit of PVA (hereinafter, abbreviated as MA-PVA117 (1.2)).

[合成例6〜8]
[架橋性基を有する水溶性ポリマーの合成2〜4]
合成例5と同じ方法を用いて、PVAの重合度およびメタクリロイルオキシ基導入率を種々変更したメタクリロイルオキシ化PVAを製造した(表1)。
[Synthesis Examples 6 to 8]
[Synthesis of water-soluble polymers with crosslinkable groups 2-4]
Using the same method as in Synthesis Example 5, methacryloyloxylated PVA having various changes in the degree of polymerization of PVA and the introduction rate of methacryloyloxy groups was produced (Table 1).

[合成例9]
[架橋性基を有する水溶性ポリマーの合成5]
60g(モノマー繰り返し単位:1.36mol)の「PVA117」を1Lのジムロート冷却管を備えたセパラブルフラスコに入れ、540mLのイオン交換水を加えてメカニカルスターラーにて撹拌を開始した。ウオーターバスにより80℃まで温度を上昇させて、撹拌を4時間続けた。PVAが溶解したことを目視で確認し、40℃まで温度を低下させた。40℃で撹拌しながら5−ノルボルネン−2−カルボキシアルデヒド2.5g(20.5mmol)、10vol%硫酸水溶液22mLを直接加え、さらに40℃で4時間撹拌した。放冷後、1規定NaOH水溶液を80mL添加して中和し、分画分子量3500の透析膜に入れて脱塩した(5Lのイオン交換水に対して4回実施)。2Lのメタノール中に撹拌しながら脱塩後の水溶液を注ぎいれ、1時間そのまま放置した。得られた固体を回収した後、さらに1Lのメタノールに1時間浸漬して洗浄した。回収した固体を室温で一晩真空乾燥してノルボルネン化PVAを得た。ノルボルネン導入率はPVAのモノマー繰り返し単位に対して1.3mol%であった(以下、Nor−PVA117(1.3)と略称する)。
[Synthesis Example 9]
[Synthesis of water-soluble polymer with crosslinkable group 5]
60 g (monomer repeating unit: 1.36 mol) of "PVA117" was placed in a separable flask equipped with a 1 L Dimroth condenser, 540 mL of ion-exchanged water was added, and stirring was started with a mechanical stirrer. The temperature was raised to 80 ° C. by a water bath, and stirring was continued for 4 hours. It was visually confirmed that PVA had melted, and the temperature was lowered to 40 ° C. While stirring at 40 ° C., 2.5 g (20.5 mmol) of 5-norbornene-2-carboxyaldehyde and 22 mL of a 10 vol% sulfuric acid aqueous solution were directly added, and the mixture was further stirred at 40 ° C. for 4 hours. After allowing to cool, 80 mL of a 1N NaOH aqueous solution was added to neutralize the mixture, and the mixture was placed in a dialysis membrane having a molecular weight cut off of 3500 and desalted (performed 4 times for 5 L of ion-exchanged water). The desalted aqueous solution was poured into 2 L of methanol with stirring, and the mixture was left as it was for 1 hour. After recovering the obtained solid, it was further immersed in 1 L of methanol for 1 hour for washing. The recovered solid was vacuum dried overnight at room temperature to obtain norborneneized PVA. The norbornene introduction rate was 1.3 mol% with respect to the monomer repeating unit of PVA (hereinafter, abbreviated as Nor-PVA117 (1.3)).

Figure 2020166517
Figure 2020166517

[実施例1]
20gのMA−PVA117(1.2)に80mLのイオン交換水を加えて80℃にて4時間撹拌しながら溶解し、MA−PVA溶液を得た。該MA−PVA溶液15gに合成例1のBA/TCDMA粒子の乳化液(固形分濃度28質量%)を4.5g、イオン交換水を10.5g加えて撹拌した。続けて、水溶性光重合開始剤である「Irgacure2959」を0.1質量%となるように加えてポリマー組成物を作製した。
[Example 1]
80 mL of ion-exchanged water was added to 20 g of MA-PVA117 (1.2) and dissolved at 80 ° C. for 4 hours with stirring to obtain a MA-PVA solution. To 15 g of the MA-PVA solution, 4.5 g of an emulsion of BA / TCDMA particles of Synthesis Example 1 (solid content concentration 28% by mass) and 10.5 g of ion-exchanged water were added and stirred. Subsequently, the water-soluble photopolymerization initiator "Irgacure2959" was added in an amount of 0.1% by mass to prepare a polymer composition.

次いで、2mm厚のスペーサーを挟み込んだガラス板間にポリマー組成物を流し込み、(株)GSユアサ製メタルハライドランプを用いて145mW/cm(照射エネルギー量:1200mJ/cm)の紫外線(UV)を照射したところ十分に硬化し、一体感のあるゲルが得られた。Next, the polymer composition was poured between the glass plates sandwiching a 2 mm thick spacer, and ultraviolet rays (UV) of 145 mW / cm 2 (irradiation energy amount: 1200 mJ / cm 2) were emitted using a metal halide lamp manufactured by GS Yuasa Co., Ltd. When irradiated, it was sufficiently cured, and a gel with a sense of unity was obtained.

[実施例2、3]
水溶性ポリマーおよび重合体粒子の配合量や種類を表2に示した通りに変更した以外は実施例1と同様の方法でゲルを作製した。
[Examples 2 and 3]
A gel was prepared in the same manner as in Example 1 except that the blending amounts and types of the water-soluble polymer and the polymer particles were changed as shown in Table 2.

[実施例4]
実施例1で作製したMA−PVA溶液15gに合成例2のBA/メルカプト基変性PVA粒子の乳化液(固形分濃度33質量%)を0.9g、イオン交換水を14.1g加えて撹拌した。続けて、レドックス系重合開始剤である30mgの過硫酸アンモニウム(APS)およびN,N,N’,N’−テトラメチルエチレンジアミン(TEMED)を45μL添加して撹拌した。その後、レドックス系重合開始剤を添加してポリマー組成物を作製した後、迅速に2mm厚のスペーサーを挟み込んだガラス板間に該ポリマー組成物を流し込み、1時間室温で硬化させたところ十分に硬化し、一体感のあるゲルが得られた。
[Example 4]
To 15 g of the MA-PVA solution prepared in Example 1, 0.9 g of the emulsion of BA / mercapto group-modified PVA particles of Synthesis Example 2 (solid content concentration 33% by mass) and 14.1 g of ion-exchanged water were added and stirred. .. Subsequently, 30 mg of ammonium persulfate (APS) and 45 μL of N, N, N', N'-tetramethylethylenediamine (TEMED), which are redox-based polymerization initiators, were added and stirred. Then, a redox-based polymerization initiator was added to prepare a polymer composition, and then the polymer composition was rapidly poured between glass plates sandwiching a spacer having a thickness of 2 mm and cured at room temperature for 1 hour to be sufficiently cured. However, a gel with a sense of unity was obtained.

[実施例5〜9]
水溶性ポリマーおよび重合体粒子の配合量や種類を表2に示した通りに変更した以外は実施例1と同様の方法でゲルを作製した。
[Examples 5 to 9]
A gel was prepared in the same manner as in Example 1 except that the blending amounts and types of the water-soluble polymer and the polymer particles were changed as shown in Table 2.

[比較例1]
10gのMA−PVA117(1.2)に90mLのイオン交換水を加えて80℃にて4時間撹拌しながら溶解し、MA−PVA溶液を得た。該MA−PVA溶液15gに光重合開始剤として0.1質量%の「Irgacure2959」を加え、実施例1と同様の方法でUVを照射したところ十分に硬化し、一体感のあるゲルが得られた。
[Comparative Example 1]
90 mL of ion-exchanged water was added to 10 g of MA-PVA117 (1.2) and dissolved at 80 ° C. for 4 hours with stirring to obtain a MA-PVA solution. When 0.1% by mass of "Irgacure2959" was added to 15 g of the MA-PVA solution as a photopolymerization initiator and irradiated with UV by the same method as in Example 1, the gel was sufficiently cured to obtain a gel with a sense of unity. rice field.

[比較例2]
MA−PVA117(1.2)に代えて、MA−PVA117(0.6)を使用した以外は比較例1と同様の方法でUVを照射したところ十分に硬化し、一体感のあるゲルが得られた。
[Comparative Example 2]
When UV was irradiated in the same manner as in Comparative Example 1 except that MA-PVA117 (0.6) was used instead of MA-PVA117 (1.2), the gel was sufficiently cured to obtain a gel with a sense of unity. Was done.

[比較例3]
10gのMA−PVA117(1.2)に90mLのイオン交換水を加えて80℃にて4時間撹拌しながら溶解し、MA−PVA溶液を得た。該MA−PVA溶液を実施例4と同様の方法で硬化させたところ十分に硬化し、一体感のあるゲルが得られた。
[Comparative Example 3]
90 mL of ion-exchanged water was added to 10 g of MA-PVA117 (1.2) and dissolved at 80 ° C. for 4 hours with stirring to obtain a MA-PVA solution. When the MA-PVA solution was cured by the same method as in Example 4, it was sufficiently cured, and a gel having a sense of unity was obtained.

[比較例4]
特許文献6を参考に第1のポリマーと第2のポリマーから形成される相互侵入型ゲルを以下のように作製した。1mol/Lの2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)、0.04mol/LのN,N’−メチレンビスアクリルアミド(MBAA)、および光重合開始剤として0.001mol/Lのα−ケトグルタル酸を含む水溶液100mLにUVを7時間照射して重合を行い、架橋度4mol%のポリAMPSゲル(PAMPSゲル)を得た。得られたPAMPSゲルを熱乾燥機に1日入れて乾燥させ、乳鉢に入れて粉砕することでPAMPSゲルの粒子を得た(以下、第1のポリマーと称することがある)。
[Comparative Example 4]
An interpenetrating gel formed from the first polymer and the second polymer was prepared as follows with reference to Patent Document 6. 1 mol / L 2-acrylamide-2-methylpropanesulfonic acid (AMPS), 0.04 mol / L N, N'-methylenebisacrylamide (MBAA), and 0.001 mol / L α- as a photopolymerization initiator. A 100 mL aqueous solution containing ketoglutaric acid was irradiated with UV for 7 hours for polymerization to obtain a polyAMPS gel (PAMPS gel) having a degree of cross-linking of 4 mol%. The obtained PAMPS gel was placed in a heat dryer for one day to dry, and then placed in a mortar and crushed to obtain particles of PAMPS gel (hereinafter, may be referred to as a first polymer).

一方、N,N−ジメチルアクリルアミド(DAAm)1mol/Lに対し、架橋剤としてDAAmに対して0.01mol%のMBAAと、水溶性光重合開始剤としてモノマー溶液に対して0.1質量%の「Irgacure2959」とを含むモノマー溶液を作製した(以下、第2のポリマーを形成するモノマー溶液と称することがある)。 On the other hand, with respect to 1 mol / L of N, N-dimethylacrylamide (DAAm), MBAA of 0.01 mol% with respect to DAAm as a cross-linking agent and 0.1% by mass with respect to a monomer solution as a water-soluble photopolymerization initiator. A monomer solution containing "Irgacure2959" was prepared (hereinafter, may be referred to as a monomer solution forming a second polymer).

第1のポリマーと第2のポリマーを形成するモノマー溶液との比率が質量比で1:30となるような量で、第2のポリマーを形成するモノマー溶液に、第1のポリマーの粒子を投入した。この溶液を実施例1と同様の方法でUVを照射したところ、全体が硬化せず一体感のあるゲルが得られなかった。 The particles of the first polymer are added to the monomer solution forming the second polymer in such an amount that the ratio of the first polymer to the monomer solution forming the second polymer is 1:30 by mass ratio. did. When this solution was irradiated with UV by the same method as in Example 1, the whole was not cured and a gel with a sense of unity could not be obtained.

[比較例5]
比較例5では比較例4にて製造した第1のポリマーと第2のポリマーから形成される相互侵入型ゲルをレドックス系重合開始剤により作製した。1mol/LのDAAmに対し、架橋剤としてDAAmに対して0.01mol%のMBAAを含むモノマー溶液を作製した。比較例2で作製した第1のポリマーとモノマー溶液との比率が質量比で1:30となるような量で混合した。溶液を実施例4と同様の方法で硬化させたところ、弱いが何とか一体感を示すゲルが得られた。
[Comparative Example 5]
In Comparative Example 5, an interpenetrating gel formed from the first polymer and the second polymer produced in Comparative Example 4 was prepared with a redox-based polymerization initiator. A monomer solution containing 0.01 mol% MBAA with respect to DAAm as a cross-linking agent with respect to 1 mol / L DAAm was prepared. The first polymer prepared in Comparative Example 2 and the monomer solution were mixed in such an amount that the mass ratio was 1:30. When the solution was cured by the same method as in Example 4, a gel that was weak but somehow showed a sense of unity was obtained.

実施例1〜9および比較例1〜5におけるポリマー組成物の配合およびゲルの評価結果を表2に示す。 Table 2 shows the formulation of the polymer compositions and the evaluation results of the gels in Examples 1 to 9 and Comparative Examples 1 to 5.

Figure 2020166517
Figure 2020166517

[実施例10]
10gのMA−PVA117(0.3)に90mLのイオン交換水を加えて80℃にて4時間撹拌しながら溶解し、MA−PVA溶液を得た。該MA−PVA溶液50gに合成例4のBA粒子の乳化液(固形分濃度31質量%)を1.6g、イオン交換水を48.4g加えて撹拌した。続けて、水溶性光重合開始剤である「Irgacure2959」を0.1質量%となるように加えてポリマー組成物を作製した。
[Example 10]
90 mL of ion-exchanged water was added to 10 g of MA-PVA117 (0.3) and dissolved at 80 ° C. for 4 hours with stirring to obtain a MA-PVA solution. To 50 g of the MA-PVA solution, 1.6 g of an emulsion of BA particles of Synthesis Example 4 (solid content concentration: 31% by mass) and 48.4 g of ion-exchanged water were added and stirred. Subsequently, the water-soluble photopolymerization initiator "Irgacure2959" was added in an amount of 0.1% by mass to prepare a polymer composition.

次いで、20cm×20cmのPETフィルムで作製したトレーにポリマー組成物60gを流し入れ、室温にて乾燥した後、(株)GSユアサ製メタルハライドランプを用いて145mW/cm(照射エネルギー量:1200mJ/cm)の紫外線(UV)を照射してフィルムを作製した。Next, 60 g of the polymer composition was poured into a tray made of a 20 cm × 20 cm PET film, dried at room temperature, and then 145 mW / cm 2 (irradiation energy amount: 1200 mJ / cm) using a metal halide lamp manufactured by GS Yuasa Co., Ltd. A film was prepared by irradiating with ultraviolet rays (UV) of 2).

[実施例11]
重合体粒子の配合量を表3に示した通りに変更した以外は実施例10と同様の方法でフィルムを作製した。
[Example 11]
A film was prepared in the same manner as in Example 10 except that the blending amount of the polymer particles was changed as shown in Table 3.

[比較例6]
実施例10で作製したMA−PVA溶液50gにイオン交換水を50g加えて撹拌した。続けて、水溶性光重合開始剤である「Irgacure2959」を0.1質量%となるように加えて実施例10と同様にしてフィルムを作製した。
[Comparative Example 6]
To 50 g of the MA-PVA solution prepared in Example 10, 50 g of ion-exchanged water was added and stirred. Subsequently, the water-soluble photopolymerization initiator "Irgacure2959" was added in an amount of 0.1% by mass to prepare a film in the same manner as in Example 10.

[比較例7]
実施例10で作製したMA−PVA溶液50gにコロイダルシリカ(日産化学(株)製「スノーテックス ST−C」(濃度20質量%))2.5g、イオン交換水を47.5g加えて撹拌した。続けて、水溶性光重合開始剤である「Irgacure2959」を0.1質量%となるように加えて実施例10と同様にしてフィルムを作製した。
[Comparative Example 7]
To 50 g of the MA-PVA solution prepared in Example 10, 2.5 g of colloidal silica (“Snowtex ST-C” (concentration 20% by mass) manufactured by Nissan Chemical Industries, Ltd.) and 47.5 g of ion-exchanged water were added and stirred. .. Subsequently, the water-soluble photopolymerization initiator "Irgacure2959" was added in an amount of 0.1% by mass to prepare a film in the same manner as in Example 10.

実施例10〜11および比較例6〜7におけるポリマー組成物の配合およびフィルムの評価結果を表3に示す。本発明のフィルムは高い破断歪を示し、重合体粒子を含まないフィルムに比べて機械的強度が向上したことが分かる。 Table 3 shows the formulation of the polymer compositions and the evaluation results of the films in Examples 10 to 11 and Comparative Examples 6 to 7. It can be seen that the film of the present invention showed high breaking strain and the mechanical strength was improved as compared with the film containing no polymer particles.

Figure 2020166517
Figure 2020166517

本発明によれば、硬化性と安全性に優れ、機械的強度が高いゲル、フィルムおよび粒子が得られるため、例えば紙おむつや生理用品などの衛生用品、コンタクトレンズや創傷被覆材などの体外で使用する医療機器、衝撃吸収材料、制振・防音材料などに限らず、医療機器の表面コーティングや人工臓器などのより高度な医療機器、現場施工が必要な土壌改良材などの土木・建築用材料、保水材料などの農業用資材、オンディマンドで成形する3Dプリンター用の硬化性原料など様々な分野への展開が期待される。 According to the present invention, gels, films and particles having excellent curability and safety and high mechanical strength can be obtained, so that they can be used outside the body such as sanitary products such as paper diapers and sanitary products, contact lenses and wound dressings. Not limited to medical equipment, shock absorbing materials, vibration damping / soundproofing materials, etc., more advanced medical equipment such as surface coatings of medical equipment and artificial organs, civil engineering / building materials such as soil improvement materials that require on-site construction, It is expected to be applied to various fields such as agricultural materials such as water retention materials and curable raw materials for 3D printers molded on demand.

Claims (9)

架橋性基を有する水溶性ポリマー、およびガラス転移温度が40℃以下である重合体粒子(x)を含む、ポリマー組成物。 A polymer composition comprising a water-soluble polymer having a crosslinkable group and polymer particles (x) having a glass transition temperature of 40 ° C. or lower. 前記架橋性基がエチレン性不飽和基である、請求項1に記載のポリマー組成物。 The polymer composition according to claim 1, wherein the crosslinkable group is an ethylenically unsaturated group. 前記エチレン性不飽和基が、ビニル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、ビニルフェニル基、ノルボルネニル基、およびこれらの誘導体から選ばれる少なくとも1種である、請求項2に記載のポリマー組成物。 The second aspect of claim 2, wherein the ethylenically unsaturated group is at least one selected from a vinyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinylphenyl group, a norbornenyl group, and derivatives thereof. Polymer composition. 前記架橋性基の導入率が、前記架橋性基を有する水溶性ポリマーの繰り返し単位に対して0.01〜10mol%である、請求項1〜3のいずれかに記載のポリマー組成物。 The polymer composition according to any one of claims 1 to 3, wherein the introduction rate of the crosslinkable group is 0.01 to 10 mol% with respect to the repeating unit of the water-soluble polymer having the crosslinkable group. 前記重合体粒子(x)の平均粒子径が0.01〜10μmである、請求項1〜4のいずれかに記載のポリマー組成物。 The polymer composition according to any one of claims 1 to 4, wherein the polymer particles (x) have an average particle size of 0.01 to 10 μm. 前記重合体粒子(x)が、共役ジエン、芳香族ビニル化合物および(メタ)アクリル酸エステルからなる群から選ばれる少なくとも1種の単量体単位を含む重合体粒子である、請求項1〜5のいずれかに記載のポリマー組成物。 Claims 1 to 5 where the polymer particles (x) are polymer particles containing at least one monomer unit selected from the group consisting of conjugated diene, aromatic vinyl compound and (meth) acrylic acid ester. The polymer composition according to any one of. 請求項1〜6のいずれかに記載のポリマー組成物を架橋してなるゲル。 A gel obtained by cross-linking the polymer composition according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載のポリマー組成物を乾燥および架橋してなるフィルム。 A film obtained by drying and cross-linking the polymer composition according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載のポリマー組成物を乾燥および架橋してなる粒子。 Particles obtained by drying and cross-linking the polymer composition according to any one of claims 1 to 6.
JP2020572224A 2019-02-12 2020-02-07 Polymer Compositions, Gels, Films and Particles Active JP7518773B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019022718 2019-02-12
JP2019022718 2019-02-12
PCT/JP2020/004881 WO2020166517A1 (en) 2019-02-12 2020-02-07 Polymer composition, gel, film, and particles

Publications (2)

Publication Number Publication Date
JPWO2020166517A1 true JPWO2020166517A1 (en) 2021-12-16
JP7518773B2 JP7518773B2 (en) 2024-07-18

Family

ID=72045312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020572224A Active JP7518773B2 (en) 2019-02-12 2020-02-07 Polymer Compositions, Gels, Films and Particles

Country Status (2)

Country Link
JP (1) JP7518773B2 (en)
WO (1) WO2020166517A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184495A (en) * 2007-01-29 2008-08-14 Kuraray Co Ltd Cross-linkable aqueous dispersion and its production method, and adhesive and coating agent
JP2008539837A (en) * 2005-05-05 2008-11-20 ノバルティス アクチエンゲゼルシャフト Ophthalmic device for sustained delivery of active compounds
JP2012184417A (en) * 2011-02-17 2012-09-27 Mitsui Chemicals Inc Acrylic water dispersion, and laminate comprising the same
WO2014014006A1 (en) * 2012-07-17 2014-01-23 日本ゼオン株式会社 Negative electrode for secondary cell, and secondary cell
JP2014032811A (en) * 2012-08-02 2014-02-20 Kuraray Co Ltd Polymer electrolyte membrane
WO2014141721A1 (en) * 2013-03-15 2014-09-18 日本ゼオン株式会社 Binder composition for secondary batteries, slurry composition for secondary batteries, negative electrode for secondary batteries, and secondary battery
JP2016166305A (en) * 2015-03-10 2016-09-15 東洋インキScホールディングス株式会社 Polyvinyl alcohol composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6884068B2 (en) * 2017-08-18 2021-06-09 株式会社クラレ Stimulation curable gel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539837A (en) * 2005-05-05 2008-11-20 ノバルティス アクチエンゲゼルシャフト Ophthalmic device for sustained delivery of active compounds
JP2008184495A (en) * 2007-01-29 2008-08-14 Kuraray Co Ltd Cross-linkable aqueous dispersion and its production method, and adhesive and coating agent
JP2012184417A (en) * 2011-02-17 2012-09-27 Mitsui Chemicals Inc Acrylic water dispersion, and laminate comprising the same
WO2014014006A1 (en) * 2012-07-17 2014-01-23 日本ゼオン株式会社 Negative electrode for secondary cell, and secondary cell
JP2014032811A (en) * 2012-08-02 2014-02-20 Kuraray Co Ltd Polymer electrolyte membrane
WO2014141721A1 (en) * 2013-03-15 2014-09-18 日本ゼオン株式会社 Binder composition for secondary batteries, slurry composition for secondary batteries, negative electrode for secondary batteries, and secondary battery
JP2016166305A (en) * 2015-03-10 2016-09-15 東洋インキScホールディングス株式会社 Polyvinyl alcohol composition

Also Published As

Publication number Publication date
JP7518773B2 (en) 2024-07-18
WO2020166517A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP6884068B2 (en) Stimulation curable gel
JP7410871B2 (en) Monodisperse hydrogel particles
JP4733471B2 (en) Contact lens manufacturing method and contact lens obtained thereby
JP7014485B2 (en) Polyvinyl alcohol-based mutual penetration type gel
CN106749982A (en) Bio-ink
JP2002513059A (en) Mechanically stable hydrogel
JP7463299B2 (en) Hydrogel-forming composition, hydrogel, and method for producing hydrogel-forming composition
JP2011153174A (en) Organic-inorganic composite hydrogel, dried body thereof and method for producing them
JP7518773B2 (en) Polymer Compositions, Gels, Films and Particles
JP5262091B2 (en) Polymer dispersing agent and dispersion solution
JP7251123B2 (en) SOLUTION FOR PRODUCING POLYMER GEL, POLYMER GEL, METHOD FOR PRODUCING POLYMER GEL
WO2021132303A1 (en) Ink for hydrogel shaping, and hydrogel using same
JP6163287B2 (en) Method for producing gel
WO2012023449A1 (en) Process for producing carboxyl-containing polymer composition, and carboxyl-containing polymer composition
WO2021187530A1 (en) High strength gel
JP5133209B2 (en) Organogel and method for producing the same
JP2015096560A (en) High-strength gel
JPH0656933A (en) Water-absorbing resin and its production
JP5544719B2 (en) Gel and method for producing the same
JP2004307574A (en) Cationic polymer gel, and polymer gel capable of sustained release of drug, using it
KR20180069421A (en) Impact modifier for epoxy resin and preparation method thereof and epoxy composition comprising the same
JP7276161B2 (en) Photocurable composition, shaped object and hydrogel
JP2703125B2 (en) Photosensitive resin composition containing photosensitive microgel
KR20190076002A (en) Preparation of polymer emulsion
JPH0925306A (en) Production of hydrogel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240705

R150 Certificate of patent or registration of utility model

Ref document number: 7518773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150