JP2010040228A - Binder composition for energy device electrode, slurry for the energy device electrode, energy device electrode, and manufacturing method therefor - Google Patents

Binder composition for energy device electrode, slurry for the energy device electrode, energy device electrode, and manufacturing method therefor Download PDF

Info

Publication number
JP2010040228A
JP2010040228A JP2008199243A JP2008199243A JP2010040228A JP 2010040228 A JP2010040228 A JP 2010040228A JP 2008199243 A JP2008199243 A JP 2008199243A JP 2008199243 A JP2008199243 A JP 2008199243A JP 2010040228 A JP2010040228 A JP 2010040228A
Authority
JP
Japan
Prior art keywords
energy device
device electrode
polymer latex
slurry
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008199243A
Other languages
Japanese (ja)
Other versions
JP5282474B2 (en
Inventor
Kana Takei
香奈 武井
Tatsuro Honda
達朗 本多
Kazutoshi Ito
一聡 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2008199243A priority Critical patent/JP5282474B2/en
Publication of JP2010040228A publication Critical patent/JP2010040228A/en
Application granted granted Critical
Publication of JP5282474B2 publication Critical patent/JP5282474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a binder composition for an energy device electrode, which has high adhesiveness to a collector and can form an electrode layer excellent in press workability; a slurry for an energy device electrode; and an energy device electrode that can be obtained using the slurry. <P>SOLUTION: The binder composition for the energy device electrode contains a polymer latex containing 70% or more toluene gel. The number-based particle size distribution of the polymer latex as measured by laser diffractometry has peaks in the range of 80-120 nm and in the range of 150-280 nm, and has peaks indicating glass transition temperatures in the range of 5 to 50°C and in the range of -50 to 0°C when measured using a differential scanning calorimeter. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二次電池、電気二重層キャパシタ、リチウムイオンキャパシタなどのエネルギーデバイスの電極を得るためのバインダー組成物、このバインダー組成物を含有するエネルギーデバイス電極用スラリー、並びにこのスラリーを用いて得られるエネルギーデバイス電極およびその製造方法に関する。   The present invention provides a binder composition for obtaining an electrode of an energy device such as a secondary battery, an electric double layer capacitor, or a lithium ion capacitor, a slurry for an energy device electrode containing the binder composition, and a slurry obtained using the slurry. The present invention relates to an energy device electrode and a manufacturing method thereof.

近年、電子機器の小型化・軽量化の進歩は目覚しく、それに伴い、当該電子機器の駆動用電源として用いられる電池に対しても小型化・軽量化の要求が一層高まっている。このような小型化・軽量化の要求を満足するために、従来種々の二次電池が開発されており、例えばニッケル水素二次電池、リチウムイオン二次電池等が実用化されている。
而して、これらの二次電池を構成する電極を製造する方法としては、水素吸蔵合金や黒鉛等の活物質と、カルボキシメチルセルロース等の増粘剤と、スチレン−ブタジエン共重合体ラテックス等のバインダーとが水に分散されてなるペーストまたはスラリーを、集電体の表面に塗布して乾燥し、得られる塗膜をプレス加工することにより、電極層を形成する方法等が知られている(例えば特許文献1および特許文献2等参照。)。
ここで、バインダーは、活物質を結着する機能の他に、活物質を含む電極層と集電体との密着性を向上させる機能を有するものである。
2. Description of the Related Art In recent years, progress in downsizing and weight reduction of electronic devices has been remarkable, and accordingly, demands for downsizing and weight reduction of batteries used as power sources for driving the electronic devices have further increased. In order to satisfy such demands for reduction in size and weight, various secondary batteries have been developed in the past, such as nickel metal hydride secondary batteries and lithium ion secondary batteries.
Thus, as a method of manufacturing the electrodes constituting these secondary batteries, active materials such as hydrogen storage alloys and graphite, thickeners such as carboxymethylcellulose, and binders such as styrene-butadiene copolymer latex are used. A method of forming an electrode layer by applying a paste or slurry in which water is dispersed in water to the surface of a current collector and drying, and pressing the resulting coating film is known (for example, (See Patent Literature 1 and Patent Literature 2).
Here, in addition to the function of binding the active material, the binder has a function of improving the adhesion between the electrode layer containing the active material and the current collector.

しかしながら、密着性を向上させるためにバインダーとして粘着性の高い材料を用いると、得られる電極層において、バインダーのマイグレーションが生じることにより、当該電極層の表面がベタつき、プレス加工性が低下する、という問題ある。一方、電極層と集電体との密着性が十分ではない電極を用いた二次電池では、充放電サイクル特性をはじめとする電池特性の向上を図ることができないという問題がある。
また、異なる組成のペーストを用いて複数の電極層が積層されてなる電極を形成する方法が知られているが(例えば特許文献3および特許文献4参照。)、このような方法では、塗工工程が煩雑になるという欠点がある。
However, when a highly adhesive material is used as a binder to improve adhesion, the resulting electrode layer has a migration of the binder, resulting in a sticky surface of the electrode layer and reduced press workability. There is a problem. On the other hand, in a secondary battery using an electrode in which the adhesion between the electrode layer and the current collector is not sufficient, there is a problem that battery characteristics such as charge / discharge cycle characteristics cannot be improved.
In addition, there is known a method of forming an electrode in which a plurality of electrode layers are laminated using pastes having different compositions (see, for example, Patent Document 3 and Patent Document 4). There is a drawback that the process becomes complicated.

特開平11−7948号公報Japanese Patent Laid-Open No. 11-7948 特開2001−210318号公報Japanese Patent Laid-Open No. 2001-210318 特開平9−134718号公報JP-A-9-134718 特開2004−127590号公報JP 2004-127590 A

本発明は、以上のような事情に基づいてなされたものであって、その目的は、集電体に対する密着性が高く、しかも、プレス加工性に優れた電極層を形成することができるエネルギーデバイス電極用バインダー組成物、エネルギーデバイス電極用スラリー、並びにこのスラリーを用いて得られるエネルギーデバイス電極およびその製造方法を提供することにある。   The present invention has been made based on the circumstances as described above, and an object thereof is an energy device that can form an electrode layer having high adhesion to a current collector and excellent in press workability. It is providing the binder composition for electrodes, the slurry for energy device electrodes, the energy device electrode obtained using this slurry, and its manufacturing method.

本発明のエネルギーデバイス電極用バインダー組成物は、トルエンゲル含有量が70%以上の重合体ラテックスを含有してなり、
前記重合体ラテックスは、レーザー回折法により測定された個数基準の粒子径分布が、80〜120nmの範囲内および150〜280nmの範囲内の各々にピークを有するものであり、かつ、示差走査熱量計を用いて測定したときに、5〜50℃の範囲内および−50℃〜0℃の範囲内の各々に、ガラス転移温度を示すピークを有するものであることを特徴とする。
The binder composition for an energy device electrode of the present invention comprises a polymer latex having a toluene gel content of 70% or more,
The polymer latex has a number-based particle size distribution measured by a laser diffraction method having a peak in each of 80 to 120 nm and 150 to 280 nm, and a differential scanning calorimeter. It has a peak showing a glass transition temperature in each of the range of 5 to 50 ° C. and the range of −50 to 0 ° C.

本発明のエネルギーデバイス電極用バインダー組成物は、数平均粒子径が80〜120nm、ガラス転移温度が5〜50℃、かつトルエンゲル含有量が70%以上の重合体ラテックス(a)と、
数平均粒子径が150〜280nm、ガラス転移温度が−50℃〜0℃、かつトルエンゲル含有量が70%以上の重合体ラテックス(b)と
を含有してなることを特徴とする。
The binder composition for energy device electrodes of the present invention has a polymer latex (a) having a number average particle size of 80 to 120 nm, a glass transition temperature of 5 to 50 ° C., and a toluene gel content of 70% or more,
It is characterized by comprising a polymer latex (b) having a number average particle size of 150 to 280 nm, a glass transition temperature of −50 ° C. to 0 ° C., and a toluene gel content of 70% or more.

本発明のエネルギーデバイス電極用バインダー組成物においては、重合体ラテックス(a)および重合体ラテックス(b)の各々は、芳香族ビニル化合物よりなる単量体(I)、脂肪族共役ジエン系化合物よりなる単量体(II)、エチレン系不飽和カルボン酸よりなる単量体(III )、およびこれらと共重合可能な他のビニル系化合物よりなる単量体(IV)を乳化重合して得られる共重合体よりなることが好ましい。
また、重合体ラテックス(a)を得るための単量体(I)として、(メタ)アクリロニ
トリルを全単量体の10質量%以上含有することが好ましい。
In the binder composition for an energy device electrode of the present invention, each of the polymer latex (a) and the polymer latex (b) is composed of a monomer (I) composed of an aromatic vinyl compound and an aliphatic conjugated diene compound. Obtained by emulsion polymerization of a monomer (II) comprising an ethylenically unsaturated carboxylic acid (III) and a monomer (IV) comprising another vinyl compound copolymerizable therewith. It is preferably made of a copolymer.
Moreover, it is preferable to contain (mass) acrylonitrile 10 mass% or more of all the monomers as monomer (I) for obtaining polymer latex (a).

本発明のエネルギーデバイス電極用スラリーは、上記のエネルギーデバイス電極用バインダー組成物と、
電極活物質と
を含有してなることを特徴とする。
The slurry for energy device electrodes of the present invention comprises the above-mentioned binder composition for energy device electrodes,
It is characterized by containing an electrode active material.

本発明のエネルギーデバイス電極用スラリーにおいては、電極活物質100質量部に対して、エネルギーデバイス電極用バインダー組成物における固形分が0.1〜10質量部の割合で含有されてなることが好ましい。   In the slurry for energy device electrodes of this invention, it is preferable that solid content in the binder composition for energy device electrodes is contained in the ratio of 0.1-10 mass parts with respect to 100 mass parts of electrode active materials.

本発明のエネルギーデバイス電極は、集電体と、
この集電体の表面上に、上記の二次電池電極用スラリーが塗布および乾燥されて形成された電極層と
を具えてなることを特徴とする。
The energy device electrode of the present invention comprises a current collector,
An electrode layer formed by applying and drying the slurry for a secondary battery electrode on the surface of the current collector is provided.

本発明のエネルギーデバイス電極の製造方法は、集電材の表面上に、上記のエネルギーデバイス電極用スラリーを塗布し、乾燥する工程を有することを特徴とする。   The manufacturing method of the energy device electrode of this invention has the process of apply | coating the slurry for said energy device electrodes on the surface of a current collection material, and drying.

本発明のエネルギーデバイス電極用バインダー組成物によれば、重合体ラテックス(a)は、重合体ラテックス(b)に比較して、分散粒子の粒子径が小さく、マイグレーションが生じやすいため、得られる電極層は、その表面側において重合体ラテックス(a)によるバインダーの含有量が高くなり、集電体との界面側において重合体ラテックス(b)によるバインダーの含有量が高くなる。
しかも、重合体ラテックス(a)は、重合体のガラス転移温度が高いため、乾燥後のベタつきが小さく、また、重合体ラテックス(b)は、重合体のガラス転移温度が低いため、高い結着性を有する。
従って、集電体に対する密着性が高く、しかも、プレス加工性に優れた電極層を形成することができる。
According to the binder composition for an energy device electrode of the present invention, the polymer latex (a) has a smaller particle diameter of the dispersed particles than the polymer latex (b), and migration easily occurs. The layer has a high binder content due to the polymer latex (a) on the surface side, and a high binder content due to the polymer latex (b) on the interface side with the current collector.
Moreover, since the polymer latex (a) has a high glass transition temperature of the polymer, the stickiness after drying is small, and the polymer latex (b) has a high binding due to the low glass transition temperature of the polymer. Have sex.
Accordingly, it is possible to form an electrode layer having high adhesion to the current collector and excellent in press workability.

以下、本発明の実施の形態について詳細に説明する。
本発明のエネルギーデバイス電極用バインダー組成物(以下、「バインダー組成物」という。)は、重合体ラテックス(a)および重合体ラテックス(b)を含有してなるものである。
重合体ラテックス(a)は、分散粒子の数平均粒子径が60〜140nm、好ましくは80〜120nm、ガラス転移温度が5〜50℃、好ましくは10〜30℃、トルエンゲル含有量が70%以上、好ましくは85%以上のものである。
また、重合体ラテックス(b)は、分散粒子の数平均粒子径が150〜280nm、好ましくは180〜260nm、ガラス転移温度が−50℃〜0℃、好ましくは−30〜−5℃、かつトルエンゲル含有量が70%以上、好ましくは85%以上ののものである。
ここで、「トルエンゲル含有量」とは、重合体ラテックス中の固形分全体の質量に対する当該固形分のうちトルエンに不溶なものの質量の割合を百分率で示した値をいう。
Hereinafter, embodiments of the present invention will be described in detail.
The binder composition for energy device electrodes of the present invention (hereinafter referred to as “binder composition”) comprises a polymer latex (a) and a polymer latex (b).
The polymer latex (a) has a number average particle size of dispersed particles of 60 to 140 nm, preferably 80 to 120 nm, a glass transition temperature of 5 to 50 ° C., preferably 10 to 30 ° C., and a toluene gel content of 70% or more. , Preferably 85% or more.
The polymer latex (b) has a number average particle size of dispersed particles of 150 to 280 nm, preferably 180 to 260 nm, a glass transition temperature of −50 ° C. to 0 ° C., preferably −30 to −5 ° C., and toluene. The gel content is 70% or more, preferably 85% or more.
Here, the “toluene gel content” refers to a value indicating the percentage of the mass of the solid content insoluble in toluene with respect to the mass of the entire solid content in the polymer latex.

重合体ラテックス(a)において、分散粒子の粒子径が80nm未満である場合には、形成される電極層と集電体との良好な密着性が得られなくなる傾向にある。一方、分散粒子の粒子径が120nmを超える場合には、当該重合体ラテックス(a)によるバインダーが、形成される電極層における表面側に偏在しにくくなるため、電極層のプレス加工性が悪くなる。
また、ガラス転移温度が5℃未満である場合には、形成される電極層の表面がベタつき、プレス加工の際にはプレス板の表面に電極層が貼り付きやすくなるため、電極層のプレス加工性が悪くなる。一方、ガラス転移温度が50℃を超える場合には、形成される電極層と集電体との良好な密着性が得られなくなる傾向にある。
また、トルエンゲル含有量が70%未満である場合には、形成される電極層は、リチウムイオン二次電池などのエネルギーデバイス中の電解液に溶解しやすいため、過電圧が上昇して電池特性に影響を及ぼす傾向にある。
In the polymer latex (a), when the particle diameter of the dispersed particles is less than 80 nm, good adhesion between the formed electrode layer and the current collector tends not to be obtained. On the other hand, when the particle diameter of the dispersed particles exceeds 120 nm, the binder due to the polymer latex (a) is less likely to be unevenly distributed on the surface side of the electrode layer to be formed, so that the press workability of the electrode layer is deteriorated. .
In addition, when the glass transition temperature is less than 5 ° C., the surface of the electrode layer to be formed is sticky, and the electrode layer is likely to stick to the surface of the press plate at the time of pressing. Sexuality gets worse. On the other hand, when the glass transition temperature exceeds 50 ° C., there is a tendency that good adhesion between the formed electrode layer and the current collector cannot be obtained.
In addition, when the content of toluene gel is less than 70%, the formed electrode layer is easily dissolved in an electrolyte solution in an energy device such as a lithium ion secondary battery. Tend to influence.

重合体ラテックス(b)において、分散粒子の粒子径が150nm未満である場合には、当該重合体ラテックス(b)によるバインダーは、マイグレーションの影響により電極層の表面に偏在しやすくなり、当該バインダーがガラス転移温度が低いものであるため、電極層のプレス加工性が悪くなる。一方、分散粒子の粒子径が280nmを超える場合には、ラテックスの分散粒子の表面積が小さいため、形成される電極層と集電体との良好な密着性が得られなくなる傾向にある。
また、ガラス転移温度が−50℃未満である重合体ラテックスは、後述する単量体から得られる重合体のガラス転移温度を考慮すると、合成すること自体が困難である。一方、ガラス転移温度が0℃を超える場合には、形成される電極層と集電体との良好な密着性が得られなくなる傾向にある。
また、トルエンゲル含有量が70%未満である場合には、形成される電極層は、リチウムイオン二次電池などのエネルギーデバイス中の電解液に溶解しやすいため、過電圧が上昇して電池特性に影響を及ぼす傾向にある。
In the polymer latex (b), when the particle size of the dispersed particles is less than 150 nm, the binder due to the polymer latex (b) tends to be unevenly distributed on the surface of the electrode layer due to the influence of migration. Since the glass transition temperature is low, the press workability of the electrode layer is deteriorated. On the other hand, when the particle diameter of the dispersed particles exceeds 280 nm, the surface area of the dispersed particles of the latex is small, so that good adhesion between the formed electrode layer and the current collector tends not to be obtained.
Moreover, it is difficult to synthesize a polymer latex having a glass transition temperature of less than −50 ° C. in consideration of the glass transition temperature of a polymer obtained from a monomer described later. On the other hand, when the glass transition temperature exceeds 0 ° C., good adhesion between the formed electrode layer and the current collector tends not to be obtained.
In addition, when the content of toluene gel is less than 70%, the formed electrode layer is easily dissolved in an electrolyte solution in an energy device such as a lithium ion secondary battery. Tend to influence.

重合体ラテックス(a)および重合体ラテックス(b)の各々における固形分濃度は、30〜60質量%であることが好ましく、より好ましくは40〜50質量%である。
また、重合体ラテックス(a)と重合体ラテックス(b)との割合は、固形分の質量比で1:1〜1:4であることが好ましく、より好ましくは1:2〜1:3である。重合体ラテックス(a)の割合が過小である場合には、形成される電極層における表面側にラテックス(b)によるバインダーの含有量が多くなるため、電極層のプレス加工性が悪くなることがある。一方、重合体ラテックス(b)の割合が過小である場合には、形成される電極層における集電体との界面側にラテックス(a)によるバインダーの含有量が多くなるため、電極層と集電体との密着性が著しく低下することがある。
The solid concentration in each of the polymer latex (a) and the polymer latex (b) is preferably 30 to 60% by mass, and more preferably 40 to 50% by mass.
Further, the ratio of the polymer latex (a) to the polymer latex (b) is preferably 1: 1 to 1: 4, more preferably 1: 2 to 1: 3, in terms of the solid mass ratio. is there. When the ratio of the polymer latex (a) is too small, the content of the binder due to the latex (b) is increased on the surface side of the electrode layer to be formed, so that the press workability of the electrode layer is deteriorated. is there. On the other hand, when the ratio of the polymer latex (b) is too small, the binder content of the latex (a) increases on the interface side with the current collector in the electrode layer to be formed. Adhesiveness with an electric body may be significantly reduced.

重合体ラテックス(a)および重合体ラテックス(b)(以下、両者を総称して「重合体ラテックス」という。)の各々は、芳香族ビニル化合物よりなる単量体(I)、脂肪族共役ジエン系化合物よりなる単量体(II)、エチレン系不飽和カルボン酸よりなる単量体(III )、およびこれらと共重合可能な他のビニル系化合物よりなる単量体(IV)を含有してなる単量体組成物を乳化重合して得られる共重合体よりなることが好ましい。   Each of polymer latex (a) and polymer latex (b) (hereinafter collectively referred to as “polymer latex”) includes monomer (I) composed of an aromatic vinyl compound, aliphatic conjugated diene. A monomer (II) made of an ethylene-based compound, a monomer (III) made of an ethylenically unsaturated carboxylic acid, and a monomer (IV) made of another vinyl compound copolymerizable therewith It is preferable to consist of the copolymer obtained by emulsion-polymerizing the monomer composition which becomes.

単量体(I)を構成する芳香族ビニル化合物の具体例としては、スチレン、スチレンスルホン酸ナトリウム、α- メチルスチレン、p- メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼンなどが挙げられ、これらの中では、スチレンが好ましい。 単量体(II)を構成する脂肪族共役ジエン系化合物の具体例としては、ブタジエン、イソプレン、2−クロロ−1、3−ブタジエン、クロロプレンなどが挙げられ、これらの中では、ブタジエンが好ましい。
単量体(III )を構成するエチレン系不飽和カルボン酸としては、アクリル酸、イタコン酸、フマル酸、マレイン酸などが挙げられ、これらの中では、アクリル酸、イタコン酸が好ましい。
単量体(IV)を構成する化合物としては、アクリロニトリル、(メタ)アクリル酸メチル、アクリル酸−2−エチルヘキシル、ブチルアクリレート、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸エチレングリコールなどが挙げられ、これらの中では、アクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチルが好ましい。
Specific examples of the aromatic vinyl compound constituting the monomer (I) include styrene, sodium styrenesulfonate, α-methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene, and the like. Of these, styrene is preferred. Specific examples of the aliphatic conjugated diene compound constituting the monomer (II) include butadiene, isoprene, 2-chloro-1,3-butadiene, chloroprene and the like. Among these, butadiene is preferable.
Examples of the ethylenically unsaturated carboxylic acid constituting the monomer (III) include acrylic acid, itaconic acid, fumaric acid and maleic acid. Among these, acrylic acid and itaconic acid are preferred.
The compounds constituting the monomer (IV) include acrylonitrile, methyl (meth) acrylate, 2-ethylhexyl acrylate, butyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylic. N-propyl acid, i-propyl (meth) acrylate, decyl (meth) acrylate, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, ethylene glycol (meth) acrylate, and the like. Of these, acrylonitrile, methyl (meth) acrylate, and butyl (meth) acrylate are preferred.

重合体ラテックス(a)を得るための単量体組成物においては、全単量体中、単量体(I)が20〜50質量%、単量体(II)が15〜35質量%、単量体(III )が2〜6質量%、単量体(IV)が1〜20質量%の割合で含有されていることが好ましく、特に、単量体(IV)としてアクリロニトリルが10質量%以上含有されていることが好ましい。
また、重合体ラテックス(b)を得るための単量体組成物においては、全単量体中、単量体(I)が15〜35質量%、単量体(II)が30〜60質量%、単量体(III )が2〜6質量%、単量体(IV)が1〜20質量%の割合で含有されていることが好ましい。
In the monomer composition for obtaining the polymer latex (a), in all monomers, the monomer (I) is 20 to 50% by mass, the monomer (II) is 15 to 35% by mass, It is preferable that the monomer (III) is contained in a proportion of 2 to 6% by mass and the monomer (IV) is contained in a proportion of 1 to 20% by mass. In particular, the monomer (IV) is 10% by mass of acrylonitrile. It is preferable that it is contained above.
Further, in the monomer composition for obtaining the polymer latex (b), the monomer (I) is 15 to 35% by mass and the monomer (II) is 30 to 60% by mass in all monomers. %, Monomer (III) is preferably contained in a proportion of 2 to 6% by mass, and monomer (IV) is preferably contained in a proportion of 1 to 20% by mass.

重合体ラテックス(a)および重合体ラテックス(b)において、上記の範囲のガラス転移温度を有する共重合体を得るためには、用いられる単量体の種類や割合を調整すればよい。
例えば、単量体(I)としてスチレン、単量体(IV)として、アクリロニトリル、メタクリル酸メチル等を選択し、或いはこれらの単量体を高い割合で使用することにより、高いガラス転移温度を得ることができる。また、単量体(IV)としてアクリル酸−2−エチルヘキシル、ブチルアクリレート等を選択し、或いはこれらの単量体(IV)や単量体(II)を高い割合で使用することにより、低いガラス転移温度を得ることができる。
In the polymer latex (a) and the polymer latex (b), in order to obtain a copolymer having a glass transition temperature in the above range, the type and ratio of the monomer used may be adjusted.
For example, styrene is selected as the monomer (I), acrylonitrile, methyl methacrylate, etc. are selected as the monomer (IV), or a high ratio of these monomers is used to obtain a high glass transition temperature. be able to. Further, by selecting 2-ethylhexyl acrylate, butyl acrylate or the like as the monomer (IV), or by using these monomers (IV) or monomers (II) in a high ratio, a low glass A transition temperature can be obtained.

重合体ラテックス(a)および重合体ラテックス(b)において、上記の範囲の数平均粒子径を有する分散粒子を得るためには、乳化重合の際に、乳化剤の使用量を調整したり、電解質を添加したり、或いは官能基を有する単量体の量を調整したりすればよい。
例えば乳化剤の使用量が多い場合には、数平均粒子径が小さい分散粒子を得ることができ、乳化剤の使用量が少ない場合には、数平均粒子径が小さい分散粒子を得ることができる。
In the polymer latex (a) and the polymer latex (b), in order to obtain dispersed particles having a number average particle diameter in the above range, the amount of emulsifier used may be adjusted during the emulsion polymerization, or the electrolyte may be used. What is necessary is just to add or to adjust the quantity of the monomer which has a functional group.
For example, when the amount of emulsifier used is large, dispersed particles having a small number average particle size can be obtained, and when the amount of emulsifier used is small, dispersed particles having a small number average particle size can be obtained.

本発明のバインダー組成物は、上記の重合体ラテックス(a)および重合体ラテックス(b)を含有してなるものであるが、このようなバインダー組成物は、レーザー回折法により測定された個数基準の粒子径分布が、80〜120nmの範囲内および150〜280nmの範囲内の各々にピークを有するものであり、かつ、示差走査熱量計を用いて測定したときに、5〜50℃の範囲内および−50℃〜0℃の範囲内の各々に、ガラス転移温度を示すピークを有するものである。   The binder composition of the present invention contains the polymer latex (a) and the polymer latex (b) described above. Such a binder composition is based on the number measured by a laser diffraction method. The particle size distribution of each particle has a peak in the range of 80 to 120 nm and in the range of 150 to 280 nm, and when measured using a differential scanning calorimeter, And each having a glass transition temperature in the range of −50 ° C. to 0 ° C.

上記のバインダー組成物によれば、重合体ラテックス(a)は、重合体ラテックス(b)に比較して、分散粒子の粒子径が小さく、マイグレーションが生じやすいため、得られる電極層は、その表面側において重合体ラテックス(a)によるバインダーの含有量が高くなり、集電体との界面側において重合体ラテックス(b)によるバインダーの含有量が高くなる。
しかも、重合体ラテックス(a)は、重合体のガラス転移温度が高いため、乾燥後のベタつきが小さく、また、重合体ラテックス(b)は、重合体のガラス転移温度が低いため、高い結着性を有する。
従って、集電体に対する密着性が高く、しかも、プレス加工性に優れた電極層を有するエネルギーデバイス電極が得られる。
According to the above binder composition, the polymer latex (a) has a smaller particle diameter of the dispersed particles and is more likely to migrate as compared to the polymer latex (b). On the side, the content of the binder due to the polymer latex (a) increases, and on the side of the interface with the current collector, the content of the binder due to the polymer latex (b) increases.
Moreover, since the polymer latex (a) has a high glass transition temperature of the polymer, the stickiness after drying is small, and the polymer latex (b) has a high binding due to the low glass transition temperature of the polymer. Have sex.
Therefore, an energy device electrode having an electrode layer having high adhesion to the current collector and excellent in press workability can be obtained.

本発明のエネルギーデバイス電極用スラリー(以下、「電極用スラリー」という。)は、上記の電極用バインダー組成物と、電極活物質とよりなるものである。
電極活物質は、特に限定されるものではないが、リチウムイオン二次電池電極に用いる場合には、負極用として、カーボン、例えばフェノール樹脂、ポリアクリロニトリル、セルロース等の有機高分子化合物を焼成することにより得られる炭素材料、コークスやピッチを焼成することにより得られる炭素材料、人造グラファイト、天然グラファイトなどを用いることができ、また、電気二重層キャパシタ電極に用いる場合には、活性炭、活性炭繊維、シリカ、アルミナなどを用いることができ、また、リチウムイオンキャパシタ電極に用いる場合には、黒鉛、難黒鉛化炭素、ハードカーボン、コークスなとの炭素材料や、ポリアセン系有機半導体(PAS)などを用いることができる。
また、本発明の電極用スラリーにおいては、増粘剤、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ポリアクリル酸ソーダなどの分散剤、ラテックスの安定化剤としてのノニオン性またはアニオン性界面活性剤、消泡剤などの添加剤が含有されていてもよい。
The slurry for an energy device electrode of the present invention (hereinafter referred to as “electrode slurry”) comprises the above-mentioned electrode binder composition and an electrode active material.
The electrode active material is not particularly limited, but when used for a lithium ion secondary battery electrode, an organic polymer compound such as carbon, for example, phenol resin, polyacrylonitrile, cellulose, etc. is fired for the negative electrode. Can be used, carbon materials obtained by firing coke or pitch, artificial graphite, natural graphite, etc., and when used for electric double layer capacitor electrodes, activated carbon, activated carbon fiber, silica Alumina, etc. can be used, and when used for lithium ion capacitor electrodes, carbon materials such as graphite, non-graphitizable carbon, hard carbon, coke, polyacene organic semiconductor (PAS), etc. should be used. Can do.
Further, in the electrode slurry of the present invention, thickeners, dispersants such as sodium hexametaphosphate, sodium tripolyphosphate, sodium polyacrylate, nonionic or anionic surfactants as latex stabilizers, antifoaming An additive such as an agent may be contained.

本発明の電極用スラリーにおいては、電極活物質100質量部に対して、バインダー組成物における固形分が0.1〜10質量部の割合で含有されていることが好ましく、より好ましくは0.3〜4質量部である。バインダー組成物の固形分の割合が過小である場合には、良好な密着性が得られなくなる傾向にある。一方、バインダー組成物の固形分の割合が過大である場合には、過電圧が上昇して電池特性に影響を及ぼす傾向にある。   In the slurry for electrodes of the present invention, the solid content in the binder composition is preferably contained in a proportion of 0.1 to 10 parts by mass, more preferably 0.3 to 100 parts by mass of the electrode active material. -4 parts by mass. When the ratio of the solid content of the binder composition is too small, good adhesion tends to be not obtained. On the other hand, when the ratio of the solid content of the binder composition is excessive, the overvoltage tends to increase and affect the battery characteristics.

本発明の電極用スラリーは、バインダー組成物と、電極活物質と、必要に応じて用いられる添加剤とを、例えば攪拌機、脱泡機、ビーズミル、高圧ホモジナイザーなどによって混合することにより、調製することができる。
また、電極用スラリーの調製においては、減圧下で行うことができ、これにより、得られる電極層内に気泡が生じることを防止することができる。
The electrode slurry of the present invention is prepared by mixing the binder composition, the electrode active material, and additives used as necessary, for example, with a stirrer, a defoamer, a bead mill, a high-pressure homogenizer, or the like. Can do.
In addition, the preparation of the electrode slurry can be performed under reduced pressure, thereby preventing bubbles from being generated in the obtained electrode layer.

本発明においては、上記の電極用スラリーを集電体の表面に塗布して乾燥処理し、得られる塗膜をプレス加工することにより、当該集電体の表面に電極層が形成され、以て、エネルギーデバイス電極が得られる。
集電体としては、金属箔、エッチング金属箔、エキスパンドメタルなどからなるもの用いることができ、集電体を構成する材料としては、アルミニウム、銅、ニッケル、タンタル、ステンレス、チタンなどの金属材料から目的とするエネルギーデバイスの種類に応じて適宜選択して用いることができる。また、集電体の厚みは、例えばリチウム二次電池用の電極を構成する場合には、5〜30μm、好ましくは8〜25μmであり、例えば電気二重層キャパシタ用の電極を構成する場合には、5〜100μm、好ましくは10〜70μm、より好ましくは15〜30μmである。
電極用スラリーを塗布する手段としては、ドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法などを利用することができる。
また、電極用スラリーの塗布膜の乾燥処理の条件としては、処理温度が例えば20〜250℃であることが好ましく、50〜150℃であることが更に好ましい。また、処理時間が例えば1〜120分間であることが好ましく、5〜60分間であることが更に好ましい。
また、プレス加工する手段としては、高圧スーパープレス、ソフトカレンダー、1トンプレス機などを利用することができる。
プレス加工の条件としては、用いる加工機に応じて適宜設定される。
このようにして形成される電極層は、例えば厚みが40〜100μmであり、密度が1.3〜2.0g/cm2 である。
In the present invention, the electrode slurry is applied to the surface of the current collector and dried, and the resulting coating film is pressed to form an electrode layer on the surface of the current collector. An energy device electrode is obtained.
As the current collector, a metal foil, an etching metal foil, an expanded metal or the like can be used. As a material constituting the current collector, a metal material such as aluminum, copper, nickel, tantalum, stainless steel, titanium or the like can be used. It can be appropriately selected and used according to the type of the target energy device. Further, the thickness of the current collector is, for example, 5 to 30 μm, preferably 8 to 25 μm when constituting an electrode for a lithium secondary battery. For example, when constituting an electrode for an electric double layer capacitor. 5 to 100 μm, preferably 10 to 70 μm, more preferably 15 to 30 μm.
As a means for applying the electrode slurry, a doctor blade method, a reverse roll method, a comma bar method, a gravure method, an air knife method, or the like can be used.
Moreover, as conditions of the drying process of the coating film of the slurry for electrodes, it is preferable that processing temperature is 20-250 degreeC, for example, and it is still more preferable that it is 50-150 degreeC. Moreover, it is preferable that processing time is 1 to 120 minutes, for example, and it is still more preferable that it is 5 to 60 minutes.
Moreover, as a means to press-work, a high pressure super press, a soft calendar, a 1-ton press machine, etc. can be utilized.
The press working conditions are appropriately set according to the processing machine to be used.
Thus the electrode layer thus formed is, for example, a thickness of 40 to 100 [mu] m, density of 1.3~2.0g / cm 2.

本発明のエネルギーデバイス電極は、例えばリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタなどのエネルギーデバイスの電極として好適に用いることができる。
本発明のエネルギーデバイス電極によってリチウムイオン二次電池を構成する場合には、電解液として、リチウム化合物からなる電解質が溶媒中に溶解されてなるものが用いられる。
電解質の具体例としては、LiClO4 、LiBF4 、LiI、LiPF6 、LiCF3 SO3 、LiAsF6 、LiSbF6 、LiAlCl4 、LiCl、LiBr、LiB(C2 5 4 、LiCH3 SO3 、LiC4 9 SO3 、Li(C4 3 SO2 2 N、Li[CO2 2 2 Bなどが挙げられる。
溶媒の具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類、γ−ブチロラクトン等のラクトン類、トリメトキシシラン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類、ジメチルスルホキシド等のスルホキシド類、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のオキソラン類、アセトニトリル、ニトロメタン等の窒素含有化合物、ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、スルホラン等のスルホン類、2−メチル−2−オキサゾリジノン等のオキサゾリジノン類、1,3−プロパンスルトン、4−ブタンスルトン、ナフタスルトン等のスルトン類などが挙げられる。
また、本発明のエネルギーデバイス電極によって電気二重層キャパシタを構成する場合には、電解液として、上記の溶媒中に、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、テトラエラルアンモニウムヘキサフルオロホスフェート等の電解質が溶解されてなるものが用いられる。
また、本発明のエネルギーデバイス電極によってリチウムイオンキャパシタを構成する場合には、電解液として、上記のリチウムイオン二次電池を構成する場合と同様のものを用いることができる。
The energy device electrode of the present invention can be suitably used as an electrode of an energy device such as a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor.
When a lithium ion secondary battery is constituted by the energy device electrode of the present invention, an electrolytic solution in which an electrolyte made of a lithium compound is dissolved in a solvent is used.
Specific examples of the electrolyte, LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li (C 4 F 3 SO 2) 2 N, Li [CO 2) 2] such as 2 B and the like.
Specific examples of the solvent include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; lactones such as γ-butyrolactone; trimethoxysilane, 1,2-dimethoxyethane, diethyl Ethers, ethers such as 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, sulfoxides such as dimethyl sulfoxide, oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane, acetonitrile, nitromethane, etc. Nitrogen-containing compounds, methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triesters, diglyme, triglyme, tetragram Grimes such as acetone, ketones such as acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, sulfones such as sulfolane, oxazolidinones such as 2-methyl-2-oxazolidinone, 1,3-propane sultone, 4-butane sultone, And sultone such as naphtha sultone.
Further, when an electric double layer capacitor is constituted by the energy device electrode of the present invention, tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphate, etc. in the above solvent as an electrolyte A material in which the electrolyte is dissolved is used.
Moreover, when comprising a lithium ion capacitor with the energy device electrode of this invention, the thing similar to the case where said lithium ion secondary battery is comprised can be used as electrolyte solution.

以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるものではない。
なお、下記の実施例および比較例中の「部」および「%」は、特に断らない限り質量基準である。
また、各種物性地の測定方法および諸特性の評価方法は以下の通りである。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.
In the following examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified.
Moreover, the measurement method of various physical properties and the evaluation method of various properties are as follows.

[バインダー組成物]
(1)平均粒子径の測定:
大塚電子(株)製レーザー粒径解析システムFPAR1000を用いて粒子径を測定した。
(2)ガラス転移点(Tg)の測定:
0.5Nアンモニア水でpH8に調整した水系分散体を、ガラス板に塗布し、120℃で1時間乾燥することにより、重合体のフィルムを作製した。このフィルムを試験片としてセイコー電子工業(株)製示差走査熱量計を用いて測定した。
(3)トルエンゲル含有量:
水系分散体2.0gをメタノール100g中に投入して固形分を凝固させ、300メッシュの金網でろ過して固形分を採取し、得られた固形分をメタノールで洗浄した後、60℃で5時間の条件で真空乾燥を行った。この固形分の質量(W0(g))を測定し、当該固形分をトルエン50ml中に投入し、50℃で3時間攪拌した後、25℃まで冷却し、300メッシュの金網でろ過した。ろ液を10ml採取し、120℃のホットプレートでその質量が一定となるまで乾燥し、乾燥物の質量(W1(g))を測定し、下記の式により、トルエンゲル含有量を算出した。
トルエンゲル含有量(%)={(W0−5×W1)/W0}×100
[Binder composition]
(1) Measurement of average particle size:
The particle size was measured using a laser particle size analysis system FPAR1000 manufactured by Otsuka Electronics Co., Ltd.
(2) Measurement of glass transition point (Tg):
An aqueous dispersion adjusted to pH 8 with 0.5 N ammonia water was applied to a glass plate and dried at 120 ° C. for 1 hour to prepare a polymer film. This film was measured using a differential scanning calorimeter manufactured by Seiko Denshi Kogyo Co., Ltd. as a test piece.
(3) Toluene gel content:
An aqueous dispersion (2.0 g) was added to 100 g of methanol to solidify the solid content, and the solid content was collected by filtration through a 300-mesh wire mesh. The obtained solid content was washed with methanol, and then washed with methanol at 60 ° C. Vacuum drying was performed under the conditions of time. The mass of this solid content (W0 (g)) was measured, the solid content was put into 50 ml of toluene, stirred at 50 ° C. for 3 hours, cooled to 25 ° C., and filtered through a 300-mesh wire mesh. 10 ml of the filtrate was collected and dried with a 120 ° C. hot plate until the mass became constant, the mass of the dried product (W1 (g)) was measured, and the toluene gel content was calculated by the following formula.
Toluene gel content (%) = {(W0-5 × W1) / W0} × 100

[二次電池電極]
(1)ピール強度:
二次電池電極(負極)から、幅2cm×長さ12cmの試験片を切り出し、この試験片の電極層側の表面を、両面テープを用いてアルミ板に貼り付けた。また、試験片の集電体の表面に、幅18mmテープ(商品名「セロテープ(登録商標)」(ニチバン社製))(JIS Z1522に規定)を貼り付け、90°方向に50mm/minの速度でテープを剥離したときの強度(g/2cm)を6回測定し、その平均値をピール強度(g/2cm)として算出した。
なお、ピール強度の値が大きいほど、集電体と電極層との密着強度が高く、集電体から電極層が剥離し難いと評価することができる。
(2)プレス加工性:
二次電池電極(負極)から、幅2cm×長さ12cmの試験片を切り出し、この試験片を5tプレス機により加圧し、試験片における電極層の剥離の有無を調べ、剥離が無い場合を○、剥離が有る場合を×とした。
(3)バインダー成分分布:
電極層における表面側および集電体との界面側から、それぞれ試料2mg採取し、ヒューレットパッカード社製HP熱分解ガスクロマトグラフを用いて、電極中に存在するラテックスの組成分析を行い、割合が最も高いバインダー成分に係る重合体ラテックスを示した。ここで、電極層における集電体と界面側から試料を採取する際には、上記のピール強度の測定と同様の手法で電極層を集電体から剥離し、その集電体との界面を露出させた。
[Secondary battery electrode]
(1) Peel strength:
A test piece having a width of 2 cm and a length of 12 cm was cut out from the secondary battery electrode (negative electrode), and the surface of the test piece on the electrode layer side was attached to an aluminum plate using a double-sided tape. In addition, a 18 mm wide tape (trade name “Cero Tape (registered trademark)” (manufactured by Nichiban Co., Ltd.)) (specified in JIS Z1522) is attached to the surface of the current collector of the test piece, and the speed is 50 mm / min in the 90 ° direction. The strength (g / 2 cm) when the tape was peeled was measured 6 times, and the average value was calculated as the peel strength (g / 2 cm).
In addition, it can be evaluated that the larger the peel strength value, the higher the adhesion strength between the current collector and the electrode layer, and the more difficult the electrode layer peels from the current collector.
(2) Press workability:
A test piece having a width of 2 cm and a length of 12 cm was cut out from the secondary battery electrode (negative electrode), this test piece was pressed with a 5 t press, and the presence or absence of peeling of the electrode layer in the test piece was examined. The case where there was peeling was set as x.
(3) Binder component distribution:
Samples of 2 mg were collected from the surface side of the electrode layer and the interface side with the current collector, respectively, and the composition of latex present in the electrode was analyzed using an HP pyrolysis gas chromatograph manufactured by Hewlett-Packard Co. The polymer latex according to the binder component is shown. Here, when the sample is taken from the current collector and interface side in the electrode layer, the electrode layer is peeled off from the current collector by the same method as the measurement of peel strength described above, and the interface with the current collector is removed. Exposed.

〈重合体ラテックスの調製〉
調製例1:
攪拌機を備えた温度調節の可能なオートクレーブ中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.3部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、α−メチルスチレンダイマー0.2部およびドデシルメルカプタン0.1部を一括して仕込み、45℃に昇温した後、下記表1に示す単量体成分を4時間かけて添加し、その後、45℃で6時間反応させ、重合転化率が70%以上であることを確認した。更に、70℃で6時間反応させることにより、重合体ラテックスを得た。得られた重合体ラテックスをラテックス(a1)とする。ラテックス(a1)の特性を下記表1に示す。
<Preparation of polymer latex>
Preparation Example 1:
In a temperature-controllable autoclave equipped with a stirrer, 200 parts of water, 0.3 part of sodium dodecylbenzenesulfonate, 1.0 part of potassium persulfate, 0.5 part of sodium bisulfite, α-methylstyrene dimer 2 parts and 0.1 part of dodecyl mercaptan were charged together and heated to 45 ° C., then the monomer components shown in Table 1 below were added over 4 hours, and then reacted at 45 ° C. for 6 hours. It was confirmed that the polymerization conversion was 70% or more. Furthermore, the polymer latex was obtained by making it react at 70 degreeC for 6 hours. Let the obtained polymer latex be latex (a1). The properties of the latex (a1) are shown in Table 1 below.

調製例2:
ドデシルベンゼンスルホン酸ナトリウムの量を0.3部から0.5部に変更し、単量体成分として下記表1に示すものを用いたこと以外は、調製例1と同様にして重合体ラテックスを得た。得られた重合体ラテックスをラテックス(a2)とする。ラテックス(a2)の特性を下記表1に示す。
Preparation Example 2:
A polymer latex was prepared in the same manner as in Preparation Example 1 except that the amount of sodium dodecylbenzenesulfonate was changed from 0.3 part to 0.5 part and the monomer component shown in Table 1 was used. Obtained. Let the obtained polymer latex be latex (a2). The properties of the latex (a2) are shown in Table 1 below.

調製例3:
単量体成分として下記表1に示すものを用いたこと以外は、調製例1と同様にして重合体ラテックスを得た。得られた重合体ラテックスをラテックス(c1)とする。ラテックス(c1)の特性を下記表1に示す。
Preparation Example 3:
A polymer latex was obtained in the same manner as in Preparation Example 1, except that the monomer components shown in Table 1 below were used. Let the obtained polymer latex be latex (c1). The properties of the latex (c1) are shown in Table 1 below.

調製例4:
ドデシルベンゼンスルホン酸ナトリウムの量を0.3部から0.1部に変更し、単量体成分として下記表1に示すものを用いたこと以外は、調製例1と同様にして重合体ラテックスを得た。得られた重合体ラテックスをラテックス(b1)とする。ラテックス(b1)の特性を下記表1に示す。
Preparation Example 4:
A polymer latex was prepared in the same manner as in Preparation Example 1 except that the amount of sodium dodecylbenzenesulfonate was changed from 0.3 part to 0.1 part and the monomer component shown in Table 1 was used. Obtained. Let the obtained polymer latex be latex (b1). The properties of the latex (b1) are shown in Table 1 below.

調製例5:
ドデシルベンゼンスルホン酸ナトリウムの量を0.3部から0.2部に変更し、単量体成分として下記表1に示すものを用いたこと以外は、調製例1と同様にして重合体ラテックスを得た。得られた重合体ラテックスをラテックス(b2)とする。ラテックス(b2)の特性を下記表1に示す。
Preparation Example 5:
A polymer latex was prepared in the same manner as in Preparation Example 1, except that the amount of sodium dodecylbenzenesulfonate was changed from 0.3 part to 0.2 part and the monomer component shown in Table 1 was used. Obtained. Let the obtained polymer latex be latex (b2). The properties of the latex (b2) are shown in Table 1 below.

調製例6:
ドデシルベンゼンスルホン酸ナトリウムの量を0.3部から0.1部に変更したこと以外は、調製例1と同様にして重合体ラテックスを得た。得られた重合体ラテックスをラテックス(c2)とする。ラテックス(c2)の特性を下記表1に示す。
Preparation Example 6:
A polymer latex was obtained in the same manner as in Preparation Example 1, except that the amount of sodium dodecylbenzenesulfonate was changed from 0.3 part to 0.1 part. Let the obtained polymer latex be latex (c2). The properties of the latex (c2) are shown in Table 1 below.

Figure 2010040228
Figure 2010040228

〈実施例1〉
ラテックス(a1)を固形分換算で0.5部、ラテックス(b1)を固形分換算で0.5部、対して、増粘剤としてダイセル化学社製の「CMC1290」を1部、およびカーボン活物質100部を、攪拌脱泡機を使用し、200rpmで2分間、1800rpmで5分間、真空下において1800rpmで1. 5分攪拌混合することにより、電極用スラリーを調製した。
次いで、銅箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理し、その後、得られる電極層の密度が1.8g/cm3 となるようにロールプレス機によりプレス加工することにより、二次電池電極を得た。
<Example 1>
The latex (a1) is 0.5 parts in terms of solids, the latex (b1) is 0.5 parts in terms of solids, and 1 part of “CMC1290” manufactured by Daicel Chemical Co., Ltd. A slurry for an electrode was prepared by stirring and mixing 100 parts of the substance using a stirring defoamer at 200 rpm for 2 minutes, 1800 rpm for 5 minutes, and under vacuum at 1800 rpm for 1.5 minutes.
Next, the prepared electrode slurry is uniformly applied to the surface of the current collector made of copper foil by a doctor blade method so that the film thickness after drying is 150 μm, and is dried at 120 ° C. for 20 minutes, and thereafter A secondary battery electrode was obtained by pressing with a roll press so that the density of the obtained electrode layer was 1.8 g / cm 3 .

〈実施例2〉
ラテックス(a1)に代えてラテックス(a2)を用い、ラテックス(b1)に代えてラテックス(b2)を用いたこと以外は、実施例1と同様にして電極用スラリーを調製し、二次電極を得た。
<Example 2>
A slurry for an electrode was prepared in the same manner as in Example 1 except that latex (a2) was used instead of latex (a1) and latex (b2) was used instead of latex (b1). Obtained.

〈実施例3〉
ラテックス(b1)に代えてラテックス(b2)を用いたこと以外は、実施例1と同様にして電極用スラリーを調製し、二次電極を得た。
<Example 3>
A slurry for an electrode was prepared in the same manner as in Example 1 except that latex (b2) was used instead of latex (b1) to obtain a secondary electrode.

〈実施例4〉
ラテックス(a1)に代えてラテックス(a2)を用いたこと以外は、実施例1と同様にして電極用スラリーを調製し、二次電極を得た。
<Example 4>
A slurry for an electrode was prepared in the same manner as in Example 1 except that the latex (a2) was used instead of the latex (a1) to obtain a secondary electrode.

〈比較例1〉
ラテックス(a1)を固形分換算で0.5部から1部に変更し、ラテックス(b1)を用いなかったこと以外は、実施例1と同様にして電極用スラリーを調製し、二次電極を得た。
<Comparative example 1>
The slurry for the electrode was prepared in the same manner as in Example 1 except that the latex (a1) was changed from 0.5 part to 1 part in terms of solid content and the latex (b1) was not used. Obtained.

〈比較例2〉
ラテックス(b1)を固形分換算で0.5部から1部に変更し、ラテックス(a1)を用いなかったこと以外は、実施例1と同様にして電極用スラリーを調製し、二次電極を得た。
<Comparative example 2>
The slurry for the electrode was prepared in the same manner as in Example 1 except that the latex (b1) was changed from 0.5 part to 1 part in terms of solid content and the latex (a1) was not used. Obtained.

〈比較例3〉
ラテックス(a1)に代えてラテックス(c1)を用い、ラテックス(b1)に代えてラテックス(c2)を用いたこと以外は、実施例1と同様にして電極用スラリーを調製し、二次電極を得た。
<Comparative Example 3>
A slurry for an electrode was prepared in the same manner as in Example 1 except that latex (c1) was used instead of latex (a1) and latex (c2) was used instead of latex (b1). Obtained.

以上、実施例1〜4および比較例1〜3で得られた二次電池電極のピール強度、プレス加工性、バインダー成分分布を下記表2に示す。   The peel strength, press workability, and binder component distribution of the secondary battery electrodes obtained in Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 2 below.

Figure 2010040228
Figure 2010040228

表2の結果から明らかなように、実施例1〜4によれば、集電体に対する密着性が高く、しかも、プレス加工性に優れた電極層を有する二次電池電極が得られることが確認された。   As is clear from the results of Table 2, according to Examples 1 to 4, it was confirmed that a secondary battery electrode having an electrode layer having high adhesion to the current collector and excellent in press workability was obtained. It was done.

Claims (8)

トルエンゲル含有量が70%以上の重合体ラテックスを含有してなり、
前記重合体ラテックスは、レーザー回折法により測定された個数基準の粒子径分布が、80〜120nmの範囲内および150〜280nmの範囲内の各々にピークを有するものであり、かつ、示差走査熱量計を用いて測定したときに、5〜50℃の範囲内および−50℃〜0℃の範囲内の各々に、ガラス転移温度を示すピークを有するものであることを特徴とするエネルギーデバイス電極用バインダー組成物。
It contains a polymer latex having a toluene gel content of 70% or more,
The polymer latex has a number-based particle size distribution measured by a laser diffraction method having a peak in each of 80 to 120 nm and 150 to 280 nm, and a differential scanning calorimeter. A binder for an energy device electrode, having a peak indicating a glass transition temperature in each of a range of 5 to 50 ° C. and a range of −50 ° C. to 0 ° C. Composition.
数平均粒子径が80〜120nm、ガラス転移温度が5〜50℃、かつトルエンゲル含有量が70%以上の重合体ラテックス(a)と、
数平均粒子径が150〜280nm、ガラス転移温度が−50℃〜0℃、かつトルエンゲル含有量が70%以上の重合体ラテックス(b)と
を含有してなることを特徴とするエネルギーデバイス電極用バインダー組成物。
A polymer latex (a) having a number average particle size of 80 to 120 nm, a glass transition temperature of 5 to 50 ° C., and a toluene gel content of 70% or more;
An energy device electrode comprising a polymer latex (b) having a number average particle size of 150 to 280 nm, a glass transition temperature of -50 ° C to 0 ° C, and a toluene gel content of 70% or more. Binder composition.
重合体ラテックス(a)および重合体ラテックス(b)の各々は、芳香族ビニル化合物よりなる単量体(I)、脂肪族共役ジエン系化合物よりなる単量体(II)、エチレン系不飽和カルボン酸よりなる単量体(III )、およびこれらと共重合可能な他のビニル系化合物よりなる単量体(IV)を乳化重合して得られる共重合体よりなることを特徴とする請求項2に記載のエネルギーデバイス電極用バインダー組成物。   Each of the polymer latex (a) and the polymer latex (b) includes a monomer (I) made of an aromatic vinyl compound, a monomer (II) made of an aliphatic conjugated diene compound, an ethylenically unsaturated carboxylic acid. 3. A copolymer obtained by emulsion polymerization of a monomer (III) comprising an acid and a monomer (IV) comprising another vinyl compound copolymerizable therewith. The binder composition for energy device electrodes described in 1. 重合体ラテックス(a)を得るための単量体(I)として、(メタ)アクリロニトリル
を全単量体の10質量%以上含有することを特徴とする請求項3に記載のエネルギーデバイス電極用バインダー組成物。
The binder for an energy device electrode according to claim 3, wherein the monomer (I) for obtaining the polymer latex (a) contains (meth) acrylonitrile in an amount of 10% by mass or more based on the total monomers. Composition.
請求項1乃至請求項4のいずれかに記載のエネルギーデバイス電極用バインダー組成物と、
電極活物質と
を含有してなることを特徴とするエネルギーデバイス電極用スラリー。
A binder composition for an energy device electrode according to any one of claims 1 to 4,
An energy device electrode slurry comprising an electrode active material.
電極活物質100質量部に対して、エネルギーデバイス電極用バインダー組成物における固形分が0.1〜10質量部の割合で含有されてなることを特徴とする請求項5に記載のエネルギーデバイス電極用スラリー。   The solid content in the binder composition for an energy device electrode is contained at a ratio of 0.1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material, for the energy device electrode according to claim 5. slurry. 集電材と、
この集電材の表面上に、請求項5または請求項は6に記載のエネルギーデバイス電極用スラリーが塗布および乾燥されて形成された電極層と
を具えてなることを特徴とするエネルギーデバイス電極。
Current collector,
An energy device electrode comprising an electrode layer formed by applying and drying the slurry for an energy device electrode according to claim 6 on the surface of the current collector.
集電材の表面上に、請求項5または請求項は6に記載のエネルギーデバイス電極用スラリーを塗布し、乾燥する工程を有することを特徴とするエネルギーデバイス電極の製造方法。   A method for producing an energy device electrode, comprising: applying a slurry for an energy device electrode according to claim 6 on a surface of a current collector, and drying the slurry.
JP2008199243A 2008-08-01 2008-08-01 Binder composition for energy device electrode, slurry for energy device electrode, energy device electrode and method for producing the same Active JP5282474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008199243A JP5282474B2 (en) 2008-08-01 2008-08-01 Binder composition for energy device electrode, slurry for energy device electrode, energy device electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008199243A JP5282474B2 (en) 2008-08-01 2008-08-01 Binder composition for energy device electrode, slurry for energy device electrode, energy device electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010040228A true JP2010040228A (en) 2010-02-18
JP5282474B2 JP5282474B2 (en) 2013-09-04

Family

ID=42012581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199243A Active JP5282474B2 (en) 2008-08-01 2008-08-01 Binder composition for energy device electrode, slurry for energy device electrode, energy device electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP5282474B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108373A (en) * 2009-11-12 2011-06-02 Nippon A&L Inc Binder for battery electrode
WO2011105444A1 (en) 2010-02-25 2011-09-01 日立化成工業株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery which comprises the negative electrode material, and lithium ion secondary battery
JP2012014929A (en) * 2010-06-30 2012-01-19 Hitachi Vehicle Energy Ltd Battery
JP2013161689A (en) * 2012-02-06 2013-08-19 Toyota Motor Corp Secondary battery electrode and manufacturing method of the same
WO2014014006A1 (en) * 2012-07-17 2014-01-23 日本ゼオン株式会社 Negative electrode for secondary cell, and secondary cell
WO2014148064A1 (en) 2013-03-22 2014-09-25 日本ゼオン株式会社 Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20150021004A (en) * 2013-08-19 2015-02-27 주식회사 엘지화학 Binder Composition for Secondary Battery, and Electrode Employed with the Same, and Lithium Secondary Battery
KR20150027059A (en) * 2012-06-07 2015-03-11 제온 코포레이션 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell
KR20150035543A (en) * 2012-06-28 2015-04-06 제온 코포레이션 Negative electrode slurry composition, lithium-ion secondary cell negative electrode, and lithium-ion secondary cell
JP2015191876A (en) * 2014-03-31 2015-11-02 日本エイアンドエル株式会社 Binder for battery electrode and composition for battery electrode
CN105280921A (en) * 2014-06-30 2016-01-27 松下电器产业株式会社 Negative electrode plate for nonaqueous electrolyte secondary battery and method of producing the same
KR20160084053A (en) * 2015-01-05 2016-07-13 주식회사 엘지화학 Binder for Lithium Ion Secondary Battery and Lithium ion Secondary Battery Comprising the Same
WO2016204530A1 (en) * 2015-06-17 2016-12-22 주식회사 엘지화학 Binder composition for secondary battery, electrode using same, and lithium secondary
KR20170003555A (en) 2014-05-14 2017-01-09 니폰 제온 가부시키가이샤 Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, production method therefor, and secondary battery
KR20170081635A (en) 2014-08-11 2017-07-12 니폰 제온 가부시키가이샤 Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary battery, and secondary battery
WO2023008582A1 (en) * 2021-07-30 2023-02-02 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149929A (en) * 1997-11-14 1999-06-02 Nippon Zeon Co Ltd Battery binder composition, battery electrode slurry, lithium secondary battery electrode, and lithium secondary battery
JP2000067871A (en) * 1998-06-09 2000-03-03 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using it
WO2001029917A1 (en) * 1999-10-18 2001-04-26 Zeon Corporation Binder composition for electrodes of lithium ion secondary batteries and use thereof
JP2002260665A (en) * 2001-02-28 2002-09-13 Asahi Kasei Corp Nonaqueous electrolyte secondary battery
JP2002319403A (en) * 2001-04-20 2002-10-31 Nippon A & L Kk Secondary battery anode binder and secondary battery electrode composition
JP2005064294A (en) * 2003-08-14 2005-03-10 Nippon Zeon Co Ltd Binder composition for electric double layer capacitor electrode
JP2005190747A (en) * 2003-12-25 2005-07-14 Jsr Corp Thickening binder for secondary battery electrode and secondary battery electrode
JP2006066400A (en) * 2005-08-26 2006-03-09 Nippon Zeon Co Ltd Organic solvent based binder composition, electrode, and battery
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149929A (en) * 1997-11-14 1999-06-02 Nippon Zeon Co Ltd Battery binder composition, battery electrode slurry, lithium secondary battery electrode, and lithium secondary battery
JP2000067871A (en) * 1998-06-09 2000-03-03 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using it
WO2001029917A1 (en) * 1999-10-18 2001-04-26 Zeon Corporation Binder composition for electrodes of lithium ion secondary batteries and use thereof
JP2002260665A (en) * 2001-02-28 2002-09-13 Asahi Kasei Corp Nonaqueous electrolyte secondary battery
JP2002319403A (en) * 2001-04-20 2002-10-31 Nippon A & L Kk Secondary battery anode binder and secondary battery electrode composition
JP2005064294A (en) * 2003-08-14 2005-03-10 Nippon Zeon Co Ltd Binder composition for electric double layer capacitor electrode
JP2005190747A (en) * 2003-12-25 2005-07-14 Jsr Corp Thickening binder for secondary battery electrode and secondary battery electrode
WO2005064716A1 (en) * 2003-12-25 2005-07-14 Jsr Corporation Thickener/binder for secondary battery electrode, secondary battery electrode, and method for producing secondary battery electrode
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode
JP2006066400A (en) * 2005-08-26 2006-03-09 Nippon Zeon Co Ltd Organic solvent based binder composition, electrode, and battery

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108373A (en) * 2009-11-12 2011-06-02 Nippon A&L Inc Binder for battery electrode
WO2011105444A1 (en) 2010-02-25 2011-09-01 日立化成工業株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery which comprises the negative electrode material, and lithium ion secondary battery
EP3787077A1 (en) 2010-02-25 2021-03-03 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP2012014929A (en) * 2010-06-30 2012-01-19 Hitachi Vehicle Energy Ltd Battery
JP2013161689A (en) * 2012-02-06 2013-08-19 Toyota Motor Corp Secondary battery electrode and manufacturing method of the same
US9711785B2 (en) 2012-06-07 2017-07-18 Zeon Corporation Negative electrode slurry composition, lithium ion secondary battery negative electrode, and lithium ion secondary battery
KR102127876B1 (en) * 2012-06-07 2020-06-29 제온 코포레이션 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell
KR20150027059A (en) * 2012-06-07 2015-03-11 제온 코포레이션 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell
JPWO2013183717A1 (en) * 2012-06-07 2016-02-01 日本ゼオン株式会社 Negative electrode slurry composition, lithium ion secondary battery negative electrode and lithium ion secondary battery
KR102127884B1 (en) * 2012-06-28 2020-06-29 제온 코포레이션 Negative electrode slurry composition, lithium-ion secondary cell negative electrode, and lithium-ion secondary cell
KR20150035543A (en) * 2012-06-28 2015-04-06 제온 코포레이션 Negative electrode slurry composition, lithium-ion secondary cell negative electrode, and lithium-ion secondary cell
JPWO2014014006A1 (en) * 2012-07-17 2016-07-07 日本ゼオン株式会社 Negative electrode for secondary battery and secondary battery
WO2014014006A1 (en) * 2012-07-17 2014-01-23 日本ゼオン株式会社 Negative electrode for secondary cell, and secondary cell
KR20150132156A (en) 2013-03-22 2015-11-25 제온 코포레이션 Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN105190967A (en) * 2013-03-22 2015-12-23 日本瑞翁株式会社 Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR102178203B1 (en) * 2013-03-22 2020-11-12 제온 코포레이션 Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2014148064A1 (en) 2013-03-22 2014-09-25 日本ゼオン株式会社 Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US10566627B2 (en) 2013-03-22 2020-02-18 Zeon Corporation Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
EP2978051A4 (en) * 2013-03-22 2016-12-07 Zeon Corp Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US10418632B2 (en) 2013-08-19 2019-09-17 Lg Chem, Ltd. Binder composition for secondary batteries, electrode using the same, and lithium secondary battery
EP3007257A4 (en) * 2013-08-19 2016-12-21 Lg Chemical Ltd Binder composition for secondary battery, electrode using same, and lithium secondary battery
KR20150021004A (en) * 2013-08-19 2015-02-27 주식회사 엘지화학 Binder Composition for Secondary Battery, and Electrode Employed with the Same, and Lithium Secondary Battery
KR101615940B1 (en) * 2013-08-19 2016-04-27 주식회사 엘지화학 Binder Composition for Secondary Battery, and Electrode Employed with the Same, and Lithium Secondary Battery
CN105556718A (en) * 2013-08-19 2016-05-04 Lg化学株式会社 Binder composition for secondary battery, electrode using same, and lithium secondary battery
JP2015191876A (en) * 2014-03-31 2015-11-02 日本エイアンドエル株式会社 Binder for battery electrode and composition for battery electrode
US10249879B2 (en) 2014-05-14 2019-04-02 Zeon Corporation Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
KR20170003555A (en) 2014-05-14 2017-01-09 니폰 제온 가부시키가이샤 Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, production method therefor, and secondary battery
CN105280921A (en) * 2014-06-30 2016-01-27 松下电器产业株式会社 Negative electrode plate for nonaqueous electrolyte secondary battery and method of producing the same
US10529989B2 (en) 2014-08-11 2020-01-07 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
KR20170081635A (en) 2014-08-11 2017-07-12 니폰 제온 가부시키가이샤 Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary battery, and secondary battery
KR20160084053A (en) * 2015-01-05 2016-07-13 주식회사 엘지화학 Binder for Lithium Ion Secondary Battery and Lithium ion Secondary Battery Comprising the Same
KR101953765B1 (en) 2015-06-17 2019-06-12 주식회사 엘지화학 Binder Composition for Secondary Battery, and Electrode Employed with the Same, and Lithium Secondary Battery
WO2016204530A1 (en) * 2015-06-17 2016-12-22 주식회사 엘지화학 Binder composition for secondary battery, electrode using same, and lithium secondary
KR20160148853A (en) * 2015-06-17 2016-12-27 주식회사 엘지화학 Binder Composition for Secondary Battery, and Electrode Employed with the Same, and Lithium Secondary Battery
US11223046B2 (en) 2015-06-17 2022-01-11 Lg Chem, Ltd. Binder composition for secondary batteries, and electrode and lithium secondary battery including the same
WO2023008582A1 (en) * 2021-07-30 2023-02-02 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP5282474B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5282474B2 (en) Binder composition for energy device electrode, slurry for energy device electrode, energy device electrode and method for producing the same
EP3193397B1 (en) Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device
EP2978051B1 (en) Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
EP3214676B1 (en) Paste composition for negative electrode for lithium-ion rechargeable battery, composite particles for negative electrode for lithium-ion rechargeable battery, slurry composition for negative electrode for lithium-ion rechargeable battery, negative electrode for lithium-ion rechargeable battery, and lithium-ion rechargeable battery
EP2897198A1 (en) Composition for producing protective film, protective film, and electricity storage device
EP3182489B1 (en) Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary battery, and secondary battery
TWI469433B (en) Electrode binder composition
JP5365836B2 (en) Binder for energy device electrode and method for producing the same
KR20160077057A (en) Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
EP3214675B1 (en) Binder composition for positive electrode for lithium-ion rechargeable battery, slurry composition for positive electrode for lithium-ion rechargeable battery, positive electrode of lithium-ion rechargeable battery, and lithium-ion rechargeable battery
JP5365835B2 (en) Binder for electrochemical device electrode, slurry for electrochemical device electrode, and electrochemical device electrode
EP3660953A1 (en) Electrochemical element electrode, electrochemical element, and manufacturing method for electrochemical element electrode
WO2014115802A1 (en) Method for producing binder for lithium secondary battery electrodes, and binder for lithium secondary battery electrodes
WO2019107054A1 (en) Method for producing paste for negative electrode production, negative electrode for batteries, battery, and method for producing negative electrode for batteries
EP3605677A1 (en) Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, nonaqueous secondary battery, and method for producing electrode for nonaqueous secondary batteries
JP2023113925A (en) Slurry for nonaqueous battery electrode, manufacturing method for nonaqueous battery electrode, and manufacturing method for nonaqueous battery
WO2019208419A1 (en) Binder composition for electricity storage devices, slurry composition for electricity storage device electrodes, electrode for electricity storage devices, and electricity storage device
CN114497433B (en) Multi-layer electrode for secondary battery and method for manufacturing same
EP3306709A1 (en) Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
JP5359306B2 (en) Electrochemical device electrode binder composition, electrochemical device electrode composition, electrochemical device electrode and electrochemical device
EP3761408A1 (en) Slurry composition for lithium ion secondary battery, and electrode for lithium ion secondary battery
WO2019082587A1 (en) Water-based electrode slurry, electrode for lithium ion battery, lithium ion battery, and manufacturing method of electrode for lithium ion battery
JPWO2012144439A1 (en) Electrode for power storage device and power storage device
WO2024062954A1 (en) Composite particles, binder composition for non-aqueous secondary battery and non-aqueous secondary battery electrode
WO2024034574A1 (en) Non-aqueous secondary battery binder polymer, non-aqueous secondary battery binder composition, and non-aqueous secondary battery electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R150 Certificate of patent or registration of utility model

Ref document number: 5282474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350