JP6115468B2 - Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode and secondary battery - Google Patents

Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode and secondary battery Download PDF

Info

Publication number
JP6115468B2
JP6115468B2 JP2013522935A JP2013522935A JP6115468B2 JP 6115468 B2 JP6115468 B2 JP 6115468B2 JP 2013522935 A JP2013522935 A JP 2013522935A JP 2013522935 A JP2013522935 A JP 2013522935A JP 6115468 B2 JP6115468 B2 JP 6115468B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
active material
electrode active
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013522935A
Other languages
Japanese (ja)
Other versions
JPWO2013002322A1 (en
Inventor
智一 佐々木
智一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2013002322A1 publication Critical patent/JPWO2013002322A1/en
Application granted granted Critical
Publication of JP6115468B2 publication Critical patent/JP6115468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池負極用バインダー組成物に関し、特に、リチウムイオン二次電池負極用バインダー組成物に関する。また、本発明は、かかる二次電池負極用バインダーを用いたスラリー組成物、負極および二次電池に関する。   The present invention relates to a binder composition for a secondary battery negative electrode, and particularly relates to a binder composition for a lithium ion secondary battery negative electrode. The present invention also relates to a slurry composition, a negative electrode and a secondary battery using such a secondary battery negative electrode binder.

近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、ニッケル水素二次電池、リチウムイオン二次電池などが多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化、高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化、高性能化が要求されている。   In recent years, portable terminals such as notebook computers, mobile phones, and PDAs (Personal Digital Assistants) have been widely used. As a secondary battery used for the power source of these portable terminals, a nickel hydrogen secondary battery, a lithium ion secondary battery, and the like are frequently used. Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher in performance. As a result, mobile terminals are used in various places. In addition, the battery is required to be smaller, thinner, lighter, and higher in performance as in the case of the portable terminal.

例えば、リチウムイオン二次電池では、軽量でエネルギー密度が大きいというその特徴から、導電性炭素質材料を負極活物質とし、電極活物質層の保形および集電体への接着のために、バインダーとして高分子(以下において「ポリマーバインダー」と記載することがある。)が利用されている。   For example, in a lithium ion secondary battery, a conductive carbonaceous material is used as a negative electrode active material because of its light weight and high energy density, and the binder is used for shape retention of the electrode active material layer and adhesion to the current collector. As such, a polymer (hereinafter sometimes referred to as “polymer binder”) is used.

このポリマーバインダーには、電極活物質との接着性、電解液として使用される極性溶媒に対する耐性、電気化学的な環境下での安定性が求められる。このような要求特性からポリフッ化ビニリデンなどのフッ素系のポリマーが利用されている。しかし、フッ素系ポリマーは、電極活物質層を形成した際に導電性を阻害したり、集電体と電極活物質層間の接着強度が不足するなどの問題点がある。さらに、フッ素系のポリマーを還元条件となる負極に用いた場合は、安定性が十分ではなく、二次電池のサイクル特性が低下するなど問題点もある。   This polymer binder is required to have adhesiveness with an electrode active material, resistance to a polar solvent used as an electrolytic solution, and stability in an electrochemical environment. From such required characteristics, fluorine-based polymers such as polyvinylidene fluoride are used. However, the fluorine-based polymer has problems such as impeding conductivity when the electrode active material layer is formed and insufficient adhesive strength between the current collector and the electrode active material layer. Furthermore, when a fluorine-based polymer is used for the negative electrode which is a reduction condition, there are problems such as insufficient stability and deterioration of the cycle characteristics of the secondary battery.

このため、負極においては、ポリマーバインダーとして、非フッ素系ポリマーを用いることが検討されている。たとえば、特許文献1(特開平11−25989号公報)、特許文献2(特開2010−140684号公報)には、(メタ)アクリル酸などのエチレン性不飽和酸単量体、ブタジエンなどの共役ジエン、およびスチレンなどの芳香族ビニルを共重合してなるポリマーバインダーが開示されている。このようなポリマーバインダーによれば、集電体と電極活物質層との間の密着性が高く、サイクル特性に高い電池が得られる。また、ポリマーバインダーに対して種々の添加剤を配合することで特性の向上を図ることも種々検討されている。   For this reason, in a negative electrode, using a non-fluorine-type polymer as a polymer binder is examined. For example, Patent Document 1 (Japanese Patent Laid-Open No. 11-25959) and Patent Document 2 (Japanese Patent Laid-Open No. 2010-140684) include an ethylenically unsaturated acid monomer such as (meth) acrylic acid and a conjugate such as butadiene. A polymer binder obtained by copolymerizing a diene and an aromatic vinyl such as styrene is disclosed. According to such a polymer binder, a battery having high adhesion between the current collector and the electrode active material layer and high cycle characteristics can be obtained. In addition, various studies have been made to improve the characteristics by blending various additives with the polymer binder.

なお、特許文献3〜5には、電解液の劣化を防止する等の目的で、電解液にアルケニル基含有化合物を添加することが教示されている。   Patent Documents 3 to 5 teach that an alkenyl group-containing compound is added to the electrolytic solution for the purpose of preventing the electrolytic solution from deteriorating.

特開平11−25989号公報Japanese Patent Laid-Open No. 11-25989 特開2010−140684号公報JP 2010-140684 A 特開2001−313072号公報JP 2001-313072 A 特開2009−93839号公報JP 2009-93839 A 特開2009−152133号公報JP 2009-152133 A

特許文献1,2に記載のポリマーバインダーを電極活物質層に用いることで、集電体と電極活物質層との間の密着性が高く、サイクル特性に高い電池が得られる。しかし、二次電池には、常に高機能化、長寿命化が求められ続けている。具体的には、サイクル特性、低温出力特性などの向上であり、また充放電後の集電体と電極活物質層との間の密着性の向上も求められている。
しかしながら、特許文献1、2に記載のポリマーバインダーでは、充放電後の集電体と電極活物質層との間の密着性が低下したり、得られる二次電池の、サイクル特性、特に高温におけるサイクル特性や低温出力特性が低下したりする問題があり、さらなる改善が望まれていた。
そこで、本発明は、充放電後の集電体と電極活物質層との間の密着性に優れ、二次電池の高温におけるサイクル特性、低温出力特性の向上に寄与しうる二次電池負極用バインダー組成物を提供することを目的とする。
By using the polymer binder described in Patent Documents 1 and 2 for the electrode active material layer, a battery with high adhesion between the current collector and the electrode active material layer and high cycle characteristics can be obtained. However, secondary batteries are constantly required to have higher functionality and longer life. Specifically, improvement in cycle characteristics, low-temperature output characteristics, and the like, and improvement in adhesion between the current collector after charging and discharging and the electrode active material layer are also required.
However, in the polymer binders described in Patent Documents 1 and 2, the adhesion between the current collector after charging and discharging and the electrode active material layer is reduced, or the cycle characteristics of the resulting secondary battery, particularly at high temperatures, are reduced. There has been a problem that cycle characteristics and low-temperature output characteristics deteriorate, and further improvement has been desired.
Therefore, the present invention is excellent in adhesion between a current collector after charging and discharging and an electrode active material layer, and can be used for secondary battery negative electrodes that can contribute to improvement of cycle characteristics and low-temperature output characteristics of secondary batteries at high temperatures. An object is to provide a binder composition.

本発明者らは上記課題を解決すべく鋭意検討を続けたところ、負極活物質層に用いるポリマーバインダーと、特定の化合物とを併用することで、充放電後の集電体と電極活物質層との間の密着性が向上し、特に高温におけるサイクル特性、低温出力特性が改善された二次電池が得られることを見出し、本発明を完成するに至った。   The inventors of the present invention have continually studied to solve the above-mentioned problems. As a result, the polymer binder used for the negative electrode active material layer and the specific compound are used in combination, whereby the current collector and the electrode active material layer after charging and discharging are used. As a result, the present inventors have found that a secondary battery having improved cycle characteristics at low temperatures and improved low-temperature output characteristics can be obtained.

すなわち、上記課題の解決を目的とした本発明の要旨は以下のとおりである。
(1)バインダー及びプロパルギル基含有化合物を含有し、前記プロパルギル基含有化合物の含有量が、前記バインダー100質量部に対して0.1〜20質量部である、二次電池負極用バインダー組成物。
That is, the gist of the present invention aimed at solving the above problems is as follows.
(1) A binder composition for a secondary battery negative electrode containing a binder and a propargyl group-containing compound, wherein the content of the propargyl group-containing compound is 0.1 to 20 parts by mass with respect to 100 parts by mass of the binder.

(2)前記プロパルギル基含有化合物が、モノプロパルギル基含有化合物である(1)に記載の二次電池負極用バインダー組成物。 (2) The binder composition for a secondary battery negative electrode according to (1), wherein the propargyl group-containing compound is a monopropargyl group-containing compound.

(3)前記バインダーが、エチレン性不飽和カルボン酸単量体単位を含む(1)または(2)に記載の二次電池負極用バインダー組成物。 (3) The binder composition for secondary battery negative electrodes as described in (1) or (2) in which the binder contains an ethylenically unsaturated carboxylic acid monomer unit.

(4)前記バインダーのガラス転移温度が、−60℃〜40℃である(1)〜(3)のいずれかに記載の二次電池負極用バインダー組成物。 (4) The binder composition for secondary battery negative electrodes in any one of (1)-(3) whose glass transition temperature of the said binder is -60 degreeC-40 degreeC.

(5)上記(1)〜(4)のいずれかに記載の二次電池負極用バインダー組成物および負極活物質を含有してなる二次電池負極用スラリー組成物。 (5) A secondary battery negative electrode slurry composition comprising the secondary battery negative electrode binder composition according to any one of (1) to (4) and a negative electrode active material.

(6)前記負極活物質のBET比表面積が、3〜20m/gである(5)に記載の二次電池負極用スラリー組成物。(6) The slurry composition for secondary battery negative electrodes as described in (5) whose BET specific surface area of the said negative electrode active material is 3-20 m < 2 > / g.

(7)上記(1)〜4のいずれかに記載の二次電池用負極バインダー組成物および負極活物質を含んでなる負極活物質層を集電体上に有する二次電池用負極。 (7) A negative electrode for a secondary battery having a negative electrode active material layer comprising the negative electrode binder composition for a secondary battery according to any one of (1) to 4 and a negative electrode active material on a current collector.

(8)前記負極活物質のBET比表面積が、3〜20m/gである(7)に記載の二次電池用負極。(8) The negative electrode for secondary batteries as described in (7) whose BET specific surface area of the said negative electrode active material is 3-20 m < 2 > / g.

(9)前記負極活物質が、炭素材料系活物質である(7)または(8)に記載の二次電池用負極。 (9) The negative electrode for a secondary battery according to (7) or (8), wherein the negative electrode active material is a carbon material-based active material.

(10)正極、負極、電解液、並びにセパレーターを備えるリチウムイオン二次電池であって、前記負極が(7)〜(9)のいずれかに記載の二次電池用負極である二次電池。 (10) A secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, wherein the negative electrode is a negative electrode for a secondary battery according to any one of (7) to (9).

(11)前記電解液が、ビニレンカーボネートを含む(10)に記載の二次電池。 (11) The secondary battery according to (10), wherein the electrolytic solution contains vinylene carbonate.

負極活物質層に用いるバインダーと、プロパルギル基含有化合物とを併用することで、集電体と電極活物質層との間の密着性が向上し、特に高温サイクル特性、低温出力特性が改善された二次電池が得られる。このような本発明の作用機構は必ずしも明らかではない。何ら限定的に解釈されるものではないが、本発明者らは、上記効果が奏される機構を以下のように推定している。すなわち、負極活物質層にプロパルギル基含有化合物を配合することで、負極活物質表面に、プロパルギル基含有化合物が吸着し、負極活物質表面にはSEI(Solid Electrolyte Interface)被膜と呼ばれる薄層の生成が促進されると考えられる。   By using the binder used in the negative electrode active material layer and the propargyl group-containing compound in combination, the adhesion between the current collector and the electrode active material layer is improved, and in particular, the high temperature cycle characteristics and the low temperature output characteristics are improved. A secondary battery is obtained. Such an action mechanism of the present invention is not necessarily clear. Although not construed as limiting in any way, the present inventors presume the mechanism by which the above effect is achieved as follows. That is, by adding a propargyl group-containing compound to the negative electrode active material layer, the propargyl group-containing compound is adsorbed on the surface of the negative electrode active material, and a thin layer called SEI (Solid Electrolyte Interface) coating is formed on the negative electrode active material surface. Will be promoted.

負極活物質表面と電解液とが接触する際に、多くの場合、負極活物質のエッジ部において接触した電解液の一部が分解される。このような負極活物質のエッジ部は活性点とも呼ばれる。活性点において生成した分解物によって、電極活物質層が膨らみ、集電体と電極活物質層との間の密着性が低下する。この結果、電池のサイクル特性、低温出力特性が損なわれる。   When the surface of the negative electrode active material and the electrolytic solution are in contact, in many cases, a part of the electrolytic solution in contact with the edge portion of the negative electrode active material is decomposed. Such an edge portion of the negative electrode active material is also called an active point. The decomposition product generated at the active point swells the electrode active material layer, and the adhesion between the current collector and the electrode active material layer decreases. As a result, the cycle characteristics and low-temperature output characteristics of the battery are impaired.

しかし、上記のようなプロパルギル基含有化合物によりSEI被膜を形成することで、負極活物質の活性点と電解液との直接的な接触が低減され、電解液成分の分解が防止される。この結果、負極活物質層の膨潤が低減され、ピール強度、すなわち集電体と負極活物質層との密着性が維持され、サイクル特性及び低温出力特性を向上できると考えられる。   However, by forming the SEI film with the propargyl group-containing compound as described above, direct contact between the active site of the negative electrode active material and the electrolytic solution is reduced, and decomposition of the electrolytic solution component is prevented. As a result, it is considered that swelling of the negative electrode active material layer is reduced, peel strength, that is, adhesion between the current collector and the negative electrode active material layer is maintained, and cycle characteristics and low temperature output characteristics can be improved.

以下において、(1)二次電池負極用バインダー組成物、(2)二次電池負極用スラリー組成物、(3)二次電池用負極、及び(4)二次電池の順に説明する。   Hereinafter, (1) secondary battery negative electrode binder composition, (2) secondary battery negative electrode slurry composition, (3) secondary battery negative electrode, and (4) secondary battery will be described in this order.

(1)二次電池負極用バインダー組成物
本発明の二次電池負極用バインダー組成物は、バインダーと、プロパルギル基含有化合物とを含有する。
(1) Secondary battery negative electrode binder composition The secondary battery negative electrode binder composition of the present invention contains a binder and a propargyl group-containing compound.

(バインダー)
本発明で使用されるバインダーは、特に限定はされず、フッ素系重合体、ジエン系重合体、ニトリル系重合体等の従来より負極活物質層のバインダーとして用いられてきた種々の高分子化合物が用いられる。これらの中でも、水系での合成が容易であり、簡便に水系ラテックスの形態で得られる高分子化合物が好ましい。このような高分子化合物としては、エチレン性不飽和酸単量体単位、好ましくはエチレン性不飽和カルボン酸単量体単位を含む高分子化合物が挙げられる。
(binder)
The binder used in the present invention is not particularly limited, and various polymer compounds that have been conventionally used as binders for negative electrode active material layers such as fluoropolymers, diene polymers, and nitrile polymers can be used. Used. Among these, a polymer compound that can be easily synthesized in an aqueous system and easily obtained in the form of an aqueous latex is preferable. Examples of such a polymer compound include a polymer compound containing an ethylenically unsaturated acid monomer unit, preferably an ethylenically unsaturated carboxylic acid monomer unit.

エチレン性不飽和カルボン酸単量体単位を含む高分子化合物は、コモノマーとして脂肪族共役ジエン系単量体単位を含むことが好ましく、また必要に応じこれら単量体と共重合可能な他の単量体から導かれる単位を含むことができる。さらに、バインダーの耐久性や、柔軟性、接着性等の観点から、これらの単量体単位を特定の比率で含有することが特に好ましい。   The polymer compound containing an ethylenically unsaturated carboxylic acid monomer unit preferably contains an aliphatic conjugated diene monomer unit as a comonomer, and, if necessary, other monomers that can be copolymerized with these monomers. Units derived from the mer may be included. Furthermore, it is particularly preferable to contain these monomer units in a specific ratio from the viewpoint of the durability, flexibility, adhesiveness, and the like of the binder.

したがって、本発明で特に好ましく用いられるバインダーは、エチレン性不飽和カルボン酸単量体単位、脂肪族共役ジエン系単量体単位、及びこれらと共重合可能な他の単量体単位からなり、各単量体単位を特定比率で含むものが好ましい。エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体を重合して得られる重合体繰り返し単位であり、脂肪族共役ジエン系単量体単位は、脂肪族共役ジエン系単量体を重合して得られる重合体繰り返し単位であり、これらと共重合可能な他の単量体単位は、共重合可能な他の単量体を重合して得られる重合体繰り返し単位である。   Accordingly, the binder particularly preferably used in the present invention comprises an ethylenically unsaturated carboxylic acid monomer unit, an aliphatic conjugated diene monomer unit, and other monomer units copolymerizable therewith, Those containing monomer units in a specific ratio are preferred. The ethylenically unsaturated carboxylic acid monomer unit is a polymer repeating unit obtained by polymerizing an ethylenically unsaturated carboxylic acid monomer, and the aliphatic conjugated diene monomer unit is an aliphatic conjugated diene type. It is a polymer repeating unit obtained by polymerizing monomers, and other monomer units copolymerizable with these are polymer repeating units obtained by polymerizing other copolymerizable monomers. is there.

エチレン性不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノまたはジカルボン酸(無水物)等が挙げられ、1種または2種以上用いることができる。これらの中でも、集電体との密着性に優れる点で、アクリル酸、メタクリル酸、イタコン酸が好ましく、イタコン酸が特に好ましい。ポリマーバインダーを後述するプロパルギル基含有化合物と併用した場合、プロパルギル基含有化合物の配合量が増えるにつれて、バインダー組成物の水中での分散性(以後、適宣、水分散性と略することがある)が低下することがある。しかし、ポリマーバインダー中にカルボン酸を含有する単位を導入することで、水分散性が向上する。また、特にジカルボン酸であるイタコン酸を導入すると、バインダーと水との親和性が高くなる。   Examples of the ethylenically unsaturated carboxylic acid monomer include mono- or dicarboxylic acids (anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. Can be used. Among these, acrylic acid, methacrylic acid, and itaconic acid are preferable, and itaconic acid is particularly preferable in terms of excellent adhesion to the current collector. When a polymer binder is used in combination with a propargyl group-containing compound described later, the dispersibility of the binder composition in water increases as the amount of the propargyl group-containing compound increases (hereinafter, sometimes abbreviated as water dispersibility). May decrease. However, water dispersibility is improved by introducing a unit containing a carboxylic acid into the polymer binder. In particular, when itaconic acid, which is a dicarboxylic acid, is introduced, the affinity between the binder and water increases.

脂肪族共役ジエン系単量体としては、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などが挙げられ、1種または2種以上用いることができる。特に1,3−ブタジエンが好ましい。   Aliphatic conjugated diene monomers include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, substituted Examples thereof include linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and one or more kinds can be used. 1,3-butadiene is particularly preferable.

これらと共重合可能な他の単量体としては、芳香族ビニル系単量体、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、不飽和カルボン酸アミド単量体等が挙げられ、これらは、1種または2種以上用いることができる。特に、電解液に対する膨潤が抑制できる点で、芳香族ビニル系単量体が好ましい。   Other monomers copolymerizable with these include aromatic vinyl monomers, vinyl cyanide monomers, unsaturated carboxylic acid alkyl ester monomers, and unsaturated monomers containing hydroxyalkyl groups. Body, unsaturated carboxylic acid amide monomer, etc., and these can be used alone or in combination. In particular, an aromatic vinyl monomer is preferable from the viewpoint that swelling with respect to the electrolytic solution can be suppressed.

芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、ビニルトルエンおよびジビニルベンゼン等が挙げられ、1種または2種以上用いることができる。これらの中でも電解液に対する膨潤が抑制できる点で、特にスチレンが好ましい。   Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, vinyltoluene, divinylbenzene, and the like, and one or more kinds can be used. Among these, styrene is particularly preferable in that swelling with respect to the electrolytic solution can be suppressed.

シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリルなどが挙げられ、1種または2種以上用いることができる。特にアクリロニトリル、メタクリロニトリルが好ましい。   Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile and the like, and one or more can be used. In particular, acrylonitrile and methacrylonitrile are preferable.

不飽和カルボン酸アルキルエステル単量体としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、2−エチルヘキシルアクリレート等が挙げられ、1種または2種以上用いることができる。特にメチルメタクリレートが好ましい。   Examples of unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate, Monomethyl fumarate, monoethyl fumarate, 2-ethylhexyl acrylate and the like can be mentioned, and one or more can be used. Particularly preferred is methyl methacrylate.

ヒドロキシアルキル基を含有する不飽和単量体としては、β−ヒドロキシエチルアクリレート、β−ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ジ−(エチレングリコール)マレエート、ジ−(エチレングリコール)イタコネート、2−ヒドロキシエチルマレエート、ビス(2−ヒドロキシエチル)マレエート、2−ヒドロキシエチルメチルフマレートなどが挙げられ、1種または2種以上用いることができる。特にβ−ヒドロキシエチルアクリレートが好ましい。   Examples of unsaturated monomers containing a hydroxyalkyl group include β-hydroxyethyl acrylate, β-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, and 3-chloro-2-hydroxypropyl. Methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, 2-hydroxyethyl methyl fumarate, etc. More than one species can be used. In particular, β-hydroxyethyl acrylate is preferable.

不飽和カルボン酸アミド単量体としては、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N,N−ジメチルアクリルアミド等が挙げられ、1種または2種以上用いることができる。特にアクリルアミド、メタクリルアミドが好ましい。   Examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethylacrylamide, and the like, and one or more can be used. Particularly preferred are acrylamide and methacrylamide.

さらに、上記単量体の他に、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン等、通常の乳化重合において使用される単量体は何れも使用可能である。   Further, in addition to the above monomers, any of the monomers used in ordinary emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride can be used.

本発明におけるバインダーの各単量体単位の比率は、エチレン性不飽和カルボン酸単量体単位が好ましくは0.1〜20質量%、さらに好ましくは0.5〜15質量%、より好ましくは1.0〜10質量%であり、脂肪族共役ジエン系単量体単位が好ましくは20〜80質量%、さらに好ましくは25〜70質量%、より好ましくは30〜60質量%であり、これらと共重合可能な他の単量体単位が好ましくは5〜79.9質量%、さらに好ましくは10〜70質量%、より好ましくは20〜60質量%である。   The ratio of each monomer unit of the binder in the present invention is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and more preferably 1 to ethylenically unsaturated carboxylic acid monomer units. 0.0 to 10% by mass, and the aliphatic conjugated diene monomer unit is preferably 20 to 80% by mass, more preferably 25 to 70% by mass, and more preferably 30 to 60% by mass. The other polymerizable monomer units are preferably 5 to 79.9% by mass, more preferably 10 to 70% by mass, and more preferably 20 to 60% by mass.

エチレン性不飽和カルボン酸単量体単位が前記範囲にあることにより、バインダー組成物及びスラリー組成物の安定性が向上し、二次電池用負極における負極活物質と集電体との十分な密着性を得ることができる。その結果、得られる二次電池の耐久性、特に高温サイクル特性が向上し好適である。   When the ethylenically unsaturated carboxylic acid monomer unit is in the above range, the stability of the binder composition and the slurry composition is improved, and sufficient adhesion between the negative electrode active material and the current collector in the negative electrode for a secondary battery is obtained. Sex can be obtained. As a result, durability of the obtained secondary battery, in particular, high temperature cycle characteristics is improved, which is preferable.

脂肪族共役ジエン系単量体単位が前記範囲にあることにより、二次電池用負極の柔軟性と、負極活物質と集電体との密着性とが高度にバランスし好ましい。また、それによって、得られる二次電池の耐久性、特に高温サイクル特性が向上し好適である。   When the aliphatic conjugated diene monomer unit is in the above range, the flexibility of the negative electrode for secondary batteries and the adhesion between the negative electrode active material and the current collector are highly balanced, which is preferable. In addition, the durability of the obtained secondary battery, in particular, the high temperature cycle characteristics is improved, which is preferable.

共重合可能な他の単量体単位が前記範囲にあることにより、二次電池用負極の柔軟性と、負極活物質と集電体との密着性とが高度にバランスし好ましい。また、それによって、得られる二次電池の耐久性、特に高温サイクル特性が向上し好適である。   When the other monomer units that can be copolymerized are in the above range, the flexibility of the negative electrode for a secondary battery and the adhesion between the negative electrode active material and the current collector are highly balanced, which is preferable. In addition, the durability of the obtained secondary battery, in particular, the high temperature cycle characteristics is improved, which is preferable.

バインダーのガラス転移温度(Tg)は、好ましくは−60〜40℃、より好ましくは−50〜30℃、特に好ましくは−40〜20℃である。バインダーのTgが前記範囲にあることにより、負極の柔軟性、結着性及び捲回性、負極活物質と集電体との密着性などの特性が高度にバランスされ好適である。   The glass transition temperature (Tg) of the binder is preferably −60 to 40 ° C., more preferably −50 to 30 ° C., and particularly preferably −40 to 20 ° C. When the Tg of the binder is within the above range, characteristics such as flexibility, binding and winding properties of the negative electrode, and adhesion between the negative electrode active material and the current collector are highly balanced, which is preferable.

なお、共重合モノマーとして脂肪族共役ジエンを用いた場合には、重合後にジエン単位に水素添加を行ってもよい。水素添加する方法は、特に限定されず、通常の方法を用いることができる。   In addition, when an aliphatic conjugated diene is used as a copolymerization monomer, you may hydrogenate a diene unit after superposition | polymerization. The method for hydrogenation is not particularly limited, and a normal method can be used.

(プロパルギル基含有化合物)
本発明の二次電池負極用バインダー組成物には、上記のバインダー100質量部(固形分換算)に対し、特定量のプロパルギル基含有化合物が含まれる。何ら理論的に制限されるものではないが、本発明の二次電池負極用バインダー組成物によれば、特定量のプロパルギル基含有化合物を含有することで、負極活物質と接触した際に、プロパルギル基含有化合物が、負極活物質の活性点近傍でSEI被膜を形成すると考えられる。SEI被膜によって、電解液の成分が活性点に接触することが防止されるため、電池内での電解液の分解が抑制される。その結果、電解液の分解による電解液粘度の上昇と二次電池の内部抵抗の上昇とが抑制されるため、二次電池の高温保存特性、高温サイクル特性、低温出力特性が向上する。また、電解液成分の分解物による負極活物質層の膨潤が防止され、ピール強度が維持され、高温サイクル特性及び低温出力特性をさらに向上できる。
(Propargyl group-containing compound)
The binder composition for a secondary battery negative electrode of the present invention contains a specific amount of a propargyl group-containing compound with respect to 100 parts by mass (in terms of solid content) of the binder. Although not theoretically limited at all, according to the binder composition for a negative electrode of a secondary battery of the present invention, when containing a specific amount of a propargyl group-containing compound, propargyl is brought into contact with the negative electrode active material. It is considered that the group-containing compound forms an SEI film in the vicinity of the active point of the negative electrode active material. The SEI coating prevents the components of the electrolytic solution from coming into contact with the active points, so that the decomposition of the electrolytic solution in the battery is suppressed. As a result, the increase in the electrolyte viscosity due to the decomposition of the electrolyte and the increase in the internal resistance of the secondary battery are suppressed, so that the high-temperature storage characteristics, the high-temperature cycle characteristics, and the low-temperature output characteristics of the secondary battery are improved. Further, swelling of the negative electrode active material layer due to the decomposition product of the electrolyte component is prevented, the peel strength is maintained, and the high temperature cycle characteristics and the low temperature output characteristics can be further improved.

バインダー組成物におけるプロパルギル基含有化合物の含有量は、バインダー100質量部(固形分換算)に対し、0.1〜20質量部、好ましくは0.5〜10質量部、より好ましくは1〜5質量部である。プロパルギル基含有化合物の含有量が少なすぎる場合には、上記のSEI被膜の生成が不十分になり、電解液成分が分解しやすく、電池のサイクル特性や出力特性が低下するおそれがある。一方、プロパルギル基含有化合物の含有量が多すぎる場合には、バインダー組成物を用いて調製したスラリーの安定性が損なわれ、スラリーの粘度が上昇しやすくなる。この結果、スラリーの塗工が困難になり、得られる負極の均一性が低下し、出力特性が低下するおそれがある。   The content of the propargyl group-containing compound in the binder composition is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, and more preferably 1 to 5 parts by weight with respect to 100 parts by weight (solid content conversion) of the binder. Part. When the content of the propargyl group-containing compound is too small, the formation of the SEI coating becomes insufficient, the electrolytic solution component is easily decomposed, and the battery cycle characteristics and output characteristics may be deteriorated. On the other hand, when the content of the propargyl group-containing compound is too large, the stability of the slurry prepared using the binder composition is impaired, and the viscosity of the slurry tends to increase. As a result, it becomes difficult to apply the slurry, the uniformity of the obtained negative electrode is lowered, and the output characteristics may be lowered.

本発明で使用するプロパルギル基含有化合物は、分子内に1以上のプロパルギル基(H−C≡C−CH−)を有する。プロパルギル基の数は、特に限定はされないが、プロパルギル基の数が多くなると、水への分散性が低下し、均一な水系スラリーが得られないおそれがある。したがって、プロパルギル基含有化合物1分子あたりのプロパルギル基の数は2以下であることが好ましく、1であることが特に好ましい。したがって、本発明においては、モノプロパルギル基含有化合物が特に好ましく用いられる。The propargyl group-containing compound used in the present invention has one or more propargyl groups (H—C≡C—CH 2 —) in the molecule. The number of propargyl groups is not particularly limited. However, when the number of propargyl groups is increased, the dispersibility in water may be reduced, and a uniform aqueous slurry may not be obtained. Therefore, the number of propargyl groups per molecule of the propargyl group-containing compound is preferably 2 or less, particularly preferably 1. Accordingly, monopropargyl group-containing compounds are particularly preferably used in the present invention.

プロパルギル基含有化合物としては、具体的には、ベンゼンスルホン酸プロパルギル、アクリル酸プロパルギル、メタアクリル酸プロパルギル、酢酸プロパルギル等のモノプロパルギル基含有化合物;
ジプロパルギルカーボネート等のジプロパルギル基含有化合物があげられる。
Specific examples of the propargyl group-containing compound include monopropargyl group-containing compounds such as propargyl benzenesulfonate, propargyl acrylate, propargyl methacrylate, and propargyl acetate;
Examples include dipropargyl group-containing compounds such as dipropargyl carbonate.

このようなプロパルギル基含有化合物は、後述するような負極活物質と接触すると、負極活物質表面に、プロパルギル基含有化合物が吸着し、SEI被膜と呼ばれる薄層を生成すると考えられる。SEI被膜が形成された負極活物質では、活性点であるエッジ部も被膜により覆われるため、活性点と電解液成分との接触が低減される。この結果、電解液成分の分解が抑制され、負極活物質層の膨張や、それに起因する集電体と負極活物質層との間の密着性の低下が防止され、電池の高温サイクル特性、低温出力特性が向上すると考えられる。   When such a propargyl group-containing compound is brought into contact with a negative electrode active material as described later, it is considered that the propargyl group-containing compound is adsorbed on the surface of the negative electrode active material to form a thin layer called an SEI coating. In the negative electrode active material on which the SEI film is formed, the edge portion, which is the active point, is also covered with the film, so that contact between the active point and the electrolyte component is reduced. As a result, the decomposition of the electrolyte component is suppressed, and the negative electrode active material layer is prevented from expanding and the adhesion between the current collector and the negative electrode active material layer is prevented from being lowered. The output characteristics are considered to be improved.

(その他の成分)
本発明の二次電池負極用バインダー組成物には、バインダーおよびプロパルギル基含有化合物に加え、これら成分を分散するための分散媒が含まれていてもよい。分散媒は、水、有機溶媒の何れであってもよく、バインダー組成物の分散安定性を損なわない範囲であれば、分散媒として水に親水性の溶媒を混合してもよい。親水性の溶媒としては、メタノール、エタノール、N−メチルピロリドンなどがあげられ、水に対して5質量%以下であることが好ましい。また、後述するバインダー調製時の反応溶媒をそのまま分散媒としてもよく、バインダー調製後に溶媒置換してもよい。
(Other ingredients)
The binder composition for secondary battery negative electrode of the present invention may contain a dispersion medium for dispersing these components in addition to the binder and the propargyl group-containing compound. The dispersion medium may be either water or an organic solvent. As long as the dispersion stability of the binder composition is not impaired, a hydrophilic solvent may be mixed with water as the dispersion medium. Examples of the hydrophilic solvent include methanol, ethanol, N-methylpyrrolidone and the like, and the amount is preferably 5% by mass or less based on water. In addition, a reaction solvent at the time of preparing the binder described later may be used as a dispersion medium as it is, or the solvent may be replaced after preparing the binder.

バインダー組成物が、分散媒を含む場合、バインダーおよびプロパルギル基含有化合物の合計固形分濃度は特に限定はされないが、20〜60質量%程度が適当である。   When the binder composition contains a dispersion medium, the total solid content concentration of the binder and the propargyl group-containing compound is not particularly limited, but about 20 to 60% by mass is appropriate.

さらに、バインダー組成物には、バインダー調製時に使用した各種の分散剤等が含まれていてもよい。また、バインダー組成物には、組成物の分散性を損なわない範囲で、さらに老化防止剤、防腐剤等が含まれていてもよい。   Further, the binder composition may contain various dispersants used at the time of preparing the binder. The binder composition may further contain an antiaging agent, an antiseptic, and the like as long as the dispersibility of the composition is not impaired.

老化防止剤としては、アミン系酸化防止剤、フェノール系酸化防止剤、キノン系酸化防止剤、有機リン系酸化防止剤、硫黄系酸化防止剤、フェノチアジン系酸化防止剤等が挙げられる。防腐剤としては、イソチアゾリン系化合物、ピリチオン系化合物が挙げられる。バインダー組成物が、これらの成分を含む場合、組成物におけるこれら成分の固形分濃度は特に限定はされないが、0.001〜1質量%程度が適当である。   Examples of the antioxidant include amine-based antioxidants, phenol-based antioxidants, quinone-based antioxidants, organic phosphorus-based antioxidants, sulfur-based antioxidants, and phenothiazine-based antioxidants. Examples of the preservative include isothiazoline compounds and pyrithione compounds. When the binder composition contains these components, the solid content concentration of these components in the composition is not particularly limited, but about 0.001 to 1% by mass is appropriate.

(二次電池負極用バインダー組成物の製造方法)
本発明の二次電池負極用バインダー組成物を製造する方法としては、上記単量体を含む単量体組成物を、水系溶媒中で重合してバインダーを含む水分散液(結着力を有する重合体粒子であるバインダーが水系溶媒に溶解又は分散された溶液又は分散液)を得、バインダーを含む水分散液に特定量のプロパルギル基含有化合物及びその他の任意成分を添加・混合する方法が挙げられる。ただし、バインダー組成物の製造方法がこれに限定されることはなく、たとえば、単量体組成物にプロパルギル基含有化合物、老化防止剤あるいは防腐剤等を予め配合し、その後に重合を行ってもよい。また、重合中あるいは重合後の任意の段階でこれらをバインダー組成物に配合してもよい。
(Method for producing binder composition for secondary battery negative electrode)
As a method for producing a binder composition for a secondary battery negative electrode of the present invention, a monomer composition containing the above monomer is polymerized in an aqueous solvent to prepare an aqueous dispersion containing a binder (a binder having a binding force). A solution or dispersion in which a binder as a coalesced particle is dissolved or dispersed in an aqueous solvent), and a specific amount of a propargyl group-containing compound and other optional components are added to and mixed with an aqueous dispersion containing the binder. . However, the method for producing the binder composition is not limited to this. For example, a propargyl group-containing compound, an anti-aging agent, or an antiseptic may be blended in advance in the monomer composition, and then polymerization may be performed. Good. Moreover, you may mix | blend these with a binder composition in the arbitrary steps during superposition | polymerization or after superposition | polymerization.

バインダーを含む水分散液を得る工程における単量体組成物中の各単量体の比率は、エチレン性不飽和カルボン酸単量体が好ましくは0.1〜20質量%、さらに好ましくは0.5〜15質量%、より好ましくは1.0〜10質量%であり、脂肪族共役ジエン系単量体が好ましくは20〜80質量%、さらに好ましくは25〜70質量%、より好ましくは30〜60質量%であり、これらと共重合可能な他の単量体が好ましくは5〜79.9質量%、さらに好ましくは10〜70質量%、より好ましくは20〜60質量%である。   The ratio of each monomer in the monomer composition in the step of obtaining an aqueous dispersion containing a binder is preferably 0.1 to 20% by mass, more preferably 0. 5 to 15% by mass, more preferably 1.0 to 10% by mass, and aliphatic conjugated diene monomer is preferably 20 to 80% by mass, more preferably 25 to 70% by mass, and more preferably 30 to 30% by mass. The other monomer copolymerizable with these is preferably 5 to 79.9% by mass, more preferably 10 to 70% by mass, and more preferably 20 to 60% by mass.

水系溶媒としては、バインダーの分散が可能なものであれば格別限定されることはなく、通常、常圧における沸点が80〜350℃、好ましくは100〜300℃の分散媒から選ばれる。なお、下記例示の分散媒名の後の( )内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。例えば、ケトン類としては、ダイアセトンアルコール(169)、γ−ブチロラクトン(204);アルコール類としては、エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97);グリコール類として、エチレングリコール(193)、プロピレングリコール(188)、ジエチレングリコール(244);グリコールエーテル類としては、プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3−メトキシー3メチル−1−ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルピルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188);エーテル類としては、1,3−ジオキソラン(75)、1,4−ジオキソラン(101)、テトラヒドロフラン(66)が挙げられる。中でも、水は可燃性がなく、バインダーの分散体が容易に得られやすいという観点から最も好ましい。なお、主溶媒として水を使用して、バインダーの分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いて良い。   The aqueous solvent is not particularly limited as long as the binder can be dispersed, and is usually selected from a dispersion medium having a boiling point of 80 to 350 ° C., preferably 100 to 300 ° C. at normal pressure. In addition, the number in parentheses after the name of the following exemplified dispersion medium is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is rounded off or rounded down. For example, diacetone alcohol (169), γ-butyrolactone (204) as ketones; ethyl alcohol (78), isopropyl alcohol (82), normal propyl alcohol (97) as alcohols; ethylene as glycols Glycol (193), propylene glycol (188), diethylene glycol (244); glycol ethers include propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152) , Butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174), ethylene glycol monopropyl ether (150), diethylene glycol monobutyl pyrute (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether (188); ethers include 1,3-dioxolane (75), 1,4-dioxolane (101), and tetrahydrofuran (66) Can be mentioned. Among these, water is most preferable from the viewpoint that it is not flammable and a binder dispersion is easily obtained. In addition, water may be used as the main solvent, and an aqueous solvent other than the above-described water may be mixed and used within a range in which the dispersion state of the binder can be ensured.

重合方法は、特に限定されず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などが挙げられる。高分子量体が得やすい事、重合物がそのまま水に分散した状態で得られ、再分散化の処理が不要であり、そのまま二次電池負極用スラリー組成物作製に供することができるなど、製造効率の観点から、中でも乳化重合法が最も好ましい。   The polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. Examples of the polymerization reaction include ionic polymerization, radical polymerization, and living radical polymerization. Manufacturing efficiency, such as easy to obtain high molecular weight, obtained in a state where the polymer is dispersed in water as it is, no redispersion treatment is required, and can be used as it is for slurry composition preparation for secondary battery negative electrode From the viewpoint of the above, the emulsion polymerization method is most preferable.

乳化重合法は、常法、例えば「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法、すなわち、攪拌機および加熱装置付きの密閉容器に水、分散剤や乳化剤、架橋剤などの添加剤、開始剤およびモノマーを所定の組成になるように加え、攪拌してモノマーなどを水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。或いは、上記組成物を乳化させた後に密閉容器に入れ同様に反応を開始させる方法である。   The emulsion polymerization method is a conventional method, for example, the method described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan), that is, water in a sealed container with a stirrer and a heating device. Add additives such as dispersants, emulsifiers and crosslinkers, initiators and monomers to the prescribed composition, stir to emulsify the monomers in water, start the polymerization by increasing the temperature while stirring Is the method. Or after emulsifying the said composition, it is the method of starting reaction similarly in an airtight container.

乳化剤や分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、その使用量も一般に使用される量でよい。また重合に際しては、シード粒子を採用すること(シード重合)もできる。   An emulsifier, a dispersant, a polymerization initiator, and the like are generally used in these polymerization methods, and the amount used may be a generally used amount. In the polymerization, seed particles can be employed (seed polymerization).

重合温度および重合時間は、重合法や使用する重合開始剤の種類などにより任意に選択できるが、通常、重合温度は約30℃以上、重合時間は0.5〜30時間程度である。アミン類などの添加剤を重合助剤として用いることもできる。さらにこれらの方法によって得られる重合体粒子の水分散液に、アルカリ金属(Li、Na、K、Rb、Cs)水酸化物、アンモニア、無機アンモニウム化合物(NHClなど)、有機アミン化合物(エタノールアミン、ジエチルアミンなど)などが溶解している塩基性水溶液を加えてpH5〜10、好ましくは5〜9の範囲になるように調整することができる。アルカリ金属水酸化物によるpH調整は、バインダー組成物と、集電体及び活物質との結着性(ピール強度)を向上させるため好ましい。The polymerization temperature and polymerization time can be arbitrarily selected depending on the polymerization method and the type of polymerization initiator used, but the polymerization temperature is usually about 30 ° C. or higher and the polymerization time is about 0.5 to 30 hours. Additives such as amines can also be used as polymerization aids. Further, an aqueous dispersion of polymer particles obtained by these methods is mixed with an alkali metal (Li, Na, K, Rb, Cs) hydroxide, ammonia, an inorganic ammonium compound (NH 4 Cl, etc.), an organic amine compound (ethanol). A basic aqueous solution in which amine, diethylamine, etc.) are dissolved can be added to adjust the pH to 5 to 10, preferably 5 to 9. The pH adjustment with the alkali metal hydroxide is preferable because the binding property (peel strength) between the binder composition, the current collector and the active material is improved.

上述したバインダーは、2種以上の重合体からなる複合重合体粒子であってもよい。複合重合体粒子は、少なくとも1種のモノマー成分を常法により重合し、引き続き、他の少なくとも1種のモノマー成分を添加し、常法により重合させる方法(二段重合法)などによっても得ることができる。   The binder described above may be composite polymer particles composed of two or more kinds of polymers. The composite polymer particles can also be obtained by a method (two-stage polymerization method) in which at least one monomer component is polymerized by a conventional method, and then at least one other monomer component is added and polymerized by a conventional method. Can do.

重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、3,3,5−トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’−アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどが挙げられる。   Examples of the polymerization initiator used for polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like. Organic peroxides, azo compounds such as α, α′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.

また、前記重合において、連鎖移動剤を加えてもよい。連鎖移動剤としては、アルキルメルカプタンが好ましく、具体的には、n−ブチルメルカプタン、t−ブチルメルカプタン、n−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタンが挙げられる。中でも、n−オクチルメルカプタン、t−ドデシルメルカプタンが、重合安定性が良好であるという観点から好ましい。   In the polymerization, a chain transfer agent may be added. The chain transfer agent is preferably an alkyl mercaptan, specifically, n-butyl mercaptan, t-butyl mercaptan, n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan. , N-stearyl mercaptan. Among these, n-octyl mercaptan and t-dodecyl mercaptan are preferable from the viewpoint of good polymerization stability.

また、上記アルキルメルカプタンと共に他の連鎖移動剤を併用してもよい。併用してもよい連鎖移動剤としては、ターピノーレン、アリルアルコール、アリルアミン、アリルスルフォン酸ソーダ(カリウム)、メタアリルスルフォン酸ソーダ(カリウム)等が挙げられる。上記の連載移動剤の使用量は、本願発明の効果を妨げない範囲で特に限定されない。   In addition, other chain transfer agents may be used in combination with the alkyl mercaptan. Examples of chain transfer agents that may be used in combination include terpinolene, allyl alcohol, allylamine, sodium allyl sulfonate (potassium), and sodium methallyl sulfonate (potassium). The amount of the serial transfer agent used is not particularly limited as long as the effect of the present invention is not hindered.

水分散液中のバインダーの個数平均粒径は、50〜500nmが好ましく、70〜400nmがさらに好ましい。バインダーの個数平均粒径が上記範囲にあることで、得られる負極の強度および柔軟性が良好となる。重合体粒子の存在は、透過型電子顕微鏡法やコールターカウンター、レーザー回折散乱法などによって容易に測定することができる。   The number average particle size of the binder in the aqueous dispersion is preferably 50 to 500 nm, and more preferably 70 to 400 nm. When the number average particle diameter of the binder is in the above range, the strength and flexibility of the obtained negative electrode are improved. The presence of the polymer particles can be easily measured by a transmission electron microscope method, a Coulter counter, a laser diffraction scattering method, or the like.

また、バインダーは、上記単量体を段階的に重合することにより得られるコアシェル構造を有する重合体粒子からなるバインダーであってもよい。   The binder may be a binder composed of polymer particles having a core-shell structure obtained by polymerizing the above monomers stepwise.

バインダーを含む水分散液に、プロパルギル基含有化合物およびその他の任意成分を添加・混合する方法は特に限定されない。混合する方法としては、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。   The method for adding and mixing the propargyl group-containing compound and other optional components to the aqueous dispersion containing the binder is not particularly limited. Examples of the mixing method include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. In addition, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.

また、得られた本発明の二次電池負極用バインダー組成物には、塗布性を向上させたり、充放電特性を向上させるために添加剤を加えることができる。これらの添加剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマー、ポリアクリル酸ナトリウムなどのポリアクリル酸塩、ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、アクリル酸−ビニルアルコール共重合体、メタクリル酸−ビニルアルコール共重合体、マレイン酸−ビニルアルコール共重合体、変性ポリビニルアルコール、ポリエチレングリコール、エチレン−ビニルアルコール共重合体、ポリ酢酸ビニル部分ケン化物などが挙げられる。これらの添加剤は、バインダー組成物に添加する方法以外に、後述する本発明の二次電池負極用スラリー組成物に添加することもできる。   Moreover, an additive can be added to the obtained binder composition for a secondary battery negative electrode of the present invention in order to improve applicability and charge / discharge characteristics. These additives include cellulose polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, polyacrylates such as sodium polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, acrylic acid-vinyl alcohol copolymer, Examples include methacrylic acid-vinyl alcohol copolymer, maleic acid-vinyl alcohol copolymer, modified polyvinyl alcohol, polyethylene glycol, ethylene-vinyl alcohol copolymer, and partially saponified polyvinyl acetate. In addition to the method of adding these additives to the binder composition, these additives can also be added to the slurry composition for a secondary battery negative electrode of the present invention described later.

(2)二次電池負極用スラリー組成物
本発明の二次電池負極用スラリー組成物は、上記二次電池負極用バインダー組成物及び負極活物質を含有してなる。以下においては、本発明の二次電池負極用スラリー組成物を、リチウムイオン二次電池負極用スラリー組成物として用いる態様について説明する。
(2) Slurry composition for secondary battery negative electrode The secondary battery negative electrode slurry composition of the present invention comprises the above secondary battery negative electrode binder composition and a negative electrode active material. Below, the aspect which uses the slurry composition for secondary battery negative electrodes of this invention as a slurry composition for lithium ion secondary battery negative electrodes is demonstrated.

(負極活物質)
本発明に用いる負極活物質は、二次電池用負極内で電子の受け渡しをする物質である。
(Negative electrode active material)
The negative electrode active material used in the present invention is a material that transfers electrons in the negative electrode for a secondary battery.

リチウムイオン二次電池用負極活物質としては、炭素材料系活物質や合金系活物質が挙げられる。   Examples of the negative electrode active material for a lithium ion secondary battery include a carbon material-based active material and an alloy-based active material.

炭素材料系活物質とは、リチウムが挿入可能な炭素を主骨格とする活物質をいい、具体的には、炭素質材料と黒鉛質材料が挙げられる。炭素質材料とは一般的に炭素前駆体を2000℃以下で熱処理(炭素化)された黒鉛化の低い(結晶性の低い)炭素材料を示し、黒鉛質材料とは易黒鉛性炭素を2000℃以上で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料を示す。   The carbon material-based active material refers to an active material having carbon as a main skeleton into which lithium can be inserted, and specifically includes a carbonaceous material and a graphite material. The carbonaceous material generally indicates a carbon material having a low graphitization (low crystallinity) obtained by heat-treating (carbonizing) a carbon precursor at 2000 ° C. or less, and the graphitic material is a graphitizable carbon at 2000 ° C. A graphitic material having high crystallinity close to that of the graphite obtained by heat treatment as described above will be shown.

炭素質材料としては、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素が挙げられる。   Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.

易黒鉛性炭素としては石油や石炭から得られるタールピッチを原料とした炭素材料が挙げられ、例えば、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとはピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子であり、メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。   Examples of graphitizable carbon include carbon materials made from tar pitch obtained from petroleum and coal, such as coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, pyrolytic vapor-grown carbon fibers, etc. Is mentioned. MCMB is a carbon fine particle obtained by separating and extracting mesophase spherules produced in the process of heating pitches at around 400 ° C., and mesophase pitch-based carbon fiber is a mesophase pitch obtained by growing and coalescing the mesophase spherules. Is a carbon fiber made from a raw material.

難黒鉛性炭素としては、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)などが挙げられる。   Examples of the non-graphitizable carbon include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, and furfuryl alcohol resin fired bodies (PFA).

黒鉛質材料としては天然黒鉛、人造黒鉛があげられる。人造黒鉛としては、主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などがあげられる。
これら炭素系活物質の中でも黒鉛質材料が好ましい。
Examples of the graphite material include natural graphite and artificial graphite. Examples of artificial graphite include artificial graphite heat-treated at 2800 ° C. or higher, graphitized MCMB heat-treated MCMB at 2000 ° C. or higher, and graphitized mesophase pitch carbon fiber heat-treated at 2000 ° C. or higher. It is done.
Among these carbon-based active materials, a graphite material is preferable.

本発明で用いる合金系活物質とは、リチウムの挿入可能な元素を構造に含み、リチウムが挿入した場合の質量あたりの理論電気容量が500mAh/g以上である活物質をいい、具体的には、リチウム金属、リチウム合金を形成する単体金属およびその合金、及びそれらの酸化物や硫化物、窒化物、珪化物、炭化物、燐化物等が用いられる。   The alloy-based active material used in the present invention refers to an active material containing an element capable of inserting lithium in the structure and having a theoretical electric capacity per mass of 500 mAh / g or more when lithium is inserted. Lithium metal, a single metal forming a lithium alloy and an alloy thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used.

リチウム合金を形成する単体金属及び合金としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物が挙げられる。それらの中でもケイ素(Si)、スズ(Sn)または鉛(Pb)の単体金属若しくはこれら原子を含む合金、または、それらの金属の化合物が用いられる。   Examples of single metals and alloys forming lithium alloys include compounds containing metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, and Zn. Is mentioned. Among these, silicon (Si), tin (Sn) or lead (Pb) simple metals, alloys containing these atoms, or compounds of these metals are used.

本発明で用いる合金系活物質は、さらに、一つ以上の非金属元素を含有していてもよい。具体的には、例えばSiC、SiO(以下、「Si−O−C」と呼ぶ)(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)、SnO(0<x≦2)、LiSiO、LiSnO等が挙げられ、中でも低電位でリチウムの挿入脱離が可能なSiOが好ましい。例えば、SiOは、ケイ素を含む高分子材料を焼成して得ることができる。SiOの中でも、容量とサイクル特性の兼ね合いから、0.8≦x≦3、2≦y≦4の範囲が好ましく用いられる。The alloy-based active material used in the present invention may further contain one or more nonmetallic elements. Specifically, for example, SiC, SiO x C y (hereinafter referred to as “Si—O—C”) (0 <x ≦ 3, 0 <y ≦ 5), Si 3 N 4 , Si 2 N 2 O, Examples thereof include SiO x (0 <x ≦ 2), SnO x (0 <x ≦ 2), LiSiO, LiSnO, etc. Among them, SiO x C y capable of inserting and releasing lithium at a low potential is preferable. For example, SiO x C y can be obtained by firing a polymer material containing silicon. Among SiO x C y , the range of 0.8 ≦ x ≦ 3 and 2 ≦ y ≦ 4 is preferably used in view of the balance between capacity and cycle characteristics.

酸化物や硫化物、窒化物、珪化物、炭化物、燐化物としては、リチウムの挿入可能な元素の酸化物や硫化物、窒化物、珪化物、炭化物、燐化物等が挙げられ、その中で酸化物が特に好ましい。具体的には酸化スズ、酸化マンガン、酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物、Si、Sn、PbおよびTi原子よりなる群から選ばれる金属元素を含むリチウム含有金属複合酸化物材料が用いられている。ケイ素の酸化物としてはシリコンカーバイド(Si−O−C)のような材料も挙げられる。   Examples of oxides, sulfides, nitrides, silicides, carbides, and phosphides include oxides, sulfides, nitrides, silicides, carbides, and phosphides of elements into which lithium can be inserted. Oxides are particularly preferred. Specifically, an oxide such as tin oxide, manganese oxide, titanium oxide, niobium oxide, vanadium oxide, or a lithium-containing metal composite oxide material containing a metal element selected from the group consisting of Si, Sn, Pb, and Ti atoms is used. It has been. Examples of the silicon oxide include materials such as silicon carbide (Si—O—C).

リチウム含有金属複合酸化物としては、更にLiTiで示されるリチウムチタン複合酸化物(0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、ZnおよびNb)が挙げられ、中でもLi4/3Ti5/3、Li1Ti、Li4/5Ti11/5が用いられる。As the lithium-containing metal composite oxide, a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ≦ x ≦ 1.5, 1.5 ≦ y ≦ 2.3, 0 ≦ z ≦ 1.6, M includes Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb), among which Li 4/3 Ti 5/3 O 4 , Li1Ti 2 O 4 and Li 4/5 Ti 11/5 O 4 are used.

これらの中でもケイ素を含む材料(以下、「ケイ素含有材料」と記載することがある。)が好ましく、中でもSi−O−Cがさらに好ましい。この化合物では高電位でSi(ケイ素)、低電位ではC(炭素)へのLiの挿入脱離が起こると推測され、他の合金系活物質よりも膨張・収縮が抑制される。   Among these, a material containing silicon (hereinafter sometimes referred to as “silicon-containing material”) is preferable, and Si—O—C is more preferable. In this compound, it is presumed that insertion / extraction of Li to / from Si (silicon) occurs at a high potential and C (carbon) at a low potential, and expansion / contraction is suppressed as compared with other alloy-based active materials.

本発明においては、負極活物質として、黒鉛質材料やケイ素含有材料が好ましく、特に天然黒鉛や、Si−O−Cが好ましい。このような活物質は、プロパルギル基含有化合物との接触によりSEI被膜が形成され、エッジ部の活性点が失活されやすく、電解液成分の分解を有効に防止することができる。特に、本発明は、炭素材料系活物質を含む電極に有効である。   In the present invention, as the negative electrode active material, a graphite material and a silicon-containing material are preferable, and natural graphite and Si—O—C are particularly preferable. In such an active material, an SEI film is formed by contact with a propargyl group-containing compound, the active sites at the edge portion are easily deactivated, and decomposition of the electrolyte component can be effectively prevented. In particular, the present invention is effective for an electrode containing a carbon material-based active material.

なお、負極活物質は、1種単独で用いても良く、2種以上を併用してもよい。併用する場合には、黒鉛質材料とケイ素含有材料との併用が好ましい。その配合比率(黒鉛質材料/ケイ素含有材料)は、重量比で、99/1〜40/60が好ましく、95/5〜45/55がより好ましい。負極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。   In addition, a negative electrode active material may be used individually by 1 type, and may use 2 or more types together. When used in combination, a combination of a graphite material and a silicon-containing material is preferred. The blending ratio (graphitic material / silicon-containing material) is preferably 99/1 to 40/60, more preferably 95/5 to 45/55, by weight. The shape of the negative electrode active material is preferably a granulated particle. When the shape of the particles is spherical, a higher density electrode can be formed during electrode molding.

負極活物質の体積平均粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが通常0.1〜100μm、好ましくは1〜50μm、より好ましくは5〜20μmである。また、負極活物質の50%体積累積径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1〜50μm、好ましくは15〜30μmである。体積平均粒子径は、レーザー回折で粒度分布を測定することにより求められる。50%体積累積径は、レーザー回折式粒度分布測定装置(SALD−3100;島津製作所製)にて測定し、算出される50%体積平均粒子径である。   The volume average particle size of the negative electrode active material is appropriately selected in consideration of other constituent requirements of the battery, but is usually 0.1 to 100 μm, preferably 1 to 50 μm, more preferably 5 to 20 μm. Further, the 50% volume cumulative diameter of the negative electrode active material is usually 1 to 50 μm, preferably 15 to 30 μm, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics. The volume average particle diameter is determined by measuring the particle size distribution by laser diffraction. The 50% volume cumulative diameter is a 50% volume average particle diameter calculated by measuring with a laser diffraction particle size distribution analyzer (SALD-3100; manufactured by Shimadzu Corporation).

負極活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。The tap density of the negative electrode active material is not particularly limited, but 0.6 g / cm 3 or more is preferably used.

負極活物質のBET比表面積は、好ましくは3〜20m/g、より好ましくは3〜15m/g、特に好ましくは3〜10m/gである。負極活物質のBET比表面積が上記範囲にあることで、負極活物質表面の活性点が増えるため、二次電池の低温出力特性に優れる。The BET specific surface area of the negative electrode active material is preferably 3 to 20 m 2 / g, more preferably 3 to 15 m 2 / g, and particularly preferably 3 to 10 m 2 / g. When the BET specific surface area of the negative electrode active material is in the above range, the active points on the surface of the negative electrode active material are increased, so that the low-temperature output characteristics of the secondary battery are excellent.

本発明の二次電池負極用スラリー組成物における、負極活物質及びバインダー組成物の合計含有量は、スラリー組成物100質量部に対して、好ましくは10〜90質量部であり、さらに好ましくは30〜80質量部である。また負極活物質の総量に対するバインダー組成物の含有量(固形分相当量)は、負極活物質の総量100質量部に対して、好ましくは0.1〜5質量部であり、さらに好ましくは0.5〜2質量部である。スラリー組成物における負極活物質及びバインダー組成物の合計含有量とバインダー組成物の含有量が上記範囲であると、得られる二次電池負極用スラリー組成物の粘度が適正化され、塗工を円滑に行えるようになり、また得られた負極に関して抵抗が高くなることなく、十分な密着強度が得られる。その結果、極板プレス工程における集電体からの負極活物質層の剥がれを抑制することができる。   In the slurry composition for secondary battery negative electrode of the present invention, the total content of the negative electrode active material and the binder composition is preferably 10 to 90 parts by mass, more preferably 30 to 100 parts by mass of the slurry composition. ~ 80 parts by mass. The content of the binder composition relative to the total amount of the negative electrode active material (solid content equivalent amount) is preferably 0.1 to 5 parts by mass, more preferably 0.005 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. 5 to 2 parts by mass. When the total content of the negative electrode active material and the binder composition in the slurry composition and the content of the binder composition are within the above ranges, the viscosity of the obtained slurry composition for secondary battery negative electrode is optimized, and the coating is smoothly performed. In addition, sufficient adhesion strength can be obtained without increasing the resistance of the obtained negative electrode. As a result, peeling of the negative electrode active material layer from the current collector in the electrode plate pressing step can be suppressed.

(分散媒)
本発明では、スラリーの分散媒として水を用いることが好ましい。本発明においては、バインダー組成物の分散安定性を損なわない範囲であれば、分散媒として水に親水性の溶媒を混ぜたものを使用してもよい。親水性の溶媒としては、メタノール、エタノール、N−メチルピロリドンなどがあげられ、水に対して5質量%以下であることが好ましい。
(Dispersion medium)
In the present invention, water is preferably used as a dispersion medium for the slurry. In the present invention, as long as the dispersion stability of the binder composition is not impaired, a mixture of water and a hydrophilic solvent may be used as a dispersion medium. Examples of the hydrophilic solvent include methanol, ethanol, N-methylpyrrolidone and the like, and the amount is preferably 5% by mass or less based on water.

(導電剤)
本発明の二次電池負極用スラリー組成物においては、導電剤を含有することが好ましい。導電剤としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンを使用することができる。導電剤を含有することにより、負極活物質同士の電気的接触を向上させることができ、二次電池に用いる場合に放電レート特性を改善することができる。スラリー組成物における導電剤の含有量は、負極活物質100質量部に対して、好ましくは1〜20質量部、より好ましくは1〜10質量部である。
(Conductive agent)
In the slurry composition for secondary battery negative electrodes of this invention, it is preferable to contain a electrically conductive agent. As the conductive agent, conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used. By containing a conductive agent, the electrical contact between the negative electrode active materials can be improved, and the discharge rate characteristics can be improved when used in a secondary battery. The content of the conductive agent in the slurry composition is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.

(増粘剤)
本発明の二次電池負極用スラリー組成物においては、増粘剤を含有することが好ましい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;
(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;
(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールとの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールとの共重合体などのポリビニルアルコール類;
ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられる。
(Thickener)
In the slurry composition for secondary battery negative electrodes of this invention, it is preferable to contain a thickener. Examples of thickeners include cellulose polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof;
(Modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof;
(Modified) Polyvinyl alcohols such as polyvinyl alcohol, a copolymer of acrylic acid or acrylate and vinyl alcohol, maleic anhydride or a copolymer of maleic acid or fumaric acid and vinyl alcohol;
Examples include polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified polyacrylic acid, oxidized starch, phosphate starch, casein, and various modified starches.

増粘剤の配合量は、負極活物質100質量部に対して、0.5〜1.5質量部が好ましい。増粘剤の配合量が上記範囲であると、塗工性、集電体との密着性が良好である。なお、本明細書において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味し、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。   As for the compounding quantity of a thickener, 0.5-1.5 mass parts is preferable with respect to 100 mass parts of negative electrode active materials. When the blending amount of the thickener is within the above range, the coating property and the adhesion with the current collector are good. In the present specification, “(modified) poly” means “unmodified poly” or “modified poly”, and “(meth) acryl” means “acryl” or “methacryl”.

二次電池負極用スラリー組成物には、上記成分のほかに、さらに補強材、レベリング剤、電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよく、後述の二次電池用負極中に含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。   In addition to the above components, the slurry composition for secondary battery negative electrode may further contain other components such as a reinforcing material, a leveling agent, and an electrolyte additive having a function of inhibiting electrolyte decomposition, It may be contained in a negative electrode for a secondary battery described later. These are not particularly limited as long as they do not affect the battery reaction.

補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示すことができる。スラリー組成物における補強材の含有量は、負極活物質100質量部に対して通常0.01〜20質量部、好ましくは1〜10質量部である。上記範囲に含まれることにより、高い容量と高い負荷特性を示す。   As the reinforcing material, various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used. By using a reinforcing material, a tough and flexible negative electrode can be obtained, and excellent long-term cycle characteristics can be exhibited. Content of the reinforcing material in a slurry composition is 0.01-20 mass parts normally with respect to 100 mass parts of negative electrode active materials, Preferably it is 1-10 mass parts. By being included in the above range, high capacity and high load characteristics are exhibited.

レベリング剤としては、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を混合することにより、塗工時に発生するはじきを防止したり、負極の平滑性を向上させることができる。スラリー組成物中のレベリング剤の含有量は、負極活物質100質量部に対して、好ましくは0.01〜10質量部である。レベリング剤が上記範囲であることにより負極作製時の生産性、平滑性及び電池特性に優れる。界面活性剤を含有させることによりスラリー組成物中の負極活物質等の分散性を向上することができ、また負極の平滑性を向上できる。   Examples of the leveling agent include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the leveling agent, the repelling that occurs during coating can be prevented and the smoothness of the negative electrode can be improved. The content of the leveling agent in the slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material. When the leveling agent is in the above range, the productivity, smoothness, and battery characteristics during the production of the negative electrode are excellent. By containing the surfactant, the dispersibility of the negative electrode active material and the like in the slurry composition can be improved, and the smoothness of the negative electrode can be improved.

スラリー組成物中及び電解液中に使用される電解液添加剤としては、ビニレンカーボネートなどを用いることができる。スラリー組成物中の電解液添加剤の含有量は、負極活物質100質量部に対して、好ましくは0.01〜10質量部である。電解液添加剤が、上記範囲であることによりサイクル特性及び高温特性に優れる。その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子が挙げられる。ナノ微粒子を混合することによりスラリー組成物のチキソ性をコントロールすることができ、また負極のレベリング性を向上できる。スラリー組成物中のナノ微粒子の含有量は、負極活物質100質量部に対して、好ましくは0.01〜10質量部である。ナノ微粒子が上記範囲であることによりスラリー安定性、生産性に優れ、高い電池特性を示す。   As the electrolytic solution additive used in the slurry composition and the electrolytic solution, vinylene carbonate or the like can be used. The content of the electrolytic solution additive in the slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material. When the electrolytic solution additive is in the above range, the cycle characteristics and the high temperature characteristics are excellent. Other examples include nanoparticles such as fumed silica and fumed alumina. By mixing the nanoparticles, the thixotropy of the slurry composition can be controlled, and the leveling property of the negative electrode can be improved. The content of the nanoparticles in the slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material. When the nanoparticles are in the above range, the slurry stability and productivity are excellent, and high battery characteristics are exhibited.

(水溶性ポリマー)
本発明の二次電池負極用スラリー組成物は、上記バインダー組成物に加え、水溶性ポリマーを含むことができる。水溶性ポリマーとしては、エチレン性不飽和カルボン酸単量体単位20〜60質量%、(メタ)アクリル酸エステル単量体単位20〜80質量%およびこれらと共重合可能な他の単量体単位0〜20質量%からなる水溶性ポリマーが好ましい。二次電池負極用スラリー組成物に上記水溶性ポリマーを含ませることで、二次電池用負極の密着性及び耐久性が向上するため、ピール強度を向上させることができる。本発明における水溶性ポリマーとは、pH12において、1%水溶液粘度が0.1〜100000mPa・sである重合体をいう。
(Water-soluble polymer)
The slurry composition for a secondary battery negative electrode of the present invention can contain a water-soluble polymer in addition to the binder composition. Examples of the water-soluble polymer include ethylenically unsaturated carboxylic acid monomer units of 20 to 60% by mass, (meth) acrylic acid ester monomer units of 20 to 80% by mass and other monomer units copolymerizable therewith. A water-soluble polymer consisting of 0 to 20% by mass is preferred. By including the water-soluble polymer in the slurry composition for a secondary battery negative electrode, the adhesion and durability of the secondary battery negative electrode are improved, so that the peel strength can be improved. The water-soluble polymer in the present invention refers to a polymer having a 1% aqueous solution viscosity of 0.1 to 100000 mPa · s at pH 12.

エチレン性不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノまたはジカルボン酸(無水物)等が挙げられ、1種または2種以上用いることができる。これらのエチレン性不飽和カルボン酸単量体単位の割合は、より好ましくは25〜55質量%、特に好ましくは30〜50質量%である。   Examples of the ethylenically unsaturated carboxylic acid monomer include mono- or dicarboxylic acids (anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. Can be used. The ratio of these ethylenically unsaturated carboxylic acid monomer units is more preferably 25 to 55% by mass, and particularly preferably 30 to 50% by mass.

(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステルが挙げられる。これらの(メタ)アクリル酸エステル単量体単位の割合は、より好ましくは25〜75質量%、特に好ましくは30〜70質量%である。   (Meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2- Acrylic acid alkyl esters such as ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate , Pentyl methacrylate, hexyl methacrylate, heptyl methacrylate Over DOO, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n- tetradecyl methacrylate, methacrylic acid alkyl esters such as stearyl methacrylate. The ratio of these (meth) acrylic acid ester monomer units is more preferably 25 to 75% by mass, and particularly preferably 30 to 70% by mass.

共重合可能な他の単量体としては、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素−炭素二重結合を有するカルボン酸エステルモノマー;スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α−メチルスチレン、ジビニルベンゼン等のスチレン系モノマー;アクリルアミド、N−メチロールアクエイルアミド、アクリルアミド−2−メチルプロパンスルホン酸などのアミド系モノマー;アクリロニトリル、メタクリロニトリルなどのα,β−不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。これらの中でも、α,β−不飽和ニトリル化合物やスチレン系モノマーが好ましく、α,β−不飽和ニトリル化合物が特に好ましい。これらの共重合可能な単量体単位の割合は、より好ましくは0〜10質量%、特に好ましくは0〜5質量%である。   Other copolymerizable monomers include carboxylic acid ester monomers having two or more carbon-carbon double bonds such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane triacrylate; styrene, chlorostyrene, Styrene monomers such as vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene, divinyl benzene; acrylamide, N-methylol aqua amide, Amide monomers such as acrylamide-2-methylpropanesulfonic acid; α, β-unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; Olefins such as ethylene and propylene; Halogen atom-containing monomers such as vinyl and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; methyl vinyl ketone and ethyl vinyl Examples thereof include vinyl ketones such as ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; and heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole. Among these, α, β-unsaturated nitrile compounds and styrene monomers are preferable, and α, β-unsaturated nitrile compounds are particularly preferable. The ratio of these copolymerizable monomer units is more preferably 0 to 10% by mass, particularly preferably 0 to 5% by mass.

水溶性ポリマーを製造する方法としては、上記単量体を含む単量体組成物を、水系溶媒中で重合して水分散型ポリマーを得、pH7〜13にアルカリ化する方法が挙げられる。水系溶媒や重合方法については、上述の二次電池負極用バインダー組成物と同様である。   Examples of the method for producing a water-soluble polymer include a method in which a monomer composition containing the above monomer is polymerized in an aqueous solvent to obtain a water-dispersed polymer and alkalized to pH 7-13. About an aqueous solvent and the polymerization method, it is the same as that of the above-mentioned binder composition for secondary battery negative electrodes.

pH7〜13にアルカリ化する方法としては、特に限定されないが、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ金属水溶液、水酸化カルシウム水溶液、水酸化マグネシウム水溶液などのアルカリ土類金属水溶液や、アンモニア水溶液などのアルカリ水溶液を添加する方法が挙げられる。   The method for alkalinizing to pH 7 to 13 is not particularly limited, and alkaline earth solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and other alkali metal aqueous solutions, calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution. Examples include a method of adding an aqueous metal solution or an aqueous alkali solution such as an aqueous ammonia solution.

(二次電池負極用スラリー組成物の製造)
二次電池負極用スラリー組成物は、上記バインダー組成物、負極活物質および必要に応じ用いられる導電剤等を混合して得られる。
(Production of slurry composition for secondary battery negative electrode)
The slurry composition for a secondary battery negative electrode is obtained by mixing the binder composition, the negative electrode active material, and a conductive agent used as necessary.

混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。   The mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. In addition, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.

(3)二次電池用負極
本発明の二次電池用負極は、上記のバインダー組成物および負極活物質を含んでなり、具体的には、本発明の二次電池負極用スラリー組成物を集電体上に塗布、乾燥して得られる。
(3) Negative electrode for secondary battery The negative electrode for secondary battery of the present invention comprises the binder composition and the negative electrode active material, and specifically, the slurry composition for secondary battery negative electrode of the present invention is collected. It is obtained by applying and drying on an electric body.

(二次電池用負極の製造方法)
本発明の二次電池用負極の製造方法は、特に限定されないが、例えば、上記スラリー組成物を集電体の少なくとも片面、好ましくは両面に塗布、乾燥し、負極活物質層を形成する方法が挙げられる。
(Method for producing secondary battery negative electrode)
The method for producing the negative electrode for secondary battery of the present invention is not particularly limited. For example, a method of forming the negative electrode active material layer by applying and drying the slurry composition on at least one surface, preferably both surfaces of the current collector. Can be mentioned.

スラリー組成物を集電体上に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。   The method for applying the slurry composition onto the current collector is not particularly limited. Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.

乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥時間は通常5〜30分であり、乾燥温度は通常40〜180℃である。   Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying time is usually 5 to 30 minutes, and the drying temperature is usually 40 to 180 ° C.

本発明の二次電池用負極を製造するに際して、集電体上に上記スラリー組成物を塗布乾燥後、金型プレスやロールプレスなどを用い、加圧処理により負極活物質層の空隙率を低くする工程を有することが好ましい。空隙率の好ましい範囲は5〜30%、より好ましくは7〜20%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量が得難く、負極活物質層が集電体から剥がれ易く不良を発生し易いといった問題を生じる。さらに、バインダー組成物に硬化性の重合体を用いる場合は、硬化させることが好ましい。   In producing the negative electrode for secondary battery of the present invention, the porosity of the negative electrode active material layer is lowered by pressure treatment using a die press or a roll press after applying and drying the slurry composition on the current collector. It is preferable to have the process to do. The preferable range of the porosity is 5 to 30%, more preferably 7 to 20%. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. When the porosity is too low, it is difficult to obtain a high volume capacity, and the negative electrode active material layer is liable to be peeled off from the current collector, resulting in a defect. Furthermore, when using a curable polymer for a binder composition, it is preferable to make it harden | cure.

本発明の二次電池用負極における負極活物質層の厚みは、通常5〜300μmであり、好ましくは30〜250μmである。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性共に高い特性を示す。   The thickness of the negative electrode active material layer in the negative electrode for secondary batteries of the present invention is usually 5 to 300 μm, preferably 30 to 250 μm. When the thickness of the negative electrode active material layer is in the above range, both load characteristics and cycle characteristics are high.

本発明において、負極活物質層における負極活物質の含有割合は、好ましくは85〜99質量%、より好ましくは88〜97質量%である。負極活物質の含有割合を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。   In this invention, the content rate of the negative electrode active material in a negative electrode active material layer becomes like this. Preferably it is 85-99 mass%, More preferably, it is 88-97 mass%. By making the content rate of a negative electrode active material into the said range, a softness | flexibility and a binding property can be shown, showing a high capacity | capacitance.

本発明において、二次電池用負極の負極活物質層の密度は、好ましくは1.6〜1.9g/cmであり、より好ましくは1.65〜1.85g/cmである。負極活物質層の密度が上記範囲にあることにより、高容量の電池を得ることができる。In the present invention, the density of the negative electrode active material layer of the negative electrode for a secondary battery is preferably 1.6 to 1.9 g / cm 3 , more preferably 1.65 to 1.85 g / cm 3 . When the density of the negative electrode active material layer is in the above range, a high-capacity battery can be obtained.

(集電体)
本発明で用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池用負極に用いる集電体としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものが好ましい。集電体は、負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
(Current collector)
The current collector used in the present invention is not particularly limited as long as it is an electrically conductive and electrochemically durable material. However, a metal material is preferable because it has heat resistance. For example, iron, copper, aluminum Nickel, stainless steel, titanium, tantalum, gold, platinum and the like. Among these, copper is particularly preferable as the current collector used for the negative electrode for the secondary battery. The shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength with the negative electrode active material layer, the current collector is preferably used after roughening in advance. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. Further, an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity with the negative electrode active material layer.

(4)二次電池
本発明の二次電池は、正極、負極、セパレーター及び電解液を備えてなる二次電池であって、負極が、上記二次電池用負極である。
(4) Secondary battery The secondary battery of the present invention is a secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolytic solution, and the negative electrode is the negative electrode for a secondary battery.

(正極)
正極は、正極活物質及び二次電池正極用バインダー組成物を含む正極活物質層が、集電体上に積層されてなる。
(Positive electrode)
The positive electrode is formed by laminating a positive electrode active material layer containing a positive electrode active material and a secondary battery positive electrode binder composition on a current collector.

(正極活物質)
正極活物質は、リチウムイオンをドープ及び脱ドープ可能な活物質が用いられ、無機化合物からなるものと有機化合物からなるものとに大別される。
(Positive electrode active material)
As the positive electrode active material, an active material that can be doped and dedoped with lithium ions is used, and the positive electrode active material is roughly classified into an inorganic compound and an organic compound.

無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。   Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like. Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.

遷移金属酸化物としては、MnO、MnO、V、V13、TiO、Cu、非晶質VO−P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。遷移金属硫化物としては、TiS、TiS、非晶質MoS、FeS等が挙げられる。リチウム含有複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。Examples of transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O. 5 , V 6 O 13 and the like. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity. The transition metal sulfide, TiS 2, TiS 3, amorphous MoS 2, FeS, and the like. Examples of the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.

層状構造を有するリチウム含有複合金属酸化物としてはリチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物等が挙げられる。スピネル構造を有するリチウム含有複合金属酸化物としてはマンガン酸リチウム(LiMn)やMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。オリビン型構造を有するリチウム含有複合金属酸化物としてはLiMPO(式中、Mは、Mn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoから選ばれる少なくとも1種、0≦X≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。Examples of the lithium-containing composite metal oxide having a layered structure include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium composite oxide, and Ni—Mn—Al lithium. Examples thereof include composite oxides and lithium composite oxides of Ni—Co—Al. Examples of the lithium-containing composite metal oxide having a spinel structure include lithium manganate (LiMn 2 O 4 ) and Li [Mn 3/2 M 1/2 ] O 4 in which a part of Mn is substituted with another transition metal (wherein M may be Cr, Fe, Co, Ni, Cu or the like. Li X MPO 4 (wherein, M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Li X MPO 4 as the lithium-containing composite metal oxide having an olivine structure) An olivine type lithium phosphate compound represented by at least one selected from Si, B, and Mo, 0 ≦ X ≦ 2) may be mentioned.

有機化合物としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。   As the organic compound, for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used. An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted. The positive electrode active material for the secondary battery may be a mixture of the above inorganic compound and organic compound.

正極活物質の体積平均粒子径は、通常0.01〜50μm、好ましくは0.05〜30μmである。体積平均粒子径が上記範囲にあることにより、後述する正極用スラリー組成物を調製する際の正極用バインダー組成物の量を少なくすることができ、電池の容量の低下を抑制できると共に、正極用スラリー組成物を、塗布するのに適正な粘度に調製することが容易になり、均一な電極を得ることができる。   The volume average particle diameter of the positive electrode active material is usually 0.01 to 50 μm, preferably 0.05 to 30 μm. When the volume average particle diameter is in the above range, the amount of the binder composition for the positive electrode when preparing the slurry composition for the positive electrode described later can be reduced, the decrease in the capacity of the battery can be suppressed, and for the positive electrode It becomes easy to prepare the slurry composition to have a viscosity suitable for application, and a uniform electrode can be obtained.

正極活物質層における正極活物質の含有割合は、好ましくは90〜99.9質量%、より好ましくは95〜99質量%である。正極中の正極活物質の含有量を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。   The content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass. By setting the content of the positive electrode active material in the positive electrode within the above range, flexibility and binding properties can be exhibited while exhibiting high capacity.

(二次電池正極用バインダー組成物)
二次電池正極用バインダー組成物としては、特に制限されず公知のものを用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂や、アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。これらは単独で使用しても、これらを2種以上併用してもよい。
(Binder composition for secondary battery positive electrode)
The binder composition for the secondary battery positive electrode is not particularly limited and a known one can be used. For example, resins such as polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, acrylic soft heavy A soft polymer such as a polymer, a diene soft polymer, an olefin soft polymer, or a vinyl soft polymer can be used. These may be used alone or in combination of two or more.

正極には、上記成分のほかに、さらに前述の電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。   In addition to the above components, the positive electrode may further contain other components such as an electrolyte additive having a function of suppressing the decomposition of the electrolyte described above. These are not particularly limited as long as they do not affect the battery reaction.

集電体は、前述の二次電池用負極に使用される集電体を用いることができ、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、二次電池正極用としてはアルミニウムが特に好ましい。   As the current collector, the current collector used in the above-described negative electrode for a secondary battery can be used, and there is no particular limitation as long as the material has electrical conductivity and is electrochemically durable. Aluminum is particularly preferred for the secondary battery positive electrode.

正極活物質層の厚みは、通常5〜300μmであり、好ましくは10〜250μmである。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。
正極は、前述の二次電池用負極と同様に製造することができる。
The thickness of the positive electrode active material layer is usually 5 to 300 μm, preferably 10 to 250 μm. When the thickness of the positive electrode active material layer is in the above range, both load characteristics and energy density are high.
The positive electrode can be produced in the same manner as the above-described negative electrode for secondary battery.

(セパレーター)
セパレーターは気孔部を有する多孔性基材であって、使用可能なセパレーターとしては、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、または(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーターが挙げられる。これらの非制限的な例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの高分子フィルム、さらにコート層を有するセパレーター、または無機フィラー、無機フィラー用分散剤からなる多孔膜層がコートされたセパレーターなどがある。
(separator)
The separator is a porous substrate having pores, and usable separators include (a) a porous separator having pores, and (b) a porous separator in which a polymer coat layer is formed on one or both sides. Or (c) a porous separator in which a porous resin coat layer containing an inorganic ceramic powder is formed. These non-limiting examples include polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers. Examples include a separator having a molecular film and a coat layer, or a separator coated with a porous film layer made of an inorganic filler or a dispersant for inorganic filler.

(電解液)
本発明に用いられる電解液は、特に限定されないが、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは、単独、または2種以上を混合して用いることができる。支持電解質の量は、電解液に対して、通常1質量%以上、好ましくは5質量%以上、また通常は30質量%以下、好ましくは20質量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し電池の充電特性、放電特性が低下する。
(Electrolyte)
The electrolytic solution used in the present invention is not particularly limited. For example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more. The amount of the supporting electrolyte is usually 1% by mass or more, preferably 5% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less, with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the battery are degraded.

電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびメチルエチルカーボネート(MEC)などのアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類、1,2−ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。これらは、単独、または2種以上を混合して用いることができる。また、電解液には添加剤を含有させて用いることも可能である。また、添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物が好ましく、中でもビニレンカーボネートがより好ましい。電解液にビニレンカーボネートを含有させることにより、プロパルギル含有化合物とビニレンカーボネートが、負極活物質上で分解を促進し、電解液そのものの分解を抑制することができる。電解液中のビニレンカーボネートの含有割合は、0.01〜8容量%が好ましい。   The solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. Usually, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene. Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used. In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more. Moreover, it is also possible to use an electrolyte containing an additive. Moreover, as an additive, carbonate type compounds, such as vinylene carbonate (VC), are preferable, and vinylene carbonate is more preferable especially. By including vinylene carbonate in the electrolytic solution, the propargyl-containing compound and vinylene carbonate can promote decomposition on the negative electrode active material and suppress decomposition of the electrolytic solution itself. The content of vinylene carbonate in the electrolytic solution is preferably 0.01 to 8% by volume.

上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、硫化リチウム、LiI、LiNなどの無機固体電解質を挙げることができる。Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution, and an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N.

(二次電池の製造方法)
本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。さらに必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
(Method for manufacturing secondary battery)
The manufacturing method of the secondary battery of the present invention is not particularly limited. For example, the above-described negative electrode and positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery and placed in the battery container, and the electrolytic solution is injected into the battery container and sealed. Further, if necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge. The shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.

以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、本実施例における部および%は、特記しない限り質量基準である。実施例および比較例において、各種物性は以下のように評価した。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, unless otherwise indicated, the part and% in a present Example are a mass reference | standard. In the examples and comparative examples, various physical properties were evaluated as follows.

<スラリーの分散安定性>
実施例および比較例で製造する二次電池負極用バインダー組成物について、スラリー調製時の粘度への影響を以下のように評価した。
バインダー組成物を添加する前のスラリー粘度η0(mPa・s)とバインダー組成物を添加した後のスラリー粘度η1(mPa・s)を、25℃の環境下で、B型粘度計(60rpm、ローターNo.4)にて測定し、バインダー添加前後のスラリー粘度変化η1/η0×100(%)を算出し、分散安定性の評価指針とした。この数値が小さいほど、分散安定性に優れていることを示す。
<Dispersion stability of slurry>
About the binder composition for secondary battery negative electrodes manufactured by an Example and a comparative example, the influence on the viscosity at the time of slurry preparation was evaluated as follows.
The slurry viscosity η0 (mPa · s) before adding the binder composition and the slurry viscosity η1 (mPa · s) after adding the binder composition were measured in a B-type viscometer (60 rpm, rotor) in an environment of 25 ° C. No. 4) was measured and the change in slurry viscosity η1 / η0 × 100 (%) before and after addition of the binder was calculated and used as an evaluation guideline for dispersion stability. The smaller this value, the better the dispersion stability.

<密着強度:負極活物質層のピール強度>
実施例および比較例で製造する二次電池用負極を長さ100mm、幅10mmの長方形に切り出して試験片とし、負極活物質層面を下にして負極活物質層表面にセロハンテープ(JIS Z1522 2009に規定されるもの)を貼り付け、集電体の一端を垂直方向に引張り速度50mm/分で引張って剥がしたときの応力を測定した(なお、セロハンテープは試験台に固定されている。)。測定を3回行い、その平均値を求めてこれをピール強度とした。ピール強度が大きいほど負極活物質層の集電体への結着力が大きい、すなわち密着強度が大きいことを示す。
<Adhesion strength: peel strength of negative electrode active material layer>
The negative electrode for a secondary battery manufactured in Examples and Comparative Examples was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece, and a cellophane tape (in JIS Z1522 2009) was formed on the surface of the negative electrode active material layer with the negative electrode active material layer side down. Then, stress was measured when one end of the current collector was pulled in a vertical direction at a pulling speed of 50 mm / min and peeled off (the cellophane tape was fixed to a test stand). The measurement was performed three times, the average value was obtained, and this was taken as the peel strength. The higher the peel strength, the greater the binding force of the negative electrode active material layer to the current collector, that is, the higher the adhesion strength.

また、後述する高温サイクル特性試験後の負極についても、上記と同様にして密着強度の評価を行った。   Further, the adhesion strength of the negative electrode after the high-temperature cycle characteristic test described later was also evaluated in the same manner as described above.

<耐久性:高温保存特性>
実施例および比較例で製造するリチウムイオン二次電池用負極を用いて、ラミネート型セルのリチウムイオン二次電池を作製し、25℃の環境下で24時間静置した。その後に、25℃の環境下で、0.1Cの定電流法によって、4.2Vまで充電し、3.0Vまで放電する充放電の操作を行い、初期容量C0を測定した。さらに、25℃の環境下で、4.2Vに充電し、60℃、7日間保存した後、0.1Cの定電流法によって、4.2Vまで充電し、3.0Vまで放電する充放電の操作を行い、高温保存後の容量C1を測定した。高温保存特性は、ΔC=C1/C0×100(%)で示す容量変化率にて評価した。この値が高いほど高温保存特性に優れることを示す。
<Durability: High temperature storage characteristics>
Using a negative electrode for a lithium ion secondary battery produced in the examples and comparative examples, a lithium ion secondary battery of a laminate type cell was prepared and left to stand in an environment of 25 ° C. for 24 hours. After that, under an environment of 25 ° C., charge / discharge operation of charging to 4.2 V and discharging to 3.0 V was performed by a constant current method of 0.1 C, and an initial capacity C0 was measured. Furthermore, after charging to 4.2 V in an environment of 25 ° C., storing at 60 ° C. for 7 days, charging to 4.2 V and discharging to 3.0 V by a constant current method of 0.1 C The operation was performed, and the capacity C1 after high temperature storage was measured. The high-temperature storage characteristics were evaluated by the capacity change rate represented by ΔC = C1 / C0 × 100 (%). Higher values indicate better high temperature storage characteristics.

<耐久性:高温サイクル特性>
実施例および比較例で製造するリチウムイオン二次電池用負極を用いて、ラミネート型セルのリチウムイオン二次電池を作製し、25℃の環境下で24時間静置した。その後に、25℃の環境下で、0.1Cの定電流法によって、4.2Vまで充電し、3.0Vまで放電する充放電の操作を行い、初期容量C0を測定した。さらに、60℃環境下で、0.1Cの定電流法によって、4.2Vまで充電し、3.0Vまで放電する充放電を繰り返し、100サイクル後の容量C2を測定した。高温サイクル特性は、ΔC=C2/C0×100(%)で示す容量変化率にて評価した。この値が高いほど高温サイクル特性に優れることを示す。
<Durability: High-temperature cycle characteristics>
Using a negative electrode for a lithium ion secondary battery produced in the examples and comparative examples, a lithium ion secondary battery of a laminate type cell was prepared and left to stand in an environment of 25 ° C. for 24 hours. After that, under an environment of 25 ° C., charge / discharge operation of charging to 4.2 V and discharging to 3.0 V was performed by a constant current method of 0.1 C, and an initial capacity C0 was measured. Furthermore, in a 60 ° C. environment, charging / discharging of charging to 4.2 V and discharging to 3.0 V was repeated by a constant current method of 0.1 C, and the capacity C2 after 100 cycles was measured. The high-temperature cycle characteristics were evaluated by a capacity change rate represented by ΔC = C2 / C0 × 100 (%). Higher values indicate better high temperature cycle characteristics.

<耐久性:高温サイクル特性試験後の極板の膨らみ率>
上記の高温サイクル特性試験後の負極について、極板の膨らみ率を下記の式から算出した。この値が低いほど耐久性が高いことを意味している。
数1
極板の膨らみ率=|試験前の負極活物質層の厚み−試験後の負極活物質層の厚み|/試験前の負極活物質層の厚み×100
<Durability: Swelling rate of electrode plate after high-temperature cycle characteristics test>
About the negative electrode after said high temperature cycling characteristic test, the swelling rate of the electrode plate was computed from the following formula. The lower the value, the higher the durability.
Number 1
Swelling ratio of electrode plate = | thickness of negative electrode active material layer before test−thickness of negative electrode active material layer after test | / thickness of negative electrode active material layer before test × 100

<低温出力特性>
実施例および比較例で製造するリチウムイオン二次電池用負極を用いて、ラミネート型セルのリチウムイオン二次電池を作製し、25℃の環境下で、24時間静置した後に、0.1Cの定電流法により、4.2Vまで充電し、3.0Vまで放電する充放電の操作を行った。その後、25℃の環境下で、0.1Cの定電流法により50%充電状態(SOC50%)まで充電し、電圧V(V)を測定した。次いで、−25℃の環境下で、電圧V(V)から放電レート0.1Cで放電し、放電10秒後の電圧V10を測定した。低温出力特性は、ΔV=V−V10(V)で示す電圧変化にて評価し、この値が小さいほど低温出力特性に優れることを示す。
<Low temperature output characteristics>
Using a negative electrode for a lithium ion secondary battery produced in Examples and Comparative Examples, a lithium ion secondary battery of a laminate type cell was prepared and left at 25 ° C. for 24 hours. The charging / discharging operation of charging to 4.2V and discharging to 3.0V was performed by the constant current method. Thereafter, the battery was charged to a 50% charged state (SOC 50%) by a constant current method of 0.1 C under an environment of 25 ° C., and a voltage V 0 (V) was measured. Next, the battery was discharged from the voltage V 0 (V) at a discharge rate of 0.1 C under an environment of −25 ° C., and the voltage V 10 after 10 seconds of discharge was measured. The low temperature output characteristic is evaluated by a voltage change represented by ΔV = V 0 −V 10 (V), and the lower this value is, the better the low temperature output characteristic is.

(実施例1)
(バインダー組成物の製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33部、イタコン酸4部、スチレン63部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、バインダーを含む水系分散液を得た。なお、バインダーのガラス転移温度は10℃であった。
Example 1
(Manufacture of binder composition)
In a 5 MPa pressure vessel equipped with a stirrer, 33 parts of 1,3-butadiene, 4 parts of itaconic acid, 63 parts of styrene, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and potassium persulfate 0.5 as a polymerization initiator A portion was added and stirred sufficiently, and then heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain an aqueous dispersion containing a binder. The glass transition temperature of the binder was 10 ° C.

上記バインダーを含む水系分散液に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、バインダー固形分100部に対し、プロパルギル基含有化合物として、ベンゼンスルホン酸プロパルギルを3部添加し、バインダー組成物を得た。   After adding 5% aqueous sodium hydroxide solution to the aqueous dispersion containing the binder and adjusting the pH to 8, the unreacted monomer is removed by heating under reduced pressure, and then cooled to 30 ° C. or lower to obtain a binder solid. As a propargyl group-containing compound, 3 parts of propargyl benzenesulfonate was added to 100 parts per minute to obtain a binder composition.

(二次電池負極用スラリー組成物の製造)
ディスパー付きのプラネタリーミキサーに、負極活物質としてBET比表面積5m/gの天然黒鉛(平均粒子径:24.5μm)を100部、カルボキシメチルセルロース(日本製紙ケミカル社製、MAC350HC)1%水溶液を固形分相当量で1部をそれぞれ加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。
(Production of slurry composition for secondary battery negative electrode)
In a planetary mixer with a disper, 100 parts of natural graphite (average particle size: 24.5 μm) having a BET specific surface area of 5 m 2 / g as a negative electrode active material and a 1% aqueous solution of carboxymethyl cellulose (manufactured by Nippon Paper Chemical Co., Ltd., MAC350HC) 1 part was added in an amount corresponding to the solid content, adjusted to a solid content concentration of 55% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.

上記混合液に、上記バインダーを1部(固形分基準)、及びイオン交換水を入れ、最終固形分濃度42%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い二次電池負極用スラリー組成物を得た。スラリーの分散安定性を上記のように評価した。   1 part of the binder (based on solid content) and ion-exchanged water were added to the mixed solution, adjusted to a final solid content concentration of 42%, and further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a slurry composition for a secondary battery negative electrode having good fluidity. The dispersion stability of the slurry was evaluated as described above.

(電池の製造)
上記二次電池負極スラリー組成物を、コンマコーターで、厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、60℃で1分間加熱処理し、次いで120℃で1分間加熱処理して電極原反を得た。この電極原反をロールプレスで圧延して負極活物質層の厚みが80μmの二次電池用負極を得た。
(Manufacture of batteries)
The secondary battery negative electrode slurry composition was applied on a copper foil having a thickness of 20 μm with a comma coater so that the film thickness after drying was about 150 μm, heat-treated at 60 ° C. for 1 minute, and then 120 An electrode raw material was obtained by heat treatment at 0 ° C. for 1 minute. The raw electrode was rolled with a roll press to obtain a negative electrode for a secondary battery having a negative electrode active material layer thickness of 80 μm.

正極活物質として、体積平均粒子径0.5μmでオリビン結晶構造を有するLiFePOを100部、分散剤としてカルボキシメチルセルロースの1%水溶液(CMC、第一工業製薬株式会社製「BSH−12」)を固形分相当で1部、結着剤としてガラス転移温度が−40℃で、数平均粒子径が0.20μmのアクリレート重合体(アクリル酸2−エチルヘキシル78質量%、アクリロニトリル20質量%、メタクリル酸2質量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を固形分相当で5部、及びイオン交換水で全固形分濃度が40%となるようにプラネタリーミキサーにより混合し、正極の電極組成物層用スラリーを調製した。上記二次電池正極スラリー組成物を、コンマコーターで、厚さ20μmの銅箔の上に、乾燥後の膜厚が200μm程度になるように塗布し、60℃で1分間加熱処理し、次いで120℃で1分間加熱処理して二次電池用正極を得た。As a positive electrode active material, 100 parts of LiFePO 4 having a volume average particle size of 0.5 μm and an olivine crystal structure, and a 1% aqueous solution of carboxymethyl cellulose (CMC, “BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a dispersant. 1 part in solid content, acrylate polymer having a glass transition temperature of −40 ° C. as a binder and a number average particle size of 0.20 μm (2-ethylhexyl acrylate 78% by mass, acrylonitrile 20% by mass, methacrylic acid 2 A planetar such that a 40% aqueous dispersion of a copolymer obtained by emulsion polymerization of a monomer mixture containing% by mass is 5 parts in terms of solids and the total solids concentration is 40% with ion-exchanged water. A slurry for a positive electrode composition layer was prepared by mixing with a Lee mixer. The secondary battery positive electrode slurry composition was applied onto a 20 μm thick copper foil with a comma coater so that the film thickness after drying was about 200 μm, and heat-treated at 60 ° C. for 1 minute, and then 120 A positive electrode for a secondary battery was obtained by heat treatment at 0 ° C. for 1 minute.

単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を直径18mmの円形に切り抜いた。   A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm, manufactured by a dry method, porosity 55%) was cut into a circle having a diameter of 18 mm.

上記得られたリチウムイオン二次電池用正極を、集電体面がアルミ包材外装に接するように配置した。正極の正極活物質層側の面上に、セパレーターを配置した。さらに、セパレーター上に上記得られたリチウムイオン二次電池用負極を、負極活物質層側の面がセパレーターに対向するよう配置した。この包材の中に、電解液を空気が残らないように注入した。さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。なお、電解液は、1.0M LiPF(EC/DEC=1/2容量比)にVC(ビニレンカーボネート)を2容量%添加したものを用いた。The obtained positive electrode for a lithium ion secondary battery was disposed such that the current collector surface was in contact with the aluminum packaging exterior. A separator was disposed on the surface of the positive electrode on the positive electrode active material layer side. Furthermore, the negative electrode for a lithium ion secondary battery obtained above was placed on the separator so that the surface on the negative electrode active material layer side faces the separator. The electrolyte was poured into the packaging material so that no air remained. Furthermore, in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the aluminum exterior, and a lithium ion secondary battery was manufactured. The electrolyte used was 1.0M LiPF 6 (EC / DEC = 1/2 volume ratio) with 2% by volume of VC (vinylene carbonate) added.

得られた負極および二次電池について、前記のように密着強度、耐久性、低温出力特性を評価した。   The obtained negative electrode and secondary battery were evaluated for adhesion strength, durability, and low-temperature output characteristics as described above.

(実施例2)
ベンゼンスルホン酸プロパルギルの添加量を、バインダー固形分100部に対し7部とした以外は、実施例1と同様とした。結果を表1に示す。
(Example 2)
The same procedure as in Example 1 was performed except that the amount of propargyl benzenesulfonate was 7 parts with respect to 100 parts of binder solid content. The results are shown in Table 1.

(実施例3)
ベンゼンスルホン酸プロパルギルの添加量を、バインダー固形分100部に対し、15部とした以外は、実施例1と同様とした。結果を表1に示す。
(Example 3)
The amount of propargyl benzenesulfonate added was the same as in Example 1 except that the amount was 15 parts with respect to 100 parts of binder solid content. The results are shown in Table 1.

(実施例4)
プロパルギル基含有化合物として、ベンゼンスルホン酸プロパルギルに代えてアクリル酸プロパルギルを用いた以外は、実施例1と同様とした。結果を表1に示す。
Example 4
The same procedure as in Example 1 was conducted except that propargyl acrylate was used instead of propargyl benzenesulfonate as the propargyl group-containing compound. The results are shown in Table 1.

(実施例5)
プロパルギル基含有化合物として、ベンゼンスルホン酸プロパルギルに代えてメタアクリル酸プロパルギルを用いた以外は、実施例1と同様とした。結果を表1に示す。
(Example 5)
The same procedure as in Example 1 was conducted except that propargyl methacrylate was used instead of propargyl benzenesulfonate as the propargyl group-containing compound. The results are shown in Table 1.

(実施例6)
バインダー調製時のコモノマーとして、イタコン酸に代えてメタアクリル酸を用いた以外は、実施例1と同様とした。結果を表1に示す。
(Example 6)
The same procedure as in Example 1 was performed except that methacrylic acid was used in place of itaconic acid as a comonomer at the time of preparing the binder. The results are shown in Table 1.

(実施例7)
負極活物質として、BET比表面積5m/gの天然黒鉛(平均粒子径:24.5μm)に代えてBET比表面積8m/gの天然黒鉛(平均粒子径:22μm)を用いた以外は、実施例1と同様とした。結果を表1に示す。
(Example 7)
As the negative electrode active material, natural graphite having a BET specific surface area of 8 m 2 / g (average particle diameter: 22 μm) was used instead of natural graphite having a BET specific surface area of 5 m 2 / g (average particle diameter: 24.5 μm). Same as Example 1. The results are shown in Table 1.

(実施例8)
負極活物質として、BET比表面積5m/gの天然黒鉛(平均粒子径:24.5μm)に代えてBET比表面積15m/gの天然黒鉛(平均粒子径:15μm)を用いた以外は、実施例1と同様とした。結果を表1に示す。
(Example 8)
As the negative electrode active material, natural graphite having a BET specific surface area of 15 m 2 / g (average particle diameter: 15 μm) was used instead of natural graphite having a BET specific surface area of 5 m 2 / g (average particle diameter: 24.5 μm). Same as Example 1. The results are shown in Table 1.

(実施例9)
負極活物質として、BET比表面積5m/gの天然黒鉛(平均粒子径:24.5μm)に代えてBET比表面積5m/gの天然黒鉛(平均粒子径:24.5μm)を80部およびBET比表面積6.5m/gのSiOC(平均粒子径:10μm)を20部用いた以外は、実施例1と同様とした。なお、負極活物質のBET比表面積は、5.2m/gであった。結果を表1に示す。
Example 9
As the negative electrode active material, natural graphite (average particle size: 24.5μm) of a BET specific surface area of 5 m 2 / g natural graphite (average particle size: 24.5μm) of a BET specific surface area of 5 m 2 / g instead of 80 parts and The procedure was the same as Example 1 except that 20 parts of SiOC (average particle size: 10 μm) having a BET specific surface area of 6.5 m 2 / g was used. The BET specific surface area of the negative electrode active material was 5.2 m 2 / g. The results are shown in Table 1.

(実施例10)
負極活物質として、BET比表面積5m/gの天然黒鉛(平均粒子径:24.5μm)に代えてBET比表面積5.0m/gの天然黒鉛(平均粒子径:24.5μm)を50部およびBET比表面積6.5m/gのSiOC(平均粒子径:10μm)を50部用いた以外は、実施例1と同様とした。なお、負極活物質のBET比表面積は、5.8m/gであった。結果を表1に示す。
(Example 10)
As the negative electrode active material, natural graphite (average particle size: 24.5μm) of a BET specific surface area of 5 m 2 / g BET specific instead of surface area 5.0 m 2 / g natural graphite (average particle size: 24.5μm) 50 Parts and a BET specific surface area of 6.5 m 2 / g of SiOC (average particle size: 10 μm) were used in the same manner as in Example 1 except that 50 parts were used. The BET specific surface area of the negative electrode active material was 5.8 m 2 / g. The results are shown in Table 1.

(実施例11)
プロパルギル基含有化合物として、ベンゼンスルホン酸プロパルギルに代えてジプロパルギルカーボネートを用いた以外は、実施例1と同様とした。結果を表1に示す。
(Example 11)
The same procedure as in Example 1 was performed except that dipropargyl carbonate was used as the propargyl group-containing compound instead of propargyl benzenesulfonate. The results are shown in Table 1.

(実施例12)
バインダー調製時のコモノマーとして、イタコン酸を用いなかった以外は、実施例1と同様とした。なお、バインダーのガラス転移温度は7℃であった。結果を表1に示す。
(Example 12)
The same procedure as in Example 1 was conducted except that itaconic acid was not used as a comonomer for preparing the binder. The glass transition temperature of the binder was 7 ° C. The results are shown in Table 1.

(比較例1)
バインダー組成物にプロパルギル基含有化合物を配合しなかった以外は、実施例1と同様とした。結果を表1に示す。
(Comparative Example 1)
The procedure was the same as Example 1 except that the propargyl group-containing compound was not blended in the binder composition. The results are shown in Table 1.

(比較例2)
バインダー組成物にプロパルギル基含有化合物を配合しなかった以外は、実施例10と同様とした。結果を表1に示す。
(Comparative Example 2)
The procedure was the same as Example 10 except that the propargyl group-containing compound was not blended in the binder composition. The results are shown in Table 1.

(比較例3)
ベンゼンスルホン酸プロパルギルの添加量を、バインダー固形分100部に対し、25部とした以外は、実施例1と同様とした。結果を表1に示す。
(Comparative Example 3)
The amount of propargyl benzenesulfonate added was the same as in Example 1 except that the amount was 25 parts with respect to 100 parts of binder solid content. The results are shown in Table 1.

(比較例4)
ベンゼンスルホン酸プロパルギルに代えて2−オクチン酸メチルを用いた以外は、実施例1と同様とした。結果を表1に示す。
(Comparative Example 4)
Example 1 was repeated except that methyl 2-octanoate was used in place of propargyl benzenesulfonate. The results are shown in Table 1.

Figure 0006115468
Figure 0006115468

バインダー組成物にプロパルギル基含有化合物を配合することで、集電体と電極活物質層との間の密着性が向上し、特にサイクル特性、低温出力特性が改善された二次電池が得られた。   By blending the propargyl group-containing compound with the binder composition, the adhesion between the current collector and the electrode active material layer was improved, and in particular, a secondary battery with improved cycle characteristics and low-temperature output characteristics was obtained. .

一方、プロパルギル基含有化合物を配合しない場合(比較例1,2)には、上記の効果は奏されなかった。また、プロパルギル基含有化合物の配合量が多すぎる場合(比較例3)には、スラリーが増粘しやすく、得られる負極の均一性が低下し、出力特性が低下する。また、プロパルギル基(H−C≡C−CH−)によく似た構造のアルケニル基を有する2−オクチン酸メチルを用いた場合(比較例4)でも、上記の効果は奏されなかった。On the other hand, when the propargyl group-containing compound was not blended (Comparative Examples 1 and 2), the above effect was not achieved. Moreover, when there are too many compounding quantities of a propargyl group containing compound (comparative example 3), a slurry tends to thicken, the uniformity of the negative electrode obtained will fall, and output characteristics will fall. In addition, even when methyl 2-octanoate having an alkenyl group having a structure very similar to a propargyl group (HC—C≡C—CH 2 —) was used (Comparative Example 4), the above effect was not achieved.

Claims (9)

二次電池負極用バインダー組成物および負極活物質を含有してなる二次電池負極用スラリー組成物であって、
前記二次電池負極用バインダー組成物の含有量が、前記負極活物質の総量100質量部に対して0.1〜5質量部であり、
前記二次電池負極用バインダー組成物は、バインダー及びプロパルギル基含有化合物を含有し、前記プロパルギル基含有化合物の含有量が、前記バインダー100質量部に対して3〜7質量部であり、
前記負極活物質のBET比表面積が、5〜15m /gである二次電池負極用スラリー組成物。
A secondary battery negative electrode slurry composition comprising a secondary battery negative electrode binder composition and a negative electrode active material,
The content of the binder composition for a secondary battery negative electrode is 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material,
The secondary battery negative electrode binder composition contains a binder and propargyl group-containing compound, the content of the propargyl group-containing compound, Ri 3-7 parts by der respect to the binder 100 parts by weight,
The slurry composition for secondary battery negative electrodes whose BET specific surface area of the said negative electrode active material is 5-15 m < 2 > / g .
前記プロパルギル基含有化合物が、モノプロパルギル基含有化合物である請求項1に記載の二次電池負極用スラリー組成物。 The slurry composition for secondary battery negative electrode according to claim 1, wherein the propargyl group-containing compound is a monopropargyl group-containing compound. 前記モノプロパルギル基含有化合物が、ベンゼンスルホン酸プロパルギル、アクリル酸プロパルギル、メタアクリル酸プロパルギル、酢酸プロパルギルのいずれか1つ以上である請求項2に記載の二次電池負極用スラリー組成物。 The slurry composition for secondary battery negative electrode according to claim 2, wherein the monopropargyl group-containing compound is at least one of propargyl benzenesulfonate, propargyl acrylate, propargyl methacrylate, and propargyl acetate. 前記バインダーが、エチレン性不飽和カルボン酸単量体単位を含む請求項1〜3のいずれかに記載の二次電池負極用スラリー組成物。 The slurry composition for secondary battery negative electrodes in any one of Claims 1-3 in which the said binder contains an ethylenically unsaturated carboxylic acid monomer unit. 前記バインダーのガラス転移温度が、−60℃〜40℃である請求項1〜4のいずれかに記載の二次電池負極用スラリー組成物。 The slurry composition for secondary battery negative electrodes according to any one of claims 1 to 4, wherein the binder has a glass transition temperature of -60C to 40C. 請求項1〜のいずれかに記載の二次電池用負極スラリー組成物が有する二次電池負極用バインダー組成物および負極活物質を含んでなる負極活物質層を集電体上に有する二次電池用負極。 The secondary battery negative electrode active material layer which comprises the binder composition for secondary battery negative electrodes and the negative electrode active material which the negative electrode slurry composition for secondary batteries in any one of Claims 1-5 has on a collector Battery negative electrode. 前記負極活物質が、炭素材料系活物質である請求項に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 6 , wherein the negative electrode active material is a carbon material-based active material. 正極、負極、電解液、並びにセパレーターを備えるリチウムイオン二次電池であって、前記負極が請求項6または7に記載の二次電池用負極である二次電池。 A secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, wherein the negative electrode is a negative electrode for a secondary battery according to claim 6 or 7 . 前記電解液が、ビニレンカーボネートを含む請求項に記載の二次電池。
The secondary battery according to claim 8 , wherein the electrolytic solution contains vinylene carbonate.
JP2013522935A 2011-06-29 2012-06-28 Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode and secondary battery Expired - Fee Related JP6115468B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011144590 2011-06-29
JP2011144590 2011-06-29
PCT/JP2012/066524 WO2013002322A1 (en) 2011-06-29 2012-06-28 Binder composition for secondary cell negative electrode, slurry composition for secondary cell negative electrode, negative electrode for secondary cell, and secondary cell

Publications (2)

Publication Number Publication Date
JPWO2013002322A1 JPWO2013002322A1 (en) 2015-02-23
JP6115468B2 true JP6115468B2 (en) 2017-04-19

Family

ID=47424208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522935A Expired - Fee Related JP6115468B2 (en) 2011-06-29 2012-06-28 Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode and secondary battery

Country Status (3)

Country Link
JP (1) JP6115468B2 (en)
KR (1) KR101910988B1 (en)
WO (1) WO2013002322A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970183B2 (en) * 2011-12-21 2016-08-17 東洋化学株式会社 Electrode binder
CN109461884A (en) * 2018-12-08 2019-03-12 广东维都利新能源有限公司 A kind of lithium battery that can be worked at high temperature and save
KR102473691B1 (en) * 2018-12-13 2022-12-05 주식회사 엘지에너지솔루션 Electrolyte for lithium secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203558A (en) * 2000-12-28 2002-07-19 Sony Corp Non-aqueous electrolyte secondary battery
US6537698B2 (en) * 2001-03-21 2003-03-25 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
KR100893227B1 (en) * 2006-07-28 2009-04-16 주식회사 엘지화학 Anode for improving storage performance at a high temperature and lithium secondary battery comprising the same
JP5222538B2 (en) * 2007-05-22 2013-06-26 株式会社デンソー Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
JP2009099530A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5125379B2 (en) * 2007-10-04 2013-01-23 宇部興産株式会社 Electrolytic solution for lithium secondary battery containing benzenesulfonic acid ester, and lithium secondary battery using the same
JP2010199043A (en) * 2009-02-27 2010-09-09 Mitsubishi Heavy Ind Ltd Method of manufacturing negative electrode for secondary battery, and nonaqueous secondary battery
JP5631111B2 (en) * 2009-09-07 2014-11-26 株式会社デンソー Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
JP5754098B2 (en) 2009-09-15 2015-07-22 三菱化学株式会社 Carbon material for lithium ion secondary battery
JP5506030B2 (en) * 2009-12-09 2014-05-28 株式会社デンソー Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery using the electrolyte

Also Published As

Publication number Publication date
KR101910988B1 (en) 2018-10-23
WO2013002322A1 (en) 2013-01-03
JPWO2013002322A1 (en) 2015-02-23
KR20140039226A (en) 2014-04-01

Similar Documents

Publication Publication Date Title
JP5761197B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode, secondary battery, and method for producing secondary battery negative electrode binder composition
US11552297B2 (en) Binder composition for lithium ion secondary battery electrode-use, slurry composition for lithium ion secondary battery electrode-use, electrode for lithium ion secondary battery-use, and lithium ion secondary battery
KR101807543B1 (en) Slurry for secondary battery negative electrodes, secondary battery negative electrode and manufacturing method thereof, and secondary battery
JP5708301B2 (en) Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode
JP6245173B2 (en) Negative electrode for secondary battery and secondary battery
JP5987471B2 (en) Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode
WO2016035286A1 (en) Binder composition for secondary-battery electrode, slurry composition for secondary-battery electrode, secondary-battery electrode, and secondary battery
WO2012115096A1 (en) Secondary cell negative electrode, secondary cell, slurry composition for negative electrode, and method of producing secondary cell negative electrode
KR20150027059A (en) Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell
US10529989B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP6111895B2 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for secondary battery and secondary battery
JP6168059B2 (en) Slurry composition for negative electrode of lithium ion secondary battery
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
JP7276326B2 (en) Binder composition for electricity storage device, slurry composition for electricity storage device electrode, electrode for electricity storage device, and electricity storage device
JP7327398B2 (en) Binder composition for electrochemical element electrode, slurry composition for electrochemical element electrode, electrode for electrochemical element, and electrochemical element
JP6115468B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode and secondary battery
KR20190022528A (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6115468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees