WO2014014006A1 - Negative electrode for secondary cell, and secondary cell - Google Patents

Negative electrode for secondary cell, and secondary cell Download PDF

Info

Publication number
WO2014014006A1
WO2014014006A1 PCT/JP2013/069372 JP2013069372W WO2014014006A1 WO 2014014006 A1 WO2014014006 A1 WO 2014014006A1 JP 2013069372 W JP2013069372 W JP 2013069372W WO 2014014006 A1 WO2014014006 A1 WO 2014014006A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
conjugated diene
active material
aromatic vinyl
diene copolymer
Prior art date
Application number
PCT/JP2013/069372
Other languages
French (fr)
Japanese (ja)
Inventor
徳一 山本
園部 健矢
智一 佐々木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201380021459.3A priority Critical patent/CN104247110A/en
Priority to JP2014525835A priority patent/JP6245173B2/en
Priority to KR1020147030171A priority patent/KR102157157B1/en
Publication of WO2014014006A1 publication Critical patent/WO2014014006A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode used for a secondary battery such as a lithium ion secondary battery.
  • portable terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants) have been widely used.
  • a nickel hydrogen secondary battery, a lithium ion secondary battery, and the like are frequently used.
  • Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher in performance.
  • mobile terminals are used in various places.
  • the battery is required to be smaller, thinner, lighter, and higher in performance as in the case of the portable terminal.
  • Patent Document 1 describes a negative electrode for a lithium ion secondary battery containing a carbon-based active material and a binder composed of two types of carboxy-modified styrene-butadiene copolymers having different glass transition temperatures.
  • Patent Document 2 a negative electrode for lithium ion secondary batteries using an alloy-based active material containing Si or the like has been developed (for example, Patent Document 2).
  • the negative electrode described in Patent Document 1 has insufficient dispersibility of the negative electrode active material and lithium ion conductivity, so that it is difficult to obtain a secondary battery having excellent cycle characteristics and output characteristics. It turns out that.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a secondary battery negative electrode capable of obtaining a secondary battery having excellent cycle characteristics and output characteristics.
  • the present inventors have improved the dispersibility and lithium ion conductivity of the negative electrode active material in the negative electrode by using a specific particulate binder and a specific water-soluble polymer. As a result, it was found that a secondary battery having excellent cycle characteristics and output characteristics can be obtained, and the present invention has been completed.
  • the gist of the present invention aimed at solving such problems is as follows.
  • the negative electrode active material layer comprises a negative electrode active material (A), a particulate binder (B), a hydroxyl group-containing water-soluble polymer (C), and a fluorine-containing (meth) acrylate monomer unit of 0.5 to Including a water-soluble polymer (D) containing 20% by mass,
  • the particulate binder (B) has a glass transition temperature of ⁇ 30 to 20 ° C., an aromatic vinyl-conjugated diene copolymer (b1) comprising an unsaturated carboxylic acid monomer unit, and a glass transition temperature. And an aromatic vinyl-conjugated diene copolymer (b2) having an unsaturated carboxylic acid monomer unit at 30 to 80 ° C.
  • the negative electrode for a secondary battery according to (2) comprising 1 to 50 parts by mass of the alloy-based active material (a2) with respect to 100 parts by mass of the carbon-based active material (a1).
  • the content ratio of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) in terms of mass ratio is the aromatic vinyl-conjugated diene copolymer (b1).
  • Aromatic vinyl-conjugated diene copolymer (b2) the negative electrode for a secondary battery according to any one of (1) to (4), wherein 80/20 to 30/70.
  • Each of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) has a tetrahydrofuran-insoluble content of 70 to 98% (1) to (5)
  • the negative electrode for secondary batteries in any one of.
  • a secondary battery comprising a positive electrode, a negative electrode, an electrolyte and a separator, A secondary battery, wherein the negative electrode is a negative electrode for a secondary battery according to any one of (1) to (6).
  • the negative electrode for secondary batteries of the present invention contains a specific particulate binder and a specific water-soluble polymer, the negative electrode active material is excellent in dispersibility and lithium ion conductivity. As a result, a secondary battery having excellent cycle characteristics (particularly high-temperature cycle characteristics) and output characteristics (particularly low-temperature output characteristics) can be obtained. Further, according to the present invention, even when an alloy-based active material having a large volume expansion / contraction during lithium ion doping / dedoping is used as the negative electrode active material, the negative electrode active material can be expanded from the electrode plate swell or from the electrode. Occurrence of substance detachment (powder falling) can be suppressed. As a result, the cycle characteristics and output characteristics of the secondary battery can be improved.
  • the negative electrode for a secondary battery of the present invention (hereinafter sometimes simply referred to as “negative electrode”) includes a current collector and a negative electrode active material layer laminated on the current collector.
  • the negative electrode active material layer contains the following components (A) to (D), and may contain other components (E) added as necessary.
  • the negative electrode for secondary batteries of the present invention can be used for lithium ion secondary batteries, nickel metal hydride secondary batteries, and the like. Among these, a lithium ion secondary battery is preferable as a use because the long-term cycle characteristics and output characteristics are most demanded. Below, each component is explained in full detail about the case where it uses for a lithium ion secondary battery.
  • the negative electrode active material is a substance that delivers electrons (lithium ions) in the negative electrode.
  • a carbon-based active material (a1) or an alloy-based active material (a2) described later can be used, but the negative-electrode active material preferably contains a carbon-based active material and an alloy-based active material. .
  • a carbon-based active material and an alloy-based active material as the negative electrode active material, a battery having a larger capacity than a negative electrode obtained using only a conventional carbon-based active material can be obtained, and the adhesion strength of the negative electrode It is possible to solve problems such as lowering of cycle and cycle characteristics.
  • the carbon-based active material used in the present invention refers to an active material having carbon as a main skeleton into which lithium can be inserted, and specifically includes a carbonaceous material and a graphite material.
  • the carbonaceous material is generally low in graphitization in which a carbon precursor is heat-treated (carbonized) at 2000 ° C. or less (the lower limit of the treatment temperature is not particularly limited, but can be, for example, 500 ° C. or more).
  • a carbon material (low crystallinity) is shown, and a graphitic material is a heat treatment of graphitizable carbon at 2000 ° C. or higher (the upper limit of the processing temperature is not particularly limited, but can be, for example, 5000 ° C. or lower).
  • the graphite material which has high crystallinity close to the graphite obtained by this is shown.
  • Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.
  • Examples of graphitizable carbon include carbon materials made from tar pitch obtained from petroleum and coal, such as coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, pyrolytic vapor-grown carbon fibers, etc. Is mentioned.
  • MCMB is carbon fine particles obtained by separating and extracting mesophase spherules produced in the process of heating pitches at around 400 ° C.
  • the mesophase pitch-based carbon fiber is a carbon fiber using as a raw material mesophase pitch obtained by growing and coalescing the mesophase microspheres.
  • Pyrolytic vapor-grown carbon fibers are: (1) a method for pyrolyzing acrylic polymer fibers and the like, (2) a method for pyrolyzing by spinning a pitch, and (3) using nanoparticles such as iron as a catalyst It is a carbon fiber obtained by a catalytic vapor deposition (catalytic CVD) method in which hydrocarbon is vapor-phase pyrolyzed.
  • the non-graphitizable carbon include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, and furfuryl alcohol resin fired bodies (PFA).
  • Graphite materials include natural graphite and artificial graphite.
  • artificial graphite include artificial graphite heat-treated at 2800 ° C or higher, graphitized MCMB heat-treated at 2000 ° C or higher, graphitized mesophase pitch carbon fiber heat-treated at 2000 ° C or higher. It is done.
  • the specific surface area of the carbon-based active material preferably 3.0 ⁇ 20.0m 2 / g, more preferably 3.5 ⁇ 15.0m 2 / g, particularly preferably 4.0 ⁇ 10.0m 2 / g is there.
  • the specific surface area of the carbon-based active material is in the above range, the active points on the surface of the carbon-based active material are increased, so that the output characteristics of the lithium ion secondary battery are excellent.
  • Examples of simple metals and alloys that form lithium alloys include Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, and Zn.
  • the compound to contain is mentioned.
  • silicon (Si), tin (Sn) or lead (Pb) simple metals, alloys containing these atoms, or compounds of these metals are used.
  • a simple substance of Si capable of inserting and extracting lithium at a low potential is preferable.
  • the alloy-based active material used in the present invention may further contain one or more nonmetallic elements.
  • oxides, sulfides, nitrides, silicides, carbides, and phosphides examples include oxides, sulfides, nitrides, silicides, carbides, and phosphides of elements into which lithium can be inserted.
  • Oxides are particularly preferred. Specifically, an oxide such as tin oxide, manganese oxide, titanium oxide, niobium oxide, vanadium oxide, or a lithium-containing metal composite oxide containing a metal element selected from the group consisting of Si, Sn, Pb, and Ti atoms is used. .
  • a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, 0 ⁇ z ⁇ 1.6, M includes Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb), among which Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 and Li 4/5 Ti 11/5 O 4 are used.
  • SiO x C y such as SiOC, SiO x , and SiC are more preferable.
  • SiO x C y such as SiOC, SiO x , and SiC are more preferable.
  • the volume average particle diameter of the alloy-based active material is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m, and particularly preferably 1 to 10 ⁇ m. When the volume average particle diameter of the alloy-based active material is within this range, the slurry composition used for producing the negative electrode can be easily produced.
  • the particulate binder has the property of being dispersed in a dispersion medium described below.
  • the particulate binder it is possible to improve the binding property between the current collector and the negative electrode active material layer, which will be described later, to improve the negative electrode strength, and to suppress the decrease in capacity of the obtained negative electrode and the deterioration due to repeated charge and discharge.
  • the particulate binder only needs to be present in a state where the particle shape is maintained in the negative electrode active material layer.
  • the “state in which the particle state is maintained” does not have to be a state in which the particle shape is completely maintained, and may be in a state in which the particle shape is maintained to some extent.
  • the particulate binder examples include those in which binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
  • the particulate binder is insoluble in water. That is, it is preferably dispersed in the form of particles without being dissolved in an aqueous solvent.
  • being water-insoluble means that when 0.5 g of the binder is dissolved in 100 g of water at 25 ° C., the insoluble content becomes 90% by mass or more.
  • the particulate binder (B) in the present invention has an aromatic vinyl-conjugated diene copolymer (b1) (hereinafter, referred to as “a”) having a glass transition temperature of ⁇ 30 to 20 ° C.
  • aromatic vinyl-conjugated diene copolymer (b1) simply referred to as “aromatic vinyl-conjugated diene copolymer (b1)”), a glass transition temperature of 30 to 80 ° C., and an aromatic carboxylic acid monomer unit.
  • Vinyl-conjugated diene copolymer (b2) (hereinafter sometimes simply referred to as “aromatic vinyl-conjugated diene copolymer (b2)”).
  • the aromatic vinyl monomer unit is a structural unit obtained by polymerizing an aromatic vinyl monomer.
  • aromatic vinyl monomers include styrene, ⁇ -methyl styrene, vinyl toluene, and divinyl benzene. Of these, styrene is preferred. These aromatic vinyl monomers can be used alone or in combination of two or more.
  • the content of aromatic vinyl monomer units in the aromatic vinyl-conjugated diene copolymer (b1) is preferably 40% by mass or more, more preferably 50 to 65% by mass.
  • the conjugated diene monomer unit is a structural unit obtained by polymerizing a conjugated diene monomer.
  • conjugated diene monomers include 1,3-butadiene, isoprene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene and the like Is mentioned. These conjugated diene monomers can be used alone or in combination of two or more.
  • the content of the conjugated diene monomer unit in the aromatic vinyl-conjugated diene copolymer (b1) is preferably 25% by mass or more, more preferably 31 to 46% by mass.
  • the total proportion of the aromatic vinyl monomer unit and the conjugated diene monomer unit in the aromatic vinyl-conjugated diene copolymer (b1) is preferably 65% by mass or more, more preferably 80 to 96% by mass. It is.
  • the unsaturated carboxylic acid monomer unit and other monomer units will be described in detail.
  • Examples of unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, and ⁇ -Diaminoacrylic acid.
  • Examples of unsaturated dicarboxylic acids include maleic acid, fumaric acid, and itaconic acid.
  • Examples of unsaturated dicarboxylic acid anhydrides include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • Examples of derivatives of unsaturated dicarboxylic acids include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate; and diphenyl maleate, nonyl maleate, maleate Examples thereof include maleate esters such as decyl acid, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate.
  • unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid
  • unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid
  • acrylic acid, methacrylic acid, and itaconic acid are more preferable
  • itaconic acid is particularly preferable.
  • the dispersibility of the resulting aromatic vinyl-conjugated diene copolymer (b1) in a dispersion medium such as water can be further improved, and the binding property between the current collector and the negative electrode active material layer is improved. This is because a secondary battery having cycle characteristics can be obtained.
  • an acidic functional group can be introduced into the aromatic vinyl-conjugated diene copolymer (b1).
  • the other monomer unit is a structural unit obtained by polymerizing another monomer copolymerizable with the above-mentioned monomer.
  • Other monomers constituting other monomer units include hydrocarbons such as ethylene, propylene and isobutylene; ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; vinyl chloride and vinylidene chloride Halogen atom-containing monomers; vinyl esters such as vinyl acetate, vinyl propionate and vinyl butyrate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone and hexyl vinyl ketone And vinyl ketones such as isopropenyl vinyl ketone; heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole.
  • the glass transition temperature (Tg) of the aromatic vinyl-conjugated diene copolymer (b1) is ⁇ 30 to 20 ° C., preferably ⁇ 20 to 20 ° C., more preferably ⁇ 10 to 15 ° C. If the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) is too low, it will be difficult to suppress the expansion and contraction of the negative electrode active material, and the cycle characteristics of the secondary battery will deteriorate. If the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) is too high, the binding property with the current collector becomes insufficient, and the cycle characteristics of the secondary battery are deteriorated.
  • the glass transition temperature tends to increase, and when the conjugated diene monomer unit is increased, the glass transition temperature is increased. Tend to be low.
  • the ratio of each monomer unit is adjusted based on the ratio of unsaturated carboxylic acid monomer units and other monomer units in the polymer so that the glass transition temperature is in the above range.
  • the number average particle diameter of the aromatic vinyl-conjugated diene copolymer (b1) is not particularly limited, but is usually 80 to 250 nm, preferably 100 to 200 nm, more preferably 120 to 180 nm. When the number average particle diameter of the aromatic vinyl-conjugated diene copolymer (b1) is within this range, an excellent binding force can be imparted to the negative electrode active material layer even with a small amount of use.
  • the number average particle diameter in the present invention is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 polymer particles randomly selected in a transmission electron micrograph. The shape of the particles can be either spherical or irregular. These aromatic vinyl-conjugated diene copolymers (b1) can be used alone or in combination of two or more.
  • Aromatic vinyl-conjugated diene copolymer The aromatic vinyl-conjugated diene copolymer (b2) used in the present invention is similar to the aromatic vinyl-conjugated diene copolymer (b1). A copolymer comprising a monomer unit, a conjugated diene monomer unit, and an unsaturated carboxylic acid monomer unit. Further, the aromatic vinyl-conjugated diene copolymer (b2) may contain other monomer units copolymerizable therewith as necessary.
  • aromatic vinyl monomer, conjugated diene monomer, unsaturated carboxylic acid monomer and other monomers copolymerizable therewith are as exemplified in the aromatic vinyl-conjugated diene copolymer (b1). It is.
  • the ratio of the aromatic vinyl monomer unit in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 55% by mass or more, more preferably 68-80% by mass.
  • the ratio of the conjugated diene monomer unit in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 10% by mass or more, more preferably 16 to 28% by mass.
  • the total proportion of the aromatic vinyl monomer unit and the conjugated diene monomer unit in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 65% by mass or more, more preferably 84 to 98% by mass. It is.
  • the ratio of the unsaturated carboxylic acid monomer unit in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 0.1 to 6% by mass, more preferably 0.5 to 5% by mass.
  • the ratio of the other monomer units in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 1 to 35% by mass, more preferably 2 to 16% by mass.
  • the glass transition temperature (Tg) of the aromatic vinyl-conjugated diene copolymer (b2) is 30 to 80 ° C., preferably 30 to 70 ° C., more preferably 35 to 60 ° C. If the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) is too low, it becomes difficult to suppress the expansion and contraction of the negative electrode active material, and the cycle characteristics of the secondary battery deteriorate. In addition, if the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) is too high, the flexibility of the aromatic vinyl-conjugated diene copolymer (b2) is reduced and the expansion and contraction of the negative electrode active material is suppressed.
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) can be adjusted to the above range in the same manner as in the case of the aromatic vinyl-conjugated diene copolymer (b1).
  • the number average particle size of the aromatic vinyl-conjugated diene copolymer (b2) is not particularly limited, but is usually 80 to 250 nm, preferably 100 to 200 nm, more preferably 120 to 180 nm. When the number average particle diameter of the aromatic vinyl-conjugated diene copolymer (b2) is within this range, an excellent binding force can be imparted to the negative electrode active material layer even with a small amount of use. These aromatic vinyl-conjugated diene copolymers (b2) can be used alone or in combination of two or more.
  • the content ratio (mass ratio) of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) in the negative electrode for secondary battery according to the present invention is the aromatic vinyl-conjugated diene.
  • Copolymer (b1) / aromatic vinyl-conjugated diene copolymer (b2) 80/20 to 30/70 is preferable, and 70/30 to 40/60 is more preferable.
  • the content ratio of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) in the above range By setting the content ratio of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) in the above range, the expansion and shrinkage of the negative electrode active material is suppressed, The binding property with the negative electrode active material layer can be improved, and the negative electrode strength can be improved.
  • the difference between the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) and the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) is preferably 10 to 90 ° C., more preferably 20 to 70 ° C. If the difference in glass transition temperature is too large, the electrode strength is weakened and the cycle characteristics may be deteriorated. Further, if the difference in glass transition temperature is too small, the electrode plate may easily swell.
  • the tetrahydrofuran-insoluble content of each of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) is preferably 70 to 98%, more preferably 90 to 93%. It is.
  • the tetrahydrofuran-insoluble component represents the mass ratio of the components insoluble in tetrahydrofuran among the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2). Value. Tetrahydrofuran insolubles can be measured by the method described in the examples described later.
  • the compounding amount of the particulate binder (B) is preferably 0.7 to 2 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the method for producing the particulate binder (B) is not particularly limited.
  • the monomer mixture containing the monomers constituting each copolymer is emulsion-polymerized to obtain an aromatic vinyl-conjugated diene.
  • Copolymers (b1) and (b2) can be obtained and mixed.
  • the method for emulsion polymerization is not particularly limited, and a conventionally known emulsion polymerization method may be employed.
  • the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
  • Examples of the polymerization initiator used for emulsion polymerization include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide Organic peroxides such as oxide and t-butylperoxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate, etc. Et That.
  • inorganic peroxides can be preferably used.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the peroxide initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite.
  • a chain transfer agent during emulsion polymerization in order to adjust the amount of insoluble tetrahydrofuran in the resulting copolymer.
  • the amount of insoluble tetrahydrofuran is decreased, and by decreasing the amount of the chain transfer agent used, the amount of the tetrahydrofuran insoluble component tends to increase.
  • the amount can be controlled within a range.
  • chain transfer agent examples include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan; dimethylxanthogen disulfide, diisopropylxanthogendi Xanthogen compounds such as sulfide; thiuram compounds such as terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide; phenols such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol Compounds; allyl compounds such as allyl alcohol; halogenated hydrocarbon compounds such as dichloromethane, dibromome
  • alkyl mercaptans are preferable, and t-dodecyl mercaptan can be more preferably used.
  • chain transfer agents can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is preferably 0.05 to 2 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the monomer mixture.
  • a surfactant may be used during emulsion polymerization. Unlike the reactive surfactant preferably contained in the water-soluble polymer (D) described later, the surfactant is non-reactive, and is an anionic surfactant, a nonionic surfactant, a cationic surfactant, Any of amphoteric surfactants may be used.
  • anionic surfactant examples include sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl sulfate, ammonium dodecyl sulfate, sodium octyl sulfate, sodium decyl sulfate, sodium tetradecyl sulfate, sodium hexadecyl sulfate, sodium octadecyl sulfate and the like.
  • alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium lauryl benzene sulfonate, sodium hexadecyl benzene sulfonate
  • fats such as sodium lauryl sulfonate, sodium dodecyl sulfonate, sodium tetradecyl sulfonate Group sulfonates; and the like.
  • the amount of the surfactant used is preferably 0.5 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the monomer mixture.
  • seed latex refers to a dispersion of fine particles that becomes the nucleus of the reaction during emulsion polymerization.
  • the fine particles often have a particle size of 100 nm or less.
  • the fine particles are not particularly limited, and general-purpose polymers such as diene polymers are used. According to the seed polymerization method, copolymer particles having a relatively uniform particle diameter can be obtained.
  • the polymerization temperature for carrying out the polymerization reaction is not particularly limited, but is usually 0 to 100 ° C., preferably 40 to 80 ° C. Emulsion polymerization is performed in such a temperature range, and the polymerization reaction is stopped at a predetermined polymerization conversion rate by adding a polymerization terminator or cooling the polymerization system.
  • the polymerization conversion rate for stopping the polymerization reaction is preferably 93% by mass or more, more preferably 95% by mass or more.
  • the unreacted monomer is removed, the pH and the solid content concentration are adjusted, and the aromatic vinyl in a form (latex) in which the particulate copolymer is dispersed in the dispersion medium Conjugated diene copolymers (b1) and (b2) are obtained. Thereafter, if necessary, the dispersion medium may be replaced, or the dispersion medium may be evaporated to obtain a particulate copolymer in powder form.
  • a known dispersant, thickener, anti-aging agent, antifoaming agent, antiseptic, antibacterial agent, anti-blistering agent, pH adjuster, etc. are added to the resulting latex of the particulate copolymer as necessary. You can also.
  • a hydroxyl group-containing water-soluble polymer is a polymer containing a hydroxyl group and having water solubility.
  • the hydroxyl group-containing water-soluble polymer is a polymer different from the water-soluble polymer (D) described later, that is, a water-soluble polymer containing a hydroxyl group and not containing a fluorine-containing (meth) acrylate monomer unit.
  • the hydroxyl group-containing water-soluble polymer (C) (hereinafter sometimes simply referred to as “water-soluble polymer (C)”) is used by being dissolved in a slurry composition for producing a negative electrode for a secondary battery.
  • negative electrode active material (A) and the like have a function of uniformly dispersing in the slurry composition. Therefore, a uniform secondary battery negative electrode can be obtained by using the water-soluble polymer (C).
  • hydroxyl group-containing water-soluble polymer (C) examples include cellulose polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic Acids and their ammonium salts and alkali metal salts; (modified) polyvinyl alcohol, acrylic acid or copolymers of acrylate and vinyl alcohol, maleic anhydride or maleic anhydride or copolymers of fumaric acid and vinyl alcohol, etc.
  • Alcohols polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified polyacrylic acid, oxidized starch, phosphate starch, casein, various modified products Pung, chitin, such as chitosan derivatives, and the like.
  • a cellulose polymer is preferable and carboxymethyl cellulose is particularly preferable.
  • the 1% aqueous solution viscosity is preferably 100 to 3000 mPa ⁇ s, more preferably 500 to 2500 mPa ⁇ s, and particularly preferably 1000 to 2000 mPa ⁇ s.
  • the viscosity of the 1% aqueous solution of the water-soluble polymer (C) is within the above range, the viscosity of the slurry composition used for producing the negative electrode can be made suitable for coating, and the drying time of the slurry composition is shortened. Therefore, the productivity of the secondary battery is excellent. Moreover, a negative electrode with favorable binding properties can be obtained.
  • the aqueous solution viscosity can be adjusted by the average degree of polymerization of the water-soluble polymer (C). When the average degree of polymerization is high, the aqueous solution viscosity tends to increase.
  • the average degree of polymerization of the water-soluble polymer (C) is preferably 100 to 1500, more preferably 300 to 1200, and particularly preferably 500 to 1000. If the average degree of polymerization of the water-soluble polymer (C) is in the above range, the 1% aqueous solution viscosity can be set in the above range, and thereby the above-described effects are exhibited.
  • the degree of etherification of the cellulosic polymer suitable as the water-soluble polymer (C) is preferably 0.6 to 1.5, more preferably 0.7 to 1.2, and particularly preferably 0.8 to 1.0.
  • the degree of etherification of the cellulosic polymer is in the above range, thereby reducing the affinity with the negative electrode active material, preventing the water-soluble polymer (C) from being unevenly distributed on the surface of the negative electrode active material, and the negative electrode active material in the negative electrode.
  • the binding property between the layer and the current collector can be maintained, and the binding property of the negative electrode is significantly improved.
  • the degree of etherification refers to the degree of substitution of carboxymethyl groups or the like to hydroxyl groups (three) per anhydroglucose unit in cellulose. Theoretically, values from 0 to 3 can be taken. It shows that as the degree of etherification increases, the ratio of hydroxyl groups in cellulose decreases and the ratio of substituted substances increases, and as the degree of etherification decreases, hydroxyl groups in cellulose increase and substituents decrease.
  • the degree of etherification (degree of substitution) is determined by the following method and formula.
  • A is the amount (ml) of N / 10 sulfuric acid consumed by the bound alkali metal ions in 1 g of the sample.
  • a is the amount (ml) of N / 10 sulfuric acid used.
  • f is the titer coefficient of N / 10 sulfuric acid.
  • b is the titration amount (ml) of N / 10 potassium hydroxide.
  • f 1 is the titer coefficient of N / 10 potassium hydroxide.
  • M is the weight average molecular weight of the sample.
  • the blending amount of the water-soluble polymer (C) is preferably 1 to 3 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the coating property is improved, so that the increase in internal resistance of the secondary battery is prevented and the binding property with the current collector is excellent. Further, since the expansion / contraction of the negative electrode active material can be suppressed, the cycle characteristics of the secondary battery are improved.
  • the water-soluble polymer (D) may further contain a crosslinkable monomer unit in addition to the above structural units.
  • the crosslinkable monomer unit is a structural unit capable of forming a crosslinked structure during or after polymerization by heating or energy irradiation.
  • a monomer having thermal crosslinkability can be usually mentioned. More specifically, a monofunctional monomer having a heat-crosslinkable crosslinkable group and one olefinic double bond per molecule, and a polyfunctional having two or more olefinic double bonds per molecule. Ionic monomers.
  • crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond examples include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl.
  • crosslinkable monomer ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate can be particularly preferably used.
  • the ratio of the crosslinkable monomer units is equal to or less than the upper limit of the above range, the water-soluble polymer (D) can be improved in water solubility and the dispersibility can be improved. Therefore, by setting the content ratio of the crosslinkable monomer unit within the above range, both the degree of swelling and the dispersibility can be improved.
  • the water-soluble polymer (D) may contain a structural unit obtained by polymerizing a functional monomer such as a reactive surfactant monomer in addition to the above monomer units. .
  • the reactive surfactant monomer has a polymerizable unsaturated group, and this group also acts as a hydrophobic group after polymerization.
  • the polymerizable unsaturated group that the reactive surfactant monomer has include a vinyl group, an allyl group, a vinylidene group, a propenyl group, an isopropenyl group, and an isobutylidene group.
  • the type of the polymerizable unsaturated group may be one type or two or more types.
  • the reactive surfactant monomer usually has a hydrophilic group as a portion that exhibits hydrophilicity.
  • Reactive surfactant monomers are classified into anionic, cationic and nonionic surfactants depending on the type of hydrophilic group.
  • anionic hydrophilic group examples include —SO 3 M, —COOM, and —PO (OH) 2 .
  • M represents a hydrogen atom or a cation.
  • cations include alkali metal ions such as lithium, sodium and potassium; alkaline earth metal ions such as calcium and magnesium; ammonium ions; ammonium ions of alkylamines such as monomethylamine, dimethylamine, monoethylamine and triethylamine; and Examples include ammonium ions of alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
  • Examples of the cationic hydrophilic group include —Cl, —Br, —I, and —SO 3 ORX.
  • RX represents an alkyl group.
  • Examples of RX include methyl group, ethyl group, propyl group, and isopropyl group.
  • the ratio is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, particularly preferably 1 to It is in the range of 5% by mass.
  • the dispersibility of the negative electrode active material (A) and the particulate binder (B) can be improved by setting the ratio of the reactive surfactant monomer unit to the lower limit value or more of the above range.
  • the durability of the negative electrode active material layer can be improved by setting the ratio of the reactive surfactant monomer unit to be equal to or less than the upper limit of the above range.
  • the solution viscosity of the water-soluble polymer (D) at the time of adjusting a 1% aqueous solution at pH 8 is preferably 0.1 to 20000 mPa ⁇ s, more preferably 1 to 10000 mPa ⁇ s, and particularly preferably 10 to 5000 mPa. -It is in the range of s. If the solution viscosity is too high, the binding property of the negative electrode active material layer to the current collector may be reduced, and if it is too low, the flexibility of the negative electrode active material layer may be reduced.
  • the glass transition temperature of the water-soluble polymer (D) is usually 0 ° C. or higher, preferably 5 ° C. or higher, and is usually 100 ° C. or lower, preferably 50 ° C. or lower.
  • the glass transition temperature of the water-soluble polymer (D) can be adjusted by combining various monomers.
  • the weight ratio of the water-soluble polymer (D) and the water-soluble polymer (C) is “water-soluble polymer (C) / water-soluble polymer (D)”, preferably 99/1 to 70/30, more preferably 99 / 1 to 85/15, particularly preferably 99/1 to 90/10.
  • the method for alkalinizing to pH 7 to 13 is not particularly limited, but alkaline earth solutions such as an aqueous alkali metal solution such as an aqueous lithium hydroxide solution, an aqueous sodium hydroxide solution, and an aqueous potassium hydroxide solution, an aqueous calcium hydroxide solution, and an aqueous magnesium hydroxide solution.
  • alkaline earth solutions such as an aqueous alkali metal solution such as an aqueous lithium hydroxide solution, an aqueous sodium hydroxide solution, and an aqueous potassium hydroxide solution, an aqueous calcium hydroxide solution, and an aqueous magnesium hydroxide solution.
  • alkaline earth solutions such as an aqueous alkali metal solution such as an aqueous lithium hydroxide solution, an aqueous sodium hydroxide solution, and an aqueous potassium hydroxide solution, an aqueous calcium hydroxide solution, and an aqueous magnesium hydroxide solution.
  • examples include
  • the other components of the negative electrode active material layer include other components such as a conductive agent, a reinforcing material, a leveling agent, an antioxidant, and an electrolyte additive having a function of inhibiting decomposition of the electrolyte. May be included. These are not particularly limited as long as they do not affect the battery reaction.
  • the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • a reinforcing material By using a reinforcing material, a tough and flexible negative electrode can be obtained, and excellent long-term cycle characteristics can be exhibited.
  • the content of the reinforcing material in the negative electrode active material layer is usually 0.01 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. When the content of the reinforcing material is in the above range, a secondary battery exhibiting high capacity and high load characteristics can be obtained.
  • leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • the antioxidant examples include a phenol compound, a hydroquinone compound, an organic phosphorus compound, a sulfur compound, a phenylenediamine compound, and a polymer type phenol compound.
  • the polymer type phenol compound is a polymer having a phenol structure in the molecule, and a polymer type phenol compound having a weight average molecular weight of 200 to 1000, preferably 600 to 700 is preferably used.
  • the content of the antioxidant in the negative electrode active material layer is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass. When the content ratio of the antioxidant is within the above range, the slurry composition used for producing the negative electrode is excellent in stability, battery capacity and cycle characteristics of the obtained secondary battery.
  • the electrolytic solution additive vinylene carbonate used in the electrolytic solution can be used.
  • the content of the electrolyte solution additive in the negative electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the high temperature cycle characteristics and the high temperature characteristics are excellent.
  • Other examples include nanoparticles such as fumed silica and fumed alumina. By mixing the nanoparticles, the thixotropy of the slurry composition can be controlled, and the leveling property of the negative electrode obtained thereby can be improved.
  • the content of the nanoparticles in the negative electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the content of the nanoparticles is in the above range, the slurry stability and productivity are excellent, and high battery characteristics are exhibited.
  • an isothiazoline compound or a chelate compound can be added as an additive.
  • the current collector used in the present invention is not particularly limited as long as it is an electrically conductive and electrochemically durable material, but is preferably a metal material because of its heat resistance, such as iron, Examples include copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum. Among these, copper is particularly preferable as the current collector used for the negative electrode for the secondary battery.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.
  • the current collector may be used after roughening in advance in order to increase the adhesive strength with the negative electrode active material layer. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector, and among these, a conductive adhesive layer is preferably formed.
  • any method may be used as long as the negative electrode active material layer is bound in layers on at least one surface of the current collector.
  • a negative electrode slurry composition for a secondary battery which will be described later (hereinafter sometimes referred to as “negative electrode slurry composition”), is applied to a current collector, dried, and then 1 at 120 ° C. or higher as necessary.
  • a negative electrode is formed by heat treatment for more than an hour.
  • the method for applying the negative electrode slurry composition to the current collector is not particularly limited.
  • Examples thereof include a doctor blade method, a zip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually 5 to 50 minutes, and the drying temperature is usually 40 to 180 ° C.
  • the negative electrode active material layer is subjected to pressure treatment using a mold press or a roll press. It is preferable to have a step of lowering the porosity.
  • the porosity of the negative electrode active material layer is preferably 5 to 30%, more preferably 7 to 20%. If the porosity is too high, charging efficiency and discharging efficiency may deteriorate. When the porosity is too low, it may be difficult to obtain a high volume capacity, and the negative electrode active material layer may be easily peeled off from the current collector and may be defective. Further, when a curable polymer is used for the particulate binder (B), it is preferably cured.
  • the density of the negative electrode active material layer of the negative electrode for a secondary battery is preferably 1.6 ⁇ 2.2g / cm 3, more preferably 1.65 ⁇ 1.85g / cm 3.
  • the density of the negative electrode active material layer is within the above range, a high-capacity secondary battery can be obtained.
  • the thickness of the negative electrode active material layer in the negative electrode of the lithium ion secondary battery of the present invention is usually 5 to 300 ⁇ m, preferably 30 to 250 ⁇ m. When the thickness of the negative electrode active material layer is in the above range, it is possible to obtain a secondary battery that exhibits high load characteristics and cycle characteristics.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85 to 99% by mass, more preferably 88 to 97% by mass.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is in the above range, it is possible to obtain a secondary battery that exhibits flexibility and binding properties while exhibiting high capacity.
  • the negative electrode slurry composition for a secondary battery contains the above-mentioned components (A) to (D), other components (E) added as necessary, and a dispersion medium.
  • the dispersion medium is not particularly limited as long as the above components can be uniformly dispersed or dissolved.
  • the dispersion medium exemplified as the dispersion medium used for the production of the particulate binder (B) and the water-soluble polymer (D) can be used.
  • the solid content concentration of the negative electrode slurry composition is not particularly limited as long as it can be applied and immersed and has a fluid viscosity, but is generally about 10 to 80% by mass.
  • the negative electrode slurry composition for a secondary battery is obtained by mixing each of the above components (A) to (D), another component (E) added as necessary, and a dispersion medium.
  • the amount of the dispersion medium used when preparing the negative electrode slurry composition is such that the solid content concentration of the negative electrode slurry composition is usually 40 to 80% by mass, preferably 60 to 80% by mass, more preferably 72 to 80% by mass. This is an amount that falls within the range.
  • the solid content concentration of the negative electrode slurry composition is within this range, each of the above components can be uniformly dispersed. Furthermore, since the thickness change before and behind drying of a negative electrode slurry composition can be made small, the residual stress which remains in a negative electrode inside can be reduced. Thereby, the suppression of the crack in a negative electrode and a binding property can be improved.
  • a negative electrode slurry composition in which the above components are highly dispersed can be obtained regardless of the mixing method and the mixing order.
  • the mixing device is not particularly limited as long as it can uniformly mix the above-mentioned components. Bead mill, ball mill, roll mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, fill mix, etc. Among them, it is particularly preferable to use a ball mill, a roll mill, a pigment disperser, a crusher, or a planetary mixer because dispersion at a high concentration is possible.
  • the viscosity of the negative electrode slurry composition is preferably 10 to 100,000 mPa ⁇ s, more preferably 100 to 50,000 mPa ⁇ s, from the viewpoints of uniform coatability and slurry aging stability.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the secondary battery of this invention is a secondary battery provided with a positive electrode, a negative electrode, electrolyte solution, and a separator, Comprising:
  • the said negative electrode is the above-mentioned negative electrode for secondary batteries.
  • the positive electrode is formed by laminating a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a current collector.
  • Cathode Active Material use active materials that can be doped and dedoped with lithium ions, and are broadly classified into those composed of inorganic compounds and those composed of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • Transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O. 5 , V 6 O 13 and the like. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle characteristics and capacity.
  • the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium composite oxide, Ni—Mn—Al lithium
  • lithium-containing cobalt oxide (LiCoO 2 ) lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium composite oxide, Ni—Mn—Al lithium
  • examples thereof include composite oxides and lithium composite oxides of Ni—Co—Al.
  • the lithium-containing composite metal oxide having a spinel structure include lithium manganate (LiMn 2 O 4 ) and Li [Mn 3/2 M 1/2 ] O 4 in which a part of Mn is substituted with another transition metal (wherein M may be Cr, Fe, Co, Ni, Cu or the like.
  • Li X MPO 4 (wherein, M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Li X MPO 4 as the lithium-containing composite metal oxide having an olivine structure)
  • An olivine type lithium phosphate compound represented by at least one selected from Si, B, and Mo, 0 ⁇ X ⁇ 2) may be mentioned.
  • a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
  • An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
  • the positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound.
  • the average particle diameter of the positive electrode active material is usually 1 to 50 ⁇ m, preferably 2 to 30 ⁇ m.
  • the average particle diameter of the positive electrode active material is in the above range, the amount of the positive electrode binder in the positive electrode active material layer can be reduced, and the decrease in battery capacity can be suppressed.
  • a slurry containing a positive electrode active material and a positive electrode binder (hereinafter sometimes referred to as “positive electrode slurry composition”) is usually prepared. It becomes easy to prepare the composition at a viscosity appropriate for application, and a uniform positive electrode can be obtained.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass.
  • the binder for the positive electrode is not particularly limited and a known binder can be used.
  • resins such as polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, acrylic soft heavy
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • polyacrylic acid derivatives polyacrylonitrile derivatives
  • acrylic soft heavy A soft polymer such as a polymer, a diene soft polymer, an olefin soft polymer, or a vinyl soft polymer can be used. These may be used alone or in combination of two or more.
  • the positive electrode may further contain other components such as an electrolyte additive having a function of suppressing the above-described electrolyte decomposition. These are not particularly limited as long as they do not affect the battery reaction.
  • the current collector used in the above-described negative electrode for a secondary battery can be used, and there is no particular limitation as long as the material has electrical conductivity and is electrochemically durable.
  • Aluminum is particularly preferable for the positive electrode of the secondary battery.
  • the thickness of the positive electrode active material layer is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m. When the thickness of the positive electrode active material layer is in the above range, both load characteristics and energy density are high.
  • the positive electrode can be manufactured in the same manner as the negative electrode for a secondary battery described above.
  • the separator is a porous substrate having pores
  • usable separators include (a) a porous separator having pores, and (b) a porous separator in which a polymer coat layer is formed on one or both sides. Or (c) a porous separator in which a porous resin coat layer containing an inorganic ceramic powder is formed.
  • Non-limiting examples of these include solids such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers.
  • the electrolytic solution used in the present invention is not particularly limited.
  • a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more.
  • the amount of the supporting electrolyte is usually 1% by mass or more, preferably 5% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less, with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the battery are degraded.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane; tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used.
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more. Moreover, it is also possible to use an electrolyte containing an additive. As the additive, carbonate compounds such as vinylene carbonate (VC) are preferable.
  • VC vinylene carbonate
  • Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution, and an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N.
  • the manufacturing method of the secondary battery of the present invention is not particularly limited.
  • the above-described negative electrode and positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery and placed in the battery container, and the electrolytic solution is injected into the battery container and sealed.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • Tg glass transition temperature
  • ⁇ Tetrahydrofuran insoluble matter> Prepare an aqueous dispersion containing the copolymer, put the aqueous dispersion in an aluminum dish, and dry it in an environment of 50% humidity and 23 to 25 ° C. for 48 hours to form a film having a thickness of 3 ⁇ 0.3 mm. A film was formed. The film formed was cut into 1 mm square, and 1 g was precisely weighed. The mass of the film piece obtained by this cutting is defined as W0. This film piece was immersed in 100 g of tetrahydrofuran (THF) at 25 ° C. for 24 hours.
  • THF tetrahydrofuran
  • a negative electrode is cut out into a disk shape with a diameter of 15 mm, and a separator made of a polypropylene porous film having a disk shape with a diameter of 18 mm and a thickness of 25 ⁇ m, a metal lithium counter electrode, and an expanded metal are sequentially laminated on the negative electrode active material layer side. It was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with a packing made of steel.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A half cell of 20 mm and a thickness of about 2 mm was produced.
  • EMC ethyl methyl carbonate
  • a solution dissolved at a concentration of was used.
  • constant current-constant voltage charging was performed at 0.05 C to confirm the initial capacity. The case where the initial capacity was 420 mAh / g or more was evaluated as “good”, and the case where it was less than 420 mAh / g was evaluated as “bad”.
  • Example 1 Production of aromatic vinyl-conjugated diene copolymer (b1) In a 5 MPa pressure vessel equipped with a stirrer, 46 parts of 1,3-butadiene, 4 parts of itaconic acid, 50 parts of styrene, t-dodecyl mercaptan (TDM) 0. 3 parts, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator are stirred sufficiently, and then heated to 50 ° C. for polymerization. Started.
  • TDM t-dodecyl mercaptan
  • the reaction was stopped by cooling to obtain a mixture containing a polymer.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was ⁇ 10 ° C.
  • the reaction was stopped by cooling to obtain a mixture containing a polymer.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 45 ° C.
  • a 40% aqueous dispersion of an acrylate polymer having a glass transition temperature Tg of ⁇ 40 ° C. and a number average particle diameter of 0.20 ⁇ m was prepared.
  • the acrylate polymer is a copolymer obtained by emulsion polymerization of a monomer mixture containing 78% by mass of 2-ethylhexyl acrylate, 20% by mass of acrylonitrile, and 2% by mass of methacrylic acid.
  • LiFePO 4 having a volume average particle size of 0.5 ⁇ m and having an olivine crystal structure as a positive electrode active material and a 1% aqueous solution of carboxymethyl cellulose (“BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a dispersant 1 part at a time and a 40% aqueous dispersion of the above acrylate polymer as a binder are mixed with 5 parts at a solid content, and ion-exchanged water is added to this so that the total solid content concentration is 40%.
  • the positive electrode slurry composition was prepared by mixing with a planetary mixer.
  • the positive electrode slurry composition was applied onto a current collector of 20 ⁇ m thick aluminum with a comma coater so that the film thickness after drying was about 200 ⁇ m and dried. This drying was performed by conveying aluminum in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode.
  • An aluminum packaging exterior was prepared as the exterior of the laminated cell manufacturing battery of the lithium ion secondary battery .
  • the positive electrode obtained in the step (7) was cut into a 4 cm ⁇ 4 cm square and arranged so that the current collector-side surface was in contact with the aluminum packaging exterior.
  • the separator prepared in the above step (8) was disposed on the surface of the positive electrode active material layer of the positive electrode.
  • the negative electrode obtained in the above step (6) was cut into a square of 4.2 cm ⁇ 4.2 cm, and arranged so that the surface on the negative electrode active material layer side faced the separator. Furthermore, in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C.
  • step (6) Manufacture of coin cell of lithium ion secondary battery
  • the negative electrode obtained in the above step (6) is cut into a disk shape with a diameter of 16 mm to be used as a positive electrode.
  • the same separator as used in step (8) above was cut into a disk shape having a diameter of 18 mm and a thickness of 25 ⁇ m, and lithium metal used as the negative electrode and expanded metal were laminated in this order on this positive electrode, and a polypropylene packing was installed.
  • a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm).
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A lithium ion coin battery (half cell) having a thickness of 20 mm and a thickness of about 2 mm was produced.
  • Example 2 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
  • the reaction was stopped by cooling to obtain a mixture containing a polymer.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was ⁇ 10 ° C.
  • the reaction was stopped by cooling to obtain a mixture containing a polymer.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 45 ° C.
  • Example 3 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
  • the reaction was stopped by cooling to obtain a mixture containing a polymer.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was ⁇ 10 ° C.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 45 ° C.
  • Example 4 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
  • Example 5 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
  • the reaction was stopped by cooling to obtain a mixture containing a polymer.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was 18 ° C.
  • the reaction was stopped by cooling to obtain a mixture containing a polymer.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 33 ° C.
  • the reaction was stopped by cooling to obtain a mixture containing a polymer.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was ⁇ 10 ° C.
  • Example 9 In the production of the negative electrode slurry composition in the step (5), the same operation as in Example 1 was performed except that the amount of the aqueous dispersion of the particulate binder (B) was 2 parts corresponding to the solid content, A lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
  • Example 10 In the production of the negative electrode slurry composition in the step (5), the addition amount of the aqueous solution containing the water-soluble polymer (D) was the same as in Example 1 except that the amount corresponding to the solid content was 0.14 parts. Then, a lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
  • Example 11 Except for using 90 parts of artificial graphite (specific surface area: 4 m 2 / g, volume average particle diameter: 24.5 ⁇ m) and 10 parts of SiOC (volume average particle diameter: 10 ⁇ m) as the negative electrode active material (A), The same operation as in Example 1 was performed to manufacture a lithium ion secondary battery. Each evaluation result is shown in Table 1.
  • Example 12 The same operation as in Example 1 was performed except that 100 parts of artificial graphite (specific surface area: 4 m 2 / g, volume average particle diameter: 24.5 ⁇ m) was used as the negative electrode active material (A). A secondary battery was manufactured. Each evaluation result is shown in Table 1.
  • Example 13 In the production of the water-soluble polymer (D) in step (4), except that 7.5 parts of 2,2,2-trifluoroethyl methacrylate is 1.0 part and 60.5 parts of butyl acrylate is 67.0 parts Performed the same operation as Example 1, and manufactured the lithium ion secondary battery. Each evaluation result is shown in Table 1.
  • Example 14 In the production of the water-soluble polymer (D) in step (4), except that 7.5 parts of 2,2,2-trifluoroethyl methacrylate is 15.0 parts and 60.5 parts of butyl acrylate is 53.0 parts Performed the same operation as Example 1, and manufactured the lithium ion secondary battery. Each evaluation result is shown in Table 1.
  • Example 15 In the production of the aromatic vinyl-conjugated diene copolymer (b2) in the step (2), the same operation as in Example 1 was conducted except that 0.25 part of t-dodecyl mercaptan (TDM) was changed to 0.38 part. The lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
  • Example 16 In the production of the aromatic vinyl-conjugated diene copolymer (b2) in the step (2), the same operation as in Example 1 was carried out except that 0.25 part of t-dodecyl mercaptan (TDM) was changed to 0.19 part. The lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
  • Example 1 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was ⁇ 10 ° C.
  • a 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2).
  • the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 45 ° C.
  • Example 2 The same operation as in Example 1 except that the particulate vinyl binder (B) was produced only with the aromatic vinyl-conjugated diene copolymer (b1) without using the aromatic vinyl-conjugated diene copolymer (b2). The lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
  • Example 3 The same operation as in Example 1 except that the particulate vinyl binder (B) was produced only with the aromatic vinyl-conjugated diene copolymer (b2) without using the aromatic vinyl-conjugated diene copolymer (b1). The lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
  • Example 4 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) was used. Each evaluation result is shown in Table 1.
  • Example 5 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b2) was used. Each evaluation result is shown in Table 1.

Abstract

[Problem] To provide a secondary-cell negative electrode capable of yielding a secondary cell having exceptional cycle characteristics and output characteristics. [Solution] This secondary-cell negative electrode comprises a current collector and a negative-electrode active substance layer layered on the current collector, the negative-electrode active substance layer containing a negative-electrode active substance (A), a particulate binder (B), a hydroxyl-group-containing aqueous polymer (C), and an aqueous polymer (D) containing 0.5-20 mass% of a fluorine-containing (meth)acrylic acid ester monomer unit, the particulate binder (B) containing an aromatic vinyl-conjugated diene copolymer (b1) having a glass transition temperature of -30-20°C and containing an unsaturated carboxylic acid monomer unit, and an aromatic vinyl-conjugated diene copolymer (b2) having a glass transition temperature of 30-80°C and containing an unsaturated carboxylic acid monomer unit.

Description

二次電池用負極及び二次電池Negative electrode for secondary battery and secondary battery
 本発明は、リチウムイオン二次電池等の二次電池に使用される負極に関する。 The present invention relates to a negative electrode used for a secondary battery such as a lithium ion secondary battery.
 近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、ニッケル水素二次電池、リチウムイオン二次電池などが多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化、高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化、高性能化が要求されている。 In recent years, portable terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants) have been widely used. As a secondary battery used for the power source of these portable terminals, a nickel hydrogen secondary battery, a lithium ion secondary battery, and the like are frequently used. Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher in performance. As a result, mobile terminals are used in various places. In addition, the battery is required to be smaller, thinner, lighter, and higher in performance as in the case of the portable terminal.
 従来、リチウムイオン二次電池には、負極活物質としてグラファイト等の炭素系活物質が用いられている。例えば、特許文献1には、炭素系活物質と、ガラス転移温度が異なる2種類のカルボキシ変性スチレン-ブタジエン共重合体からなるバインダーとを含有するリチウムイオン二次電池用負極が記載されている。 Conventionally, a carbon-based active material such as graphite is used as a negative electrode active material in a lithium ion secondary battery. For example, Patent Document 1 describes a negative electrode for a lithium ion secondary battery containing a carbon-based active material and a binder composed of two types of carboxy-modified styrene-butadiene copolymers having different glass transition temperatures.
 また、リチウムイオン二次電池の高容量化を目的とし、Si等を含有する合金系活物質を用いたリチウムイオン二次電池用負極が開発されている(例えば特許文献2)。 Also, for the purpose of increasing the capacity of lithium ion secondary batteries, a negative electrode for lithium ion secondary batteries using an alloy-based active material containing Si or the like has been developed (for example, Patent Document 2).
特開2011-108373号公報JP 2011-108373 A 特許第4025995号Patent No. 4025995
 本発明者らが検討した結果、特許文献1に記載の負極は、負極活物質の分散性やリチウムイオン伝導性が不十分なため、サイクル特性や出力特性に優れる二次電池を得ることが困難であることが分かった。 As a result of investigations by the present inventors, the negative electrode described in Patent Document 1 has insufficient dispersibility of the negative electrode active material and lithium ion conductivity, so that it is difficult to obtain a secondary battery having excellent cycle characteristics and output characteristics. It turns out that.
 また、負極活物質として合金系活物質を用いる場合には、リチウムイオンをドープ・脱ドープすると、負極活物質の体積の膨張・収縮が大きく、その結果、極板膨らみや電極から負極活物質の脱離(粉落ち)が発生し、サイクル特性や出力特性等の電池特性を悪化させるおそれがあることが分かった。 In addition, when an alloy-based active material is used as the negative electrode active material, when lithium ions are doped / dedoped, the volume of the negative electrode active material expands / contracts greatly. It has been found that detachment (powder falling) occurs and battery characteristics such as cycle characteristics and output characteristics may be deteriorated.
 本発明は、上記の事情に鑑みてなされたもので優れたサイクル特性や出力特性を有する二次電池を得ることができる二次電池用負極を提供することを目的としている。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a secondary battery negative electrode capable of obtaining a secondary battery having excellent cycle characteristics and output characteristics.
 本発明者は、前記課題を解決するべく鋭意検討した結果、特定の粒子状バインダー及び特定の水溶性ポリマーを用いることで、負極における負極活物質の分散性やリチウムイオン伝導性を向上させ、その結果、サイクル特性や出力特性に優れた二次電池を得られることを見いだし、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have improved the dispersibility and lithium ion conductivity of the negative electrode active material in the negative electrode by using a specific particulate binder and a specific water-soluble polymer. As a result, it was found that a secondary battery having excellent cycle characteristics and output characteristics can be obtained, and the present invention has been completed.
 すなわち、このような課題の解決を目的とした本発明の要旨は以下の通りである。 That is, the gist of the present invention aimed at solving such problems is as follows.
(1)集電体と、前記集電体上に積層される負極活物質層とからなり、
 前記負極活物質層が、負極活物質(A)、粒子状バインダー(B)、ヒドロキシル基含有水溶性ポリマー(C)、及び、フッ素含有(メタ)アクリル酸エステル単量体単位を0.5~20質量%含む水溶性ポリマー(D)を含み、
前記粒子状バインダー(B)が、ガラス転移温度が-30~20℃であり、不飽和カルボン酸単量体単位を含んでなる芳香族ビニル-共役ジエン共重合体(b1)と、ガラス転移温度が30~80℃であり、不飽和カルボン酸単量体単位を含んでなる芳香族ビニル-共役ジエン共重合体(b2)とを含む、二次電池用負極。
(1) A current collector and a negative electrode active material layer laminated on the current collector,
The negative electrode active material layer comprises a negative electrode active material (A), a particulate binder (B), a hydroxyl group-containing water-soluble polymer (C), and a fluorine-containing (meth) acrylate monomer unit of 0.5 to Including a water-soluble polymer (D) containing 20% by mass,
The particulate binder (B) has a glass transition temperature of −30 to 20 ° C., an aromatic vinyl-conjugated diene copolymer (b1) comprising an unsaturated carboxylic acid monomer unit, and a glass transition temperature. And an aromatic vinyl-conjugated diene copolymer (b2) having an unsaturated carboxylic acid monomer unit at 30 to 80 ° C.
(2)前記負極活物質(A)が、炭素系活物質(a1)と合金系活物質(a2)とを含む(1)に記載の二次電池用負極。 (2) The negative electrode for a secondary battery according to (1), wherein the negative electrode active material (A) includes a carbon-based active material (a1) and an alloy-based active material (a2).
(3)前記炭素系活物質(a1)100質量部に対して、前記合金系活物質(a2)を1~50質量部含む(2)に記載の二次電池用負極。 (3) The negative electrode for a secondary battery according to (2), comprising 1 to 50 parts by mass of the alloy-based active material (a2) with respect to 100 parts by mass of the carbon-based active material (a1).
(4)前記合金系活物質(a2)が、Si、SiO(x=0.01以上2未満)、又はSiOCである(2)または(3)に記載の二次電池用負極。 (4) The negative electrode for a secondary battery according to (2) or (3), wherein the alloy-based active material (a2) is Si, SiO x (x = 0.01 or more and less than 2), or SiOC.
(5)前記芳香族ビニル-共役ジエン共重合体(b1)と前記芳香族ビニル-共役ジエン共重合体(b2)の含有割合が、質量比で、芳香族ビニル-共役ジエン共重合体(b1)/芳香族ビニル-共役ジエン共重合体(b2)=80/20~30/70である(1)~(4)のいずれかに記載の二次電池用負極。 (5) The content ratio of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) in terms of mass ratio is the aromatic vinyl-conjugated diene copolymer (b1). ) / Aromatic vinyl-conjugated diene copolymer (b2) = the negative electrode for a secondary battery according to any one of (1) to (4), wherein 80/20 to 30/70.
(6)前記芳香族ビニル-共役ジエン共重合体(b1)および前記芳香族ビニル-共役ジエン共重合体(b2)それぞれの、テトラヒドロフラン不溶分が70~98%である(1)~(5)のいずれかに記載の二次電池用負極。 (6) Each of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) has a tetrahydrofuran-insoluble content of 70 to 98% (1) to (5) The negative electrode for secondary batteries in any one of.
(7)正極、負極、電解液及びセパレーターを備える二次電池であって、
 前記負極が、(1)~(6)のいずれかに記載の二次電池用負極である二次電池。
(7) A secondary battery comprising a positive electrode, a negative electrode, an electrolyte and a separator,
A secondary battery, wherein the negative electrode is a negative electrode for a secondary battery according to any one of (1) to (6).
 本発明の二次電池用負極は、特定の粒子状バインダーおよび特定の水溶性ポリマーを含むため、負極活物質の分散性やリチウムイオン伝導性に優れる。その結果、優れたサイクル特性(特に高温サイクル特性)や出力特性(特に低温出力特性)を有する二次電池を得ることができる。
 また、本発明によれば、負極活物質として、リチウムイオンのドープ・脱ドープ時における体積の膨張・収縮が大きい合金系活物質を用いた場合であっても、極板膨らみや電極から負極活物質の脱離(粉落ち)の発生を抑制できる。その結果、二次電池のサイクル特性や出力特性を向上させることができる。
Since the negative electrode for secondary batteries of the present invention contains a specific particulate binder and a specific water-soluble polymer, the negative electrode active material is excellent in dispersibility and lithium ion conductivity. As a result, a secondary battery having excellent cycle characteristics (particularly high-temperature cycle characteristics) and output characteristics (particularly low-temperature output characteristics) can be obtained.
Further, according to the present invention, even when an alloy-based active material having a large volume expansion / contraction during lithium ion doping / dedoping is used as the negative electrode active material, the negative electrode active material can be expanded from the electrode plate swell or from the electrode. Occurrence of substance detachment (powder falling) can be suppressed. As a result, the cycle characteristics and output characteristics of the secondary battery can be improved.
〔二次電池用負極〕
 本発明の二次電池用負極(以下、単に「負極」と記載することがある。)は、集電体と、前記集電体上に積層される負極活物質層とからなる。負極活物質層は、以下の成分(A)~(D)を含み、必要に応じて添加される他の成分(E)を含有してもよい。本発明の二次電池用負極は、リチウムイオン二次電池やニッケル水素二次電池等に用いることができる。この中でも長期サイクル特性や出力特性の向上等が最も求められていることから、用途としてはリチウムイオン二次電池が好ましい。以下においては、リチウムイオン二次電池に使用する場合について各成分を詳述する。
[Anode for secondary battery]
The negative electrode for a secondary battery of the present invention (hereinafter sometimes simply referred to as “negative electrode”) includes a current collector and a negative electrode active material layer laminated on the current collector. The negative electrode active material layer contains the following components (A) to (D), and may contain other components (E) added as necessary. The negative electrode for secondary batteries of the present invention can be used for lithium ion secondary batteries, nickel metal hydride secondary batteries, and the like. Among these, a lithium ion secondary battery is preferable as a use because the long-term cycle characteristics and output characteristics are most demanded. Below, each component is explained in full detail about the case where it uses for a lithium ion secondary battery.
(A)負極活物質
 負極活物質は、負極内で電子(リチウムイオン)の受け渡しをする物質である。負極活物質としては、後述する炭素系活物質(a1)や合金系活物質(a2)を用いることができるが、負極活物質は、炭素系活物質と合金系活物質とを含むことが好ましい。負極活物質として、炭素系活物質と合金系活物質とを用いることで、従来の炭素系活物質のみを用いて得られる負極よりも容量の大きい電池を得ることができ、かつ負極の密着強度の低下、サイクル特性の低下といった問題も解決することができる。
(A) Negative electrode active material The negative electrode active material is a substance that delivers electrons (lithium ions) in the negative electrode. As the negative electrode active material, a carbon-based active material (a1) or an alloy-based active material (a2) described later can be used, but the negative-electrode active material preferably contains a carbon-based active material and an alloy-based active material. . By using a carbon-based active material and an alloy-based active material as the negative electrode active material, a battery having a larger capacity than a negative electrode obtained using only a conventional carbon-based active material can be obtained, and the adhesion strength of the negative electrode It is possible to solve problems such as lowering of cycle and cycle characteristics.
(a1)炭素系活物質
 本発明に用いる炭素系活物質とは、リチウムが挿入可能な炭素を主骨格とする活物質をいい、具体的には、炭素質材料と黒鉛質材料が挙げられる。炭素質材料とは一般的に炭素前駆体を2000℃以下(当該処理温度の下限は、特に限定されないが、例えば500℃以上とすることができる)で熱処理(炭素化)された黒鉛化の低い(結晶性の低い)炭素材料を示し、黒鉛質材料とは易黒鉛性炭素を2000℃以上(当該処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる)で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料を示す。
(A1) Carbon-based active material The carbon-based active material used in the present invention refers to an active material having carbon as a main skeleton into which lithium can be inserted, and specifically includes a carbonaceous material and a graphite material. The carbonaceous material is generally low in graphitization in which a carbon precursor is heat-treated (carbonized) at 2000 ° C. or less (the lower limit of the treatment temperature is not particularly limited, but can be, for example, 500 ° C. or more). A carbon material (low crystallinity) is shown, and a graphitic material is a heat treatment of graphitizable carbon at 2000 ° C. or higher (the upper limit of the processing temperature is not particularly limited, but can be, for example, 5000 ° C. or lower). The graphite material which has high crystallinity close to the graphite obtained by this is shown.
 炭素質材料としては、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素が挙げられる。
 易黒鉛性炭素としては石油や石炭から得られるタールピッチを原料とした炭素材料が挙げられ、例えば、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとはピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子である。メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。熱分解気相成長炭素繊維とは、(1)アクリル高分子繊維などを熱分解する方法、(2)ピッチを紡糸して熱分解する方法、(3)鉄などのナノ粒子を触媒を用いて炭化水素を気相熱分解する触媒気相成長(触媒CVD)法により得られた炭素繊維である。
 難黒鉛性炭素としては、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)などが挙げられる。
Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.
Examples of graphitizable carbon include carbon materials made from tar pitch obtained from petroleum and coal, such as coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, pyrolytic vapor-grown carbon fibers, etc. Is mentioned. MCMB is carbon fine particles obtained by separating and extracting mesophase spherules produced in the process of heating pitches at around 400 ° C. The mesophase pitch-based carbon fiber is a carbon fiber using as a raw material mesophase pitch obtained by growing and coalescing the mesophase microspheres. Pyrolytic vapor-grown carbon fibers are: (1) a method for pyrolyzing acrylic polymer fibers and the like, (2) a method for pyrolyzing by spinning a pitch, and (3) using nanoparticles such as iron as a catalyst It is a carbon fiber obtained by a catalytic vapor deposition (catalytic CVD) method in which hydrocarbon is vapor-phase pyrolyzed.
Examples of the non-graphitizable carbon include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, and furfuryl alcohol resin fired bodies (PFA).
 黒鉛質材料としては天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。 Graphite materials include natural graphite and artificial graphite. Examples of artificial graphite include artificial graphite heat-treated at 2800 ° C or higher, graphitized MCMB heat-treated at 2000 ° C or higher, graphitized mesophase pitch carbon fiber heat-treated at 2000 ° C or higher. It is done.
 炭素系活物質の中でも黒鉛質材料が好ましい。黒鉛質材料を用いることで、負極活物質層の密度を上げやすくなり、負極活物質層の密度が1.6g/cm以上(当該密度の上限は、特に限定されないが、2.2g/cm以下とすることができる。)である負極の作製が容易となる。密度が前記範囲である負極活物質層を有する負極であれば本発明の効果が顕著に現れる。 Of the carbon-based active materials, a graphite material is preferable. By using the graphite material, it becomes easy to increase the density of the negative electrode active material layer, and the density of the negative electrode active material layer is 1.6 g / cm 3 or more (the upper limit of the density is not particularly limited, but 2.2 g / cm 3) or less.) Can be easily produced. If the negative electrode has a negative electrode active material layer having a density in the above range, the effect of the present invention is remarkably exhibited.
 炭素系活物質の体積平均粒子径は、好ましくは0.1~100μm、より好ましくは0.5~50μm、特に好ましくは1~30μmである。炭素系活物質の体積平均粒子径がこの範囲内であれば、負極を製造するために用いるスラリー組成物の作製が容易となる。なお、本発明における体積平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。 The volume average particle diameter of the carbon-based active material is preferably 0.1 to 100 μm, more preferably 0.5 to 50 μm, and particularly preferably 1 to 30 μm. When the volume average particle diameter of the carbon-based active material is within this range, it becomes easy to prepare a slurry composition used for manufacturing the negative electrode. In addition, the volume average particle diameter in this invention can be calculated | required by measuring a particle size distribution by laser diffraction.
 炭素系活物質の比表面積は、好ましくは3.0~20.0m/g、より好ましくは3.5~15.0m/g、特に好ましくは4.0~10.0m/gである。炭素系活物質の比表面積が上記範囲にあることで、炭素系活物質表面の活性点が増えるため、リチウムイオン二次電池の出力特性に優れる。 The specific surface area of the carbon-based active material, preferably 3.0 ~ 20.0m 2 / g, more preferably 3.5 ~ 15.0m 2 / g, particularly preferably 4.0 ~ 10.0m 2 / g is there. When the specific surface area of the carbon-based active material is in the above range, the active points on the surface of the carbon-based active material are increased, so that the output characteristics of the lithium ion secondary battery are excellent.
(a2)合金系活物質
 本発明に用いる合金系活物質とは、リチウムの挿入可能な元素を構造に含み、リチウムが挿入された場合の重量あたりの理論電気容量が500mAh/g以上(当該理論電気容量の上限は、特に限定されないが、例えば5000mAh/g以下とすることができる。)である活物質をいい、具体的には、リチウム金属、リチウム合金を形成する単体金属およびその合金、及びそれらの酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が用いられる。
(A2) Alloy-based active material The alloy-based active material used in the present invention includes an element into which lithium can be inserted and has a theoretical electric capacity per unit weight of 500 mAh / g or more when lithium is inserted (the theory The upper limit of the electric capacity is not particularly limited, but can be, for example, 5000 mAh / g or less.) Specifically, lithium metal, a single metal that forms a lithium alloy, and an alloy thereof, and Those oxides, sulfides, nitrides, silicides, carbides, phosphides and the like are used.
 リチウム合金を形成する単体金属及び合金としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属や該金属を含有する化合物が挙げられる。それらの中でもケイ素(Si)、スズ(Sn)または鉛(Pb)の単体金属若しくはこれら原子を含む合金、または、それらの金属の化合物が用いられる。これらの中でも、低電位でリチウムの挿入脱離が可能なSiの単体金属が好ましい。
 本発明で用いる合金系活物質は、さらに、一つ以上の非金属元素を含有していてもよい。具体的には、例えばSiC、SiO(以下、「SiOC」と呼ぶ)(0<x≦3、0<y≦5)、Si、SiO、SiO(x=0.01以上2未満)、SnO(0<x≦2)、LiSiO、LiSnO等が挙げられ、中でも低電位でリチウムの挿入脱離が可能なSiOC、SiO、及びSiCが好ましく、SiOC、SiOがより好ましい。例えば、SiOCは、ケイ素を含む高分子材料を焼成して得ることができる。SiOCの中でも、容量とサイクル特性の兼ね合いから、0.8≦x≦3、2≦y≦4の範囲が好ましく用いられる。
Examples of simple metals and alloys that form lithium alloys include Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, and Zn. The compound to contain is mentioned. Among these, silicon (Si), tin (Sn) or lead (Pb) simple metals, alloys containing these atoms, or compounds of these metals are used. Among these, a simple substance of Si capable of inserting and extracting lithium at a low potential is preferable.
The alloy-based active material used in the present invention may further contain one or more nonmetallic elements. Specifically, for example, SiC, SiO x C y (hereinafter referred to as “SiOC”) (0 <x ≦ 3, 0 <y ≦ 5), Si 3 N 4 , Si 2 N 2 O, SiO x (x = 0.01 or more and less than 2), SnO x (0 <x ≦ 2), LiSiO, LiSnO, and the like. Among them, SiOC, SiO x , and SiC that can insert and desorb lithium at a low potential are preferable, and SiOC SiO x is more preferred. For example, SiOC can be obtained by firing a polymer material containing silicon. Among SiOC, the range of 0.8 ≦ x ≦ 3 and 2 ≦ y ≦ 4 is preferably used in view of the balance between capacity and cycle characteristics.
 それらの酸化物、硫化物、窒化物、珪化物、炭化物、燐化物としては、リチウムの挿入可能な元素の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が挙げられ、中でも酸化物が特に好ましい。具体的には酸化スズ、酸化マンガン、酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物、Si、Sn、PbおよびTi原子よりなる群から選ばれる金属元素を含むリチウム含有金属複合酸化物が用いられる。
 リチウム含有金属複合酸化物としては、更にLiTiで示されるリチウムチタン複合酸化物(0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、ZnおよびNb)が挙げられ、中でもLi4/3Ti5/3、LiTi、Li4/5Ti11/5が用いられる。
Examples of oxides, sulfides, nitrides, silicides, carbides, and phosphides include oxides, sulfides, nitrides, silicides, carbides, and phosphides of elements into which lithium can be inserted. Oxides are particularly preferred. Specifically, an oxide such as tin oxide, manganese oxide, titanium oxide, niobium oxide, vanadium oxide, or a lithium-containing metal composite oxide containing a metal element selected from the group consisting of Si, Sn, Pb, and Ti atoms is used. .
As the lithium-containing metal composite oxide, a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ≦ x ≦ 1.5, 1.5 ≦ y ≦ 2.3, 0 ≦ z ≦ 1.6, M includes Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb), among which Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 and Li 4/5 Ti 11/5 O 4 are used.
 これらの中でもケイ素を含む材料が好ましく、中でもSiOCなどのSiO、SiO、及びSiCがさらに好ましい。この化合物では高電位でSi(ケイ素)、低電位ではC(炭素)へのLiの挿入脱離が起こると推測され、他の合金系活物質よりも膨張・収縮が抑制されるため、本発明の効果がより得られ易い。 Among these, a material containing silicon is preferable, and SiO x C y such as SiOC, SiO x , and SiC are more preferable. In this compound, it is presumed that insertion / extraction of Li to / from Si (silicon) occurs at a high potential, and C (carbon) occurs at a low potential, and expansion / contraction is suppressed as compared with other alloy-based active materials. It is easier to obtain the effect.
 合金系活物質の体積平均粒子径は、好ましくは0.1~50μm、より好ましくは0.5~20μm、特に好ましくは1~10μmである。合金系活物質の体積平均粒子径がこの範囲内であれば、負極を製造するために用いるスラリー組成物の作製が容易となる。 The volume average particle diameter of the alloy-based active material is preferably 0.1 to 50 μm, more preferably 0.5 to 20 μm, and particularly preferably 1 to 10 μm. When the volume average particle diameter of the alloy-based active material is within this range, the slurry composition used for producing the negative electrode can be easily produced.
 合金系活物質の比表面積は、好ましくは3.0~20.0m/g、より好ましくは3.5~15.0m/g、特に好ましくは4.0~10.0m/gである。合金系活物質の比表面積が上記範囲にあることで、合金系活物質表面の活性点が増えるため、リチウムイオン二次電池の出力特性に優れる。 The specific surface area of alloy-formable active material is preferably 3.0 ~ 20.0m 2 / g, more preferably 3.5 ~ 15.0m 2 / g, particularly preferably 4.0 ~ 10.0m 2 / g is there. When the specific surface area of the alloy-based active material is in the above range, the active points on the surface of the alloy-based active material are increased, so that the output characteristics of the lithium ion secondary battery are excellent.
 合金系活物質と炭素系活物質の混合方法としては、特に限定されず、従来公知の乾式混合や湿式混合が挙げられる。 The method for mixing the alloy-based active material and the carbon-based active material is not particularly limited, and conventionally known dry mixing and wet mixing may be mentioned.
 本発明における負極活物質(A)においては、炭素系活物質(a1)100質量部に対して、合金系活物質(a2)を1~50質量部含むことが好ましい。合金系活物質と炭素系活物質とを上記範囲で混合することにより、従来の炭素系活物質のみを用いて得られる負極よりも容量の大きい電池を得ることができ、かつ負極の密着強度の低下やサイクル特性の低下を防ぐことができる。 In the negative electrode active material (A) in the present invention, the alloy-based active material (a2) is preferably contained in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the carbon-based active material (a1). By mixing the alloy-based active material and the carbon-based active material in the above range, a battery having a larger capacity than the negative electrode obtained using only the conventional carbon-based active material can be obtained, and the adhesion strength of the negative electrode can be increased. It is possible to prevent deterioration and cycle characteristics.
(B)粒子状バインダー
 粒子状バインダーは、後述する分散媒に分散する性質を有する。粒子状バインダーを用いることで、後述する集電体と負極活物質層との結着性を高め、負極強度を向上できると共に、得られる負極の容量の低下や充放電の繰り返しによる劣化を抑制できる。
 粒子状バインダーは、負極活物質層中で粒子形状を保持した状態で存在できればよい。本発明において、「粒子状態を保持した状態」とは、完全に粒子形状を保持した状態である必要はなく、その粒子形状をある程度保持した状態であればよい。
 粒子状バインダーとしては、例えば、ラテックスのごときバインダーの粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。
 本発明において、粒子状バインダーは、非水溶性である。即ち、水系溶媒中で溶解せずに粒子状で分散していることが好ましい。非水溶性であるとは、具体的には、25℃において、そのバインダー0.5gを100gの水に溶解した際に、不溶分が90質量%以上となることをいう。
 本発明における粒子状バインダー(B)は、ガラス転移温度が-30~20℃であり、不飽和カルボン酸単量体単位を含んでなる芳香族ビニル-共役ジエン共重合体(b1)(以下、単に「芳香族ビニル-共役ジエン共重合体(b1)」と記載することがある。)と、ガラス転移温度が30~80℃であり、不飽和カルボン酸単量体単位を含んでなる芳香族ビニル-共役ジエン共重合体(b2)(以下、単に「芳香族ビニル-共役ジエン共重合体(b2)」と記載することがある。)とを含む。
(B) Particulate binder The particulate binder has the property of being dispersed in a dispersion medium described below. By using the particulate binder, it is possible to improve the binding property between the current collector and the negative electrode active material layer, which will be described later, to improve the negative electrode strength, and to suppress the decrease in capacity of the obtained negative electrode and the deterioration due to repeated charge and discharge. .
The particulate binder only needs to be present in a state where the particle shape is maintained in the negative electrode active material layer. In the present invention, the “state in which the particle state is maintained” does not have to be a state in which the particle shape is completely maintained, and may be in a state in which the particle shape is maintained to some extent.
Examples of the particulate binder include those in which binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
In the present invention, the particulate binder is insoluble in water. That is, it is preferably dispersed in the form of particles without being dissolved in an aqueous solvent. Specifically, being water-insoluble means that when 0.5 g of the binder is dissolved in 100 g of water at 25 ° C., the insoluble content becomes 90% by mass or more.
The particulate binder (B) in the present invention has an aromatic vinyl-conjugated diene copolymer (b1) (hereinafter, referred to as “a”) having a glass transition temperature of −30 to 20 ° C. and comprising an unsaturated carboxylic acid monomer unit. Simply referred to as “aromatic vinyl-conjugated diene copolymer (b1)”), a glass transition temperature of 30 to 80 ° C., and an aromatic carboxylic acid monomer unit. Vinyl-conjugated diene copolymer (b2) (hereinafter sometimes simply referred to as “aromatic vinyl-conjugated diene copolymer (b2)”).
(b1)芳香族ビニル-共役ジエン共重合体
 本発明に用いる芳香族ビニル-共役ジエン共重合体(b1)は、芳香族ビニル単量体を重合して得られる構造単位(以下、「芳香族ビニル単量体単位」と記すことがある。)、共役ジエンを重合して得られる構造単位(以下、「共役ジエン単量体単位」と記すことがある。)、及び不飽和カルボン酸単量体単位を含む共重合体である。また、芳香族ビニル-共役ジエン共重合体(b1)は、必要に応じて、これらと共重合可能な他の単量体単位を含んでもよい。
 なお、芳香族ビニル-共役ジエン共重合体(b1)を構成する単量体単位の割合は、重合時の単量体の仕込み比に一致する。以降、特に断りの無い限り、重合体を構成する単量体単位の割合は、重合時の単量体の仕込み比に一致する。
(B1) Aromatic vinyl-conjugated diene copolymer The aromatic vinyl-conjugated diene copolymer (b1) used in the present invention is a structural unit obtained by polymerizing an aromatic vinyl monomer (hereinafter referred to as “aromatics”). Vinyl monomer units ”), structural units obtained by polymerizing conjugated dienes (hereinafter, sometimes referred to as“ conjugated diene monomer units ”), and unsaturated carboxylic acid monomer It is a copolymer containing a body unit. In addition, the aromatic vinyl-conjugated diene copolymer (b1) may contain other monomer units copolymerizable therewith as necessary.
The ratio of the monomer units constituting the aromatic vinyl-conjugated diene copolymer (b1) matches the charging ratio of the monomers at the time of polymerization. Thereafter, unless otherwise specified, the ratio of the monomer units constituting the polymer corresponds to the charging ratio of the monomers at the time of polymerization.
<芳香族ビニル単量体単位>
 芳香族ビニル単量体単位は、芳香族ビニル単量体を重合して得られる構造単位である。
 芳香族ビニル単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエン、及びジビニルベンゼンが挙げられる。中でも、スチレンが好ましい。これら芳香族ビニル単量体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。芳香族ビニル-共役ジエン共重合体(b1)における、芳香族ビニル単量体単位の含有割合は、好ましくは40質量%以上、より好ましくは50~65質量%である。
<Aromatic vinyl monomer unit>
The aromatic vinyl monomer unit is a structural unit obtained by polymerizing an aromatic vinyl monomer.
Examples of aromatic vinyl monomers include styrene, α-methyl styrene, vinyl toluene, and divinyl benzene. Of these, styrene is preferred. These aromatic vinyl monomers can be used alone or in combination of two or more. The content of aromatic vinyl monomer units in the aromatic vinyl-conjugated diene copolymer (b1) is preferably 40% by mass or more, more preferably 50 to 65% by mass.
<共役ジエン単量体単位>
 共役ジエン単量体単位は、共役ジエン単量体を重合して得られる構造単位である。
 共役ジエン単量体の例としては、1,3-ブタジエン、イソプレン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエンなどが挙げられる。これら共役ジエン単量体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 芳香族ビニル-共役ジエン共重合体(b1)における、共役ジエン単量体単位の含有割合は、好ましくは25質量%以上、より好ましくは31~46質量%である。
 芳香族ビニル-共役ジエン共重合体(b1)における、芳香族ビニル単量体単位と共役ジエン単量体単位との合計の割合は、好ましくは65質量%以上、より好ましくは80~96質量%である。
 以下において、不飽和カルボン酸単量体単位及び他の単量体単位について詳述する。
<Conjugated diene monomer unit>
The conjugated diene monomer unit is a structural unit obtained by polymerizing a conjugated diene monomer.
Examples of conjugated diene monomers include 1,3-butadiene, isoprene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene and the like Is mentioned. These conjugated diene monomers can be used alone or in combination of two or more.
The content of the conjugated diene monomer unit in the aromatic vinyl-conjugated diene copolymer (b1) is preferably 25% by mass or more, more preferably 31 to 46% by mass.
The total proportion of the aromatic vinyl monomer unit and the conjugated diene monomer unit in the aromatic vinyl-conjugated diene copolymer (b1) is preferably 65% by mass or more, more preferably 80 to 96% by mass. It is.
Hereinafter, the unsaturated carboxylic acid monomer unit and other monomer units will be described in detail.
<不飽和カルボン酸単量体単位>
 不飽和カルボン酸単量体単位は、不飽和カルボン酸単量体を重合して得られる構造単位である。不飽和カルボン酸単量体の例としては、不飽和モノカルボン酸及びその誘導体、不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体が挙げられる。不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、及びクロトン酸が挙げられる。不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、及びβ-ジアミノアクリル酸が挙げられる。不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、及びイタコン酸が挙げられる。不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、及びジメチル無水マレイン酸が挙げられる。不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル;並びにマレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルが挙げられる。
 これらの中でも、アクリル酸、メタクリル酸等の不飽和モノカルボン酸やマレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸が好ましく、アクリル酸、メタクリル酸、イタコン酸がより好ましく、イタコン酸が特に好ましい。得られる芳香族ビニル-共役ジエン共重合体(b1)の水等の分散媒に対する分散性をより高めることができると共に、集電体と負極活物質層との結着性が向上し、優れたサイクル特性を有する二次電池を得ることができるからである。上記の不飽和カルボン酸単量体を用いることで、芳香族ビニル-共役ジエン共重合体(b1)に酸性官能基を導入することができる。
<Unsaturated carboxylic acid monomer unit>
An unsaturated carboxylic acid monomer unit is a structural unit obtained by polymerizing an unsaturated carboxylic acid monomer. Examples of the unsaturated carboxylic acid monomer include unsaturated monocarboxylic acid and its derivative, unsaturated dicarboxylic acid and its acid anhydride, and derivatives thereof. Examples of unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid. Examples of unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic acid, and β -Diaminoacrylic acid. Examples of unsaturated dicarboxylic acids include maleic acid, fumaric acid, and itaconic acid. Examples of unsaturated dicarboxylic acid anhydrides include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride. Examples of derivatives of unsaturated dicarboxylic acids include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate; and diphenyl maleate, nonyl maleate, maleate Examples thereof include maleate esters such as decyl acid, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate.
Among these, unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid are preferable, acrylic acid, methacrylic acid, and itaconic acid are more preferable, and itaconic acid is particularly preferable. preferable. The dispersibility of the resulting aromatic vinyl-conjugated diene copolymer (b1) in a dispersion medium such as water can be further improved, and the binding property between the current collector and the negative electrode active material layer is improved. This is because a secondary battery having cycle characteristics can be obtained. By using the unsaturated carboxylic acid monomer, an acidic functional group can be introduced into the aromatic vinyl-conjugated diene copolymer (b1).
 芳香族ビニル-共役ジエン共重合体(b1)における、不飽和カルボン酸単量体単位の含有割合は、好ましくは0.1~6質量%、より好ましくは0.5~5質量%である。不飽和カルボン酸単量体単位の含有割合を上記範囲とすることで、集電体と負極活物質層との結着性を高め、負極強度を向上できる。その結果、優れたサイクル特性を有する二次電池用負極を得ることができる。 The content of the unsaturated carboxylic acid monomer unit in the aromatic vinyl-conjugated diene copolymer (b1) is preferably 0.1 to 6% by mass, more preferably 0.5 to 5% by mass. By making the content rate of an unsaturated carboxylic acid monomer unit into the said range, the binding property of a collector and a negative electrode active material layer can be improved, and negative electrode intensity | strength can be improved. As a result, a negative electrode for a secondary battery having excellent cycle characteristics can be obtained.
<他の単量体単位>
 他の単量体単位とは、上述の単量体と共重合可能な他の単量体を重合して得られる構造単位である。
 他の単量体単位を構成する他の単量体としては、エチレン、プロピレン、イソブチレンなどの炭化水素類;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;塩化ビニル、塩化ビニリデン等のハロゲン原子含有モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。
 芳香族ビニル-共役ジエン共重合体(b1)における、他の単量体単位の割合は、好ましくは1~35質量%、より好ましくは4~20質量%である。
<Other monomer units>
The other monomer unit is a structural unit obtained by polymerizing another monomer copolymerizable with the above-mentioned monomer.
Other monomers constituting other monomer units include hydrocarbons such as ethylene, propylene and isobutylene; α, β-unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; vinyl chloride and vinylidene chloride Halogen atom-containing monomers; vinyl esters such as vinyl acetate, vinyl propionate and vinyl butyrate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone and hexyl vinyl ketone And vinyl ketones such as isopropenyl vinyl ketone; heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole.
The ratio of the other monomer units in the aromatic vinyl-conjugated diene copolymer (b1) is preferably 1 to 35% by mass, more preferably 4 to 20% by mass.
 芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度(Tg)は、-30~20℃、好ましくは-20~20℃、さらに好ましくは-10~15℃である。芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度が低すぎると、負極活物質の膨張収縮を抑制することが困難になり、二次電池のサイクル特性が低下する。また、芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度が高すぎると、集電体との結着性が不十分となり、二次電池のサイクル特性が低下する。
 なお、芳香族ビニル-共役ジエン共重合体(b1)を構成する芳香族ビニル単量体単位を増やすと、ガラス転移温度が高くなる傾向があり、共役ジエン単量体単位を増やすとガラス転移温度が低くなる傾向がある。前記範囲のガラス転移温度となるように、重合体中の不飽和カルボン酸単量体単位、他の単量体単位の割合など踏まえ、各単量体単位の割合を調整する。
The glass transition temperature (Tg) of the aromatic vinyl-conjugated diene copolymer (b1) is −30 to 20 ° C., preferably −20 to 20 ° C., more preferably −10 to 15 ° C. If the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) is too low, it will be difficult to suppress the expansion and contraction of the negative electrode active material, and the cycle characteristics of the secondary battery will deteriorate. If the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) is too high, the binding property with the current collector becomes insufficient, and the cycle characteristics of the secondary battery are deteriorated.
When the aromatic vinyl monomer unit constituting the aromatic vinyl-conjugated diene copolymer (b1) is increased, the glass transition temperature tends to increase, and when the conjugated diene monomer unit is increased, the glass transition temperature is increased. Tend to be low. The ratio of each monomer unit is adjusted based on the ratio of unsaturated carboxylic acid monomer units and other monomer units in the polymer so that the glass transition temperature is in the above range.
 芳香族ビニル-共役ジエン共重合体(b1)の数平均粒子径は、格別な限定はないが、通常は80~250nm、好ましくは100~200nm、より好ましくは120~180nmである。芳香族ビニル-共役ジエン共重合体(b1)の数平均粒子径がこの範囲であるときは、少量の使用でも優れた結着力を負極活物質層に与えることができる。本発明における数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ重合体粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は球形、異形、どちらでもかまわない。これらの芳香族ビニル-共役ジエン共重合体(b1)は単独でまたは二種類以上を組み合わせて用いることができる。 The number average particle diameter of the aromatic vinyl-conjugated diene copolymer (b1) is not particularly limited, but is usually 80 to 250 nm, preferably 100 to 200 nm, more preferably 120 to 180 nm. When the number average particle diameter of the aromatic vinyl-conjugated diene copolymer (b1) is within this range, an excellent binding force can be imparted to the negative electrode active material layer even with a small amount of use. The number average particle diameter in the present invention is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 polymer particles randomly selected in a transmission electron micrograph. The shape of the particles can be either spherical or irregular. These aromatic vinyl-conjugated diene copolymers (b1) can be used alone or in combination of two or more.
(b2)芳香族ビニル-共役ジエン共重合体
 本発明に用いる芳香族ビニル-共役ジエン共重合体(b2)は、芳香族ビニル-共役ジエン共重合体(b1)と同様に、芳香族ビニル単量体単位、共役ジエン単量体単位、及び不飽和カルボン酸単量体単位を含む共重合体である。また、芳香族ビニル-共役ジエン共重合体(b2)は、必要に応じて、これらと共重合可能な他の単量体単位を含んでもよい。芳香族ビニル単量体、共役ジエン単量体、不飽和カルボン酸単量体及びこれらと共重合可能な他の単量体は、芳香族ビニル-共役ジエン共重合体(b1)において例示した通りである。
(B2) Aromatic vinyl-conjugated diene copolymer The aromatic vinyl-conjugated diene copolymer (b2) used in the present invention is similar to the aromatic vinyl-conjugated diene copolymer (b1). A copolymer comprising a monomer unit, a conjugated diene monomer unit, and an unsaturated carboxylic acid monomer unit. Further, the aromatic vinyl-conjugated diene copolymer (b2) may contain other monomer units copolymerizable therewith as necessary. The aromatic vinyl monomer, conjugated diene monomer, unsaturated carboxylic acid monomer and other monomers copolymerizable therewith are as exemplified in the aromatic vinyl-conjugated diene copolymer (b1). It is.
 芳香族ビニル-共役ジエン共重合体(b2)における、芳香族ビニル単量体単位の割合は、好ましくは55質量%以上、より好ましくは68~80質量%である。
 芳香族ビニル-共役ジエン共重合体(b2)における、共役ジエン単量体単位の割合は、好ましくは10質量%以上、より好ましくは16~28質量%である。
 芳香族ビニル-共役ジエン共重合体(b2)における、芳香族ビニル単量体単位と共役ジエン単量体単位との合計の割合は、好ましくは65質量%以上、より好ましくは84~98質量%である。
 芳香族ビニル-共役ジエン共重合体(b2)における、不飽和カルボン酸単量体単位の割合は、好ましくは0.1~6質量%、より好ましくは0.5~5質量%である。不飽和カルボン酸単量体の含有割合を上記範囲とすることで、集電体と負極活物質層との結着性を高め、負極強度を向上できる。その結果、優れたサイクル特性を有する二次電池用負極を得ることができる。
 芳香族ビニル-共役ジエン共重合体(b2)における、他の単量体単位の割合は、好ましくは1~35質量%、より好ましくは2~16質量%である。
The ratio of the aromatic vinyl monomer unit in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 55% by mass or more, more preferably 68-80% by mass.
The ratio of the conjugated diene monomer unit in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 10% by mass or more, more preferably 16 to 28% by mass.
The total proportion of the aromatic vinyl monomer unit and the conjugated diene monomer unit in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 65% by mass or more, more preferably 84 to 98% by mass. It is.
The ratio of the unsaturated carboxylic acid monomer unit in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 0.1 to 6% by mass, more preferably 0.5 to 5% by mass. By making the content rate of an unsaturated carboxylic acid monomer into the said range, the binding property of a collector and a negative electrode active material layer can be improved, and negative electrode intensity | strength can be improved. As a result, a negative electrode for a secondary battery having excellent cycle characteristics can be obtained.
The ratio of the other monomer units in the aromatic vinyl-conjugated diene copolymer (b2) is preferably 1 to 35% by mass, more preferably 2 to 16% by mass.
 芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度(Tg)は、30~80℃、好ましくは30~70℃、さらに好ましくは35~60℃である。芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度が低すぎると、負極活物質の膨張収縮を抑制することが困難になり、二次電池のサイクル特性が低下する。また、芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度が高すぎると、芳香族ビニル-共役ジエン共重合体(b2)の柔軟性が低下し、負極活物質の膨張収縮を抑制することが困難になる結果、負極が割れてしまう。
 なお、芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度を前記範囲にするには、芳香族ビニル-共役ジエン共重合体(b1)の場合と同様に行うことができる。
The glass transition temperature (Tg) of the aromatic vinyl-conjugated diene copolymer (b2) is 30 to 80 ° C., preferably 30 to 70 ° C., more preferably 35 to 60 ° C. If the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) is too low, it becomes difficult to suppress the expansion and contraction of the negative electrode active material, and the cycle characteristics of the secondary battery deteriorate. In addition, if the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) is too high, the flexibility of the aromatic vinyl-conjugated diene copolymer (b2) is reduced and the expansion and contraction of the negative electrode active material is suppressed. As a result, the negative electrode is cracked.
The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) can be adjusted to the above range in the same manner as in the case of the aromatic vinyl-conjugated diene copolymer (b1).
 芳香族ビニル-共役ジエン共重合体(b2)の数平均粒子径は、格別な限定はないが、通常は80~250nm、好ましくは100~200nm、より好ましくは120~180nmである。芳香族ビニル-共役ジエン共重合体(b2)の数平均粒子径がこの範囲であるときは、少量の使用でも優れた結着力を負極活物質層に与えることができる。これらの芳香族ビニル-共役ジエン共重合体(b2)は単独でまたは二種類以上を組み合わせて用いることができる。 The number average particle size of the aromatic vinyl-conjugated diene copolymer (b2) is not particularly limited, but is usually 80 to 250 nm, preferably 100 to 200 nm, more preferably 120 to 180 nm. When the number average particle diameter of the aromatic vinyl-conjugated diene copolymer (b2) is within this range, an excellent binding force can be imparted to the negative electrode active material layer even with a small amount of use. These aromatic vinyl-conjugated diene copolymers (b2) can be used alone or in combination of two or more.
 本発明に係る二次電池用負極における芳香族ビニル-共役ジエン共重合体(b1)と芳香族ビニル-共役ジエン共重合体(b2)の含有割合(質量比)は、芳香族ビニル-共役ジエン共重合体(b1)/芳香族ビニル-共役ジエン共重合体(b2)=80/20~30/70であることが好ましく、70/30~40/60であることがより好ましい。芳香族ビニル-共役ジエン共重合体(b1)と芳香族ビニル-共役ジエン共重合体(b2)の含有割合を上記範囲とすることで、負極活物質の膨張収縮を抑制し、集電体と負極活物質層との結着性を高め、負極強度を向上できる。 The content ratio (mass ratio) of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) in the negative electrode for secondary battery according to the present invention is the aromatic vinyl-conjugated diene. Copolymer (b1) / aromatic vinyl-conjugated diene copolymer (b2) = 80/20 to 30/70 is preferable, and 70/30 to 40/60 is more preferable. By setting the content ratio of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) in the above range, the expansion and shrinkage of the negative electrode active material is suppressed, The binding property with the negative electrode active material layer can be improved, and the negative electrode strength can be improved.
 芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度と芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度との差は、好ましくは10~90℃、より好ましくは20~70℃である。ガラス転移温度の差が大きすぎると、電極強度が弱くなりサイクル特性が低下することがある。また、ガラス転移温度の差が小さすぎると、極板が膨れやすくなることがある。 The difference between the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) and the glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) is preferably 10 to 90 ° C., more preferably 20 to 70 ° C. If the difference in glass transition temperature is too large, the electrode strength is weakened and the cycle characteristics may be deteriorated. Further, if the difference in glass transition temperature is too small, the electrode plate may easily swell.
 また、芳香族ビニル-共役ジエン共重合体(b1)および芳香族ビニル-共役ジエン共重合体(b2)、それぞれの、テトラヒドロフラン不溶分は、好ましくは70~98%、より好ましくは90~93%である。芳香族ビニル-共役ジエン共重合体(b1)および芳香族ビニル-共役ジエン共重合体(b2)のテトラヒドロフラン不溶分を上記範囲とすることで、負極活物質同士の拘束力が高まり、二次電池のサイクル特性が向上する。ここで、テトラヒドロフラン不溶分とは、芳香族ビニル-共役ジエン共重合体(b1)、芳香族ビニル-共役ジエン共重合体(b2)、各々のうち、テトラヒドロフランに溶解しない成分の質量比を表した値である。テトラヒドロフラン不溶分は、後述する実施例に記載の方法により測定できる。 The tetrahydrofuran-insoluble content of each of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) is preferably 70 to 98%, more preferably 90 to 93%. It is. By making the tetrahydrofuran-insoluble content of the aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) in the above range, the binding force between the negative electrode active materials is increased, and the secondary battery Cycle characteristics are improved. Here, the tetrahydrofuran-insoluble component represents the mass ratio of the components insoluble in tetrahydrofuran among the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2). Value. Tetrahydrofuran insolubles can be measured by the method described in the examples described later.
 粒子状バインダー(B)の配合量は、負極活物質の総量100質量部に対して、好ましくは0.7~2質量部である。粒子状バインダー(B)の配合量を上記範囲とすることで、負極活物質の膨張・収縮を抑制し、電極の内部抵抗を低減できるため、優れたサイクル特性および出力特性を有する二次電池を得ることができる。 The compounding amount of the particulate binder (B) is preferably 0.7 to 2 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. By adjusting the blending amount of the particulate binder (B) within the above range, it is possible to suppress the expansion / contraction of the negative electrode active material and reduce the internal resistance of the electrode. Therefore, a secondary battery having excellent cycle characteristics and output characteristics can be obtained. Obtainable.
[粒子状バインダー(B)の製造]
 粒子状バインダー(B)の製法は特に限定はされないが、上述したように、各共重合体を構成する単量体を含む単量体混合物を、それぞれ乳化重合して、芳香族ビニル-共役ジエン共重合体(b1)および(b2)を得、これらを混合して得ることができる。乳化重合の方法としては、特に限定されず、従来公知の乳化重合法を採用すればよい。混合方法は特に限定されず、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。
[Production of particulate binder (B)]
The method for producing the particulate binder (B) is not particularly limited. As described above, the monomer mixture containing the monomers constituting each copolymer is emulsion-polymerized to obtain an aromatic vinyl-conjugated diene. Copolymers (b1) and (b2) can be obtained and mixed. The method for emulsion polymerization is not particularly limited, and a conventionally known emulsion polymerization method may be employed. The mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. In addition, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
 乳化重合に使用する重合開始剤としては、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物等が挙げられる。 Examples of the polymerization initiator used for emulsion polymerization include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide Organic peroxides such as oxide and t-butylperoxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate, etc. Et That.
 これらのなかでも、無機過酸化物が好ましく使用できる。これらの重合開始剤は、それぞれ単独でまたは2種類以上を組み合わせて使用することができる。また、過酸化物開始剤は、重亜硫酸ナトリウム等の還元剤と組み合わせて、レドックス系重合開始剤として使用することもできる。 Of these, inorganic peroxides can be preferably used. These polymerization initiators can be used alone or in combination of two or more. The peroxide initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite.
 重合開始剤の使用量は、重合に使用する単量体混合物の全量100質量部に対して、好ましくは0.05~5質量部、より好ましくは0.1~2質量部である。 The amount of the polymerization initiator used is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the total amount of the monomer mixture used for the polymerization.
 得られる共重合体のテトラヒドロフラン不溶分量を調節するために、乳化重合時に連鎖移動剤を使用することが好ましい。用いる連鎖移動剤量を増やすことで、前記テトラヒドロフラン不溶分量が減り、用いる連鎖移動剤量を減らすことで、前記テトラヒドロフラン不溶分量が増える傾向があり、連鎖移動剤量を調整することにより、前記テトラヒドロフラン不溶分量の範囲に制御することができる。連鎖移動剤としては、たとえば、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物;ターピノレンや、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物;アリルアルコール等のアリル化合物;ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物;チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート、ジフェニルエチレン、α-メチルスチレンダイマーなどが挙げられる。 It is preferable to use a chain transfer agent during emulsion polymerization in order to adjust the amount of insoluble tetrahydrofuran in the resulting copolymer. By increasing the amount of the chain transfer agent used, the amount of insoluble tetrahydrofuran is decreased, and by decreasing the amount of the chain transfer agent used, the amount of the tetrahydrofuran insoluble component tends to increase. The amount can be controlled within a range. Examples of the chain transfer agent include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan; dimethylxanthogen disulfide, diisopropylxanthogendi Xanthogen compounds such as sulfide; thiuram compounds such as terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide; phenols such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol Compounds; allyl compounds such as allyl alcohol; halogenated hydrocarbon compounds such as dichloromethane, dibromomethane, carbon tetrabromide; thioglycolic acid, Oringo acid, 2-ethylhexyl thioglycolate, diphenylethylene, etc. α- methylstyrene dimer.
 これらのなかでも、アルキルメルカプタンが好ましく、t-ドデシルメルカプタンがより好ましく使用できる。これらの連鎖移動剤は、単独または2種以上組み合わせて使用することができる。 Of these, alkyl mercaptans are preferable, and t-dodecyl mercaptan can be more preferably used. These chain transfer agents can be used alone or in combination of two or more.
 連鎖移動剤の使用量は、単量体混合物100質量部に対して、好ましくは0.05~2質量部、より好ましくは0.1~1質量部である。 The amount of the chain transfer agent used is preferably 0.05 to 2 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the monomer mixture.
 乳化重合時に、界面活性剤を使用してもよい。界面活性剤は、後述する水溶性ポリマー(D)に好ましく含まれる反応性界面活性剤とは異なり、非反応性であり、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤のいずれであってもよい。アニオン性界面活性剤の具体例としては、ナトリウムラウリルサルフェート、アンモニウムラウリルサルフェート、ナトリウムドデシルサルフェート、アンモニウムドデシルサルフェート、ナトリウムオクチルサルフェート、ナトリウムデシルサルフェート、ナトリウムテトラデシルサルフェート、ナトリウムヘキサデシルサルフェート、ナトリウムオクタデシルサルフェートなどの高級アルコールの硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム、ラウリルベンゼンスルホン酸ナトリウム、ヘキサデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩;ラウリルスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム、テトラデシルスルホン酸ナトリウムなどの脂肪族スルホン酸塩;などが挙げられる。 A surfactant may be used during emulsion polymerization. Unlike the reactive surfactant preferably contained in the water-soluble polymer (D) described later, the surfactant is non-reactive, and is an anionic surfactant, a nonionic surfactant, a cationic surfactant, Any of amphoteric surfactants may be used. Specific examples of the anionic surfactant include sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl sulfate, ammonium dodecyl sulfate, sodium octyl sulfate, sodium decyl sulfate, sodium tetradecyl sulfate, sodium hexadecyl sulfate, sodium octadecyl sulfate and the like. Sulfuric acid ester salts of higher alcohols; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium lauryl benzene sulfonate, sodium hexadecyl benzene sulfonate; fats such as sodium lauryl sulfonate, sodium dodecyl sulfonate, sodium tetradecyl sulfonate Group sulfonates; and the like.
 後述する反応性界面活性剤も同様の乳化作用を有することから、反応性界面活性剤のみを使用してもよく、反応性界面活性剤と非反応性の界面活性剤を併用してもよい。さらに、反応性界面活性剤を使用しない場合には、上記の非反応性の界面活性剤を使用することで乳化重合が安定する。界面活性剤の使用量(反応性界面活性剤を含む)は、単量体混合物100質量部に対して、好ましくは0.5~10質量部、より好ましくは1~5質量部である。 Since the reactive surfactant described later has the same emulsifying action, only the reactive surfactant may be used, or the reactive surfactant and the non-reactive surfactant may be used in combination. Furthermore, when a reactive surfactant is not used, emulsion polymerization is stabilized by using the non-reactive surfactant. The amount of the surfactant used (including the reactive surfactant) is preferably 0.5 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the monomer mixture.
 さらに乳化重合の際に、水酸化ナトリウム、アンモニアなどのpH調整剤;分散剤、キレート剤、酸素捕捉剤、ビルダー、粒子径調節のためのシードラテックスなどの各種添加剤を適宜使用することができる。シードラテックスとは、乳化重合の際に反応の核となる微小粒子の分散液をいう。微小粒子は粒径が100nm以下であることが多い。微小粒子は特に限定はされず、ジエン系重合体などの汎用の重合体が用いられる。シード重合法によれば、比較的粒径の揃った共重合体粒子が得られる。 Further, in the emulsion polymerization, various additives such as a pH adjusting agent such as sodium hydroxide and ammonia; a dispersing agent, a chelating agent, an oxygen scavenger, a builder, and a seed latex for adjusting the particle size can be appropriately used. . Seed latex refers to a dispersion of fine particles that becomes the nucleus of the reaction during emulsion polymerization. The fine particles often have a particle size of 100 nm or less. The fine particles are not particularly limited, and general-purpose polymers such as diene polymers are used. According to the seed polymerization method, copolymer particles having a relatively uniform particle diameter can be obtained.
 重合反応を行う際の重合温度は、特に限定されないが、通常、0~100℃、好ましくは40~80℃とする。このような温度範囲で乳化重合し、所定の重合転化率で、重合停止剤を添加したり、重合系を冷却したりして、重合反応を停止する。重合反応を停止する重合転化率は、好ましくは93質量%以上、より好ましくは95質量%以上である。 The polymerization temperature for carrying out the polymerization reaction is not particularly limited, but is usually 0 to 100 ° C., preferably 40 to 80 ° C. Emulsion polymerization is performed in such a temperature range, and the polymerization reaction is stopped at a predetermined polymerization conversion rate by adding a polymerization terminator or cooling the polymerization system. The polymerization conversion rate for stopping the polymerization reaction is preferably 93% by mass or more, more preferably 95% by mass or more.
 重合反応を停止した後、所望により、未反応単量体を除去し、pHや固形分濃度を調整して、粒子状共重合体が分散媒に分散された形態(ラテックス)で芳香族ビニル-共役ジエン共重合体(b1)および(b2)が得られる。その後、必要に応じ、分散媒を置換してもよく、また分散媒を蒸発し、粒子状共重合体を粉末形状で得てもよい。 After stopping the polymerization reaction, if necessary, the unreacted monomer is removed, the pH and the solid content concentration are adjusted, and the aromatic vinyl in a form (latex) in which the particulate copolymer is dispersed in the dispersion medium Conjugated diene copolymers (b1) and (b2) are obtained. Thereafter, if necessary, the dispersion medium may be replaced, or the dispersion medium may be evaporated to obtain a particulate copolymer in powder form.
 得られる粒子状共重合体のラテックスには、公知の分散剤、増粘剤、老化防止剤、消泡剤、防腐剤、抗菌剤、ブリスター防止剤、pH調整剤などを必要に応じて添加することもできる。 A known dispersant, thickener, anti-aging agent, antifoaming agent, antiseptic, antibacterial agent, anti-blistering agent, pH adjuster, etc. are added to the resulting latex of the particulate copolymer as necessary. You can also.
(C)ヒドロキシル基含有水溶性ポリマー
 ヒドロキシル基含有水溶性ポリマーは、ヒドロキシル基を含有し、水溶性を有するポリマーである。ヒドロキシル基含有水溶性ポリマーは、後述する水溶性ポリマー(D)とは異なるポリマー、すなわち、ヒドロキシル基を含有し、フッ素含有(メタ)アクリル酸エステル単量体単位を含まない水溶性ポリマーである。
 ヒドロキシル基含有水溶性ポリマー(C)(以下、単に「水溶性ポリマー(C)」と記載することがある。)は、二次電池用負極を製造するためのスラリー組成物に溶解させて用いられ、負極活物質(A)等をスラリー組成物中で均一に分散させる作用を有する。そのため、水溶性ポリマー(C)を用いることで、均一な二次電池用負極を得ることができる。
(C) Hydroxyl group-containing water-soluble polymer A hydroxyl group-containing water-soluble polymer is a polymer containing a hydroxyl group and having water solubility. The hydroxyl group-containing water-soluble polymer is a polymer different from the water-soluble polymer (D) described later, that is, a water-soluble polymer containing a hydroxyl group and not containing a fluorine-containing (meth) acrylate monomer unit.
The hydroxyl group-containing water-soluble polymer (C) (hereinafter sometimes simply referred to as “water-soluble polymer (C)”) is used by being dissolved in a slurry composition for producing a negative electrode for a secondary battery. And negative electrode active material (A) and the like have a function of uniformly dispersing in the slurry composition. Therefore, a uniform secondary battery negative electrode can be obtained by using the water-soluble polymer (C).
 ヒドロキシル基含有水溶性ポリマー(C)としては、例えば、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースが特に好ましい。 Examples of the hydroxyl group-containing water-soluble polymer (C) include cellulose polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic Acids and their ammonium salts and alkali metal salts; (modified) polyvinyl alcohol, acrylic acid or copolymers of acrylate and vinyl alcohol, maleic anhydride or maleic anhydride or copolymers of fumaric acid and vinyl alcohol, etc. Alcohols: polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified polyacrylic acid, oxidized starch, phosphate starch, casein, various modified products Pung, chitin, such as chitosan derivatives, and the like. Among these, a cellulose polymer is preferable and carboxymethyl cellulose is particularly preferable.
 水溶性ポリマー(C)を用いる場合において、その1%水溶液粘度は、好ましくは100~3000mPa・s、より好ましくは500~2500mPa・s、特に好ましくは1000~2000mPa・sである。水溶性ポリマー(C)の1%水溶液粘度が上記範囲であると、負極を製造するために用いるスラリー組成物の粘度を塗布に適した粘度にすることができ、スラリー組成物の乾燥時間を短縮できるため、二次電池の生産性に優れる。また、結着性の良好な負極を得ることができる。前記水溶液粘度は、水溶性ポリマー(C)の平均重合度で調整することができる。平均重合度が高いと水溶液粘度は高くなる傾向にある。水溶性ポリマー(C)の平均重合度は、好ましくは100~1500、より好ましくは300~1200、特に好ましくは500~1000である。水溶性ポリマー(C)の平均重合度が上記範囲であれば、1%水溶液粘度を上記範囲にすることができ、それにより上記効果が奏される。
 前記1%水溶液粘度は、JIS Z8803;1991に準じて単一円筒形回転粘度計(25℃、回転数=60rpm、スピンドル形状:1)により測定される値である。
When the water-soluble polymer (C) is used, the 1% aqueous solution viscosity is preferably 100 to 3000 mPa · s, more preferably 500 to 2500 mPa · s, and particularly preferably 1000 to 2000 mPa · s. When the viscosity of the 1% aqueous solution of the water-soluble polymer (C) is within the above range, the viscosity of the slurry composition used for producing the negative electrode can be made suitable for coating, and the drying time of the slurry composition is shortened. Therefore, the productivity of the secondary battery is excellent. Moreover, a negative electrode with favorable binding properties can be obtained. The aqueous solution viscosity can be adjusted by the average degree of polymerization of the water-soluble polymer (C). When the average degree of polymerization is high, the aqueous solution viscosity tends to increase. The average degree of polymerization of the water-soluble polymer (C) is preferably 100 to 1500, more preferably 300 to 1200, and particularly preferably 500 to 1000. If the average degree of polymerization of the water-soluble polymer (C) is in the above range, the 1% aqueous solution viscosity can be set in the above range, and thereby the above-described effects are exhibited.
The 1% aqueous solution viscosity is a value measured by a single cylindrical rotational viscometer (25 ° C., rotational speed = 60 rpm, spindle shape: 1) according to JIS Z8803;
 本発明において、水溶性ポリマー(C)として好適なセルロース系ポリマーのエーテル化度は、好ましくは0.6~1.5、より好ましくは0.7~1.2、特に好ましくは0.8~1.0である。セルロース系ポリマーのエーテル化度が上記範囲にあることで、負極活物質との親和性を下げ、水溶性ポリマー(C)が負極活物質表面に偏在化するのを防ぎ、また負極における負極活物質層と集電体との間の結着性を保持することができ、負極の結着性が顕著に向上する。ここでエーテル化度とは、セルロース中の無水グルコース単位1個当たりの水酸基(3個)への、カルボキシメチル基等の置換度をいう。理論的に0~3までの値を取りうる。エーテル化度が大きくなればなるほどセルロース中の水酸基の割合が減少し置換体の割合が増加し、エーテル化度が小さいほどセルロース中の水酸基が増加し置換体が減少するということを示している。エーテル化度(置換度)は、以下の方法および式により求められる。 In the present invention, the degree of etherification of the cellulosic polymer suitable as the water-soluble polymer (C) is preferably 0.6 to 1.5, more preferably 0.7 to 1.2, and particularly preferably 0.8 to 1.0. The degree of etherification of the cellulosic polymer is in the above range, thereby reducing the affinity with the negative electrode active material, preventing the water-soluble polymer (C) from being unevenly distributed on the surface of the negative electrode active material, and the negative electrode active material in the negative electrode The binding property between the layer and the current collector can be maintained, and the binding property of the negative electrode is significantly improved. Here, the degree of etherification refers to the degree of substitution of carboxymethyl groups or the like to hydroxyl groups (three) per anhydroglucose unit in cellulose. Theoretically, values from 0 to 3 can be taken. It shows that as the degree of etherification increases, the ratio of hydroxyl groups in cellulose decreases and the ratio of substituted substances increases, and as the degree of etherification decreases, hydroxyl groups in cellulose increase and substituents decrease. The degree of etherification (degree of substitution) is determined by the following method and formula.
 まず、試料0.5~0.7gを精密にはかり、磁製ルツボ内で灰化する。冷却後、得られた灰化物を500mlビーカーに移し、水約250ml 、さらにピペットでN/10硫酸35mlを加えて30分間煮沸する。これを冷却し、フェノールフタレイン指示薬を加えて、過剰の酸をN/10水酸化カリウムで逆滴定して、次式(I)および(II)から置換度を算出する。 First, weigh 0.5-0.7g of sample precisely and incinerate in a magnetic crucible. After cooling, the resulting incinerated product is transferred to a 500 ml beaker, and about 250 ml of water and 35 ml of N / 10 sulfuric acid are added with a pipette and boiled for 30 minutes. This is cooled, phenolphthalein indicator is added, excess acid is back titrated with N / 10 potassium hydroxide, and the degree of substitution is calculated from the following formulas (I) and (II).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式(I)及び(II)において、Aは、試料1g中の結合アルカリ金属イオンに消費されたN/10硫酸の量(ml)である。aは、N/10硫酸の使用量(ml)である。fは、N/10硫酸の力価係数である。bは、N/10水酸化カリウムの滴定量(ml)である。fは、N/10水酸化カリウムの力価係数である。Mは、試料の重量平均分子量である。 In the above formulas (I) and (II), A is the amount (ml) of N / 10 sulfuric acid consumed by the bound alkali metal ions in 1 g of the sample. a is the amount (ml) of N / 10 sulfuric acid used. f is the titer coefficient of N / 10 sulfuric acid. b is the titration amount (ml) of N / 10 potassium hydroxide. f 1 is the titer coefficient of N / 10 potassium hydroxide. M is the weight average molecular weight of the sample.
 水溶性ポリマー(C)の配合量は、負極活物質の総量100質量部に対して、好ましくは1~3質量部である。水溶性ポリマー(C)の配合量が上記範囲であると、塗工性が良好となるため二次電池の内部抵抗の上昇を防止し、集電体との結着性に優れる。また、負極活物質の膨張・収縮を抑制できるため、二次電池のサイクル特性が向上する。 The blending amount of the water-soluble polymer (C) is preferably 1 to 3 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. When the blending amount of the water-soluble polymer (C) is in the above range, the coating property is improved, so that the increase in internal resistance of the secondary battery is prevented and the binding property with the current collector is excellent. Further, since the expansion / contraction of the negative electrode active material can be suppressed, the cycle characteristics of the secondary battery are improved.
(D)フッ素含有(メタ)アクリル酸エステル単量体単位を0.5~20質量%含む水溶性ポリマー
 本発明に用いるフッ素含有(メタ)アクリル酸エステル単量体単位を0.5~20質量%含む水溶性ポリマー(D)(以下、単に「水溶性ポリマー(D)」と記載することがある。)は、フッ素含有(メタ)アクリル酸エステル単量体単位を0.5~20質量%、好ましくは2~15質量%、より好ましくは3~12質量%含む共重合体である。この共重合体には、さらに不飽和カルボン酸単量体単位、(メタ)アクリル酸エステル単量体単位や架橋性単量体単位が含まれていてもよく、また反応性界面活性剤単量体などの機能性を有する単量体を重合して得られる構造単位や、その他の共重合可能な単量体を重合して得られる構造単位が含まれていてもよい。
 なお、本明細書では、(メタ)アクリルはアクリルおよびメタクリルの両者を包含する。
 このような水溶性ポリマー(D)を用いることで、集電体と負極活物質層との結着性を高め、負極強度を向上できる。また、水溶性ポリマー(D)が負極活物質の表面を被覆することで、二次電池内において、負極活物質による電解液の分解が抑制され、二次電池の耐久性(サイクル特性)を向上できる。さらにまた、負極活物質が水溶性ポリマー(D)により被覆されることで、負極活物質と電解液との親和性を高め、イオン伝導度を向上し、二次電池の内部抵抗を低減できる。
(D) Water-soluble polymer containing 0.5 to 20% by mass of fluorine-containing (meth) acrylate monomer unit 0.5 to 20% of fluorine-containing (meth) acrylate monomer unit used in the present invention % Water-soluble polymer (D) (hereinafter sometimes simply referred to as “water-soluble polymer (D)”) is 0.5 to 20% by mass of fluorine-containing (meth) acrylate monomer units. The copolymer is preferably 2 to 15% by mass, more preferably 3 to 12% by mass. The copolymer may further contain an unsaturated carboxylic acid monomer unit, a (meth) acrylic acid ester monomer unit, a crosslinkable monomer unit, and a reactive surfactant alone. A structural unit obtained by polymerizing a functional monomer such as a polymer, or a structural unit obtained by polymerizing other copolymerizable monomers may be included.
In the present specification, (meth) acryl includes both acrylic and methacrylic.
By using such a water-soluble polymer (D), the binding property between the current collector and the negative electrode active material layer can be improved, and the negative electrode strength can be improved. In addition, by covering the surface of the negative electrode active material with the water-soluble polymer (D), the decomposition of the electrolyte solution by the negative electrode active material is suppressed in the secondary battery, and the durability (cycle characteristics) of the secondary battery is improved. it can. Furthermore, since the negative electrode active material is coated with the water-soluble polymer (D), the affinity between the negative electrode active material and the electrolytic solution can be improved, the ionic conductivity can be improved, and the internal resistance of the secondary battery can be reduced.
<フッ素含有(メタ)アクリル酸エステル単量体単位>
 フッ素含有(メタ)アクリル酸エステル単量体単位は、フッ素含有(メタ)アクリル酸エステル単量体が重合して形成される構造単位である。
 フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、下記の式(I)で表される単量体が挙げられる。
<Fluorine-containing (meth) acrylic acid ester monomer unit>
The fluorine-containing (meth) acrylic acid ester monomer unit is a structural unit formed by polymerizing a fluorine-containing (meth) acrylic acid ester monomer.
Examples of the fluorine-containing (meth) acrylic acid ester monomer include monomers represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記の式(I)において、Rは、水素原子またはメチル基を表す。 前記の式(I)において、Rは、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下である。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。 In the above formula (I), R 1 represents a hydrogen atom or a methyl group. In the formula (I) of the, R 2 represents a hydrocarbon group containing a fluorine atom. The carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less. Moreover, the number of fluorine atoms contained in R 2 may be one or two or more.
 式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体の例としては、(メタ)アクリル酸フッ化アルキル、(メタ)アクリル酸フッ化アリール、及び(メタ)アクリル酸フッ化アラルキルが挙げられる。なかでも(メタ)アクリル酸フッ化アルキルが好ましい。このような単量体の具体例としては、(メタ)アクリル酸-2,2,2-トリフルオロエチル、(メタ)アクリル酸-β-(パーフルオロオクチル)エチル、(メタ)アクリル酸-2,2,3,3-テトラフルオロプロピル、(メタ)アクリル酸-2,2,3,4,4,4-ヘキサフルオロブチル、(メタ)アクリル酸-1H,1H,9H-パーフルオロ-1-ノニル、(メタ)アクリル酸-1H,1H,11H-パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸-3-[4-〔1-トリフルオロメチル-2、2-ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ] -2-ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。 Examples of fluorine-containing (meth) acrylic acid ester monomers represented by formula (I) include (meth) acrylic acid alkyl fluoride, (meth) acrylic acid fluoride aryl, and (meth) acrylic acid fluoride. Aralkyl is mentioned. Of these, alkyl fluoride (meth) acrylate is preferable. Specific examples of such a monomer include (meth) acrylic acid-2,2,2-trifluoroethyl, (meth) acrylic acid-β- (perfluorooctyl) ethyl, (meth) acrylic acid-2. , 2,3,3-tetrafluoropropyl, (meth) acrylic acid-2,2,3,4,4,4-hexafluorobutyl, (meth) acrylic acid-1H, 1H, 9H-perfluoro-1- Nonyl, (meth) acrylic acid-1H, 1H, 11H-perfluoroundecyl, perfluorooctyl (meth) acrylate, (meth) acrylic acid-3- [4- [1-trifluoromethyl-2,2- And (meth) acrylic acid perfluoroalkyl esters such as bis [bis (trifluoromethyl) fluoromethyl] ethynyloxy] benzooxy] -2-hydroxypropyl.
 フッ素含有(メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、水溶性ポリマー(D)は、フッ素含有(メタ)アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。 One type of fluorine-containing (meth) acrylic acid ester monomer may be used alone, or two or more types may be used in combination at any ratio. Therefore, the water-soluble polymer (D) may contain only one type of fluorine-containing (meth) acrylic acid ester monomer unit, or may contain two or more types in combination at any ratio.
 水溶性ポリマー(D)におけるフッ素含有(メタ)アクリル酸エステル単量体単位の含有割合は0.5~20質量%、好ましくは2~15質量%、より好ましくは3~12質量%の範囲である。フッ素含有(メタ)アクリル酸エステル単量体単位の比率が低すぎると、水溶性ポリマー(D)に電解液に対する反発力を与えることができず、膨潤性を適切な範囲とすることができない。また、フッ素含有(メタ)アクリル酸エステル単量体単位の比率が高すぎると、水溶性ポリマー(D)に電解液に対する濡れ性を付与できず、低温サイクル特性が低下する。 The content ratio of the fluorine-containing (meth) acrylate monomer unit in the water-soluble polymer (D) is 0.5 to 20% by mass, preferably 2 to 15% by mass, more preferably 3 to 12% by mass. is there. If the ratio of the fluorine-containing (meth) acrylic acid ester monomer unit is too low, the water-soluble polymer (D) cannot be given a repulsive force against the electrolytic solution, and the swellability cannot be adjusted to an appropriate range. Moreover, when the ratio of a fluorine-containing (meth) acrylic acid ester monomer unit is too high, the wettability with respect to electrolyte solution cannot be provided to water-soluble polymer (D), and low temperature cycling characteristics will fall.
 水溶性ポリマー(D)が、フッ素含有(メタ)アクリル酸エステル単量体単位を含むことによって、負極活物質層には耐アルカリ性が付与される。負極形成用のスラリー組成物にはアルカリ性物質が含まれることがあり、また素子の作動による酸化還元によりアルカリ性物質が発生することがある。このようなアルカリ性物質は、集電体を腐食し、素子寿命を損なうが、負極活物質層が耐アルカリ性を有することで、アルカリ性物質による集電体の腐食が抑制される。 When the water-soluble polymer (D) contains a fluorine-containing (meth) acrylic acid ester monomer unit, alkali resistance is imparted to the negative electrode active material layer. The slurry composition for forming the negative electrode may contain an alkaline substance, and the alkaline substance may be generated by oxidation / reduction due to the operation of the element. Such an alkaline substance corrodes the current collector and impairs the device life, but the negative electrode active material layer has alkali resistance, so that corrosion of the current collector due to the alkaline substance is suppressed.
<不飽和カルボン酸単量体単位>
 不飽和カルボン酸単量体単位は、不飽和カルボン酸単量体を重合して形成される構造単位である。不飽和カルボン酸単量体としては、上記粒子状バインダー(B)において詳述した不飽和カルボン酸単量体と同様である。
 不飽和カルボン酸単量体の中でも、アクリル酸、メタクリル酸等の不飽和モノカルボン酸やマレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸が好ましく、アクリル酸、メタクリル酸等の不飽和モノカルボン酸がより好ましい。得られる水溶性ポリマー(D)の水に対する分散性をより高めることができるからである。
<Unsaturated carboxylic acid monomer unit>
An unsaturated carboxylic acid monomer unit is a structural unit formed by polymerizing an unsaturated carboxylic acid monomer. The unsaturated carboxylic acid monomer is the same as the unsaturated carboxylic acid monomer detailed in the particulate binder (B).
Among unsaturated carboxylic acid monomers, unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid are preferred, and unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferred. Carboxylic acid is more preferred. It is because the dispersibility with respect to the water of the obtained water-soluble polymer (D) can be improved more.
 水溶性ポリマー(D)における不飽和カルボン酸単量体単位の含有割合は、好ましくは1~40質量%、より好ましくは5~30質量%の範囲である。不飽和カルボン酸単量体の含有割合を上記範囲とすることで、集電体と負極活物質層との結着性を高め、負極強度を向上できる。また、水溶性ポリマー(D)の分散性を向上させることができるため、均一な負極スラリー組成物を得ることができる。その結果、優れたサイクル特性を有する二次電池を得ることができる。 The content of the unsaturated carboxylic acid monomer unit in the water-soluble polymer (D) is preferably 1 to 40% by mass, more preferably 5 to 30% by mass. By making the content rate of an unsaturated carboxylic acid monomer into the said range, the binding property of a collector and a negative electrode active material layer can be improved, and negative electrode intensity | strength can be improved. Moreover, since the dispersibility of water-soluble polymer (D) can be improved, a uniform negative electrode slurry composition can be obtained. As a result, a secondary battery having excellent cycle characteristics can be obtained.
<(メタ)アクリル酸エステル単量体単位>
 (メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して得られる構造単位である。ただし、(メタ)アクリル酸エステル単量体の中でもフッ素を含有するものは、上述のフッ素含有(メタ)アクリル酸エステル単量体として(メタ)アクリル酸エステル単量体とは区別する。
<(Meth) acrylic acid ester monomer unit>
A (meth) acrylic acid ester monomer unit is a structural unit obtained by polymerizing a (meth) acrylic acid ester monomer. However, among the (meth) acrylate monomers, those containing fluorine are distinguished from (meth) acrylate monomers as the above-mentioned fluorine-containing (meth) acrylate monomers.
 (メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;並びにメチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルが挙げられる。 Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; and methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl Methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n- tetradecyl methacrylate, methacrylic acid alkyl esters such as stearyl methacrylate.
 (メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、水溶性ポリマー(D)は、(メタ)アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。 (Meth) acrylic acid ester monomer may be used alone or in combination of two or more at any ratio. Therefore, the water-soluble polymer (D) may contain only one type of (meth) acrylic acid ester monomer unit, or may contain two or more types in combination at any ratio.
 水溶性ポリマー(D)において、(メタ)アクリル酸エステル単量体単位の含有割合は、好ましくは30質量%以上、より好ましくは35質量%以上、特に好ましくは40質量%以上であり、また、好ましくは75質量%以下、より好ましくは70質量%以下、特に好ましくは65質量%以下である。(メタ)アクリル酸エステル単量体単位の含有割合を上記範囲の下限値以上とすることにより負極活物質層の集電体への結着性を高くすることができ、上記範囲の上限値以下とすることにより負極活物質層の柔軟性を高めることができる。 In the water-soluble polymer (D), the content ratio of the (meth) acrylic acid ester monomer unit is preferably 30% by mass or more, more preferably 35% by mass or more, and particularly preferably 40% by mass or more. Preferably it is 75 mass% or less, More preferably, it is 70 mass% or less, Most preferably, it is 65 mass% or less. By making the content ratio of the (meth) acrylate monomer unit more than the lower limit of the above range, the binding property of the negative electrode active material layer to the current collector can be increased, and the upper limit of the above range or less By doing so, the flexibility of the negative electrode active material layer can be increased.
<架橋性単量体単位>
 水溶性ポリマー(D)は、上記各構成単位に加え、さらに架橋性単量体単位を含んでいてもよい。架橋性単量体単位は、加熱又はエネルギー照射により、重合中又は重合後に架橋構造を形成しうる構造単位である。架橋性単量体の例としては、通常は、熱架橋性を有する単量体を挙げることができる。より具体的には、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体、及び1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。
<Crosslinkable monomer unit>
The water-soluble polymer (D) may further contain a crosslinkable monomer unit in addition to the above structural units. The crosslinkable monomer unit is a structural unit capable of forming a crosslinked structure during or after polymerization by heating or energy irradiation. As an example of the crosslinkable monomer, a monomer having thermal crosslinkability can be usually mentioned. More specifically, a monofunctional monomer having a heat-crosslinkable crosslinkable group and one olefinic double bond per molecule, and a polyfunctional having two or more olefinic double bonds per molecule. Ionic monomers.
 単官能性単量体に含まれる熱架橋性の架橋性基の例としては、エポキシ基、N-メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。 Examples of thermally crosslinkable groups contained in the monofunctional monomer include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof. Among these, an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
 熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタアクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類が挙げられる。 Examples of the crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl. Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate Glycidyl crotonate Unsaturated carboxylic acids such as glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl ester of 3-cyclohexene carboxylic acid, glycidyl ester of 4-methyl-3-cyclohexene carboxylic acid Examples include glycidyl esters of acids.
 熱架橋性の架橋性基としてN-メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N-メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。 Examples of the crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
 熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、及び2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンが挙げられる。 Examples of the crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-Trifluoromethyloxetane.
 熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、及び2-イソプロペニル-5-エチル-2-オキサゾリンが挙げられる。 Examples of the crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
 2つ以上のオレフィン性二重結合を有する多官能性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン-トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン-ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンが挙げられる。 Examples of multifunctional monomers having two or more olefinic double bonds include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, trimethylolpropane-tri (meth) acrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, trimethylolpropane-diallyl Ethers, allyl or vinyl ethers of polyfunctional alcohols other than those mentioned above, triallylamine, methylene bisacrylamide, and divinylbenzene.
 架橋性単量体としては、特に、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートを好ましく用いることができる。 As the crosslinkable monomer, ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate can be particularly preferably used.
 水溶性ポリマー(D)に架橋性単量体単位が含まれる場合、その含有割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、特に好ましくは0.5質量%以上であり、好ましくは5質量%以下、より好ましくは4質量%以下、特に好ましくは2質量%以下である。架橋性単量体単位の含有割合を前記範囲の下限値以上とすることにより、水溶性ポリマー(D)の重量平均分子量を高め、膨潤度が過度に上昇することを防止しうる。一方、架橋性単量体単位の比率を前記範囲の上限値以下とすることにより、水溶性ポリマー(D)の水に対する可溶性を高め、分散性を良好にすることができる。したがって、架橋性単量体単位の含有割合を前記範囲内とすることにより、膨潤度及び分散性の両方を良好なものとすることができる。 When the water-soluble polymer (D) contains a crosslinkable monomer unit, the content ratio is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and particularly preferably 0.5% by mass. Or more, preferably 5% by mass or less, more preferably 4% by mass or less, and particularly preferably 2% by mass or less. By making the content rate of a crosslinkable monomer unit more than the lower limit of the said range, the weight average molecular weight of water-soluble polymer (D) can be raised and it can prevent that a swelling degree rises too much. On the other hand, by setting the ratio of the crosslinkable monomer units to be equal to or less than the upper limit of the above range, the water-soluble polymer (D) can be improved in water solubility and the dispersibility can be improved. Therefore, by setting the content ratio of the crosslinkable monomer unit within the above range, both the degree of swelling and the dispersibility can be improved.
<反応性界面活性剤単量体単位>
 水溶性ポリマー(D)には、上記各単量体単位に加え、反応性界面活性剤単量体などの機能性を有する単量体を重合して得られる構造単位が含まれていてもよい。
<Reactive surfactant monomer unit>
The water-soluble polymer (D) may contain a structural unit obtained by polymerizing a functional monomer such as a reactive surfactant monomer in addition to the above monomer units. .
 反応性界面活性剤単量体は、後述する他の単量体と共重合しうる重合性の基を有し、且つ、界面活性基(親水性基及び疎水性基)を有する単量体である。反応性界面活性剤単量体を重合することにより得られる単量体単位は、水溶性ポリマー(D)の分子の一部を構成し、且つ界面活性剤として機能しうる構造単位である。 The reactive surfactant monomer is a monomer having a polymerizable group that can be copolymerized with other monomers described later, and having a surfactant group (hydrophilic group and hydrophobic group). is there. The monomer unit obtained by polymerizing the reactive surfactant monomer is a structural unit that constitutes part of the molecule of the water-soluble polymer (D) and can function as a surfactant.
 通常、反応性界面活性剤単量体は重合性不飽和基を有し、この基が重合後に疎水性基としても作用する。反応性界面活性剤単量体が有する重合性不飽和基の例としては、ビニル基、アリル基、ビニリデン基、プロペニル基、イソプロペニル基、及びイソブチリデン基が挙げられる。かかる重合性不飽和基の種類は、1種類でもよく、2種類以上でもよい。 Usually, the reactive surfactant monomer has a polymerizable unsaturated group, and this group also acts as a hydrophobic group after polymerization. Examples of the polymerizable unsaturated group that the reactive surfactant monomer has include a vinyl group, an allyl group, a vinylidene group, a propenyl group, an isopropenyl group, and an isobutylidene group. The type of the polymerizable unsaturated group may be one type or two or more types.
 また、反応性界面活性剤単量体は、親水性を発現する部分として、通常は親水性基を有する。反応性界面活性剤単量体は、親水性基の種類により、アニオン系、カチオン系、ノニオン系の界面活性剤に分類される。 Also, the reactive surfactant monomer usually has a hydrophilic group as a portion that exhibits hydrophilicity. Reactive surfactant monomers are classified into anionic, cationic and nonionic surfactants depending on the type of hydrophilic group.
 アニオン系の親水性基の例としては、-SOM、-COOM、及び-PO(OH)が挙げられる。ここでMは、水素原子又はカチオンを示す。カチオンの例としては、リチウム、ナトリウム、カリウム等のアルカリ金属イオン;カルシウム、マグネシウム等のアルカリ土類金属イオン;アンモニウムイオン;モノメチルアミン、ジメチルアミン、モノエチルアミン、トリエチルアミン等のアルキルアミンのアンモニウムイオン;並びにモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンのアンモニウムイオンが挙げられる。 Examples of the anionic hydrophilic group include —SO 3 M, —COOM, and —PO (OH) 2 . Here, M represents a hydrogen atom or a cation. Examples of cations include alkali metal ions such as lithium, sodium and potassium; alkaline earth metal ions such as calcium and magnesium; ammonium ions; ammonium ions of alkylamines such as monomethylamine, dimethylamine, monoethylamine and triethylamine; and Examples include ammonium ions of alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
 カチオン系の親水基の例としては、-Cl、-Br、-I、及び-SOORXが挙げられる。ここでRXは、アルキル基を示す。RXの例としては、メチル基、エチル基、プロピル基、及びイソプロピル基が挙げられる。 Examples of the cationic hydrophilic group include —Cl, —Br, —I, and —SO 3 ORX. Here, RX represents an alkyl group. Examples of RX include methyl group, ethyl group, propyl group, and isopropyl group.
 ノニオン系の親水基の例としては、-OHが挙げられる。 An example of a nonionic hydrophilic group is —OH.
 好適な反応性界面活性剤単量体の例としては、下記の式(II)で表される化合物が挙げられる。 Examples of suitable reactive surfactant monomers include compounds represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(II)において、Rは2価の結合基を表す。Rの例としては、-Si-O-基、メチレン基及びフェニレン基が挙げられる。式(II)において、Rは親水性基を表す。Rの例としては、-SONHが挙げられる。式(II)において、nは1以上100以下の整数である。反応性界面活性剤単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 In the formula (II), R represents a divalent linking group. Examples of R include —Si—O— group, methylene group and phenylene group. In the formula (II), R 3 represents a hydrophilic group. An example of R 3 includes —SO 3 NH 4 . In the formula (II), n is an integer of 1 or more and 100 or less. A reactive surfactant monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 水溶性ポリマー(D)が反応性界面活性剤単量体単位を含む場合、その比率は、好ましくは0.1~15質量%、より好ましくは0.5~10質量%、特に好ましくは1~5質量%の範囲である。反応性界面活性剤単量体単位の比率を前記範囲の下限値以上とすることにより、負極活物質(A)や粒子状バインダー(B)の分散性を向上させることができる。一方、反応性界面活性剤単量体単位の比率を前記範囲の上限値以下とすることにより、負極活物質層の耐久性を向上させることができる。 When the water-soluble polymer (D) contains a reactive surfactant monomer unit, the ratio is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, particularly preferably 1 to It is in the range of 5% by mass. The dispersibility of the negative electrode active material (A) and the particulate binder (B) can be improved by setting the ratio of the reactive surfactant monomer unit to the lower limit value or more of the above range. On the other hand, the durability of the negative electrode active material layer can be improved by setting the ratio of the reactive surfactant monomer unit to be equal to or less than the upper limit of the above range.
<他の単量体単位>
 水溶性ポリマー(D)が有しうる任意の単位のさらなる例としては、下記の単量体を重合して得られる構造単位が挙げられる。即ち、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル化合物単量体;エチレン、プロピレン等のオレフィン類単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類単量体;並びにN-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物単量体の1以上を重合して得られる構造単位が挙げられる。水溶性ポリマー(D)におけるこれらの構造単位の割合は、好ましくは0~10質量%、より好ましくは0~5質量%である。
<Other monomer units>
Further examples of the arbitrary unit that the water-soluble polymer (D) may have include a structural unit obtained by polymerizing the following monomers. That is, styrene monomers such as styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene and divinyl benzene; Amide monomers such as acrylamide and acrylamide-2-methylpropanesulfonic acid; α, β-unsaturated nitrile compound monomers such as acrylonitrile and methacrylonitrile; Olefin monomers such as ethylene and propylene; Vinyl chloride , Halogen atom-containing monomers such as vinylidene chloride; vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; vinyl ether monomers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; Methyl Vinyl ketone monomers such as nyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, isopropenyl vinyl ketone; and one or more of heterocyclic compound-containing vinyl compound monomers such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole The structural unit obtained by polymerizing is mentioned. The proportion of these structural units in the water-soluble polymer (D) is preferably 0 to 10% by mass, more preferably 0 to 5% by mass.
 なお、本明細書における水溶性ポリマーとは、pH8において、1%水溶液粘度が0.1~100000mPa・sである重合体をいう。 The water-soluble polymer in this specification refers to a polymer having a 1% aqueous solution viscosity of 0.1 to 100,000 mPa · s at pH 8.
 また、水溶性ポリマー(D)の、pH8における、1%水溶液を調整した際の溶液粘度は、好ましくは0.1~20000mPa・s、さらに好ましくは1~10000mPa・s、特に好ましくは10~5000mPa・sの範囲にある。溶液粘度が高すぎると、負極活物質層の集電体に対する結着性が低下することがあり、また低すぎると負極活物質層の柔軟性が低下することがある。 The solution viscosity of the water-soluble polymer (D) at the time of adjusting a 1% aqueous solution at pH 8 is preferably 0.1 to 20000 mPa · s, more preferably 1 to 10000 mPa · s, and particularly preferably 10 to 5000 mPa. -It is in the range of s. If the solution viscosity is too high, the binding property of the negative electrode active material layer to the current collector may be reduced, and if it is too low, the flexibility of the negative electrode active material layer may be reduced.
 水溶性ポリマー(D)の重量平均分子量は、通常はバインダーとなる重合体(芳香族ビニル-共役ジエン共重合体(b1)および(b2))よりも小さく、好ましくは100以上、より好ましくは500以上、特に好ましくは1000以上であり、好ましくは500000以下、より好ましくは250000以下、特に好ましくは100000以下である。水溶性ポリマー(D)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって、ジメチルホルムアミドの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を展開溶媒としたポリスチレン換算の値として求めればよい。 The weight average molecular weight of the water-soluble polymer (D) is usually smaller than the polymer (aromatic vinyl-conjugated diene copolymers (b1) and (b2)) serving as a binder, preferably 100 or more, more preferably 500. As described above, it is particularly preferably 1000 or more, preferably 500,000 or less, more preferably 250,000 or less, and particularly preferably 100,000 or less. The weight average molecular weight of the water-soluble polymer (D) is converted to polystyrene by gel permeation chromatography (GPC) using a solution obtained by dissolving 0.85 g / ml sodium nitrate in a 10% by volume aqueous solution of dimethylformamide. Can be obtained as the value of.
 さらに、水溶性ポリマー(D)のガラス転移温度は、通常0℃以上、好ましくは5℃以上であり、通常100℃以下、好ましくは50℃以下である。水溶性ポリマー(D)のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。 Furthermore, the glass transition temperature of the water-soluble polymer (D) is usually 0 ° C. or higher, preferably 5 ° C. or higher, and is usually 100 ° C. or lower, preferably 50 ° C. or lower. The glass transition temperature of the water-soluble polymer (D) can be adjusted by combining various monomers.
 水溶性ポリマー(D)の配合量は、水溶性ポリマー(C)の配合量に応じて決定することが好ましく、負極活物質の総量100質量部に対して、水溶性ポリマー(C)と(D)の合計量が、好ましくは0.5~5質量部、より好ましくは0.7~3質量部である。水溶性ポリマー(C)と(D)の合計量を上記範囲とすることで、集電体と負極活物質層との結着性を高め、二次電池のサイクル特性を向上できる。また、二次電池の内部抵抗を低減できるため、出力特性(特に低温出力特性)を向上できる。 The blending amount of the water-soluble polymer (D) is preferably determined according to the blending amount of the water-soluble polymer (C), and the water-soluble polymer (C) and (D) with respect to 100 parts by mass of the total amount of the negative electrode active material. ) Is preferably 0.5 to 5 parts by mass, more preferably 0.7 to 3 parts by mass. By setting the total amount of the water-soluble polymers (C) and (D) within the above range, the binding property between the current collector and the negative electrode active material layer can be improved, and the cycle characteristics of the secondary battery can be improved. Moreover, since the internal resistance of the secondary battery can be reduced, output characteristics (particularly low temperature output characteristics) can be improved.
 水溶性ポリマー(D)及び水溶性ポリマー(C)の重量比は、「水溶性ポリマー(C)/水溶性ポリマー(D)」で、好ましくは99/1~70/30、より好ましくは99/1~85/15、特に好ましくは99/1~90/10である。水溶性ポリマー(D)及び水溶性ポリマー(C)の重量比を上記範囲とすることで、負極活物質表面のリチウムイオン伝導性が高まり、それにより二次電池の出力向上できる。 The weight ratio of the water-soluble polymer (D) and the water-soluble polymer (C) is “water-soluble polymer (C) / water-soluble polymer (D)”, preferably 99/1 to 70/30, more preferably 99 / 1 to 85/15, particularly preferably 99/1 to 90/10. By setting the weight ratio of the water-soluble polymer (D) and the water-soluble polymer (C) within the above range, the lithium ion conductivity on the surface of the negative electrode active material is increased, thereby improving the output of the secondary battery.
[水溶性ポリマー(D)の製造]
 水溶性ポリマー(D)を製造する方法としては、水溶性ポリマー(D)を構成する単量体を含む単量体混合物を、分散媒中で重合して水分散型ポリマーを得、pH7~13にアルカリ化する方法が挙げられる。重合方法については、上述の粒子状バインダーと同様である。
[Production of water-soluble polymer (D)]
As a method for producing the water-soluble polymer (D), a monomer mixture containing monomers constituting the water-soluble polymer (D) is polymerized in a dispersion medium to obtain a water-dispersed polymer, and the pH is 7 to 13. The method of alkalizing is mentioned. About the polymerization method, it is the same as that of the above-mentioned particulate binder.
 pH7~13にアルカリ化する方法としては、特に限定されないが、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ金属水溶液、水酸化カルシウム水溶液、水酸化マグネシウム水溶液などのアルカリ土類金属水溶液や、アンモニア水溶液などのアルカリ水溶液を添加する方法が挙げられる。 The method for alkalinizing to pH 7 to 13 is not particularly limited, but alkaline earth solutions such as an aqueous alkali metal solution such as an aqueous lithium hydroxide solution, an aqueous sodium hydroxide solution, and an aqueous potassium hydroxide solution, an aqueous calcium hydroxide solution, and an aqueous magnesium hydroxide solution. Examples include a method of adding an aqueous metal solution or an aqueous alkali solution such as an aqueous ammonia solution.
 粒子状バインダー(B)や水溶性ポリマー(D)の製造に用いられる分散媒は、上記各成分を均一に分散でき、安定的に分散状態を保ちうる限り、水、各種有機溶媒が特に制限されることなく使用できる。製造工程の簡素化の観点から、上記の乳化重合後に溶媒置換などの操作を行うことなく、直接、粒子状バインダー(B)や水溶性ポリマー(D)を製造することが好ましく、分散媒としては乳化重合時の反応溶媒を使用することが望ましい。乳化重合時には、水が反応溶媒として用いられることが多く、また作業環境の観点からも水を分散媒とすることが特に好ましい。 In the dispersion medium used for the production of the particulate binder (B) and the water-soluble polymer (D), water and various organic solvents are particularly limited as long as the above-described components can be uniformly dispersed and can be stably dispersed. Can be used without From the viewpoint of simplification of the production process, it is preferable to produce the particulate binder (B) or the water-soluble polymer (D) directly without performing operations such as solvent substitution after the emulsion polymerization. It is desirable to use a reaction solvent for emulsion polymerization. During emulsion polymerization, water is often used as a reaction solvent, and it is particularly preferable to use water as a dispersion medium from the viewpoint of working environment.
(E)他の成分
 負極活物質層には、上記成分の他に、導電剤、補強材、レベリング剤、酸化防止剤および電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
(E) Other components In addition to the above components, the other components of the negative electrode active material layer include other components such as a conductive agent, a reinforcing material, a leveling agent, an antioxidant, and an electrolyte additive having a function of inhibiting decomposition of the electrolyte. May be included. These are not particularly limited as long as they do not affect the battery reaction.
 導電剤としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンを使用することができる。導電剤を含有することにより、負極活物質同士の電気的接触を向上させることができ、リチウムイオン二次電池に用いる場合に放電レート特性を改善することができる。導電剤の含有量は、負極活物質の総量100質量部に対して、好ましくは1~20質量部、より好ましくは1~10質量部である。 As the conductive agent, conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor growth carbon fiber, and carbon nanotube can be used. By containing a conductive agent, electrical contact between the negative electrode active materials can be improved, and when used in a lithium ion secondary battery, the discharge rate characteristics can be improved. The content of the conductive agent is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示すことができる。負極活物質層における補強材の含有量は、負極活物質の総量100質量部に対して通常0.01~20質量部、好ましくは1~10質量である。補強材の含有量が上記範囲であることにより、高い容量と高い負荷特性を示す二次電池を得ることができる。 As the reinforcing material, various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used. By using a reinforcing material, a tough and flexible negative electrode can be obtained, and excellent long-term cycle characteristics can be exhibited. The content of the reinforcing material in the negative electrode active material layer is usually 0.01 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. When the content of the reinforcing material is in the above range, a secondary battery exhibiting high capacity and high load characteristics can be obtained.
 レベリング剤としては、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を混合することにより、塗工時に発生するはじきを防止したり、負極の平滑性を向上させることができる。負極活物質層におけるレベリング剤の含有量は、負極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。レベリング剤の含有量が上記範囲であることにより負極作製時の生産性、平滑性及び電池特性に優れる。 Examples of the leveling agent include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the leveling agent, the repelling that occurs during coating can be prevented and the smoothness of the negative electrode can be improved. The content of the leveling agent in the negative electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. When the leveling agent content is in the above range, the productivity, smoothness, and battery characteristics during the production of the negative electrode are excellent.
 酸化防止剤としては、フェノール化合物、ハイドロキノン化合物、有機リン化合物、硫黄化合物、フェニレンジアミン化合物、ポリマー型フェノール化合物等が挙げられる。ポリマー型フェノール化合物は、分子内にフェノール構造を有する重合体であり、重量平均分子量が200~1000、好ましくは600~700のポリマー型フェノール化合物が好ましく用いられる。負極活物質層における酸化防止剤の含有割合は、好ましくは0.01~10質量%、更に好ましくは0.05~5質量%である。酸化防止剤の含有割合が上記範囲であることにより、負極を製造するために用いるスラリー組成物の安定性や、得られる二次電池の電池容量及びサイクル特性に優れる。 Examples of the antioxidant include a phenol compound, a hydroquinone compound, an organic phosphorus compound, a sulfur compound, a phenylenediamine compound, and a polymer type phenol compound. The polymer type phenol compound is a polymer having a phenol structure in the molecule, and a polymer type phenol compound having a weight average molecular weight of 200 to 1000, preferably 600 to 700 is preferably used. The content of the antioxidant in the negative electrode active material layer is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass. When the content ratio of the antioxidant is within the above range, the slurry composition used for producing the negative electrode is excellent in stability, battery capacity and cycle characteristics of the obtained secondary battery.
 電解液添加剤としては、電解液中に使用されるビニレンカーボネートなどを用いることができる。負極活物質層における電解液添加剤の含有量は、負極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。電解液添加剤の含有量が、上記範囲であることにより高温サイクル特性及び高温特性に優れる。その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子が挙げられる。ナノ微粒子を混合することによりスラリー組成物のチキソ性をコントロールすることができ、さらにそれにより得られる負極のレベリング性を向上させることができる。負極活物質層におけるナノ微粒子の含有量は、負極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。ナノ微粒子の含有量が上記範囲であることによりスラリー安定性、生産性に優れ、高い電池特性を示す。 As the electrolytic solution additive, vinylene carbonate used in the electrolytic solution can be used. The content of the electrolyte solution additive in the negative electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. When the content of the electrolytic solution additive is in the above range, the high temperature cycle characteristics and the high temperature characteristics are excellent. Other examples include nanoparticles such as fumed silica and fumed alumina. By mixing the nanoparticles, the thixotropy of the slurry composition can be controlled, and the leveling property of the negative electrode obtained thereby can be improved. The content of the nanoparticles in the negative electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. When the content of the nanoparticles is in the above range, the slurry stability and productivity are excellent, and high battery characteristics are exhibited.
 また、上記の他に、添加剤として、イソチアゾリン系化合物やキレート化合物を加えることもできる。 In addition to the above, an isothiazoline compound or a chelate compound can be added as an additive.
集電体
 本発明で用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池用負極に用いる集電体としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、負極活物質層との接着強度を高めるため、予め粗面化処理して使用してもよい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層と集電体との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよく、中でも、導電性接着剤層を形成するのが好ましい。
Current collector The current collector used in the present invention is not particularly limited as long as it is an electrically conductive and electrochemically durable material, but is preferably a metal material because of its heat resistance, such as iron, Examples include copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum. Among these, copper is particularly preferable as the current collector used for the negative electrode for the secondary battery. The shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. The current collector may be used after roughening in advance in order to increase the adhesive strength with the negative electrode active material layer. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. In order to increase the adhesive strength and conductivity between the negative electrode active material layer and the current collector, an intermediate layer may be formed on the surface of the current collector, and among these, a conductive adhesive layer is preferably formed.
[二次電池用負極の製造方法]
 本発明の二次電池用負極を製造する方法としては、前記集電体の少なくとも片面に負極活物質層を層状に結着させる方法であればよい。例えば、後述する二次電池用負極スラリー組成物(以下、「負極スラリー組成物」と記載することがある。)を集電体に塗布、乾燥し、次いで、必要に応じて120℃以上で1時間以上加熱処理して負極を形成する。負極スラリー組成物を集電体へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ジップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥時間は通常5~50分であり、乾燥温度は通常40~180℃である。
[Method for producing secondary battery negative electrode]
As a method for producing the negative electrode for a secondary battery of the present invention, any method may be used as long as the negative electrode active material layer is bound in layers on at least one surface of the current collector. For example, a negative electrode slurry composition for a secondary battery, which will be described later (hereinafter sometimes referred to as “negative electrode slurry composition”), is applied to a current collector, dried, and then 1 at 120 ° C. or higher as necessary. A negative electrode is formed by heat treatment for more than an hour. The method for applying the negative electrode slurry composition to the current collector is not particularly limited. Examples thereof include a doctor blade method, a zip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method. Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying time is usually 5 to 50 minutes, and the drying temperature is usually 40 to 180 ° C.
 本発明の二次電池用負極を製造するに際して、集電体上に負極スラリー組成物からなる負極活物質層を形成後、金型プレスやロールプレスなどを用い、加圧処理により負極活物質層の空隙率を低くする工程を有することが好ましい。負極活物質層の空隙率は、好ましくは5~30%、より好ましくは7~20%である。前記空隙率が高すぎると充電効率や放電効率が悪化することがある。前記空隙率が低すぎる場合は、高い体積容量が得難く、負極活物質層が集電体から剥がれ易く不良を発生し易いといった問題を生じることがある。さらに、粒子状バインダー(B)に硬化性の重合体を用いる場合は、硬化させることが好ましい。 In producing the negative electrode for a secondary battery of the present invention, after forming a negative electrode active material layer comprising a negative electrode slurry composition on a current collector, the negative electrode active material layer is subjected to pressure treatment using a mold press or a roll press. It is preferable to have a step of lowering the porosity. The porosity of the negative electrode active material layer is preferably 5 to 30%, more preferably 7 to 20%. If the porosity is too high, charging efficiency and discharging efficiency may deteriorate. When the porosity is too low, it may be difficult to obtain a high volume capacity, and the negative electrode active material layer may be easily peeled off from the current collector and may be defective. Further, when a curable polymer is used for the particulate binder (B), it is preferably cured.
 本発明において、二次電池用負極における負極活物質層の密度は、好ましくは1.6~2.2g/cmであり、より好ましくは1.65~1.85g/cmである。負極活物質層の密度が上記範囲であることにより、高容量の二次電池を得ることができる。 In the present invention, the density of the negative electrode active material layer of the negative electrode for a secondary battery is preferably 1.6 ~ 2.2g / cm 3, more preferably 1.65 ~ 1.85g / cm 3. When the density of the negative electrode active material layer is within the above range, a high-capacity secondary battery can be obtained.
 本発明のリチウムイオン二次電池負極における負極活物質層の厚みは、通常5~300μmであり、好ましくは30~250μmである。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性共に高い特性を示す二次電池を得ることができる。 The thickness of the negative electrode active material layer in the negative electrode of the lithium ion secondary battery of the present invention is usually 5 to 300 μm, preferably 30 to 250 μm. When the thickness of the negative electrode active material layer is in the above range, it is possible to obtain a secondary battery that exhibits high load characteristics and cycle characteristics.
 本発明において、負極活物質層における負極活物質の含有割合は、好ましくは85~99質量%、より好ましくは88~97質量%である。負極活物質層における負極活物質の含有割合が上記範囲であることにより、高い容量を示しながらも柔軟性、結着性を示す二次電池を得ることができる。 In the present invention, the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85 to 99% by mass, more preferably 88 to 97% by mass. When the content ratio of the negative electrode active material in the negative electrode active material layer is in the above range, it is possible to obtain a secondary battery that exhibits flexibility and binding properties while exhibiting high capacity.
(二次電池用負極スラリー組成物)
 二次電池用負極スラリー組成物は、上記各成分(A)~(D)、必要に応じて添加される他の成分(E)及び分散媒を含有する。
(Negative electrode slurry composition for secondary battery)
The negative electrode slurry composition for a secondary battery contains the above-mentioned components (A) to (D), other components (E) added as necessary, and a dispersion medium.
 分散媒としては、上記成分を均一に分散または溶解し得るものであれば、特に制限されない。本発明においては、粒子状バインダー(B)や水溶性ポリマー(D)の製造に用いられる分散媒として例示した分散媒などを用いることができる。 The dispersion medium is not particularly limited as long as the above components can be uniformly dispersed or dissolved. In the present invention, the dispersion medium exemplified as the dispersion medium used for the production of the particulate binder (B) and the water-soluble polymer (D) can be used.
 負極スラリー組成物の固形分濃度は、塗布、浸漬が可能な程度でかつ、流動性を有する粘度になる限り特に限定はされないが、一般的には10~80質量%程度である。 The solid content concentration of the negative electrode slurry composition is not particularly limited as long as it can be applied and immersed and has a fluid viscosity, but is generally about 10 to 80% by mass.
[二次電池用負極スラリー組成物の製造]
 二次電池用負極スラリー組成物は、上記各成分(A)~(D)、必要に応じて添加される他の成分(E)及び分散媒を混合して得られる。負極スラリー組成物を調製するときに使用する分散媒の量は、負極スラリー組成物の固形分濃度が、通常40~80質量%、好ましくは60~80質量%、より好ましくは72~80質量%の範囲となる量である。負極スラリー組成物の固形分濃度がこの範囲にあるときに、上記各成分が均一に分散することができる。さらに負極スラリー組成物の乾燥前後における厚み変化を小さくできるため、負極内部に残る残留応力を低減することができる。それにより、負極におけるクラックの抑制や結着性を向上することができる。
[Production of negative electrode slurry composition for secondary battery]
The negative electrode slurry composition for a secondary battery is obtained by mixing each of the above components (A) to (D), another component (E) added as necessary, and a dispersion medium. The amount of the dispersion medium used when preparing the negative electrode slurry composition is such that the solid content concentration of the negative electrode slurry composition is usually 40 to 80% by mass, preferably 60 to 80% by mass, more preferably 72 to 80% by mass. This is an amount that falls within the range. When the solid content concentration of the negative electrode slurry composition is within this range, each of the above components can be uniformly dispersed. Furthermore, since the thickness change before and behind drying of a negative electrode slurry composition can be made small, the residual stress which remains in a negative electrode inside can be reduced. Thereby, the suppression of the crack in a negative electrode and a binding property can be improved.
 本発明においては上記成分を用いることにより混合方法や混合順序にかかわらず、前記成分が高度に分散された負極スラリー組成物を得ることができる。混合装置は、上記成分を均一に混合できる装置であれば特に限定されず、ビーズミル、ボールミル、ロールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどを使用することができるが、中でも高濃度での分散が可能なことから、ボールミル、ロールミル、顔料分散機、擂潰機、プラネタリーミキサーを使用することが特に好ましい。 In the present invention, by using the above components, a negative electrode slurry composition in which the above components are highly dispersed can be obtained regardless of the mixing method and the mixing order. The mixing device is not particularly limited as long as it can uniformly mix the above-mentioned components. Bead mill, ball mill, roll mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, fill mix, etc. Among them, it is particularly preferable to use a ball mill, a roll mill, a pigment disperser, a crusher, or a planetary mixer because dispersion at a high concentration is possible.
 負極スラリー組成物の粘度は、均一塗工性、スラリー経時安定性の観点から、好ましくは10~100,000mPa・s、更に好ましくは100~50,000mPa・sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。 The viscosity of the negative electrode slurry composition is preferably 10 to 100,000 mPa · s, more preferably 100 to 50,000 mPa · s, from the viewpoints of uniform coatability and slurry aging stability. The viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
〔二次電池〕
 本発明の二次電池は、正極、負極、電解液及びセパレーターを備える二次電池であって、前記負極が、上述の二次電池用負極である。
[Secondary battery]
The secondary battery of this invention is a secondary battery provided with a positive electrode, a negative electrode, electrolyte solution, and a separator, Comprising: The said negative electrode is the above-mentioned negative electrode for secondary batteries.
(正極)
 正極は、正極活物質及び正極用バインダーを含む正極活物質層が、集電体上に積層されてなる。
(Positive electrode)
The positive electrode is formed by laminating a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a current collector.
正極活物質
 正極活物質は、リチウムイオンをドープ及び脱ドープ可能な活物質が用いられ、無機化合物からなるものと有機化合物からなるものとに大別される。
Cathode Active Material Cathode active materials use active materials that can be doped and dedoped with lithium ions, and are broadly classified into those composed of inorganic compounds and those composed of organic compounds.
 無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。 Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like. Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
 遷移金属酸化物としては、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO、V、V13等が挙げられ、中でもサイクル特性と容量からMnO、V、V13、TiOが好ましい。遷移金属硫化物としては、TiS、TiS、非晶質MoS、FeS等が挙げられる。リチウム含有複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。 Transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O. 5 , V 6 O 13 and the like. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle characteristics and capacity. The transition metal sulfide, TiS 2, TiS 3, amorphous MoS 2, FeS, and the like. Examples of the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
 層状構造を有するリチウム含有複合金属酸化物としてはリチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物等が挙げられる。スピネル構造を有するリチウム含有複合金属酸化物としてはマンガン酸リチウム(LiMn)やMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。オリビン型構造を有するリチウム含有複合金属酸化物としてはLiMPO(式中、Mは、Mn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoから選ばれる少なくとも1種、0≦X≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。 As the lithium-containing composite metal oxide having a layered structure, lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium composite oxide, Ni—Mn—Al lithium Examples thereof include composite oxides and lithium composite oxides of Ni—Co—Al. Examples of the lithium-containing composite metal oxide having a spinel structure include lithium manganate (LiMn 2 O 4 ) and Li [Mn 3/2 M 1/2 ] O 4 in which a part of Mn is substituted with another transition metal (wherein M may be Cr, Fe, Co, Ni, Cu or the like. Li X MPO 4 (wherein, M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Li X MPO 4 as the lithium-containing composite metal oxide having an olivine structure) An olivine type lithium phosphate compound represented by at least one selected from Si, B, and Mo, 0 ≦ X ≦ 2) may be mentioned.
 有機化合物としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。 As the organic compound, for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used. An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted. The positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound.
 正極活物質の平均粒子径は、通常1~50μm、好ましくは2~30μmである。正極活物質の平均粒子径が上記範囲にあることにより、正極活物質層における正極用バインダーの量を少なくすることができ、電池の容量の低下を抑制できる。また、正極活物質層を形成するためには、通常、正極活物質及び正極用バインダーを含むスラリー(以下、「正極スラリー組成物」と記載することがある。)を用意するが、この正極スラリー組成物を、塗布するのに適正な粘度に調製することが容易になり、均一な正極を得ることができる。 The average particle diameter of the positive electrode active material is usually 1 to 50 μm, preferably 2 to 30 μm. When the average particle diameter of the positive electrode active material is in the above range, the amount of the positive electrode binder in the positive electrode active material layer can be reduced, and the decrease in battery capacity can be suppressed. In order to form a positive electrode active material layer, a slurry containing a positive electrode active material and a positive electrode binder (hereinafter sometimes referred to as “positive electrode slurry composition”) is usually prepared. It becomes easy to prepare the composition at a viscosity appropriate for application, and a uniform positive electrode can be obtained.
 正極活物質層における正極活物質の含有割合は、好ましくは90~99.9質量%、より好ましくは95~99質量%である。正極活物質層における正極活物質の含有量を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。 The content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass. By setting the content of the positive electrode active material in the positive electrode active material layer within the above range, flexibility and binding properties can be exhibited while exhibiting high capacity.
正極用バインダー
 正極用バインダーとしては、特に制限されず公知のものを用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂や、アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。これらは単独で使用しても、これらを2種以上併用してもよい。
The binder for the positive electrode is not particularly limited and a known binder can be used. For example, resins such as polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, acrylic soft heavy A soft polymer such as a polymer, a diene soft polymer, an olefin soft polymer, or a vinyl soft polymer can be used. These may be used alone or in combination of two or more.
 正極には、上記成分のほかに、さらに前述の電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。 In addition to the above-described components, the positive electrode may further contain other components such as an electrolyte additive having a function of suppressing the above-described electrolyte decomposition. These are not particularly limited as long as they do not affect the battery reaction.
 集電体は、前述の二次電池用負極に使用される集電体を用いることができ、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、二次電池の正極用としてはアルミニウムが特に好ましい。 As the current collector, the current collector used in the above-described negative electrode for a secondary battery can be used, and there is no particular limitation as long as the material has electrical conductivity and is electrochemically durable. Aluminum is particularly preferable for the positive electrode of the secondary battery.
 正極活物質層の厚みは、通常5~300μmであり、好ましくは10~250μmである。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。 The thickness of the positive electrode active material layer is usually 5 to 300 μm, preferably 10 to 250 μm. When the thickness of the positive electrode active material layer is in the above range, both load characteristics and energy density are high.
 正極は、前述の二次電池用負極と同様に製造することができる。 The positive electrode can be manufactured in the same manner as the negative electrode for a secondary battery described above.
(セパレーター)
 セパレーターは気孔部を有する多孔性基材であって、使用可能なセパレーターとしては、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、または(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーターが挙げられる。これらの非制限的な例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム、ゲル化高分子コート層がコートされたセパレーター、または無機フィラー、無機フィラー用分散剤からなる多孔膜層がコートされたセパレーターなどがある。
(separator)
The separator is a porous substrate having pores, and usable separators include (a) a porous separator having pores, and (b) a porous separator in which a polymer coat layer is formed on one or both sides. Or (c) a porous separator in which a porous resin coat layer containing an inorganic ceramic powder is formed. Non-limiting examples of these include solids such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers. There are polymer films for polymer electrolytes or gel polymer electrolytes, separators coated with gelled polymer coating layers, or separators coated with porous membrane layers made of inorganic fillers and dispersants for inorganic fillers. .
(電解液)
 本発明に用いられる電解液は、特に限定されないが、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは、単独、または2種以上を混合して用いることができる。支持電解質の量は、電解液に対して、通常1質量%以上、好ましくは5質量%以上、また通常は30質量%以下、好ましくは20質量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し電池の充電特性、放電特性が低下する。
(Electrolyte)
The electrolytic solution used in the present invention is not particularly limited. For example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more. The amount of the supporting electrolyte is usually 1% by mass or more, preferably 5% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less, with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the battery are degraded.
 電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびメチルエチルカーボネート(MEC)などのアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類、1,2-ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。これらは、単独、または2種以上を混合して用いることができる。また、電解液には添加剤を含有させて用いることも可能である。添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。 The solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. Usually, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene. Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane; tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used. In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more. Moreover, it is also possible to use an electrolyte containing an additive. As the additive, carbonate compounds such as vinylene carbonate (VC) are preferable.
 上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、硫化リチウム、LiI、LiNなどの無機固体電解質を挙げることができる。 Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution, and an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N.
[二次電池の製造方法]
 本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。さらに必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
[Method for producing secondary battery]
The manufacturing method of the secondary battery of the present invention is not particularly limited. For example, the above-described negative electrode and positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery and placed in the battery container, and the electrolytic solution is injected into the battery container and sealed. Further, if necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge. The shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、本実施例における部および%は、特記しない限り質量基準である。実施例および比較例において、各種物性は以下のように評価した。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, unless otherwise indicated, the part and% in a present Example are a mass reference | standard. In the examples and comparative examples, various physical properties were evaluated as follows.
<ガラス転移温度>
 芳香族ビニル-共役ジエン共重合体(b1)および芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度(Tg)は、示差走査熱量分析計(ナノテクノロジー社製 DSC6220SII)を用いて、JIS K 7121;1987に基づいて測定した。なお、示差走査熱量分析計を用いた測定において、ピークが2つ以上現れた場合には、高温側のピークをTgとした。
<Glass transition temperature>
The glass transition temperature (Tg) of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) was measured using a differential scanning calorimeter (DSC6220SII manufactured by Nanotechnology). It measured based on JISK7121; 1987. In the measurement using a differential scanning calorimeter, when two or more peaks appeared, the peak on the high temperature side was defined as Tg.
<テトラヒドロフラン不溶分>
 共重合体を含む水分散液を用意し、この水分散液をアルミ皿に入れ、50%湿度、23~25℃の環境下で、48時間乾燥させて、厚み3±0.3mmのフィルムに成膜した。成膜したフィルムを1mm角に裁断し、1gを精秤した。この裁断により得られたフィルム片の質量をW0とする。このフィルム片を、100gのテトラヒドロフラン(THF)に25℃において、24時間浸漬した。その後、THFから引き揚げたフィルム片を105℃で3時間真空乾燥して、不溶分の質量W1を計測した。そして、下記式にしたがってテトラヒドロフラン不溶分の割合(%)を算出した。
 テトラヒドロフラン不溶分(%)=W1/W0×100
<Tetrahydrofuran insoluble matter>
Prepare an aqueous dispersion containing the copolymer, put the aqueous dispersion in an aluminum dish, and dry it in an environment of 50% humidity and 23 to 25 ° C. for 48 hours to form a film having a thickness of 3 ± 0.3 mm. A film was formed. The film formed was cut into 1 mm square, and 1 g was precisely weighed. The mass of the film piece obtained by this cutting is defined as W0. This film piece was immersed in 100 g of tetrahydrofuran (THF) at 25 ° C. for 24 hours. Then, the film piece pulled up from THF was vacuum-dried at 105 degreeC for 3 hours, and the mass W1 of insoluble matter was measured. And the ratio (%) of tetrahydrofuran insoluble content was computed according to the following formula.
Tetrahydrofuran insoluble matter (%) = W1 / W0 × 100
<高温サイクル特性>
 実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置させた後に、25℃の環境下で、4.2V、0.1Cの充電、3.0V、0.1Cの放電にて充放電の操作を行い、初期容量Cを測定した。さらに、45℃の環境下で充放電を繰り返し、100サイクル後の容量Cを測定した。
 高温サイクル特性は、ΔC=C/C×100(%)で示す容量変化率ΔCを算出し、以下の基準で評価した。この容量変化率ΔCの値が高いほど、高温サイクル特性に優れることを示す。
 A:93%以上
 B:88%以上93%未満
 C:83%以上88%未満
 D:83%未満
<High temperature cycle characteristics>
The lithium-ion secondary battery of the laminate type cell manufactured in Examples and Comparative Examples was allowed to stand for 24 hours in an environment at 25 ° C., and then charged at 4.2 V and 0.1 C in an environment at 25 ° C. The charge / discharge operation was performed at a discharge of 3.0 V and 0.1 C, and the initial capacity C 0 was measured. Furthermore, charge / discharge was repeated under an environment of 45 ° C., and the capacity C 2 after 100 cycles was measured.
The high-temperature cycle characteristics were evaluated based on the following criteria by calculating a capacity change rate ΔC C represented by ΔC C = C 2 / C 0 × 100 (%). It shows that it is excellent in high temperature cycling characteristics, so that the value of this capacity change rate (DELTA) CC is high.
A: 93% or more B: 88% or more and less than 93% C: 83% or more and less than 88% D: Less than 83%
<極板膨らみ特性>
 前記の「高温サイクル特性」の評価の後でリチウムイオン二次電池のセルを解体し、負極の極板の厚みdを測定した。リチウムイオン二次電池のセルの作製前における負極の極板の厚みをdとして、負極の極板膨らみ率(d-d)/dを算出し、以下の基準で評価した。この値が低いほど、極板膨らみ特性に優れることを示す。なお、負極活物質として黒鉛のみを用いた場合(実施例12)においては、括弧内の基準にて評価した。
 A:30%未満(20%未満)
 B:30%以上38%未満(20%以上29%未満)
 C:38%以上45%未満(29%以上36%未満)
 D:45%以上(36%以上)
<Plate swelling characteristics>
After the evaluation of the “high temperature cycle characteristic”, the cell of the lithium ion secondary battery was disassembled, and the thickness d 1 of the negative electrode plate was measured. The negative electrode plate swell ratio (d 1 -d 0 ) / d 0 was calculated with the thickness of the negative electrode plate before production of the cell of the lithium ion secondary battery as d 0 , and evaluated according to the following criteria. It shows that it is excellent in the electrode plate swelling characteristic, so that this value is low. In the case where only graphite was used as the negative electrode active material (Example 12), the evaluation was made according to the criteria in parentheses.
A: Less than 30% (less than 20%)
B: 30% or more and less than 38% (20% or more and less than 29%)
C: 38% or more and less than 45% (29% or more and less than 36%)
D: 45% or more (36% or more)
<低温出力特性>
 実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置させた後に、25℃の環境下で、4.2V、1Cの充電レートにて充電の操作を行った。その後、-10℃の環境下で、1Cの放電レートにて放電の操作を行い、放電開始10秒後の電圧V10を測定した。低温出力特性は、ΔV=4.2V-V10で示す電圧変化ΔVを算出し、以下の基準で評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。
 A:1.1V未満
 B:1.1V以上1.3V未満
 C:1.3V以上1.6V未満
 D:1.6V以上
<Low temperature output characteristics>
The lithium ion secondary batteries of the laminate type cells produced in the examples and comparative examples were allowed to stand for 24 hours in an environment at 25 ° C., and then at a charge rate of 4.2 V and 1 C in an environment at 25 ° C. The charging operation was performed. Thereafter, a discharge operation was performed at a discharge rate of 1 C under an environment of −10 ° C., and a voltage V 10 10 seconds after the start of discharge was measured. The low temperature output characteristic was evaluated based on the following criteria by calculating a voltage change ΔV represented by ΔV = 4.2 V−V 10 . It shows that it is excellent in low temperature output characteristics, so that the value of this voltage change (DELTA) V is small.
A: Less than 1.1V B: 1.1V or more and less than 1.3V C: 1.3V or more and less than 1.6V D: 1.6V or more
<初期容量>
 負極を直径15mmの円盤状に切り抜き、この負極の活物質層面側に直径18mm、厚さ25μmの円盤状のポリプロピレン製多孔膜からなるセパレーター、金属リチウム対極、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。
 この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのハーフセルを作製した。
 なお、電解液としてはエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
 このコイン型電池を用いて、0.05Cにて定電流-定電圧充電を行い、初期容量を確認した。
 初期容量が420mAh/g以上の場合を「良好」、420mAh/g未満の場合を「不良」と評価した。
<Initial capacity>
A negative electrode is cut out into a disk shape with a diameter of 15 mm, and a separator made of a polypropylene porous film having a disk shape with a diameter of 18 mm and a thickness of 25 μm, a metal lithium counter electrode, and an expanded metal are sequentially laminated on the negative electrode active material layer side. It was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with a packing made of steel.
The electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A half cell of 20 mm and a thickness of about 2 mm was produced.
As an electrolytic solution, LiPF 6 was added at 1 mol / liter to a mixed solvent obtained by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at EC: EMC = 3: 7 (volume ratio at 20 ° C.). A solution dissolved at a concentration of was used.
Using this coin-type battery, constant current-constant voltage charging was performed at 0.05 C to confirm the initial capacity.
The case where the initial capacity was 420 mAh / g or more was evaluated as “good”, and the case where it was less than 420 mAh / g was evaluated as “bad”.
(実施例1)
(1)芳香族ビニル-共役ジエン共重合体(b1)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン46部、イタコン酸4部、スチレン50部、t-ドデシルメルカプタン(TDM)0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度は-10℃であった。
(Example 1)
(1) Production of aromatic vinyl-conjugated diene copolymer (b1) In a 5 MPa pressure vessel equipped with a stirrer, 46 parts of 1,3-butadiene, 4 parts of itaconic acid, 50 parts of styrene, t-dodecyl mercaptan (TDM) 0. 3 parts, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator are stirred sufficiently, and then heated to 50 ° C. for polymerization. Started. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was −10 ° C.
(2)芳香族ビニル-共役ジエン共重合体(b2)の製造
 同様に、攪拌機付き5MPa耐圧容器に、1,3-ブタジエン21部、イタコン酸4部、スチレン75部、t-ドデシルメルカプタン(TDM)0.25部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度は45℃であった。
(2) Similarly to the production of the aromatic vinyl-conjugated diene copolymer (b2), in a 5 MPa pressure vessel equipped with a stirrer, 21 parts of 1,3-butadiene, 4 parts of itaconic acid, 75 parts of styrene, t-dodecyl mercaptan (TDM) ) 0.25 parts, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator were stirred sufficiently and heated to 50 ° C. The polymerization was started. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 45 ° C.
(3)粒子状バインダー(B)の製造
 工程(1)で得られた芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液と、工程(2)で得られた芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液とを、固形分相当で、芳香族ビニル-共役ジエン共重合体(b1)/芳香族ビニル-共役ジエン共重合体(b2)=50/50となるように混合し、粒子状バインダー(B)の水分散液を得た。
(3) An aqueous dispersion containing the aromatic vinyl-conjugated diene copolymer (b1) obtained in the production step (1) of the particulate binder (B) and the aromatic vinyl obtained in the step (2) The aqueous dispersion containing the conjugated diene copolymer (b2) is solid-corresponding to the aromatic vinyl-conjugated diene copolymer (b1) / aromatic vinyl-conjugated diene copolymer (b2) = 50/50. To obtain an aqueous dispersion of the particulate binder (B).
(4)水溶性ポリマー(D)の製造
 攪拌機付き5MPa耐圧容器に、メタクリル酸(不飽和カルボン酸単量体)30部、エチレンジメタクリレート(架橋性単量体)0.8部、2,2,2-トリフルオロエチルメタクリレート(フッ素含有(メタ)アクリル酸エステル単量体)7.5部、ブチルアクリレート((メタ)アクリル酸エステル単量体)60.5部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(反応性界面活性剤単量体、花王製、商品名「ラテムルPD-104」)1.2部、t-ドデシルメルカプタン0.6部、イオン交換水150部、及び過硫酸カリウム(重合開始剤)0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水分散型ポリマーを含む混合物を得た。上記水分散型ポリマーを含む混合物に、10%アンモニア水を添加して、pH8に調整し、所望の水溶性ポリマー(D)を含む水溶液を得た。
(4) Production of water-soluble polymer (D) In a 5 MPa pressure vessel equipped with a stirrer, 30 parts of methacrylic acid (unsaturated carboxylic acid monomer), 0.8 part of ethylene dimethacrylate (crosslinkable monomer), 2, 2 , 2-trifluoroethyl methacrylate (fluorine-containing (meth) acrylate monomer) 7.5 parts, butyl acrylate ((meth) acrylate monomer) 60.5 parts, polyoxyalkylene alkenyl ether ammonium sulfate ( Reactive surfactant monomer, manufactured by Kao, trade name “Latemul PD-104” 1.2 parts, 0.6 parts t-dodecyl mercaptan, 150 parts ion-exchanged water, and potassium persulfate (polymerization initiator) After adding 0.5 part and stirring sufficiently, it heated at 60 degreeC and superposition | polymerization was started. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a water-dispersed polymer. 10% aqueous ammonia was added to the mixture containing the water-dispersed polymer to adjust the pH to 8, and an aqueous solution containing the desired water-soluble polymer (D) was obtained.
(5)負極スラリー組成物の製造
 ディスパー付きのプラネタリーミキサーに、負極活物質(A)として人造黒鉛(比表面積:4m/g、体積平均粒子径:24.5μm)90部、及びSiOx(x=1.1、体積平均粒子径:10μm)10部、ヒドロキシル基含有水溶性ポリマー(C)としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-12」)を固形分相当で1部となる量を加え、更に上記工程(4)で合成した水溶性ポリマー(D)を含む水溶液を固形分相当量で0.03部となる量を加えた。
 これらの混合物をイオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。
(5) Production of negative electrode slurry composition In a planetary mixer with a disper, 90 parts of artificial graphite (specific surface area: 4 m 2 / g, volume average particle size: 24.5 μm) as a negative electrode active material (A), and SiO x ( x = 1.1, volume average particle size: 10 μm) 10 parts, 1% aqueous solution of carboxymethylcellulose (“BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as the hydroxyl group-containing water-soluble polymer (C) Was added in an amount of 1 part, and an aqueous solution containing the water-soluble polymer (D) synthesized in the above step (4) was added in an amount of 0.03 part in terms of solid content.
These mixtures were adjusted to a solids concentration of 55% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
 次いで、上記の混合液に、上記工程(3)で得られた粒子状バインダー(B)の水分散液を、固形分相当で1部、及びイオン交換水を入れ、最終固形分濃度42%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、負極スラリー組成物を得た。 Next, 1 part of the aqueous dispersion of the particulate binder (B) obtained in the above step (3) and ion-exchanged water are added to the mixed liquid, and the final solid content concentration is 42%. And mixed for another 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode slurry composition.
(6)負極の製造
 上記工程(5)で得られた負極スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmの負極を得た。
(6) Manufacture of negative electrode The negative electrode slurry composition obtained in the above step (5) is dried with a comma coater on a copper foil having a thickness of 20 μm that is a current collector. And then dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material. This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode active material layer thickness of 80 μm.
(7)正極の製造
 正極用バインダーとして、ガラス転移温度Tgが-40℃で、数平均粒子径が0.20μmのアクリレート重合体の40%水分散体を用意した。前記のアクリレート重合体は、アクリル酸2-エチルヘキシル78質量%、アクリロニトリル20質量%、及びメタクリル酸2質量%を含む単量体混合物を乳化重合して得られる共重合体である。
 正極活物質として体積平均粒子径0.5μmでオリビン結晶構造を有するLiFePOを100部と、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-12」)を固形分相当で1部と、バインダーとして上記のアクリレート重合体の40%水分散体を固形分相当で5部とを混合し、これにイオン交換水を全固形分濃度が40%となるように加え、プラネタリーミキサーにより混合し、正極スラリー組成物を調製した。
 上記の正極スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウムの上に、乾燥後の膜厚が200μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウムを0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。
(7) Production of Positive Electrode As a positive electrode binder, a 40% aqueous dispersion of an acrylate polymer having a glass transition temperature Tg of −40 ° C. and a number average particle diameter of 0.20 μm was prepared. The acrylate polymer is a copolymer obtained by emulsion polymerization of a monomer mixture containing 78% by mass of 2-ethylhexyl acrylate, 20% by mass of acrylonitrile, and 2% by mass of methacrylic acid.
100 parts of LiFePO 4 having a volume average particle size of 0.5 μm and having an olivine crystal structure as a positive electrode active material and a 1% aqueous solution of carboxymethyl cellulose (“BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a dispersant 1 part at a time and a 40% aqueous dispersion of the above acrylate polymer as a binder are mixed with 5 parts at a solid content, and ion-exchanged water is added to this so that the total solid content concentration is 40%. The positive electrode slurry composition was prepared by mixing with a planetary mixer.
The positive electrode slurry composition was applied onto a current collector of 20 μm thick aluminum with a comma coater so that the film thickness after drying was about 200 μm and dried. This drying was performed by conveying aluminum in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode.
(8)セパレーターの用意
 単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5cm×5cmの正方形に切り抜いた。
(8) Preparation of Separator A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm, manufactured by a dry method, porosity 55%) was cut into a square of 5 cm × 5 cm.
(9)リチウムイオン二次電池のラミネートセル製造
 電池の外装として、アルミ包材外装を用意した。上記工程(7)で得られた正極を、4cm×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。正極の正極活物質層の面上に、上記工程(8)で用意したセパレーターを配置した。さらに、セパレーター上に、上記工程(6)で得られた負極を、4.2cm×4.2cmの正方形に切り出し、負極活物質層側の表面がセパレーターに向かい合うよう配置した。さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
 得られたラミネート型リチウムイオン二次電池について、初期容量確認以外の各評価を行った。結果を表1に示す。
(9) An aluminum packaging exterior was prepared as the exterior of the laminated cell manufacturing battery of the lithium ion secondary battery . The positive electrode obtained in the step (7) was cut into a 4 cm × 4 cm square and arranged so that the current collector-side surface was in contact with the aluminum packaging exterior. On the surface of the positive electrode active material layer of the positive electrode, the separator prepared in the above step (8) was disposed. Furthermore, on the separator, the negative electrode obtained in the above step (6) was cut into a square of 4.2 cm × 4.2 cm, and arranged so that the surface on the negative electrode active material layer side faced the separator. Furthermore, in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the aluminum exterior, and a lithium ion secondary battery was manufactured. As an electrolytic solution, 1 mol / liter of LiPF 6 was mixed in a mixed solvent obtained by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at EC: EMC = 3: 7 (volume ratio at 20 ° C.). A solution dissolved at a concentration was used.
Each evaluation other than the initial capacity confirmation was performed on the obtained laminated lithium ion secondary battery. The results are shown in Table 1.
(10)リチウムイオン二次電池のコインセル製造
 上記工程(6)で得られた負極を直径16mmの円盤状に切り抜き、正極とする。この正極に上記工程(8)で用いたのと同じセパレーターを直径18mm、厚さ25μmの円盤状に切った物、負極として用いる金属リチウム、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのリチウムイオンコイン電池(ハーフセル)を作製した。 なお、電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
 得られたコイン型リチウムイオン二次電池について、初期容量確認を行った。結果を表1に示す。
(10) Manufacture of coin cell of lithium ion secondary battery The negative electrode obtained in the above step (6) is cut into a disk shape with a diameter of 16 mm to be used as a positive electrode. The same separator as used in step (8) above was cut into a disk shape having a diameter of 18 mm and a thickness of 25 μm, and lithium metal used as the negative electrode and expanded metal were laminated in this order on this positive electrode, and a polypropylene packing was installed. Was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm). The electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A lithium ion coin battery (half cell) having a thickness of 20 mm and a thickness of about 2 mm was produced. As the electrolyte, ethylene carbonate (EC) and ethyl methyl carbonate (EMC) EC: EMC = 3 : 7 to LiPF 6 1 mixed in a mixed solvent comprising at (20 ° C. volume ratio in) mol / A solution dissolved at a concentration of 1 liter was used.
The initial capacity of the obtained coin-type lithium ion secondary battery was confirmed. The results are shown in Table 1.
(実施例2)
 下記の芳香族ビニル-共役ジエン共重合体(b1)および芳香族ビニル-共役ジエン共重合体(b2)を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 2)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
芳香族ビニル-共役ジエン共重合体(b1)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン47.5部、イタコン酸0.3部、スチレン52.2部、t-ドデシルメルカプタン(TDM)0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度は-10℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b1) In a 5 MPa pressure vessel equipped with a stirrer, 47.5 parts of 1,3-butadiene, 0.3 part of itaconic acid, 52.2 parts of styrene, t-dodecyl mercaptan (TDM) ) 0.3 parts, 4 parts of sodium dodecylbenzenesulfonate as emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator were stirred sufficiently, and then heated to 50 ° C. The polymerization was started. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was −10 ° C.
芳香族ビニル-共役ジエン共重合体(b2)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン22.5部、イタコン酸0.3部、スチレン77.2部、t-ドデシルメルカプタン(TDM)0.25部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度は45℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b2) In a 5 MPa pressure vessel equipped with a stirrer, 22.5 parts of 1,3-butadiene, 0.3 part of itaconic acid, 77.2 parts of styrene, t-dodecyl mercaptan (TDM) ) 0.25 parts, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator were stirred sufficiently and heated to 50 ° C. The polymerization was started. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 45 ° C.
(実施例3)
 下記の芳香族ビニル-共役ジエン共重合体(b1)および芳香族ビニル-共役ジエン共重合体(b2)を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 3)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
芳香族ビニル-共役ジエン共重合体(b1)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン44.5部、イタコン酸5.5部、スチレン50部、t-ドデシルメルカプタン(TDM)0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度は-10℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b1) In a 5 MPa pressure vessel equipped with a stirrer, 44.5 parts of 1,3-butadiene, 5.5 parts of itaconic acid, 50 parts of styrene, t-dodecyl mercaptan (TDM) 0 .3 parts, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator were stirred sufficiently and then heated to 50 ° C. for polymerization. Started. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was −10 ° C.
芳香族ビニル-共役ジエン共重合体(b2)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン21.5部、イタコン酸5.5部、スチレン73部、t-ドデシルメルカプタン(TDM)0.25部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度は45℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b2) In a 5 MPa pressure vessel equipped with a stirrer, 21.5 parts of 1,3-butadiene, 5.5 parts of itaconic acid, 73 parts of styrene, t-dodecyl mercaptan (TDM) 0 .25 parts, sodium dodecylbenzenesulfonate 4 parts as an emulsifier, ion exchanged water 150 parts, and potassium persulfate 0.5 part as a polymerization initiator, stirred sufficiently, heated to 50 ° C. and polymerized Started. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 45 ° C.
(実施例4)
 下記の芳香族ビニル-共役ジエン共重合体(b1)および芳香族ビニル-共役ジエン共重合体(b2)を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
Example 4
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
芳香族ビニル-共役ジエン共重合体(b1)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン50部、イタコン酸4部、スチレン46部、t-ドデシルメルカプタン(TDM)0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度は-18℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b1) In a 5 MPa pressure vessel equipped with a stirrer, 50 parts of 1,3-butadiene, 4 parts of itaconic acid, 46 parts of styrene, 0.3 part of t-dodecyl mercaptan (TDM), 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water as an emulsifier and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was −18 ° C.
芳香族ビニル-共役ジエン共重合体(b2)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン17部、イタコン酸4部、スチレン79部、t-ドデシルメルカプタン(TDM)0.25部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度は55℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b2) In a 5 MPa pressure vessel equipped with a stirrer, 17 parts of 1,3-butadiene, 4 parts of itaconic acid, 79 parts of styrene, 0.25 parts of t-dodecyl mercaptan (TDM), 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water as an emulsifier and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 55 ° C.
(実施例5)
 下記の芳香族ビニル-共役ジエン共重合体(b1)および芳香族ビニル-共役ジエン共重合体(b2)を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 5)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
芳香族ビニル-共役ジエン共重合体(b1)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン32部、イタコン酸4部、スチレン64部、t-ドデシルメルカプタン(TDM)0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度は18℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b1) In a 5 MPa pressure vessel equipped with a stirrer, 32 parts of 1,3-butadiene, 4 parts of itaconic acid, 64 parts of styrene, 0.3 part of t-dodecyl mercaptan (TDM), 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water as an emulsifier and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was 18 ° C.
芳香族ビニル-共役ジエン共重合体(b2)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン26部、イタコン酸4部、スチレン70部、t-ドデシルメルカプタン(TDM)0.25部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度は33℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b2) In a 5 MPa pressure vessel equipped with a stirrer, 26 parts of 1,3-butadiene, 4 parts of itaconic acid, 70 parts of styrene, 0.25 parts of t-dodecyl mercaptan (TDM), 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water as an emulsifier and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 33 ° C.
(実施例6)
 下記の芳香族ビニル-共役ジエン共重合体(b1)を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 6)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) was used. Each evaluation result is shown in Table 1.
芳香族ビニル-共役ジエン共重合体(b1)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン46部、イタコン酸4部、スチレン50部、t-ドデシルメルカプタン(TDM)0.48部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度は-10℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b1) In a 5 MPa pressure vessel equipped with a stirrer, 46 parts of 1,3-butadiene, 4 parts of itaconic acid, 50 parts of styrene, 0.48 parts of t-dodecyl mercaptan (TDM), 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water as an emulsifier and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was −10 ° C.
(実施例7)
 工程(3)の粒子状バインダー(B)の製造において、芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液と、芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液とを、固形分相当で、芳香族ビニル-共役ジエン共重合体(b1)/芳香族ビニル-共役ジエン共重合体(b2)=80/20となるように混合し、粒子状バインダー(B)の水分散液を得たこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 7)
In the production of the particulate binder (B) in the step (3), an aqueous dispersion containing the aromatic vinyl-conjugated diene copolymer (b1) and an aqueous dispersion containing the aromatic vinyl-conjugated diene copolymer (b2) The liquid was mixed so that the aromatic vinyl-conjugated diene copolymer (b1) / aromatic vinyl-conjugated diene copolymer (b2) = 80/20 corresponding to the solid content, and the particulate binder (B The lithium ion secondary battery was manufactured in the same manner as in Example 1 except that the aqueous dispersion was obtained. Each evaluation result is shown in Table 1.
(実施例8)
 工程(3)の粒子状バインダー(B)の製造において、芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液と、芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液とを、固形分相当で、芳香族ビニル-共役ジエン共重合体(b1)/芳香族ビニル-共役ジエン共重合体(b2)=30/70となるように混合し、粒子状バインダー(B)の水分散液を得たこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 8)
In the production of the particulate binder (B) in the step (3), an aqueous dispersion containing the aromatic vinyl-conjugated diene copolymer (b1) and an aqueous dispersion containing the aromatic vinyl-conjugated diene copolymer (b2) The liquid was mixed so that the aromatic vinyl-conjugated diene copolymer (b1) / aromatic vinyl-conjugated diene copolymer (b2) = 30/70 corresponding to the solid content, and the particulate binder (B The lithium ion secondary battery was manufactured in the same manner as in Example 1 except that the aqueous dispersion was obtained. Each evaluation result is shown in Table 1.
(実施例9)
 工程(5)の負極スラリー組成物の製造において、粒子状バインダー(B)の水分散液の添加量を、固形分相当で2部としたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
Example 9
In the production of the negative electrode slurry composition in the step (5), the same operation as in Example 1 was performed except that the amount of the aqueous dispersion of the particulate binder (B) was 2 parts corresponding to the solid content, A lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
(実施例10)
 工程(5)の負極スラリー組成物の製造において、水溶性ポリマー(D)を含む水溶液の添加量を、固形分相当量で0.14部となる量としたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 10)
In the production of the negative electrode slurry composition in the step (5), the addition amount of the aqueous solution containing the water-soluble polymer (D) was the same as in Example 1 except that the amount corresponding to the solid content was 0.14 parts. Then, a lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
(実施例11)
 負極活物質(A)として、人造黒鉛(比表面積:4m/g、体積平均粒子径:24.5μm)90部、及びSiOC(体積平均粒子径:10μm)10部を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 11)
Except for using 90 parts of artificial graphite (specific surface area: 4 m 2 / g, volume average particle diameter: 24.5 μm) and 10 parts of SiOC (volume average particle diameter: 10 μm) as the negative electrode active material (A), The same operation as in Example 1 was performed to manufacture a lithium ion secondary battery. Each evaluation result is shown in Table 1.
(実施例12)
 負極活物質(A)として、人造黒鉛(比表面積:4m/g、体積平均粒子径:24.5μm)100部を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
Example 12
The same operation as in Example 1 was performed except that 100 parts of artificial graphite (specific surface area: 4 m 2 / g, volume average particle diameter: 24.5 μm) was used as the negative electrode active material (A). A secondary battery was manufactured. Each evaluation result is shown in Table 1.
(実施例13)
 工程(4)の水溶性ポリマー(D)の製造において、2,2,2-トリフルオロエチルメタクリレート7.5部を1.0部とし、ブチルアクリレート60.5部を67.0部とした以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 13)
In the production of the water-soluble polymer (D) in step (4), except that 7.5 parts of 2,2,2-trifluoroethyl methacrylate is 1.0 part and 60.5 parts of butyl acrylate is 67.0 parts Performed the same operation as Example 1, and manufactured the lithium ion secondary battery. Each evaluation result is shown in Table 1.
(実施例14)
 工程(4)の水溶性ポリマー(D)の製造において、2,2,2-トリフルオロエチルメタクリレート7.5部を15.0部とし、ブチルアクリレート60.5部を53.0部とした以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 14)
In the production of the water-soluble polymer (D) in step (4), except that 7.5 parts of 2,2,2-trifluoroethyl methacrylate is 15.0 parts and 60.5 parts of butyl acrylate is 53.0 parts Performed the same operation as Example 1, and manufactured the lithium ion secondary battery. Each evaluation result is shown in Table 1.
(実施例15)
 工程(2)の芳香族ビニル-共役ジエン共重合体(b2)の製造において、t-ドデシルメルカプタン(TDM)0.25部を0.38部とした以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 15)
In the production of the aromatic vinyl-conjugated diene copolymer (b2) in the step (2), the same operation as in Example 1 was conducted except that 0.25 part of t-dodecyl mercaptan (TDM) was changed to 0.38 part. The lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
(実施例16)
 工程(2)の芳香族ビニル-共役ジエン共重合体(b2)の製造において、t-ドデシルメルカプタン(TDM)0.25部を0.19部とした以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Example 16)
In the production of the aromatic vinyl-conjugated diene copolymer (b2) in the step (2), the same operation as in Example 1 was carried out except that 0.25 part of t-dodecyl mercaptan (TDM) was changed to 0.19 part. The lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
(比較例1)
 下記の芳香族ビニル-共役ジエン共重合体(b1)および芳香族ビニル-共役ジエン共重合体(b2)を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Comparative Example 1)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) and aromatic vinyl-conjugated diene copolymer (b2) were used. Manufactured. Each evaluation result is shown in Table 1.
芳香族ビニル-共役ジエン共重合体(b1)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン48部、スチレン52部、t-ドデシルメルカプタン(TDM)0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度は-10℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b1) In a 5 MPa pressure vessel equipped with a stirrer, 48 parts of 1,3-butadiene, 52 parts of styrene, 0.3 part of t-dodecyl mercaptan (TDM), dodecylbenzenesulfone as an emulsifier 4 parts of sodium acid, 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was −10 ° C.
芳香族ビニル-共役ジエン共重合体(b2)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン23部、スチレン77部、t-ドデシルメルカプタン(TDM)0.25部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度は45℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b2) In a 5 MPa pressure vessel equipped with a stirrer, 23 parts of 1,3-butadiene, 77 parts of styrene, 0.25 part of t-dodecyl mercaptan (TDM), dodecylbenzenesulfone as an emulsifier 4 parts of sodium acid, 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 45 ° C.
(比較例2)
 芳香族ビニル-共役ジエン共重合体(b2)を用いず、芳香族ビニル-共役ジエン共重合体(b1)のみで粒子状バインダー(B)を製造したこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Comparative Example 2)
The same operation as in Example 1 except that the particulate vinyl binder (B) was produced only with the aromatic vinyl-conjugated diene copolymer (b1) without using the aromatic vinyl-conjugated diene copolymer (b2). The lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
(比較例3)
 芳香族ビニル-共役ジエン共重合体(b1)を用いず、芳香族ビニル-共役ジエン共重合体(b2)のみで粒子状バインダー(B)を製造したこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Comparative Example 3)
The same operation as in Example 1 except that the particulate vinyl binder (B) was produced only with the aromatic vinyl-conjugated diene copolymer (b2) without using the aromatic vinyl-conjugated diene copolymer (b1). The lithium ion secondary battery was manufactured. Each evaluation result is shown in Table 1.
(比較例4)
 下記の芳香族ビニル-共役ジエン共重合体(b1)を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Comparative Example 4)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b1) was used. Each evaluation result is shown in Table 1.
芳香族ビニル-共役ジエン共重合体(b1)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン29部、イタコン酸4部、スチレン67部、t-ドデシルメルカプタン(TDM)0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b1)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b1)のガラス転移温度は23℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b1) In a 5 MPa pressure vessel equipped with a stirrer, 29 parts of 1,3-butadiene, 4 parts of itaconic acid, 67 parts of styrene, 0.3 part of t-dodecyl mercaptan (TDM), 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water as an emulsifier and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b1). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b1) was 23 ° C.
(比較例5)
 下記の芳香族ビニル-共役ジエン共重合体(b2)を用いたこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Comparative Example 5)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the following aromatic vinyl-conjugated diene copolymer (b2) was used. Each evaluation result is shown in Table 1.
芳香族ビニル-共役ジエン共重合体(b2)の製造
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン27部、イタコン酸4部、スチレン69部、t-ドデシルメルカプタン(TDM)0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、重合体を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の芳香族ビニル-共役ジエン共重合体(b2)を含む水系分散液を得た。なお、芳香族ビニル-共役ジエン共重合体(b2)のガラス転移温度は27℃であった。
Production of aromatic vinyl-conjugated diene copolymer (b2) In a 5 MPa pressure vessel equipped with a stirrer, 27 parts of 1,3-butadiene, 4 parts of itaconic acid, 69 parts of styrene, 0.3 part of t-dodecyl mercaptan (TDM), 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water as an emulsifier and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing the desired aromatic vinyl-conjugated diene copolymer (b2). The glass transition temperature of the aromatic vinyl-conjugated diene copolymer (b2) was 27 ° C.
(比較例6)
 水溶性ポリマー(D)を用いなかったこと以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を製造した。各評価結果を表1に示す。
(Comparative Example 6)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the water-soluble polymer (D) was not used. Each evaluation result is shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1の結果に示すように、実施例1~16の二次電池電極を用いたリチウムイオン二次電池は、比較例1~6に比べ、各評価のバランスに優れる。
 
 
As shown in the results of Table 1, the lithium ion secondary batteries using the secondary battery electrodes of Examples 1 to 16 are excellent in the balance of each evaluation as compared with Comparative Examples 1 to 6.

Claims (7)

  1.  集電体と、前記集電体上に積層される負極活物質層とからなり、
     前記負極活物質層が、負極活物質(A)、粒子状バインダー(B)、ヒドロキシル基含有水溶性ポリマー(C)、及び、フッ素含有(メタ)アクリル酸エステル単量体単位を0.5~20質量%含む水溶性ポリマー(D)を含み、
     前記粒子状バインダー(B)が、
     ガラス転移温度が-30~20℃であり、不飽和カルボン酸単量体単位を含んでなる芳香族ビニル-共役ジエン共重合体(b1)と、
     ガラス転移温度が30~80℃であり、不飽和カルボン酸単量体単位を含んでなる芳香族ビニル-共役ジエン共重合体(b2)とを含む、
     二次電池用負極。
    A current collector, and a negative electrode active material layer laminated on the current collector,
    The negative electrode active material layer comprises a negative electrode active material (A), a particulate binder (B), a hydroxyl group-containing water-soluble polymer (C), and a fluorine-containing (meth) acrylate monomer unit of 0.5 to Including a water-soluble polymer (D) containing 20% by mass,
    The particulate binder (B) is
    An aromatic vinyl-conjugated diene copolymer (b1) having a glass transition temperature of −30 to 20 ° C. and comprising an unsaturated carboxylic acid monomer unit;
    An aromatic vinyl-conjugated diene copolymer (b2) having a glass transition temperature of 30 to 80 ° C. and comprising an unsaturated carboxylic acid monomer unit,
    Negative electrode for secondary battery.
  2.  前記負極活物質(A)が、炭素系活物質(a1)と合金系活物質(a2)とを含む請求項1に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1, wherein the negative electrode active material (A) includes a carbon-based active material (a1) and an alloy-based active material (a2).
  3.  前記炭素系活物質(a1)100質量部に対して、前記合金系活物質(a2)を1~50質量部含む請求項2に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 2, comprising 1 to 50 parts by mass of the alloy-based active material (a2) with respect to 100 parts by mass of the carbon-based active material (a1).
  4.  前記合金系活物質(a2)が、Si、SiO(x=0.01以上2未満)、又はSiOCである請求項2または3に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 2 or 3, wherein the alloy-based active material (a2) is Si, SiO x (x = 0.01 or more and less than 2), or SiOC.
  5.  前記芳香族ビニル-共役ジエン共重合体(b1)と前記芳香族ビニル-共役ジエン共重合体(b2)の含有割合が、質量比で、芳香族ビニル-共役ジエン共重合体(b1)/芳香族ビニル-共役ジエン共重合体(b2)=80/20~30/70である請求項1~4のいずれかに記載の二次電池用負極。 The aromatic vinyl-conjugated diene copolymer (b1) / aromatic vinyl-conjugated diene copolymer (b1) / aromatic vinyl-conjugated diene copolymer (b2) / aromatic vinyl-conjugated diene copolymer (b2) / aromatic The negative electrode for a secondary battery according to any one of claims 1 to 4, wherein the group vinyl-conjugated diene copolymer (b2) = 80/20 to 30/70.
  6.  前記芳香族ビニル-共役ジエン共重合体(b1)および前記芳香族ビニル-共役ジエン共重合体(b2)それぞれの、テトラヒドロフラン不溶分が70~98%である請求項1~5のいずれかに記載の二次電池用負極。 The tetrahydrofuran-insoluble content of each of the aromatic vinyl-conjugated diene copolymer (b1) and the aromatic vinyl-conjugated diene copolymer (b2) is 70 to 98%. Negative electrode for secondary battery.
  7.  正極、負極、電解液及びセパレーターを備える二次電池であって、
     前記負極が、請求項1~6のいずれかに記載の二次電池用負極である二次電池。
    A secondary battery comprising a positive electrode, a negative electrode, an electrolyte and a separator,
    A secondary battery, wherein the negative electrode is a negative electrode for a secondary battery according to any one of claims 1 to 6.
PCT/JP2013/069372 2012-07-17 2013-07-17 Negative electrode for secondary cell, and secondary cell WO2014014006A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380021459.3A CN104247110A (en) 2012-07-17 2013-07-17 Negative electrode for secondary cell, and secondary cell
JP2014525835A JP6245173B2 (en) 2012-07-17 2013-07-17 Negative electrode for secondary battery and secondary battery
KR1020147030171A KR102157157B1 (en) 2012-07-17 2013-07-17 Negative electrode for secondary cell, and secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012158315 2012-07-17
JP2012-158315 2012-07-17

Publications (1)

Publication Number Publication Date
WO2014014006A1 true WO2014014006A1 (en) 2014-01-23

Family

ID=49948832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069372 WO2014014006A1 (en) 2012-07-17 2013-07-17 Negative electrode for secondary cell, and secondary cell

Country Status (4)

Country Link
JP (1) JP6245173B2 (en)
KR (1) KR102157157B1 (en)
CN (1) CN104247110A (en)
WO (1) WO2014014006A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024383A1 (en) * 2014-08-11 2016-02-18 日本ゼオン株式会社 Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary battery, and secondary battery
JP2016066508A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016110953A (en) * 2014-12-10 2016-06-20 株式会社豊田自動織機 Graphite particle composition, manufacturing method thereof, negative electrode and power storage device
WO2016152056A1 (en) * 2015-03-24 2016-09-29 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2018173717A1 (en) 2017-03-24 2018-09-27 日本ゼオン株式会社 Binder composition for nonaqueous secondary batteries and slurry composition for nonaqueous secondary batteries
WO2019073820A1 (en) * 2017-10-10 2019-04-18 松本油脂製薬株式会社 Dispersant composition for secondary battery slurries, and use thereof
CN111448691A (en) * 2017-12-26 2020-07-24 昭和电工株式会社 Binder for nonaqueous battery electrode, slurry for nonaqueous battery electrode, and nonaqueous battery
WO2020166517A1 (en) * 2019-02-12 2020-08-20 株式会社クラレ Polymer composition, gel, film, and particles
US20230163311A1 (en) * 2019-12-25 2023-05-25 Ningde Amperex Technology Limited Electrochemical device and electronic device including same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054623B2 (en) * 2015-09-28 2022-04-14 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
US10593948B2 (en) * 2015-09-30 2020-03-17 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7003936B2 (en) * 2016-12-28 2022-01-21 日本ゼオン株式会社 Non-aqueous secondary battery negative electrode slurry composition and its manufacturing method, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JP7095683B2 (en) * 2017-03-28 2022-07-05 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode and non-aqueous secondary battery, and method for manufacturing non-aqueous secondary battery electrode.
US11575133B2 (en) 2019-04-26 2023-02-07 Samsung Sdi Co., Ltd. Binder for non-aqueous electrolyte rechargeable battery, negative electrode slurry for rechargeable battery including the same, negative electrode for rechargeable battery including the same, and rechargeable battery including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JP2000067871A (en) * 1998-06-09 2000-03-03 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using it
JP2003151556A (en) * 2001-11-08 2003-05-23 Dainippon Printing Co Ltd Coating composite for negative electrode, negative- electrode board, its manufacturing method, and non- aqueous electrolyte secondary battery
JP2010040228A (en) * 2008-08-01 2010-02-18 Jsr Corp Binder composition for energy device electrode, slurry for the energy device electrode, energy device electrode, and manufacturing method therefor
WO2010113940A1 (en) * 2009-03-30 2010-10-07 Jsr株式会社 Composition for electrochemical-device electrode binder, electrode slurry for electrochemical device, and electrode for electrochemical device
JP2011108373A (en) * 2009-11-12 2011-06-02 Nippon A&L Inc Binder for battery electrode
JP2012129536A (en) * 2005-05-26 2012-07-05 Nippon Zeon Co Ltd Electrochemical element electrode material and composite particle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4025995B2 (en) 2002-11-26 2007-12-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery
EP1597783A2 (en) * 2003-02-19 2005-11-23 Phoenix Innovations, Inc. An improved lithium battery electrode
KR100491026B1 (en) * 2003-03-05 2005-05-24 주식회사 엘지화학 The cell property, adhesive property and coating property-controlled binder for lithium secondary battery with 2 or more phases
CN101652884B (en) * 2007-03-30 2013-05-15 日本瑞翁株式会社 Binder for secondary battery electrode, secondary battery electrode, and secondary battery
WO2011037142A1 (en) * 2009-09-25 2011-03-31 日本ゼオン株式会社 Anode for use in a lithium-ion secondary battery, and lithium-ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JP2000067871A (en) * 1998-06-09 2000-03-03 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using it
JP2003151556A (en) * 2001-11-08 2003-05-23 Dainippon Printing Co Ltd Coating composite for negative electrode, negative- electrode board, its manufacturing method, and non- aqueous electrolyte secondary battery
JP2012129536A (en) * 2005-05-26 2012-07-05 Nippon Zeon Co Ltd Electrochemical element electrode material and composite particle
JP2010040228A (en) * 2008-08-01 2010-02-18 Jsr Corp Binder composition for energy device electrode, slurry for the energy device electrode, energy device electrode, and manufacturing method therefor
WO2010113940A1 (en) * 2009-03-30 2010-10-07 Jsr株式会社 Composition for electrochemical-device electrode binder, electrode slurry for electrochemical device, and electrode for electrochemical device
JP2011108373A (en) * 2009-11-12 2011-06-02 Nippon A&L Inc Binder for battery electrode

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024383A1 (en) * 2014-08-11 2016-02-18 日本ゼオン株式会社 Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary battery, and secondary battery
CN106575770A (en) * 2014-08-11 2017-04-19 日本瑞翁株式会社 Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary battery, and secondary battery
CN106575770B (en) * 2014-08-11 2020-07-31 日本瑞翁株式会社 Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP2016066508A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016110953A (en) * 2014-12-10 2016-06-20 株式会社豊田自動織機 Graphite particle composition, manufacturing method thereof, negative electrode and power storage device
WO2016152056A1 (en) * 2015-03-24 2016-09-29 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JPWO2016152056A1 (en) * 2015-03-24 2018-01-11 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR20190125986A (en) 2017-03-24 2019-11-07 니폰 제온 가부시키가이샤 Binder Composition for Non-aqueous Secondary Battery and Slurry Composition for Non-aqueous Secondary Battery
WO2018173717A1 (en) 2017-03-24 2018-09-27 日本ゼオン株式会社 Binder composition for nonaqueous secondary batteries and slurry composition for nonaqueous secondary batteries
US11532817B2 (en) 2017-03-24 2022-12-20 Zeon Corporation Binder composition for nonaqueous secondary batteries and slurry composition for nonaqueous secondary batteries
WO2019073820A1 (en) * 2017-10-10 2019-04-18 松本油脂製薬株式会社 Dispersant composition for secondary battery slurries, and use thereof
JPWO2019073820A1 (en) * 2017-10-10 2020-05-28 松本油脂製薬株式会社 Dispersant composition for secondary battery slurry and use thereof
CN111448691A (en) * 2017-12-26 2020-07-24 昭和电工株式会社 Binder for nonaqueous battery electrode, slurry for nonaqueous battery electrode, and nonaqueous battery
US11764359B2 (en) 2017-12-26 2023-09-19 Resonac Corporation Binder including copolymer of styrene, (meth)acrylate, and surfactant having unsaturated bond, slurry having the same, nonaqueous battery electrode using the same, and nonaqueous battery using the same
WO2020166517A1 (en) * 2019-02-12 2020-08-20 株式会社クラレ Polymer composition, gel, film, and particles
US20230163311A1 (en) * 2019-12-25 2023-05-25 Ningde Amperex Technology Limited Electrochemical device and electronic device including same

Also Published As

Publication number Publication date
JPWO2014014006A1 (en) 2016-07-07
KR102157157B1 (en) 2020-09-17
CN104247110A (en) 2014-12-24
KR20150035515A (en) 2015-04-06
JP6245173B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6245173B2 (en) Negative electrode for secondary battery and secondary battery
JP6119750B2 (en) Negative electrode slurry composition, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6201989B2 (en) Negative electrode slurry composition, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP5673545B2 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
EP2953193B1 (en) Slurry for lithium ion secondary battery positive electrodes
JP5861845B2 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP6168051B2 (en) Lithium ion secondary battery
KR102184050B1 (en) Lithium ion secondary battery
WO2011096463A1 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP6168059B2 (en) Slurry composition for negative electrode of lithium ion secondary battery
US10529989B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2012026462A1 (en) Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, secondary battery negative electrode, secondary battery, and method for producing binder composition for secondary battery negative electrode
JP6111895B2 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for secondary battery and secondary battery
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
JP6115468B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525835

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147030171

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820010

Country of ref document: EP

Kind code of ref document: A1