WO2021132303A1 - Ink for hydrogel shaping, and hydrogel using same - Google Patents

Ink for hydrogel shaping, and hydrogel using same Download PDF

Info

Publication number
WO2021132303A1
WO2021132303A1 PCT/JP2020/048098 JP2020048098W WO2021132303A1 WO 2021132303 A1 WO2021132303 A1 WO 2021132303A1 JP 2020048098 W JP2020048098 W JP 2020048098W WO 2021132303 A1 WO2021132303 A1 WO 2021132303A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
mass
ink
vinyl alcohol
content
Prior art date
Application number
PCT/JP2020/048098
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 立花
雄介 天野
明士 藤田
一彦 前川
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2021567516A priority Critical patent/JPWO2021132303A1/ja
Publication of WO2021132303A1 publication Critical patent/WO2021132303A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification

Definitions

  • the present invention relates to a hydrogel containing a crosslinked product of ink and polyvinyl alcohol used for modeling a hydrogel.
  • Hydrogel (hereinafter sometimes abbreviated as gel) is a material composed of crosslinked hydrophilic polymer and water, and has been used for various purposes such as daily life, medical care, food, civil engineering, specifically, high water absorption.
  • Super Absorbent Polymer (SAP) contact lenses, organ models, drug delivery substrates, adsorption carriers for metal ions, enzyme-immobilized carriers, affinity carriers, capsule carriers used for encapsulation of cells and microorganisms, wastewater It is used for treatment carriers, vascular embolizing materials, shock absorbing materials, vibration damping materials, soundproofing materials, ground improvement materials, water blocking materials, antifouling paints, etc.
  • polyvinyl alcohol is a water-soluble synthetic polymer having excellent hydrophilicity, reactivity, biodegradability, biocompatibility, low toxicity, etc., and a hydrogel obtained by cross-linking it in an aqueous solution is flexible. And it is known that the gel strength is high (Patent Document 1).
  • Patent Document 1 a method of physically cross-linking polyvinyl alcohol by repeatedly freezing and thawing an aqueous solution of polyvinyl alcohol (Patent Document 1) and (2) glutaraldehyde.
  • Patent Document 1 A chemical cross-linking method using a typified aldehyde compound or boric acid as a cross-linking agent is known.
  • the physical cross-linking points disappear or the acetal bonds and borate ester bonds are hydrolyzed due to the influence of changes in the external environment such as temperature changes and pH changes.
  • Patent Document 3 describes a hydrogel obtained by using an ink containing a modified vinyl alcohol-based polymer having a predetermined crosslinkable group. Since the modified vinyl alcohol-based polymer is excellent in stimulus curability, a high-strength hydrogel can be easily obtained without going through the above-mentioned complicated operations.
  • the hydrogel containing the crosslinked product of the modified vinyl alcohol-based polymer described in Patent Document 3 has a gel strength that changes depending on the state of the ink before gelation. It was discovered that it may partially cause poor gelation. In addition, it has become clear that there is a problem that odors caused by residual components are generated over time, and there is a concern about adverse effects on the safety of workers and the environment. No hydrogel has been found so far that has a low odor and is highly resistant to changes in temperature and pH.
  • the present invention has been made to solve the above problems, and is an ink for hydrogel molding capable of obtaining a hydrogel by a simple operation, having a low odor, and stably exhibiting a high gel strength.
  • the purpose is to provide.
  • Another object of the present invention is to provide a hydrogel containing a crosslinked product of polyvinyl alcohol having high resistance and low odor that can be used in a wide range of temperatures and pH.
  • the cause of the odor is the sulfur content in the solvent used when modifying polyvinyl alcohol. Furthermore, by reducing the sulfur content, not only the odor of the ink is reduced, but also the change in the viscosity of the ink can be suppressed to a low level, so that high gel strength is stably exhibited and the following hydro They have found that gels are highly resistant to a wide range of temperatures and pH, completing the invention.
  • the above-mentioned problem includes a modified vinyl alcohol-based polymer (A) containing a vinyl ester unit represented by the following formula (1) and an initiator (B), and has a sulfur content of 0.001 to 2000 ppm.
  • the solution is to provide an ink for hydrogel modeling.
  • X represents a divalent saturated hydrocarbon group which may have a carbon-carbon bond or a branched structure having 1 to 10 carbon atoms
  • Y represents a hydrogen atom or a branched structure having 1 to 6 carbon atoms. It represents a saturated hydrocarbon group which may have a branched structure
  • Z represents a hydrogen atom or a methyl group.
  • the content of the vinyl alcohol unit in the modified vinyl alcohol-based polymer (A) with respect to all the constituent units is preferably 60 to 99.99 mol%. It is also preferable that the ratio of the vinyl ester units present in three or more chains to the total vinyl ester units in the modified vinyl alcohol polymer (A) is 20 mol% or less. It is also preferable that the content of the vinyl ester unit represented by the formula (1) in the modified vinyl alcohol-based polymer (A) with respect to all the constituent units is 0.01 to 10 mol%.
  • Y is a hydrogen atom. It is also preferable that X is a carbon-carbon bond.
  • the ink further contains the strength-imparting agent (C).
  • the strength-imparting agent (C) is preferably inorganic particles.
  • the ink further contains a polymerization inhibitor (D).
  • the ink is an ink for a 3D printer.
  • the ink is an organ model, contact lens, drug delivery base material, adsorption carrier, enzyme-immobilized carrier, affinity carrier, capsule carrier, wastewater treatment carrier, vascular embolic material, shock absorber, vibration damping material, soundproofing material, ground. It is also preferably used in the production of improved materials, water blocking materials or antifouling paints.
  • the above-mentioned problem is a hydrogel containing a crosslinked product of the hydrogel molding ink, and all of them have an elution rate when immersed in water at 100 ° C. having a pH of 0.5, 5, 10 or 14 for 1 hour. It is also solved by providing a hydrogel which is 50% by weight or less.
  • the initial moisture content W1 (mass%) of the hydrogel and the hydrogel were vacuum-dried at 40 ° C. for 8 hours, further vacuum-dried at 120 ° C. for 1 hour, and then immersed in water at 40 ° C. for 48 hours. It is preferable that the subsequent water content W2 (mass%) satisfies the following formula (I). 0.8 ⁇ (W1 / W2) ⁇ 1.4 (I)
  • the hydrogel further contains the strength-imparting agent (C).
  • Organ model Organ model, contact lens, drug delivery base material, adsorption carrier, enzyme-immobilized carrier, affinity carrier, capsule carrier, wastewater treatment carrier, vascular embolizing material, shock absorber, vibration damping material composed of the hydrogel. , Soundproofing material, ground improving material, water blocking material or antifouling paint are preferred embodiments of the present invention.
  • the hydrogel molding ink of the present invention containing a modified vinyl alcohol-based polymer containing a predetermined vinyl ester unit has a sulfur content of a certain level or less, and therefore has a low odor and a constant viscosity change. Since it is suppressed within the range, stable gel strength is developed. Further, since the ink of the present invention has "stimulation curability" such that it quickly gels in one step by a stimulus such as active energy rays or heat, a hydrogel can be obtained by a simple operation. Taking advantage of these characteristics, the hydrogel modeling ink of the present invention is suitably used as an ink for a 3D printer. Further, since the hydrogel of the present invention has high resistance to a wide range of temperatures and pH and has a low odor, it is suitably used as a medical organ model or the like.
  • the hydrogel molding ink of the present invention contains a modified vinyl alcohol-based polymer (A) containing a vinyl ester unit represented by the following formula (1) and an initiator (B), and has a sulfur content of 0.001. It is ⁇ 2000 ppm.
  • X represents a divalent saturated hydrocarbon group which may have a carbon-carbon bond or a branched structure having 1 to 10 carbon atoms
  • Y represents a hydrogen atom or a branched structure having 1 to 6 carbon atoms. It represents a saturated hydrocarbon group which may have a branched structure
  • Z represents a hydrogen atom or a methyl group.
  • the sulfur content of the ink is below a certain level, it has a low odor and the change in viscosity is suppressed below a certain level, so that stable gel strength is exhibited. Further, the modified vinyl alcohol polymer (A) is quickly crosslinked in one step by stimulation with active energy rays or heat to obtain a hydrogel. Since the ink has stimulus curability as described above, a hydrogel can be obtained by a simple operation. Taking advantage of these characteristics, the hydrogel modeling ink of the present invention is suitably used as an ink for a 3D printer or the like. Then, the obtained modeled product is suitably used as a medical organ model or the like.
  • the ink of the present invention has a stimulating curability by containing the modified vinyl alcohol polymer (A) containing the vinyl ester unit represented by the formula (1), a hydrogel can be obtained by a simple operation.
  • X in the formula (1) represents a divalent saturated hydrocarbon group which may have a carbon-carbon bond or a branched structure having 1 to 10 carbon atoms. It is preferable that X is a carbon-carbon bond from the viewpoint of further improving the stimulus curability.
  • the saturated hydrocarbon group used as X has 1 to 10 carbon atoms. When the number of carbon atoms exceeds 10, the water solubility deteriorates.
  • the carbon number is preferably 5 or less, more preferably 3 or less, and even more preferably 2 or less.
  • Examples of the divalent saturated hydrocarbon group used as X include an alkylene group and a cycloalkylene group.
  • Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group and a decylene group.
  • Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group and the like.
  • the alkylene group and the cycloalkylene group used as X may have an alkyl group such as a methyl group or an ethyl group as a branched structure.
  • Y in the formula (1) represents a hydrogen atom or a saturated hydrocarbon group which may have a branched structure having 1 to 6 carbon atoms. It is preferable that Y is a hydrogen atom.
  • the saturated hydrocarbon group used as Y has 1 to 6 carbon atoms. If the number of carbon atoms exceeds 6, the water solubility may deteriorate.
  • the carbon number is preferably 5 or less, more preferably 3 or less, and even more preferably 2 or less.
  • Examples of the saturated hydrocarbon group used as Y include an alkyl group and a cycloalkyl group.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, and a hexyl group.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • the alkyl group and cycloalkyl group used as Y may have an alkyl group such as a methyl group or an ethyl group as a branched structure.
  • the content of the vinyl ester unit represented by the formula (1) with respect to all the structural units in the modified vinyl alcohol polymer (A) is preferably 0.01 to 10 mol%. If the content is less than 0.01 mol%, the aqueous solution of the modified vinyl alcohol polymer (A) may not easily gel.
  • the content is more preferably 0.05 mol% or more, further preferably 0.1 mol% or more, particularly preferably 0.3 mol% or more, and most preferably 0.5 mol% or more. On the other hand, if the content exceeds 10 mol%, the water solubility of the modified vinyl alcohol-based polymer (A) may deteriorate.
  • the content is more preferably 8 mol% or less, further preferably 5 mol% or less, particularly preferably 3 mol% or less, and most preferably 2 mol% or less.
  • the content of the vinyl ester unit represented by the formula (1) can be determined by a method using 1 H-NMR measurement described in Examples described later.
  • the content of the vinyl alcohol unit with respect to all the constituent units in the modified vinyl alcohol-based polymer (A) is preferably 60 to 99.99 mol%. If the content of the vinyl alcohol unit is less than 60 mol%, the water solubility of the modified vinyl alcohol polymer (A) may deteriorate and a hydrogel may not be obtained, and the gel strength may decrease. is there.
  • the content of the vinyl alcohol unit is more preferably 70 mol% or more, further preferably 80 mol% or more, particularly preferably 85 mol% or more, and most preferably 90 mol% or more. On the other hand, when the content of the vinyl alcohol unit exceeds 99.99 mol%, it may be difficult to industrially produce the modified vinyl alcohol-based polymer (A).
  • the content of the vinyl alcohol unit is more preferably 99.9 mol% or less, further preferably 99.5 mol% or less, particularly preferably 99 mol% or less, and most preferably 98 mol% or less.
  • the content of the vinyl ester unit represented by the formula (1) can be determined by a method using 1 H-NMR measurement described in Examples described later.
  • the viscosity average degree of polymerization of the modified vinyl alcohol polymer (A) is preferably 100 to 5000, more preferably 200 to 4000. If the viscosity average degree of polymerization is less than 100, the gel strength of the modified vinyl alcohol-based polymer (A) may decrease. On the other hand, when the viscosity average degree of polymerization exceeds 5000, industrial production of the modified vinyl alcohol-based polymer (A) may become difficult.
  • the viscosity average degree of polymerization of the modified vinyl alcohol polymer (A) is measured according to JIS K6726.
  • the vinyl alcohol unit of the modified vinyl alcohol polymer (A) can be derived from the vinyl ester unit by hydrolysis, alcohol decomposition, or the like. Therefore, the vinyl ester unit may remain in the modified vinyl alcohol-based polymer (A) depending on the conditions for converting the vinyl ester unit to the vinyl alcohol unit.
  • vinyl ester of the vinyl ester unit examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatic acid, vinyl caproate, vinyl caprylate, vinyl laurate, and palmitin.
  • vinyl acetate, vinyl stearate, vinyl oleate, vinyl benzoate, and the like examples include vinyl acetate, vinyl stearate, vinyl oleate, vinyl benzoate, and the like, and among these, vinyl acetate is preferable from an industrial point of view.
  • the method for producing the modified vinyl alcohol-based polymer (A) is a method for producing a modified vinyl alcohol-based polymer in which a mixed medium containing an unsaturated carboxylic acid, an acid catalyst and water and a vinyl alcohol-based polymer are mixed. Therefore, it is preferable that the unsaturated carboxylic acid is represented by the following formula (2).
  • the mixing method at this time is not particularly limited as long as the two can be mixed uniformly. Specifically, (a) a method of preparing the mixed medium and then mixing the mixed medium with the vinyl alcohol-based polymer, and (b) a part of the vinyl alcohol-based polymer and the mixed medium. After mixing with, a method of mixing the obtained mixture with the remaining components of the mixing medium, (c) a method of simultaneously mixing each component of the mixing medium with the vinyl alcohol polymer, and the like can be mentioned. Of these, (a) is preferable.
  • the vinyl alcohol-based polymer to be reacted with the unsaturated carboxylic acid is particles.
  • the unsaturated carboxylic acid and the vinyl alcohol-based polymer particles are reacted.
  • the method of causing is preferable. As described above, by carrying out the reaction while maintaining the particle shape of the raw material vinyl alcohol-based polymer particles, the operation of precipitating the reaction product using a large amount of poor solvent becomes unnecessary.
  • a method of reacting the unsaturated carboxylic acid with the vinyl alcohol-based polymer particles by mixing the mixed medium and the vinyl alcohol-based polymer particles to form a slurry or a dispersion liquid can be mentioned. Be done. Further, a method of reacting the unsaturated carboxylic acid with the vinyl alcohol-based polymer particles by uniformly blending the mixed medium with the vinyl alcohol-based polymer particles can also be mentioned.
  • the unsaturated carboxylic acid the one represented by the formula (2) is used.
  • X, Y, and Z in the formula (2) are synonymous with the formula (1).
  • Specific examples of the unsaturated carboxylic acid when X is a carbon-carbon bond include methacrylic acid, acrylic acid, crotonic acid and the like.
  • unsaturated carboxylic acid represented by the formula (2) examples include methacrylic acid, acrylic acid, crotonic acid, 3-methyl-3-butenoic acid, 4-pentenoic acid, 2-methyl-4-pentenoic acid, and 5 -Hexenoic acid, 3,3-dimethyl-4-pentenoic acid, 7-octenoic acid, trans-3-pentenoic acid, trans-4-decenoic acid, 10-undecenoic acid and the like can be mentioned.
  • methacrylic acid, acrylic acid, 4-pentenoic acid, 10-undecenoic acid are preferable, methacrylic acid, acrylic acid and 4-pentenoic acid are more preferable, and methacrylic acid and Acrylic acid is more preferred, and methacrylic acid is particularly preferred.
  • An acid catalyst is used as a catalyst for the reaction between the unsaturated carboxylic acid and the vinyl alcohol polymer. This promotes the reaction between the unsaturated carboxylic acid and the vinyl alcohol polymer.
  • the acid catalyst may be any acid catalyst as long as it catalyzes the dehydration esterification reaction between the unsaturated carboxylic acid represented by the formula (2) and the hydroxyl group of the vinyl alcohol-based polymer, and either an organic acid or an inorganic acid can be used. is there.
  • Examples of the organic acid include methanesulfonic acid, benzenesulfonic acid, trifluoromethanesulfonic acid and paratoluenesulfonic acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid and nitric acid. Of these, methanesulfonic acid, paratoluenesulfonic acid and sulfuric acid are preferable, and paratoluenesulfonic acid is particularly preferable.
  • the mass ratio [polymer / mixed medium] of the vinyl alcohol-based polymer to the mixed medium when mixing the mixed medium and the vinyl alcohol-based polymer is preferably 3/97 to 90/10. If the mass ratio [polymer / mixed medium] is less than 3/97, the reactivity may be significantly reduced.
  • the mass ratio [polymer / mixed medium] is preferably 10/90 or more. On the other hand, when the mass ratio [polymer / mixed medium] exceeds 90/10, the mixed medium and the vinyl alcohol-based polymer may not be uniformly mixed or the reactivity may be significantly lowered.
  • the mass ratio [polymer / mixed medium] is more preferably 80/20 or less, and even more preferably 50/50 or less.
  • the water content in the mixed medium is preferably 1 to 30% by mass.
  • the obtained modified vinyl alcohol-based polymer (A) may be easily colored.
  • the water content is more preferably 3% by mass or more, further preferably 5% by mass or more, and particularly preferably 8% by mass or more.
  • the water content is more preferably 20% by mass or less, further preferably 18% by mass or less.
  • the amount of the acid catalyst added when the unsaturated carboxylic acid is reacted with the vinyl alcohol polymer is preferably 0.0001 to 0.1 mol with respect to 1 mol of the hydroxyl group in the vinyl alcohol polymer. ..
  • the addition amount is more preferably 0.0005 mol or more.
  • the addition amount is more preferably 0.08 mol or less.
  • the content of the unsaturated carboxylic acid in the mixed medium is preferably 5 to 2000 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer. If the amount of unsaturated carboxylic acid added is less than 5 parts by mass, the reactivity may decrease.
  • the content of the unsaturated carboxylic acid is more preferably 10 parts by mass or more, further preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more.
  • the content of the unsaturated carboxylic acid exceeds 2000 parts by mass, the unreacted unsaturated carboxylic acid may increase and the cost may increase.
  • the content of the unsaturated carboxylic acid is more preferably 1500 parts by mass or less, further preferably 1000 parts by mass or less, and particularly preferably 700 parts by mass or less.
  • the mixed medium may further contain acetic acid.
  • the content of acetic acid in the mixed medium is preferably 1 to 1000 parts by mass with respect to 100 parts by mass of water.
  • the content of acetic acid is more preferably 5 parts by mass or more, further preferably 10 parts by mass or more.
  • the content of acetic acid is more preferably 800 parts by mass or less, and further preferably 600 parts by mass or less.
  • the mixed medium may contain an unsaturated carboxylic acid represented by the formula (2), the acid catalyst, water and other additives other than acetic acid.
  • Other additives include, for example, surfactants, organic solvents, UV absorbers, light stabilizers, antioxidants, plasticizers, defoamers.
  • the content of the other additive in the mixed medium is preferably 50% by mass or less, more preferably 35% by mass or less. Further, it is preferable that the mixed medium does not contain a liquid medium containing sulfur.
  • the temperature at which the unsaturated carboxylic acid is reacted with the vinyl alcohol-based polymer is preferably 10 to 120 ° C.
  • the temperature is more preferably 30 ° C. or higher, and even more preferably 50 ° C. or higher.
  • the temperature is more preferably 100 ° C. or lower, and even more preferably 90 ° C. or lower.
  • the reaction time for reacting the unsaturated carboxylic acid with the vinyl alcohol polymer is usually 0.5 to 72 hours.
  • the cleaning method include a method of cleaning the particles with a solvent. Specifically, a method of immersing the particles in a solvent and then removing the liquid, a method of contacting the particles with the particles while flowing the solvent in a washing tower for washing, and a washing solvent while flowing the particles. Examples include a method of spraying.
  • the solvent used include alcohols such as methanol, ethanol, propanol and butanol; aliphatic or alicyclic hydrocarbons such as n-hexane, n-pentane and cyclohexane; aromatic carbides such as benzene and toluene.
  • nitriles such as acetonitrile and benzonitrile
  • ethers such as diethyl ether, diphenyl ether, anisole, 1,2-dimethoxyethane and 1,4-dioxane
  • ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone and methyl isobutyl ketone
  • Esters such as methyl acetate, ethyl acetate, ethyl propionate and the like.
  • alcohols, ethers, ketones and esters are more preferable, methanol, ethanol, propanol, diethyl ether, 1,2-dimethoxyethane, acetone, methyl ethyl ketone, methyl acetate and ethyl acetate are more preferable, and methanol, propanol, Acetone, methyl ethyl ketone, methyl acetate and ethyl acetate are particularly preferred.
  • These organic solvents may be used alone or in combination of two or more.
  • the modified vinyl alcohol polymer (A) it is preferable to wash the modified vinyl alcohol polymer (A) after the reaction, if necessary, and then dry it.
  • the drying temperature is usually 20 to 150 ° C., and the drying time is 1 to 72 hours.
  • the modified vinyl alcohol polymer (A) may be dried under atmospheric pressure or under reduced pressure.
  • the modified vinyl alcohol-based polymer (A) may contain a monomer unit other than the vinyl alcohol unit and the vinyl ester unit as long as the effect of the present invention is not impaired.
  • examples of such other monomer units include those derived from ethylenically unsaturated monomers copolymerizable with vinyl ester.
  • examples of such ethylenically unsaturated monomers include ⁇ -olefins such as ethylene, propylene, n-butyl, isobutylene, and 1-hexene; acrylic acid and salts thereof; methyl acrylate, ethyl acrylate, and acrylic acid.
  • Acrylic acid esters such as n-propyl, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid And salts thereof; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, methacrylate Methacrylate esters such as dodecyl and octadecyl methacrylate; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamide
  • quaternary salt methacrylamide, N-methylmethacrylate, N-ethylmethacrylate, methacrylicamidepropanesulfonic acid and its salt, methacrylamidepropyldimethylamine and its salt (for example, quaternary salt); methylvinyl ether, ethyl.
  • Vinyl ethers such as vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether, 2,3-diacetoxy-1-vinyloxypropane; acrylonitrile , Vinyl cyanide such as methacrylonitrile; Vinyl halides such as vinyl chloride and vinyl fluoride; Vinylidene halides such as vinylidene chloride and vinylidene fluoride; Allyl acetate, 2,3-diacetoxy-1-allyloxy Allyl compounds such as propane and allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid and salts thereof or esters thereof; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like can be mentioned.
  • the content of other monomer units in the modified vinyl alcohol-based polymer (A) with respect to all the constituent units is usually 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
  • the ratio of the vinyl ester units present in three or more chains to the total vinyl ester units in the modified vinyl alcohol polymer (A) is 20 mol% or less.
  • the ratio is more preferably 18 mol% or less, further preferably 16 mol% or less, and particularly preferably 15 mol% or less.
  • the proportion of vinyl ester units present in three or more chains is usually 0.1 mol% or more.
  • the proportion of vinyl ester units present in three or more chains can be determined by the method using 1 1 H-NMR measurement described in Examples described later.
  • the content of the modified vinyl alcohol polymer (A) in the ink of the present invention is preferably 1 to 70% by mass. If the content is less than 1% by mass, the gel strength may be insufficient.
  • the content is more preferably 3% by mass or more, further preferably 5% by mass or more, particularly preferably 7% by mass or more, and most preferably 8% by mass or more.
  • the content exceeds 70% by mass, the viscosity of the ink may become too high and it may be difficult to handle.
  • the content is more preferably 50% by mass or less, further preferably 40% by mass or less, particularly preferably 30% by mass or less, and most preferably 20% by mass or less.
  • the sulfur content in the ink needs to be 0.001 to 2000 ppm.
  • the sulfur content is below a certain level in this way, the odor of the ink and the obtained hydrogel is reduced.
  • Such hydrogels are not only highly safe but also environmentally friendly.
  • the sulfur content is below a certain level, the viscosity stability of the ink is surprisingly improved. Then, by improving the viscosity stability of the ink, a hydrogel having high gel strength can be stably obtained.
  • the sulfur content is preferably 1500 ppm or less, more preferably 1000 ppm or less, further preferably 500 ppm or less, particularly preferably 300 ppm or less, and most preferably 200 ppm or less.
  • the sulfur content is less than 0.001 ppm, it may be difficult to industrially produce the modified vinyl alcohol-based polymer (A).
  • the sulfur content is more preferably 0.01 ppm or more, further preferably 0.1 ppm or more, and particularly preferably 1 ppm or more.
  • the ink further contains the strength-imparting agent (C).
  • the strength-imparting agent (C) include organic particles (C-1) other than the vinyl alcohol-based polymer and inorganic particles (C-2), and the latter is preferable.
  • Examples of the organic particles (C-1) include polymer particles, cellulose nanofibers, graphene oxide, bamboo charcoal, particles of carbon material such as activated carbon, and the like.
  • the polymer constituting the polymer particles may be a polymer composed of one kind of monomer unit or a copolymer composed of a plurality of types of monomer units. It may also be a mixture of a plurality of polymers.
  • Examples of the monomer unit include conjugated diene such as butadiene and isoprene; aromatic vinyl compounds such as styrene, ⁇ -methylstyrene and tert-butylstyrene; (meth) acrylic acid and salts thereof; methyl (meth) acrylate, Ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isopropyl (meth) acrylate, dicyclopentanyl (meth) acrylate, trimethylpropanthry (meth) acrylate, (Meta) acrylic acid esters such as allyl (meth) acrylate; (meth) acrylamide; (meth) acrylamide derivatives such as N-methyl (meth) acrylamide and N-ethyl (meth) acrylamide; nitriles such as (meth) acrylonitrile; Vinyl ethers such as methyl vinyl
  • monoolefins such as ether, propene, n-butene, isobutene
  • ethylene halides such as vinyl bromide, vinylidene bromide, vinyl chloride, vinylidene chloride, vinyl fluoride
  • Cyclic diene indens such as inden and tetrahydroinden; cyclic ethers such as ethylene oxide, propylene oxide, oxetane and tetrahydrofuran; cyclic sulfides such as thirane and thietan; cyclic amines such as allyl and azetidine; 1,3-dioxolane, 1, Cyclic acetals such as 3,5-trioxane and spiroorthoester; cyclic iminoethers such as 2-oxozarin and iminoether; lactones such as ⁇ -propiolactone, ⁇ -valerolactone and ⁇ -caprolactone; ethylene carbonate, propylene carbonate and the like.
  • indens such as inden and tetrahydroinden
  • cyclic ethers such as ethylene oxide, propylene oxide, oxetane and tetrahydrofuran
  • Cyclic carbonate Cyclic siloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane; and the like.
  • a monomer unit derived from at least one selected from the group consisting of conjugated diene, aromatic vinyl compound and (meth) acrylic acid ester is preferable, and derived from (meth) acrylic acid ester.
  • the monomer unit to be used is more preferable.
  • the polymer particles are preferably particles having a core-shell structure.
  • the above-mentioned polymer is used as the polymer constituting the polymer particles.
  • the polymer particles are produced by the method described in JP-A-2019-35043 or the like.
  • Examples of the inorganic particles (C-2) include silica such as colloidal silica, precipitated silica, gelled silica, and vapor phase silica; ceramics such as alumina, hydroxyapatite, zirconia, zinc oxide, and barium titanate; smectite, bentonite, and the like.
  • Minerals such as zeolite, talc, montmorillonite (including compounds); gypsum such as calcium sulfate; metal oxides such as calcium oxide and iron oxide; metal carbonates such as calcium carbonate and magnesium carbonate; Examples thereof include sand and gravel, and among them, colloidal silica, smectite and bentonite are preferable.
  • the average particle size of the strength-imparting agent (C) is preferably 0.001 to 100 ⁇ m.
  • the average particle size is more preferably 50 ⁇ m or less, further preferably 10 ⁇ m or less, particularly preferably 5 ⁇ m or less, and most preferably 1 ⁇ m or less.
  • the content of the strength-imparting agent (C) in the ink is preferably 0.1 to 50% by mass. If the content is less than 0.1% by mass, the effect of improving the gel strength may not be obtained.
  • the content is more preferably 0.5% by mass or more, further preferably 1.0% by mass or more, particularly preferably 2.0% by mass or more, and most preferably 3.0% by mass or more. On the other hand, if the content exceeds 50% by mass, gelation may be difficult.
  • the content is more preferably 40% by mass or less, further preferably 30% by mass or less, particularly preferably 20% by mass or less, and most preferably 10% by mass or less.
  • the ink usually contains water.
  • the content of water in the ink is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass or more.
  • the ink may contain a solvent other than water.
  • Other solvents include monoalcohols such as methanol, ethanol, propanol and isopropanol; and water-soluble solvents such as polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol and glycerin.
  • the content of the other solvent in the ink is preferably 10% by mass or less, and it is more preferable that the hydrogel does not substantially contain a solvent other than water from the viewpoint of safety and the environment.
  • the ink contains an initiator (B).
  • the initiator (B) include a photoinitiator, a heat initiator, a redox initiator and the like.
  • the amount of the initiator (B) added is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the modified vinyl alcohol polymer (A).
  • any one that initiates a radical reaction with light rays such as ultraviolet rays (UV) and visible light can be used without any particular problem.
  • UV ultraviolet rays
  • ⁇ -ketoglutaric acid 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one (trade name "Irgacure2959", BASF Japan).
  • Phenyl (2,4,6-trimethylbenzoyl) phosphinic acid lithium salt (trade name "L0290", manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2,2'-azobis [2-methyl-N- (2) -Hydroxyethyl) propionamide] (trade name "VA-086”, manufactured by Wako Pure Chemical Industries, Ltd.), eodin Y, and other photoinitiators with relatively high water solubility can be mentioned.
  • the ink may further contain a light absorber.
  • a light absorber By containing a light absorber, a modeled product having a more precise shape can be obtained when a hydrogel is modeled by a stereolithography method using a 3D printer or the like.
  • the light absorber is not particularly limited as long as it exhibits water solubility, but is "KEMISORB111" and “KEMISORB11S” manufactured by Chemipro Kasei Co., Ltd. and “Tinuvin 477-DW", “UVA805" and “Tinuvin 1130” manufactured by BASF Japan Ltd. And so on.
  • an azo-based initiator or a peroxide-based initiator which is generally used as a radical reaction initiator, can be used, but it does not generate gas and has more excellent transparency and gel strength.
  • a peroxide-based initiator is preferable from the viewpoint of obtaining a hydrogel having.
  • peroxide-based polymerization initiator examples include inorganic peroxides such as ammonium persulfate, potassium persulfate, and sodium persulfate.
  • the redox-based initiator a combination of the above-mentioned peroxide-based initiator and reducing agent is used, and the radical reaction (crosslinking reaction) is started by mixing the two.
  • the reducing agent a reducing agent having relatively high water solubility such as N, N, N', N'-tetramethylethylenediamine, sodium sulfite, sodium hydrogen sulfite, and sodium hydrosulfite is used.
  • the ink further contains a polymerization inhibitor (D).
  • the polymerization inhibitor (D) is not particularly limited, but a polymerization inhibitor (D) having a relatively high water solubility such as methquinone and hydroquinone is preferable, and methquinone is more preferable.
  • a polymerization inhibitor (D) to further enhance the viscosity stability of the ink, or when a hydrogel is formed by a stereolithography method using a 3D printer or the like, a modeled product having a precise shape. Can be obtained.
  • the amount of the polymerization inhibitor (D) added is usually 0.001 to 1 part by mass with respect to 100 parts by mass of the modified vinyl alcohol-based polymer (A).
  • the ink may contain a cross-linking agent.
  • cross-linking agents preferably exhibit water solubility, and are radically reactive, for example, N, N'-methylenebisacrylamide, ethylene glycol di (meth) acrylate, N, N'-diethylene glycol di (meth) acrylate. Examples thereof include compounds having two or more ethylenic double bonds.
  • the ink may contain additives such as dyes, preservatives and fungicides as long as the effects of the present invention are not impaired. These may be used alone or in combination of two or more.
  • the method for producing the ink is not particularly limited, but the method of adding other components to the aqueous solution obtained by dissolving the modified vinyl alcohol polymer (A) in water, the modified vinyl alcohol polymer (A) and the like. Examples thereof include a method of dissolving the modified vinyl alcohol-based polymer (A) after adding other components to water.
  • the ink of the present invention thus obtained has a low sulfur content, the odor is reduced and the change in viscosity is suppressed within a certain range, so that stable gel strength is exhibited. Further, since the ink of the present invention has excellent stimulus curability, a hydrogel can be obtained by a simple operation. Taking advantage of these characteristics, the hydrogel modeling ink of the present invention is used in a hydrogel modeling method using a conventional mold, and is also suitably used in applications such as 3D printers.
  • the above problem is a hydrogel containing a crosslinked product of polyvinyl alcohol (E), which has a sulfur content of 0.001 to 2000 ppm and a pH of 0.5, 5, 10 or 14 at 100 ° C. It is also solved by providing a hydrogel having an elution rate of 50% by mass or less when immersed in water for 1 hour. Such hydrogels have a low odor due to their low sulfur content. Therefore, the hydrogel is highly safe and has little impact on the environment. Moreover, the hydrogel has a low elution rate when immersed in water having a wide range of temperatures and pH, and has high resistance to temperature changes and pH changes, so that it is suitably used for various purposes.
  • E polyvinyl alcohol
  • the content and viscosity average degree of polymerization of the vinyl alcohol unit with respect to all the constituent units in the polyvinyl alcohol (E) are the same as those of the modified vinyl alcohol-based polymer (A) described above.
  • the vinyl alcohol unit of polyvinyl alcohol (E) can be derived from the vinyl ester unit by hydrolysis, alcohol decomposition, or the like. Therefore, the vinyl ester unit may remain in the polyvinyl alcohol (E) depending on the conditions for converting the vinyl ester unit to the vinyl alcohol unit. Examples of such a vinyl ester unit include those similar to the above-mentioned modified vinyl alcohol-based polymer (A).
  • the polyvinyl alcohol (E) contains a crosslinkable group from the viewpoint of improving the resistance to temperature change and pH change and the re-swelling property of the obtained hydrogel.
  • a crosslinkable group a (meth) acryloyloxy group, a (meth) acryloylamino group, an allyl group, a vinyl ether group, a vinyl ester group, a vinylphenyl group, a vinylidene group, a vinylene group and these can be expected to react highly efficiently even in water.
  • the polyvinyl alcohol (E) contains a vinyl alcohol unit, a vinyl ester unit, and a monomer unit other than a monomer having a crosslinkable group or a derivative thereof. You may. Examples of such other monomer units include those described above as other monomer units other than the vinyl alcohol unit and the vinyl ester unit that may be contained in the modified vinyl alcohol-based polymer (A). ..
  • the content of other monomer units in the polyvinyl alcohol (E) with respect to all the constituent units is usually 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
  • the ratio of the vinyl ester units present in three or more chains to the total vinyl ester units in the polyvinyl alcohol (E) is 20 mol% or less.
  • the ratio is more preferably 18 mol% or less, further preferably 16 mol% or less, and particularly preferably 15 mol% or less.
  • the proportion of vinyl ester units present in three or more chains is usually 0.1 mol% or more.
  • polyvinyl alcohol (E) having a crosslinkable group a method of reacting polyvinyl alcohol with a compound having a crosslinkable group or a derivative thereof, or a monomer having a crosslinkable group or a derivative thereof is vinyl. Examples thereof include a method of cross-linking with an ester and then cross-linking.
  • the above-mentioned modified vinyl alcohol-based polymer (A) is more preferable. That is, it is preferable that the hydrogel contains a crosslinked product of the ink of the present invention containing the modified vinyl alcohol polymer (A) and the initiator (B) described above.
  • the content of the crosslinkable group with respect to all the structural units in the polyvinyl alcohol (E) is the same as the content of the vinyl ester unit represented by the above formula (1) in the above-mentioned modified vinyl alcohol-based polymer (A). Is preferable.
  • the content of polyvinyl alcohol (E) in the hydrogel of the present invention is preferably 1 to 70% by mass. If the content is less than 1% by mass, the gel strength may be insufficient.
  • the content is more preferably 3% by mass or more, further preferably 5% by mass or more, particularly preferably 7% by mass or more, and most preferably 8% by mass or more.
  • the content exceeds 70% by mass, the viscosity of the obtained aqueous solution may become too high, making it difficult to handle.
  • the content is more preferably 50% by mass or less, further preferably 40% by mass or less, particularly preferably 30% by mass or less, and most preferably 20% by mass or less.
  • the hydrogel further contains the strength-imparting agent (C).
  • the strength-imparting agent (C) those described above are used as those contained in the ink of the present invention.
  • the content of the strength-imparting agent (C) in the hydrogel is preferably 0.1 to 50% by mass. If the content is less than 0.1% by mass, the effect of improving the gel strength may not be obtained.
  • the content is more preferably 0.5% by mass or more, further preferably 1.0% by mass or more, particularly preferably 2.0% by mass or more, and most preferably 3.0% by mass or more. On the other hand, if the content exceeds 50% by mass, gelation may be difficult.
  • the content is more preferably 40% by mass or less, further preferably 30% by mass or less, particularly preferably 20% by mass or less, and most preferably 10% by mass or less.
  • the method for producing the hydrogel is not particularly limited, but after obtaining an aqueous solution containing polyvinyl alcohol (E), a strength-imparting agent (C) if necessary, and other additives, the polyvinyl alcohol in the aqueous solution ( The method of cross-linking E) is preferable.
  • the content of water in the hydrogel is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass or more.
  • the hydrogel may contain a solvent other than water.
  • Other solvents include monoalcohols such as methanol, ethanol, propanol and isopropanol; and water-soluble solvents such as polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol and glycerin.
  • the content of the other solvent in the hydrogel is preferably 10% by mass or less, and it is more preferable that the hydrogel does not substantially contain a solvent other than water from the viewpoint of safety and the environment.
  • the method for producing the aqueous solution is not particularly limited, but a method of adding other components to the aqueous solution obtained by dissolving polyvinyl alcohol (E) in water, polyvinyl alcohol (E) and other components are added to water. After that, a method of dissolving the polyvinyl alcohol (E) and the like can be mentioned.
  • the aqueous solution contains the initiator (B).
  • the initiator (B) the above-mentioned one contained in the ink of the present invention is used.
  • the amount of the initiator (B) added is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of polyvinyl alcohol (E).
  • the ink of the present invention described above is preferably used as an aqueous solution containing polyvinyl alcohol (E) having a crosslinkable group and an initiator (B) used in the production of the hydrogel.
  • the aqueous solution contains the initiator (B), it is preferable that the aqueous solution further contains the polymerization inhibitor (D).
  • the polymerization inhibitor is not particularly limited, but those described above are preferable as those contained in the ink of the present invention.
  • the aqueous solution contains a polymerization inhibitor (D) to enhance the storage stability of the solution, or when a hydrogel is formed by a stereolithography method using a 3D printer or the like, a modeled product having a precise shape can be obtained. Obtainable.
  • the amount of the polymerization inhibitor (D) added is usually 0.001 to 1 part by mass with respect to 100 parts by mass of polyvinyl alcohol (E).
  • the aqueous solution may contain a cross-linking agent.
  • a cross-linking agent examples include those described above as those contained in the ink of the present invention.
  • the aqueous solution may contain additives such as pigments, preservatives and fungicides as long as the effects of the present invention are not impaired. These may be used alone or in combination of two or more.
  • a hydrogel can be obtained by cross-linking the polyvinyl alcohol (E) in the aqueous solution.
  • the method at this time is not particularly limited, but an aqueous solution containing polyvinyl alcohol (E) having a crosslinkable group, an initiator (B), and if necessary, other additives, preferably the above-mentioned ink of the present invention.
  • a method of irradiating or heating with active energy rays is preferable.
  • the active energy beam is not particularly limited as long as it can cleave the photoinitiator to generate a radical, and is a ray of far ultraviolet rays, ultraviolet rays (UV), near ultraviolet rays, visible rays, infrared rays, X-rays, etc.
  • Examples thereof include electromagnetic waves such as ⁇ -rays, electron beams (EB), proton beams ( ⁇ rays), and particle beams such as neutron rays.
  • ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable, from the viewpoints of starting efficiency, availability of an irradiation device, price, and the like.
  • the hydrogel molding method includes (a) a method of pouring the aqueous solution into a predetermined mold and the like, and then cross-linking polyvinyl alcohol (E), and (b) molding the hydrogel using a 3D printer.
  • the method and the like can be mentioned.
  • the modeling ink an aqueous solution containing polyvinyl alcohol (E) having a crosslinkable group, an initiator (B), and if necessary, other additives, preferably the ink of the present invention described above is used.
  • the 3D printer method include a material extrusion deposition method, an inkjet method, and a stereolithography method.
  • the material extrusion deposition method the hydrogel is deposited by repeating a step of ejecting the ink to a desired position using a syringe or the like and a step of irradiating the ejected ink with active energy rays. A model is obtained.
  • a modeled product is obtained by performing a step of ejecting the ink from the inkjet head to a desired position and a step of irradiating the ejected ink with active energy rays.
  • a step of irradiating a desired portion of the liquid surface of the ink filled in a container with active energy rays to gel the portion, and a step of immersing the gelled portion in the ink are used.
  • a modeled product is obtained by repeating the step of covering the upper surface with the ink and depositing the hydrogel.
  • the hydrogel thus obtained can be used as it is, but it may also be used after being immersed in a solvent such as water to bring it into an equilibrium swelling state.
  • the elution rate when the hydrogel is immersed in water at 100 ° C. having a pH of 0.5, 5, 10 or 14 for 1 hour is required to be 50% by mass or less.
  • Hydrogels that satisfy such conditions have high resistance to a wide range of temperatures and pH, and are therefore suitably used in various applications.
  • Water having a pH of 0.5 or 5 is obtained by adding sulfuric acid to water to adjust the pH to a predetermined value
  • water having a pH of 10 or 14 is obtained by adding sodium hydroxide to water. Is obtained by adjusting to a predetermined value.
  • the test piece of the hydrogel After heating each water whose pH has been adjusted to a predetermined value to 100 ° C., the test piece of the hydrogel is immersed in the water for 1 hour, and the elution rate is obtained from the mass (dry mass) of the hydrogel before and after the immersion. Specifically, the method described in the examples is adopted.
  • the sulfur content in the hydrogel of the present invention needs to be 0.001 to 2000 ppm. When the sulfur content is below a certain level in this way, the odor of the obtained hydrogel is reduced. Therefore, the hydrogel of the present invention is not only highly safe but also environmentally friendly.
  • the sulfur content is preferably 1500 ppm or less, more preferably 1000 ppm or less, further preferably 500 ppm or less, particularly preferably 300 ppm or less, and most preferably 200 ppm or less.
  • the sulfur content is less than 0.001 ppm, it may be difficult to industrially produce polyvinyl alcohol (A).
  • the sulfur content is more preferably 0.01 ppm or more, further preferably 0.1 ppm or more, still more preferably 1 ppm or more.
  • the initial moisture content W1 (mass%) of the hydrogel of the present invention and the hydrogel were vacuum-dried at 40 ° C. for 8 hours, further vacuum-dried at 120 ° C. for 1 hour, and then immersed in water at 40 ° C. for 48 hours. It is preferable that the water content W2 (mass%) of the above satisfies the following formula (I). Since such a hydrogel has excellent re-swelling property, it is suitably used in applications such as a water blocking material in which drying and swelling are repeatedly performed.
  • the initial water content W1 and the water content W2 of the hydrogel after re-swelling are determined by the methods described in the examples.
  • the ratio (W1 / W2) of the initial water content W1 to the water content W2 after re-swelling is more preferably 1 or more.
  • the ratio (W1 / W2) is more preferably 1.35 or less. 0.8 ⁇ (W1 / W2) ⁇ 1.4 (I)
  • the hydrogel of the present invention has high resistance to a wide range of temperatures and pH.
  • the hydrogel has a sulfur content of a certain level or less and has a low odor, so that it is highly safe and environmentally friendly.
  • the hydrogel has high gel strength. Therefore, the hydrogel is suitably used in various applications.
  • Soundproofing material, ground improving material, water blocking material or antifouling paint are preferred embodiments of the present invention, and the ink of the present invention is suitably used for their production.
  • ⁇ 7 / ⁇ 0 is less than 1.7
  • B ⁇ 7 / ⁇ 0 is 1.7 or more and less than 1.9
  • C ⁇ 7 / ⁇ 0 is 1.9 or more and less than 2.1
  • D ⁇ 7 / ⁇ 0 is 2.1 or more
  • the hydrogels obtained in Examples or Comparative Examples were vacuum dried at 40 ° C. for 8 hours and then vacuum dried at 120 ° C. for 1 hour.
  • the obtained dried product was immersed in water at 40 ° C. for 48 hours to re-swell, and then the mass (W7) of the obtained re-swelling hydrogel was measured.
  • the mass (W8) was measured, and the water content W2 (mass%) after the re-swelling was calculated according to the following formula.
  • Moisture content after re-swelling W2 (mass%) (W7-W8) / W7 ⁇ 100
  • the ratio of the initial water content W1 to the water content W2 after re-swelling (W1 / W2) was used as an index of re-swelling property.
  • the ratio (W1 / W2) is larger than 1, the re-swelling property is low, and once dried, it is difficult to restore the original gel.
  • the ratio (W1 / W2) is smaller than 1, the re-swelling property is excessive and the gel swells more than the original gel. Indicates that it becomes a gel.
  • the modified vinyl alcohol polymer is cooled to room temperature, the contents are filtered to recover the modified vinyl alcohol polymer, washed with a large amount of methanol, and then dried at 40 ° C. and 1.3 Pa for 20 hours to obtain the modified vinyl alcohol polymer ". PVOH-1 ”was obtained.
  • the structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
  • the olefin proton peak derived from the unsaturated hydrocarbon group and the methine proton peak of the vinyl ester group overlapped, so that they existed in three or more chains.
  • the ratio of vinyl ester groups to be produced could not be calculated. Therefore, after dissolving the modified vinyl alcohol-based polymer particles in water (content of the modified vinyl alcohol-based polymer is 5% by mass), 1 mol of propanethiol was added to 1 mol of the olefin, and further, light was added.
  • the initiator 2-hydroxy-4'-(2-hydroxyethoxy) -2-methylpropiophenone was added in an amount of 1 mol per 1 mol of propanethiol.
  • the solution thus prepared was irradiated with ultraviolet rays at an intensity of 3000 mJ / cm 2.
  • the particles were analyzed by 1 H-NMR.
  • the olefin proton peak disappeared due to the addition of thiol, resulting in three or more chains.
  • the proportion of vinyl ester groups present could be calculated.
  • the obtained aqueous solution was poured into a large amount of methanol with stirring to precipitate a modified vinyl alcohol-based polymer.
  • the washing operation of immersing in methanol for 1 hour and filtering is repeated 3 times, and the recovered solid is dried at 40 ° C. and 1.3 Pa for 12 hours to modify vinyl.
  • An alcohol-based polymer "PVOH-8" was obtained.
  • the structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
  • Examples 1 to 10 BASF Japan's "Irgacure2959", which is a water-soluble photopolymerization initiator as an initiator (B), and a strength-imparting agent (C) (Examples 7 to 10) in an aqueous solution in which a modified vinyl alcohol-based polymer (A) is dissolved.
  • Hydrogel modeling ink in which particles of the strength-imparting agent (C) are dispersed in an aqueous solution in which methquinone is mixed as a polymerization inhibitor (D) (Example 10) and a modified vinyl alcohol-based polymer (A) is dissolved.
  • Got Table 2 shows the composition of the ink and the evaluation results.
  • the composition of the ink and the hydrogel obtained by using the ink was substantially the same.
  • the viscosity stability and the stimulus curability were not evaluated.
  • the following compounds were used as the strength-imparting agent (C).
  • Acrylic particles Particles according to Synthesis Example 9
  • Synthetic smectite "Smecton SA” manufactured by Kunimine Kogyo Co., Ltd., average particle diameter 43 ⁇ m
  • Colloidal silica Colloidal silica "Snowtex C” manufactured by Nissan Chemical Industries, Ltd., average particle size 0.012 ⁇ m
  • the obtained ink is poured between glass plates sandwiching a 2 mm thick spacer, and irradiated with ultraviolet rays at 145 mW / cm 2 for 30 seconds (irradiation energy amount: 1200 mJ / cm 2) using a metal halide lamp manufactured by GS Yuasa. , Hydrogel (sheet with a thickness of 2 mm) was obtained, and then evaluated as described above.
  • the composition of the hydrogel and the evaluation results are shown in Table 2.
  • This aqueous solution was poured between glass plates sandwiching a spacer having a thickness of 2 mm, and allowed to stand at room temperature for 2 days to obtain a hydrogel, which was then evaluated as described above.
  • Table 2 shows the composition of the ink and the evaluation results.
  • the ink of the present invention containing a modified vinyl alcohol-based polymer containing a vinyl ester unit represented by the above formula (1) and having a sulfur content of 2000 ppm or less has good viscosity stability and is irritating. The curability was also good (Examples 1, 3 to 10). Further, the hydrogels obtained by using these inks had less odor and high gel strength (Examples 1 to 10). In particular, the hydrogels (Examples 7 to 10) containing the strength-imparting agent (C) had extremely high breaking stress and breaking strain, and had extremely excellent physical properties (gel strength) as a hydrogel.
  • the hydrogel of the present invention has a low elution rate with respect to water (100 ° C.) of any pH, has high resistance to a wide range of temperatures and pH, has little odor, and is excellent in reswelling property. (Examples 1 to 5, 7 to 9).

Abstract

An ink for hydrogel shaping, the ink including a modified vinyl alcohol polymer (A) including vinyl ester units represented by formula (1), and an initiator (B), the sulfur content in the ink being 0.001-2000 ppm. This ink has low odor due to the sulfur content thereof being a fixed value or less, and because variation in viscosity of the ink is kept within a fixed range, stable gel strength is realized. The ink also has "stimulation curing properties" whereby the ink rapidly gels in a single step in response to stimulation such as active energy rays or heat, and it is therefore possible to obtain a hydrogel by a simple operation. [In formula (1), X represents a carbon-carbon bond or a divalent saturated hydrocarbon group which may have a C1-10 branched structure, Y represents a hydrogen atom or a saturated hydrocarbon group which may have a C1-6 branched structure, and Z represents a hydrogen atom or a methyl group.]

Description

ハイドロゲル造形用インク及びそれを用いたハイドロゲルHydrogel modeling ink and hydrogel using it
 本発明は、ハイドロゲルを造形するために用いられるインク及びポリビニルアルコールの架橋物を含有するハイドロゲルに関する。 The present invention relates to a hydrogel containing a crosslinked product of ink and polyvinyl alcohol used for modeling a hydrogel.
 ハイドロゲル(以下、ゲルと略称することがある)は架橋された親水性高分子と水から
なる材料であり、従来から生活、医療、食品、土木など多岐の用途、具体的には、高吸水性樹脂(Super Absorbent Polymer(SAP))、コンタクトレンズ、臓器モデル、ドラッグデリバリー基材、金属イオン等の吸着担体、酵素固定化担体、アフィニティー担体、細胞や微生物のカプセル化に用いるカプセル用担体、排水処理用担体、血管塞栓材、衝撃吸収材料、制振材料、防音材料、地盤改良材、止水材、防汚塗料などに利用されている。中でも、ポリビニルアルコールは親水性、反応性、生分解性、生体適合性、低毒性等に優れた水溶性合成高分子であり、それを水溶液の状態で架橋させて得られるハイドロゲルは、柔軟性及びゲル強度が高いことが知られている(特許文献1)。
Hydrogel (hereinafter sometimes abbreviated as gel) is a material composed of crosslinked hydrophilic polymer and water, and has been used for various purposes such as daily life, medical care, food, civil engineering, specifically, high water absorption. Super Absorbent Polymer (SAP), contact lenses, organ models, drug delivery substrates, adsorption carriers for metal ions, enzyme-immobilized carriers, affinity carriers, capsule carriers used for encapsulation of cells and microorganisms, wastewater It is used for treatment carriers, vascular embolizing materials, shock absorbing materials, vibration damping materials, soundproofing materials, ground improvement materials, water blocking materials, antifouling paints, etc. Among them, polyvinyl alcohol is a water-soluble synthetic polymer having excellent hydrophilicity, reactivity, biodegradability, biocompatibility, low toxicity, etc., and a hydrogel obtained by cross-linking it in an aqueous solution is flexible. And it is known that the gel strength is high (Patent Document 1).
 従来、ポリビニルアルコールを架橋してハイドロゲルを得る方法として、(1)ポリビニルアルコール水溶液の凍結と融解を繰り返し行うことによってポリビニルアルコールを物理架橋させる方法(特許文献1)や、(2)グルタルアルデヒドに代表されるアルデヒド化合物や、ホウ酸などを架橋剤に用いた化学架橋法が知られている。しかしながら、これらの方法で得られたポリビニルアルコール系ハイドロゲルは、温度変化やpH変化等の外部環境の変化の影響によって、物理架橋点が消失したり、アセタール結合やホウ酸エステル結合が加水分解したりすることにより架橋が切断されてハイドロゲルが崩壊するため、使用環境が制限される問題があった。さらに、上記(1)の方法はポリビニルアルコール水溶液の凍結と融解を繰り返す必要があり、生産性の面で問題を抱えていた。 Conventionally, as a method of cross-linking polyvinyl alcohol to obtain a hydrogel, (1) a method of physically cross-linking polyvinyl alcohol by repeatedly freezing and thawing an aqueous solution of polyvinyl alcohol (Patent Document 1) and (2) glutaraldehyde. A chemical cross-linking method using a typified aldehyde compound or boric acid as a cross-linking agent is known. However, in the polyvinyl alcohol-based hydrogels obtained by these methods, the physical cross-linking points disappear or the acetal bonds and borate ester bonds are hydrolyzed due to the influence of changes in the external environment such as temperature changes and pH changes. There is a problem that the usage environment is limited because the crosslinks are cut and the hydrogel is disintegrated due to the reaction. Further, the method (1) above requires repeated freezing and thawing of the polyvinyl alcohol aqueous solution, which poses a problem in terms of productivity.
 一方、近年、3Dプリンターに代表されるAdditive Manufacturingと言われる材料の造形手法の開発が活発になっており、これらに適応した材料が求められている。特に3Dプリンターにゲルを応用するためには、使用されるインクが活性エネルギー線などの刺激により一段階で素早くゲル化するといった「刺激硬化性」を有することが求められる。さらに医療分野では、患者の患部で刺激硬化性のインクをゲル化させることにより治療する方法(特許文献2)の実用化や、3Dプリンターを用いて作製されたハイドロゲルの造形品の手術練習等に用いる臓器モデルや再生医療用の精密スキャホールド(非特許文献1)などへの応用が期待されている。 On the other hand, in recent years, the development of a material modeling method called Adaptive Manufacturing represented by a 3D printer has become active, and a material suitable for these has been sought. In particular, in order to apply gel to a 3D printer, it is required that the ink used has "stimulation curability" such that it quickly gels in one step by stimulation with active energy rays or the like. Furthermore, in the medical field, practical application of a method of treating an affected area of a patient by gelling stimulating curable ink (Patent Document 2), surgical practice of a hydrogel model produced using a 3D printer, etc. It is expected to be applied to organ models used in surgery and precision scaffolds for regenerative medicine (Non-Patent Document 1).
 こうした課題に対し、特許文献3には、所定の架橋性基を有する変性ビニルアルコール系重合体を含むインクを用いて得られたハイドロゲルが記載されている。前記変性ビニルアルコール系重合体は刺激硬化性に優れるため、上述のような複雑な操作を経ることなく、簡便に高強度のハイドロゲルを得ることができる。 To address these issues, Patent Document 3 describes a hydrogel obtained by using an ink containing a modified vinyl alcohol-based polymer having a predetermined crosslinkable group. Since the modified vinyl alcohol-based polymer is excellent in stimulus curability, a high-strength hydrogel can be easily obtained without going through the above-mentioned complicated operations.
特開2010-204131号公報JP-A-2010-204131 特表2008-510021号公報Japanese Patent Application Laid-Open No. 2008-50021 特開2019-35043号公報Japanese Unexamined Patent Publication No. 2019-35043
 しかしながら、本発明者らの検討の結果、特許文献3に記載された変性ビニルアルコール系重合体の架橋物を含有するハイドロゲルは、ゲル化させる前のインクの状態によってゲル強度が変化したり、部分的にゲル化不良を起こしたりする場合があることを発見した。また、残留成分に起因する臭気が経時的に生じ、作業者の安全面や環境への悪影響が懸念されるという課題があることも明らかになった。低臭気であり、かつ温度変化やpH変化に対する耐性の高いハイドロゲルはこれまで見出されていなかった。 However, as a result of the studies by the present inventors, the hydrogel containing the crosslinked product of the modified vinyl alcohol-based polymer described in Patent Document 3 has a gel strength that changes depending on the state of the ink before gelation. It was discovered that it may partially cause poor gelation. In addition, it has become clear that there is a problem that odors caused by residual components are generated over time, and there is a concern about adverse effects on the safety of workers and the environment. No hydrogel has been found so far that has a low odor and is highly resistant to changes in temperature and pH.
 本発明は上記課題を解決するためになされたものであり、ハイドロゲルを簡便な操作で得られるとともに、低臭気でありかつ高いゲル強度を安定して発現することができる、ハイドロゲル造形用インクを提供することを目的とする。また、広範な温度及びpHにおいて使用可能な高い耐性を有し、かつ低臭気であるポリビニルアルコールの架橋物を含有するハイドロゲルを提供することを目的とする。 The present invention has been made to solve the above problems, and is an ink for hydrogel molding capable of obtaining a hydrogel by a simple operation, having a low odor, and stably exhibiting a high gel strength. The purpose is to provide. Another object of the present invention is to provide a hydrogel containing a crosslinked product of polyvinyl alcohol having high resistance and low odor that can be used in a wide range of temperatures and pH.
 本発明者らは、上記課題を解決するために鋭意検討した結果、臭気の原因がポリビニルアルコールを変性させる際に使用される溶媒に含まれる硫黄分であることを見出した。さらに、硫黄分の含有量を低減させることにより、インクの臭気が低減されるだけでなく、インクの粘度変化を低く抑えることが出来るため、高いゲル強度が安定して発現すること及び下記のハイドロゲルが、広範な温度及びpHにおいて高い耐性を有することを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have found that the cause of the odor is the sulfur content in the solvent used when modifying polyvinyl alcohol. Furthermore, by reducing the sulfur content, not only the odor of the ink is reduced, but also the change in the viscosity of the ink can be suppressed to a low level, so that high gel strength is stably exhibited and the following hydro They have found that gels are highly resistant to a wide range of temperatures and pH, completing the invention.
 すなわち、上記課題は、下記式(1)で示されるビニルエステル単位を含む変性ビニルアルコール系重合体(A)及び開始剤(B)を含み、硫黄分の含有量が0.001~2000ppmである、ハイドロゲル造形用インクを提供することによって解決される。 That is, the above-mentioned problem includes a modified vinyl alcohol-based polymer (A) containing a vinyl ester unit represented by the following formula (1) and an initiator (B), and has a sulfur content of 0.001 to 2000 ppm. , The solution is to provide an ink for hydrogel modeling.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式(1)中、Xは炭素-炭素結合または炭素数1~10の分岐構造を有していてもよい2価の飽和炭化水素基を表し、Yは水素原子または炭素数1~6の分岐構造を有していてもよい飽和炭化水素基を表し、Zは水素原子またはメチル基を表す。] [In the formula (1), X represents a divalent saturated hydrocarbon group which may have a carbon-carbon bond or a branched structure having 1 to 10 carbon atoms, and Y represents a hydrogen atom or a branched structure having 1 to 6 carbon atoms. It represents a saturated hydrocarbon group which may have a branched structure, and Z represents a hydrogen atom or a methyl group. ]
 変性ビニルアルコール系重合体(A)における、全構成単位に対するビニルアルコール単位の含有量が60~99.99モル%であることが好ましい。変性ビニルアルコール系重合体(A)における、全ビニルエステル単位に対する、三連鎖以上で存在するビニルエステル単位の割合が20モル%以下であることも好ましい。変性ビニルアルコール系重合体(A)における、全構成単位に対する前記式(1)で示されるビニルエステル単位の含有量が0.01~10モル%であることも好ましい。 The content of the vinyl alcohol unit in the modified vinyl alcohol-based polymer (A) with respect to all the constituent units is preferably 60 to 99.99 mol%. It is also preferable that the ratio of the vinyl ester units present in three or more chains to the total vinyl ester units in the modified vinyl alcohol polymer (A) is 20 mol% or less. It is also preferable that the content of the vinyl ester unit represented by the formula (1) in the modified vinyl alcohol-based polymer (A) with respect to all the constituent units is 0.01 to 10 mol%.
 式(1)中、Yが水素原子であることが好ましい。Xが炭素-炭素結合であることも好ましい。 In formula (1), it is preferable that Y is a hydrogen atom. It is also preferable that X is a carbon-carbon bond.
 前記インクがさらに強度付与剤(C)を含むことが好ましい。強度付与剤(C)が無機粒子であることが好ましい。 It is preferable that the ink further contains the strength-imparting agent (C). The strength-imparting agent (C) is preferably inorganic particles.
 前記インクがさらに重合禁止剤(D)を含むことも好ましい。 It is also preferable that the ink further contains a polymerization inhibitor (D).
 前記インクが3Dプリンター用インクであることも好ましい。前記インクが臓器モデル、コンタクトレンズ、ドラッグデリバリー基材、吸着担体、酵素固定化担体、アフィニティー担体、カプセル用担体、排水処理用担体、血管塞栓材、衝撃吸収材、制振材、防音材、地盤改良材、止水材又は防汚塗料の製造に用いられることも好ましい。 It is also preferable that the ink is an ink for a 3D printer. The ink is an organ model, contact lens, drug delivery base material, adsorption carrier, enzyme-immobilized carrier, affinity carrier, capsule carrier, wastewater treatment carrier, vascular embolic material, shock absorber, vibration damping material, soundproofing material, ground. It is also preferably used in the production of improved materials, water blocking materials or antifouling paints.
 上記課題は、前記ハイドロゲル造形用インクの架橋物を含むハイドロゲルであって、pHが0.5、5、10又は14である100℃の水に1時間浸漬した際の溶出率がいずれも50質量%以下である、ハイドロゲルを提供することによっても解決される。 The above-mentioned problem is a hydrogel containing a crosslinked product of the hydrogel molding ink, and all of them have an elution rate when immersed in water at 100 ° C. having a pH of 0.5, 5, 10 or 14 for 1 hour. It is also solved by providing a hydrogel which is 50% by weight or less.
 このとき、前記ハイドロゲルの初期含水率W1(質量%)及び前記ハイドロゲルを40℃で8時間真空乾燥し、さらに120℃で1時間真空乾燥してから、40℃の水に48時間浸漬した後の含水率W2(質量%)が下記式(I)を満足することが好ましい。
 0.8<(W1/W2)<1.4  (I)
At this time, the initial moisture content W1 (mass%) of the hydrogel and the hydrogel were vacuum-dried at 40 ° C. for 8 hours, further vacuum-dried at 120 ° C. for 1 hour, and then immersed in water at 40 ° C. for 48 hours. It is preferable that the subsequent water content W2 (mass%) satisfies the following formula (I).
0.8 <(W1 / W2) <1.4 (I)
 前記ハイドロゲルが、さらに強度付与剤(C)を含むことが好ましい。 It is preferable that the hydrogel further contains the strength-imparting agent (C).
 前記ハイドロゲルで構成される、臓器モデル、コンタクトレンズ、ドラッグデリバリー基材、吸着担体、酵素固定化担体、アフィニティー担体、カプセル用担体、排水処理用担体、血管塞栓材、衝撃吸収材、制振材、防音材、地盤改良材、止水材又は防汚塗料が本発明の好適な実施態様である。 Organ model, contact lens, drug delivery base material, adsorption carrier, enzyme-immobilized carrier, affinity carrier, capsule carrier, wastewater treatment carrier, vascular embolizing material, shock absorber, vibration damping material composed of the hydrogel. , Soundproofing material, ground improving material, water blocking material or antifouling paint are preferred embodiments of the present invention.
 所定のビニルエステル単位を含む変性ビニルアルコール系重合体を含有する本発明のハイドロゲル造形用インクは、硫黄分の含有量が一定以下であるため、低臭気であるうえに、粘度変化が一定の範囲に抑えられるため、安定したゲル強度が発現される。また、本発明のインクは、活性エネルギー線や熱などの刺激により一段階で素早くゲル化するといった「刺激硬化性」を有するため、ハイドロゲルを簡便な操作で得られる。これらの特性を生かし、本発明のハイドロゲル造形用インクは、3Dプリンター用のインクとして好適に用いられる。また、本発明のハイドロゲルは、広範な温度及びpHにおいて高い耐性を有し、かつ低臭気であるため、医療用臓器モデル等として好適に用いられる。 The hydrogel molding ink of the present invention containing a modified vinyl alcohol-based polymer containing a predetermined vinyl ester unit has a sulfur content of a certain level or less, and therefore has a low odor and a constant viscosity change. Since it is suppressed within the range, stable gel strength is developed. Further, since the ink of the present invention has "stimulation curability" such that it quickly gels in one step by a stimulus such as active energy rays or heat, a hydrogel can be obtained by a simple operation. Taking advantage of these characteristics, the hydrogel modeling ink of the present invention is suitably used as an ink for a 3D printer. Further, since the hydrogel of the present invention has high resistance to a wide range of temperatures and pH and has a low odor, it is suitably used as a medical organ model or the like.
 本発明のハイドロゲル造形用インクは、下記式(1)で示されるビニルエステル単位を含む変性ビニルアルコール系重合体(A)及び開始剤(B)を含み、硫黄分の含有量が0.001~2000ppmであるものである。 The hydrogel molding ink of the present invention contains a modified vinyl alcohol-based polymer (A) containing a vinyl ester unit represented by the following formula (1) and an initiator (B), and has a sulfur content of 0.001. It is ~ 2000 ppm.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(1)中、Xは炭素-炭素結合または炭素数1~10の分岐構造を有していてもよい2価の飽和炭化水素基を表し、Yは水素原子または炭素数1~6の分岐構造を有していてもよい飽和炭化水素基を表し、Zは水素原子またはメチル基を表す。] [In the formula (1), X represents a divalent saturated hydrocarbon group which may have a carbon-carbon bond or a branched structure having 1 to 10 carbon atoms, and Y represents a hydrogen atom or a branched structure having 1 to 6 carbon atoms. It represents a saturated hydrocarbon group which may have a branched structure, and Z represents a hydrogen atom or a methyl group. ]
 当該インクは、硫黄分の含有量が一定以下であるため、低臭気であるうえに、粘度変化が一定以下に抑えられることにより安定したゲル強度が発現される。また、活性エネルギー線や熱等の刺激により一段階で素早く変性ビニルアルコール系重合体(A)が架橋してハイドロゲルが得られる。このように当該インクは刺激硬化性を有するため、簡便な操作でハイドロゲルが得られる。これらの特性を生かし、本発明のハイドロゲル造形用インクは、3Dプリンター用のインク等として好適に用いられる。そして、得られる造形品は医療用臓器モデル等として好適に用いられる。 Since the sulfur content of the ink is below a certain level, it has a low odor and the change in viscosity is suppressed below a certain level, so that stable gel strength is exhibited. Further, the modified vinyl alcohol polymer (A) is quickly crosslinked in one step by stimulation with active energy rays or heat to obtain a hydrogel. Since the ink has stimulus curability as described above, a hydrogel can be obtained by a simple operation. Taking advantage of these characteristics, the hydrogel modeling ink of the present invention is suitably used as an ink for a 3D printer or the like. Then, the obtained modeled product is suitably used as a medical organ model or the like.
 本発明のインクは、式(1)で示されるビニルエステル単位を含む変性ビニルアルコール系重合体(A)を含有することにより、刺激硬化性を有するため、ハイドロゲルを簡便な操作で得られる。 Since the ink of the present invention has a stimulating curability by containing the modified vinyl alcohol polymer (A) containing the vinyl ester unit represented by the formula (1), a hydrogel can be obtained by a simple operation.
 式(1)中のXは、炭素-炭素結合または炭素数1~10の分岐構造を有していてもよい2価の飽和炭化水素基を表す。刺激硬化性がさらに向上する点から、Xが炭素-炭素結合であることが好ましい。 X in the formula (1) represents a divalent saturated hydrocarbon group which may have a carbon-carbon bond or a branched structure having 1 to 10 carbon atoms. It is preferable that X is a carbon-carbon bond from the viewpoint of further improving the stimulus curability.
 Xとして用いられる飽和炭化水素基の炭素数は1~10である。当該炭素数が10を超える場合、水溶性が悪化する。当該炭素数は5以下が好ましく、3以下がより好ましく、2以下がさらに好ましい。 The saturated hydrocarbon group used as X has 1 to 10 carbon atoms. When the number of carbon atoms exceeds 10, the water solubility deteriorates. The carbon number is preferably 5 or less, more preferably 3 or less, and even more preferably 2 or less.
 Xとして用いられる2価の飽和炭化水素基としては、アルキレン基、シクロアルキレン基等が挙げられる。アルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基等が挙げられる。シクロアルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基等が挙げられる。Xとして用いられるアルキレン基及びシクロアルキレン基が、メチル基、エチル基等のアルキル基を分岐構造として有していてもよい。 Examples of the divalent saturated hydrocarbon group used as X include an alkylene group and a cycloalkylene group. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group and a decylene group. Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group and the like. The alkylene group and the cycloalkylene group used as X may have an alkyl group such as a methyl group or an ethyl group as a branched structure.
 式(1)中のYは水素原子または炭素数1~6の分岐構造を有していてもよい飽和炭化水素基を表す。Yが水素原子であることが好ましい。 Y in the formula (1) represents a hydrogen atom or a saturated hydrocarbon group which may have a branched structure having 1 to 6 carbon atoms. It is preferable that Y is a hydrogen atom.
 Yとして用いられる飽和炭化水素基の炭素数は1~6である。当該炭素数が6を超える場合、水溶性が悪化するおそれがある。当該炭素数は5以下が好ましく、3以下がより好ましく、2以下がさらに好ましい。 The saturated hydrocarbon group used as Y has 1 to 6 carbon atoms. If the number of carbon atoms exceeds 6, the water solubility may deteriorate. The carbon number is preferably 5 or less, more preferably 3 or less, and even more preferably 2 or less.
 Yとして用いられる飽和炭化水素基としては、アルキル基、シクロアルキル基等が挙げられる。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基及びネオペンチル基、ヘキシル基等が挙げられる。シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。Yとして用いられるアルキル基及びシクロアルキル基が、メチル基、エチル基等のアルキル基を分岐構造として有していてもよい。 Examples of the saturated hydrocarbon group used as Y include an alkyl group and a cycloalkyl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, and a hexyl group. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like. The alkyl group and cycloalkyl group used as Y may have an alkyl group such as a methyl group or an ethyl group as a branched structure.
 変性ビニルアルコール系重合体(A)中の全構成単位に対する式(1)で示されるビニルエステル単位の含有量は、0.01~10モル%が好ましい。前記含有量が0.01モル%未満の場合、変性ビニルアルコール系重合体(A)の水溶液がゲル化しにくくなるおそれがある。前記含有量は0.05モル%以上がより好ましく、0.1モル%以上がさらに好ましく、0.3モル%以上が特に好ましく、0.5モル%以上が最も好ましい。一方、前記含有量が10モル%を超える場合、変性ビニルアルコール系重合体(A)の水溶性が悪化するおそれがある。前記含有量は8モル%以下がより好ましく、5モル%以下がさらに好ましく、3モル%以下が特に好ましく、2モル%以下が最も好ましい。式(1)で示されるビニルエステル単位の含有量は、後述する実施例に記載されたH-NMR測定を用いた方法により求めることができる。 The content of the vinyl ester unit represented by the formula (1) with respect to all the structural units in the modified vinyl alcohol polymer (A) is preferably 0.01 to 10 mol%. If the content is less than 0.01 mol%, the aqueous solution of the modified vinyl alcohol polymer (A) may not easily gel. The content is more preferably 0.05 mol% or more, further preferably 0.1 mol% or more, particularly preferably 0.3 mol% or more, and most preferably 0.5 mol% or more. On the other hand, if the content exceeds 10 mol%, the water solubility of the modified vinyl alcohol-based polymer (A) may deteriorate. The content is more preferably 8 mol% or less, further preferably 5 mol% or less, particularly preferably 3 mol% or less, and most preferably 2 mol% or less. The content of the vinyl ester unit represented by the formula (1) can be determined by a method using 1 H-NMR measurement described in Examples described later.
 変性ビニルアルコール系重合体(A)中の全構成単位に対するビニルアルコール単位の含有量は60~99.99モル%が好ましい。ビニルアルコール単位の含有量が60モル%未満の場合には、変性ビニルアルコール系重合体(A)の水溶性が悪化してハイドロゲルが得られないおそれがあるとともに、ゲル強度が低下するおそれがある。ビニルアルコール単位の含有量は70モル%以上がより好ましく、80モル%以上がさらに好ましく、85モル%以上が特に好ましく、90モル%以上が最も好ましい。一方、ビニルアルコール単位の含有量が99.99モル%を超える場合には、変性ビニルアルコール系重合体(A)を工業的に製造することが困難になるおそれがある。ビニルアルコール単位の含有量は99.9モル%以下がより好ましく、99.5モル%以下がさらに好ましく、99モル%以下が特に好ましく、98モル%以下が最も好ましい。式(1)で示されるビニルエステル単位の含有量は、後述する実施例に記載されたH-NMR測定を用いた方法により求めることができる。 The content of the vinyl alcohol unit with respect to all the constituent units in the modified vinyl alcohol-based polymer (A) is preferably 60 to 99.99 mol%. If the content of the vinyl alcohol unit is less than 60 mol%, the water solubility of the modified vinyl alcohol polymer (A) may deteriorate and a hydrogel may not be obtained, and the gel strength may decrease. is there. The content of the vinyl alcohol unit is more preferably 70 mol% or more, further preferably 80 mol% or more, particularly preferably 85 mol% or more, and most preferably 90 mol% or more. On the other hand, when the content of the vinyl alcohol unit exceeds 99.99 mol%, it may be difficult to industrially produce the modified vinyl alcohol-based polymer (A). The content of the vinyl alcohol unit is more preferably 99.9 mol% or less, further preferably 99.5 mol% or less, particularly preferably 99 mol% or less, and most preferably 98 mol% or less. The content of the vinyl ester unit represented by the formula (1) can be determined by a method using 1 H-NMR measurement described in Examples described later.
 変性ビニルアルコール系重合体(A)の粘度平均重合度は100~5000が好ましく、200~4000がより好ましい。粘度平均重合度が100未満である場合、変性ビニルアルコール系重合体(A)のゲル強度が低下するおそれがある。一方、粘度平均重合度が5000を超える場合、変性ビニルアルコール系重合体(A)の工業的な製造が難しくなるおそれがある。変性ビニルアルコール系重合体(A)の粘度平均重合度はJIS K6726に準拠して測定される。 The viscosity average degree of polymerization of the modified vinyl alcohol polymer (A) is preferably 100 to 5000, more preferably 200 to 4000. If the viscosity average degree of polymerization is less than 100, the gel strength of the modified vinyl alcohol-based polymer (A) may decrease. On the other hand, when the viscosity average degree of polymerization exceeds 5000, industrial production of the modified vinyl alcohol-based polymer (A) may become difficult. The viscosity average degree of polymerization of the modified vinyl alcohol polymer (A) is measured according to JIS K6726.
 変性ビニルアルコール系重合体(A)のビニルアルコール単位は、加水分解や加アルコール分解などによってビニルエステル単位から誘導することができる。そのためビニルエステル単位からビニルアルコール単位に変換する際の条件等によっては変性ビニルアルコール系重合体(A)中にビニルエステル単位が残存することがある。 The vinyl alcohol unit of the modified vinyl alcohol polymer (A) can be derived from the vinyl ester unit by hydrolysis, alcohol decomposition, or the like. Therefore, the vinyl ester unit may remain in the modified vinyl alcohol-based polymer (A) depending on the conditions for converting the vinyl ester unit to the vinyl alcohol unit.
 上記ビニルエステル単位のビニルエステルの例としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニルなどを挙げることができ、これらの中でも酢酸ビニルが工業的観点から好ましい。 Examples of the vinyl ester of the vinyl ester unit include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatic acid, vinyl caproate, vinyl caprylate, vinyl laurate, and palmitin. Examples thereof include vinyl acetate, vinyl stearate, vinyl oleate, vinyl benzoate, and the like, and among these, vinyl acetate is preferable from an industrial point of view.
 変性ビニルアルコール系重合体(A)の製造方法としては、不飽和カルボン酸、酸触媒及び水を含む混合媒体と、ビニルアルコール系重合体とを混合する変性ビニルアルコール系重合体の製造方法であって、前記不飽和カルボン酸が下記式(2)で示されるものであることが好ましい。 The method for producing the modified vinyl alcohol-based polymer (A) is a method for producing a modified vinyl alcohol-based polymer in which a mixed medium containing an unsaturated carboxylic acid, an acid catalyst and water and a vinyl alcohol-based polymer are mixed. Therefore, it is preferable that the unsaturated carboxylic acid is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(2)中のX、Y、Zは式(1)と同義である。] [X, Y, Z in the formula (2) are synonymous with the formula (1). ]
 当該方法では、硫黄を含有する液体媒体を使用する必要がないため、液体媒体等に由来する硫黄分が変性ビニルアルコール系重合体(A)に残留する問題がない。さらに、得られる変性ビニルアルコール系重合体(A)において、三連鎖以上で存在するビニルエステル単位の割合を低減させることができる。 In this method, since it is not necessary to use a liquid medium containing sulfur, there is no problem that the sulfur content derived from the liquid medium or the like remains in the modified vinyl alcohol polymer (A). Further, in the obtained modified vinyl alcohol-based polymer (A), the proportion of vinyl ester units present in three or more chains can be reduced.
 前記混合媒体とビニルアルコール系重合体を混合することにより、前記不飽和カルボン酸とビニルアルコール系重合体を反応させる。このときの混合方法は、両者を均一に混合することが可能であれば特に限定されない。具体的には、(a)前記混合媒体を調製した後、当該混合媒体と前記ビニルアルコール系重合体とを混合する方法、(b)前記ビニルアルコール系重合体と前記混合媒体の一部の成分とを混合した後、得られた混合物と前記混合媒体の残りの成分を混合する方法、(c)前記混合媒体の各成分と前記ビニルアルコール系重合体とを同時に混合する方法等が挙げられ、中でも(a)が好ましい。 By mixing the mixed medium and the vinyl alcohol-based polymer, the unsaturated carboxylic acid and the vinyl alcohol-based polymer are reacted. The mixing method at this time is not particularly limited as long as the two can be mixed uniformly. Specifically, (a) a method of preparing the mixed medium and then mixing the mixed medium with the vinyl alcohol-based polymer, and (b) a part of the vinyl alcohol-based polymer and the mixed medium. After mixing with, a method of mixing the obtained mixture with the remaining components of the mixing medium, (c) a method of simultaneously mixing each component of the mixing medium with the vinyl alcohol polymer, and the like can be mentioned. Of these, (a) is preferable.
 前記不飽和カルボン酸と反応させる前記ビニルアルコール系重合体が粒子であることが好ましい。前記混合媒体と前記ビニルアルコール系重合体粒子とを混合して前記混合媒体中に前記ビニルアルコール系重合体粒子を分散させることにより、前記不飽和カルボン酸と前記ビニルアルコール系重合体粒子とを反応させる方法が好ましい。このように、原料のビニルアルコール系重合体粒子の粒子形状を維持したまま反応を行うことにより、大量の貧溶媒を用いて反応生成物を析出させる操作が不要となる。具体的には、前記混合媒体と前記ビニルアルコール系重合体粒子とを混合してスラリーや分散液とすることにより、前記不飽和カルボン酸と前記ビニルアルコール系重合体粒子とを反応させる方法が挙げられる。また、前記ビニルアルコール系重合体粒子に前記混合媒体を均一に馴染ませることにより、前記不飽和カルボン酸と前記ビニルアルコール系重合体粒子とを反応させる方法等も挙げられる。 It is preferable that the vinyl alcohol-based polymer to be reacted with the unsaturated carboxylic acid is particles. By mixing the mixed medium and the vinyl alcohol-based polymer particles and dispersing the vinyl alcohol-based polymer particles in the mixed medium, the unsaturated carboxylic acid and the vinyl alcohol-based polymer particles are reacted. The method of causing is preferable. As described above, by carrying out the reaction while maintaining the particle shape of the raw material vinyl alcohol-based polymer particles, the operation of precipitating the reaction product using a large amount of poor solvent becomes unnecessary. Specifically, a method of reacting the unsaturated carboxylic acid with the vinyl alcohol-based polymer particles by mixing the mixed medium and the vinyl alcohol-based polymer particles to form a slurry or a dispersion liquid can be mentioned. Be done. Further, a method of reacting the unsaturated carboxylic acid with the vinyl alcohol-based polymer particles by uniformly blending the mixed medium with the vinyl alcohol-based polymer particles can also be mentioned.
 前記不飽和カルボン酸として、式(2)で示されるものが用いられる。式(2)中のX、Y、Zは式(1)と同義である。Xが炭素-炭素結合である場合の不飽和カルボン酸の具体例としてはメタクリル酸、アクリル酸、クロトン酸等が挙げられる。 As the unsaturated carboxylic acid, the one represented by the formula (2) is used. X, Y, and Z in the formula (2) are synonymous with the formula (1). Specific examples of the unsaturated carboxylic acid when X is a carbon-carbon bond include methacrylic acid, acrylic acid, crotonic acid and the like.
 式(2)で示される不飽和カルボン酸として具体的には、メタクリル酸、アクリル酸、クロトン酸、3-メチル-3-ブテン酸、4-ペンテン酸、2-メチル-4-ペンテン酸、5-ヘキセン酸、3,3-ジメチル-4-ペンテン酸、7-オクテン酸、trans-3-ペンテン酸、trans-4-デセン酸、10-ウンデセン酸などが挙げられる。中でも、工業的な入手容易性や反応性の観点から、メタクリル酸、アクリル酸、4-ペンテン酸、10-ウンデセン酸が好ましく、メタクリル酸、アクリル酸及び4-ペンテン酸がより好ましく、メタクリル酸及びアクリル酸がさらに好ましく、メタクリル酸が特に好ましい。 Specific examples of the unsaturated carboxylic acid represented by the formula (2) include methacrylic acid, acrylic acid, crotonic acid, 3-methyl-3-butenoic acid, 4-pentenoic acid, 2-methyl-4-pentenoic acid, and 5 -Hexenoic acid, 3,3-dimethyl-4-pentenoic acid, 7-octenoic acid, trans-3-pentenoic acid, trans-4-decenoic acid, 10-undecenoic acid and the like can be mentioned. Among them, methacrylic acid, acrylic acid, 4-pentenoic acid, 10-undecenoic acid are preferable, methacrylic acid, acrylic acid and 4-pentenoic acid are more preferable, and methacrylic acid and Acrylic acid is more preferred, and methacrylic acid is particularly preferred.
 前記不飽和カルボン酸と前記ビニルアルコール系重合体との反応の触媒として、酸触媒が使用される。これにより、不飽和カルボン酸とビニルアルコール系重合体との反応が促進される。前記酸触媒は、式(2)で示される不飽和カルボン酸とビニルアルコール系重合体の水酸基との脱水エステル化反応を触媒するものであればよく、有機酸および無機酸のいずれでも使用可能である。有機酸としては、例えば、メタンスルホン酸、ベンゼンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸が挙げられ、無機酸としては、例えば、硫酸、塩酸、硝酸が挙げられる。中でも、メタンスルホン酸、パラトルエンスルホン酸及び硫酸が好ましく、特にパラトルエンスルホン酸が好ましい。 An acid catalyst is used as a catalyst for the reaction between the unsaturated carboxylic acid and the vinyl alcohol polymer. This promotes the reaction between the unsaturated carboxylic acid and the vinyl alcohol polymer. The acid catalyst may be any acid catalyst as long as it catalyzes the dehydration esterification reaction between the unsaturated carboxylic acid represented by the formula (2) and the hydroxyl group of the vinyl alcohol-based polymer, and either an organic acid or an inorganic acid can be used. is there. Examples of the organic acid include methanesulfonic acid, benzenesulfonic acid, trifluoromethanesulfonic acid and paratoluenesulfonic acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid and nitric acid. Of these, methanesulfonic acid, paratoluenesulfonic acid and sulfuric acid are preferable, and paratoluenesulfonic acid is particularly preferable.
 前記混合媒体とビニルアルコール系重合体とを混合する際の前記混合媒体に対する前記ビニルアルコール系重合体の質量比[重合体/混合媒体]は、3/97~90/10が好ましい。質量比[重合体/混合媒体]が3/97未満の場合、反応性が著しく低下するおそれがある。質量比[重合体/混合媒体]は10/90以上が好ましい。一方、質量比[重合体/混合媒体]が90/10を超える場合、前記混合媒体とビニルアルコール系重合体とを均一に混合することができないおそれや反応性が著しく低下するおそれがある。質量比[重合体/混合媒体]は80/20以下がより好ましく、50/50以下がさらに好ましい。 The mass ratio [polymer / mixed medium] of the vinyl alcohol-based polymer to the mixed medium when mixing the mixed medium and the vinyl alcohol-based polymer is preferably 3/97 to 90/10. If the mass ratio [polymer / mixed medium] is less than 3/97, the reactivity may be significantly reduced. The mass ratio [polymer / mixed medium] is preferably 10/90 or more. On the other hand, when the mass ratio [polymer / mixed medium] exceeds 90/10, the mixed medium and the vinyl alcohol-based polymer may not be uniformly mixed or the reactivity may be significantly lowered. The mass ratio [polymer / mixed medium] is more preferably 80/20 or less, and even more preferably 50/50 or less.
 前記混合媒体における水の含有量が1~30質量%であることが好ましい。水の含有量が1質量%未満の場合、得られる変性ビニルアルコール系重合体(A)が着色し易くなるおそれがある。水の含有量は3質量%以上がより好ましく、5質量%以上がさらに好ましく、8質量%以上が特に好ましい。一方、水の含有量は20質量%以下がより好ましく、18質量%以下がさらに好ましい。 The water content in the mixed medium is preferably 1 to 30% by mass. When the water content is less than 1% by mass, the obtained modified vinyl alcohol-based polymer (A) may be easily colored. The water content is more preferably 3% by mass or more, further preferably 5% by mass or more, and particularly preferably 8% by mass or more. On the other hand, the water content is more preferably 20% by mass or less, further preferably 18% by mass or less.
 前記不飽和カルボン酸と前記ビニルアルコール系重合体とを反応させる際の前記酸触媒の添加量は前記ビニルアルコール系重合体中の水酸基1モルに対して、0.0001~0.1モルが好ましい。前記添加量は、0.0005モル以上がより好ましい。一方、前記添加量は、0.08モル以下がより好ましい。 The amount of the acid catalyst added when the unsaturated carboxylic acid is reacted with the vinyl alcohol polymer is preferably 0.0001 to 0.1 mol with respect to 1 mol of the hydroxyl group in the vinyl alcohol polymer. .. The addition amount is more preferably 0.0005 mol or more. On the other hand, the addition amount is more preferably 0.08 mol or less.
 前記混合媒体における、前記不飽和カルボン酸の含有量は、ビニルアルコール系重合体100質量部に対して、5~2000質量部が好ましい。不飽和カルボン酸の添加量が5質量部未満の場合、反応性が低下するおそれがある。不飽和カルボン酸の含有量は、10質量部以上がより好ましく、20質量部以上がさらに好ましく、30質量部以上が特に好ましい。一方、不飽和カルボン酸の含有量が2000質量部を超える場合、未反応の不飽和カルボン酸が増加してコストが上昇するおそれがある。不飽和カルボン酸の含有量は、1500質量部以下がより好ましく、1000質量部以下がさらに好ましく、700質量部以下が特に好ましい。 The content of the unsaturated carboxylic acid in the mixed medium is preferably 5 to 2000 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer. If the amount of unsaturated carboxylic acid added is less than 5 parts by mass, the reactivity may decrease. The content of the unsaturated carboxylic acid is more preferably 10 parts by mass or more, further preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more. On the other hand, when the content of the unsaturated carboxylic acid exceeds 2000 parts by mass, the unreacted unsaturated carboxylic acid may increase and the cost may increase. The content of the unsaturated carboxylic acid is more preferably 1500 parts by mass or less, further preferably 1000 parts by mass or less, and particularly preferably 700 parts by mass or less.
 変性ビニルアルコール系重合体(A)の酢酸ビニル単位の含有量を制御するため、前記混合媒体がさらに酢酸を含んでいてもよい。前記混合媒体における酢酸の含有量は、水100質量部に対して、1~1000質量部が好ましい。酢酸の含有量は5質量部以上がより好ましく、10質量部以上がさらに好ましい。一方、酢酸の含有量は800質量部以下がより好ましく、600質量部以下がさらに好ましい。 In order to control the content of the vinyl acetate unit of the modified vinyl alcohol polymer (A), the mixed medium may further contain acetic acid. The content of acetic acid in the mixed medium is preferably 1 to 1000 parts by mass with respect to 100 parts by mass of water. The content of acetic acid is more preferably 5 parts by mass or more, further preferably 10 parts by mass or more. On the other hand, the content of acetic acid is more preferably 800 parts by mass or less, and further preferably 600 parts by mass or less.
 前記混合媒体が、式(2)で示される不飽和カルボン酸、前記酸触媒、水及び酢酸以外の他の添加剤を含んでいてもよい。他の添加剤として、例えば、界面活性剤、有機溶剤、紫外線吸収剤、光安定剤、酸化防止剤、可塑剤、消泡剤が挙げられる。前記混合媒体における、他の添加剤の含有量は、50質量%以下が好ましく、35質量%以下がより好ましい。また、前記混合媒体が硫黄を含有する液体媒体を含有しないことが好ましい。 The mixed medium may contain an unsaturated carboxylic acid represented by the formula (2), the acid catalyst, water and other additives other than acetic acid. Other additives include, for example, surfactants, organic solvents, UV absorbers, light stabilizers, antioxidants, plasticizers, defoamers. The content of the other additive in the mixed medium is preferably 50% by mass or less, more preferably 35% by mass or less. Further, it is preferable that the mixed medium does not contain a liquid medium containing sulfur.
 前記不飽和カルボン酸と前記ビニルアルコール系重合体とを反応させる際の温度は、10~120℃が好ましい。前記温度は、30℃以上がより好ましく、50℃以上がさらに好ましい。一方、前記温度は、100℃以下がより好ましく、90℃以下がさらに好ましい。前記不飽和カルボン酸と前記ビニルアルコール系重合体とを反応させる際の反応時間は、通常0.5~72時間である。 The temperature at which the unsaturated carboxylic acid is reacted with the vinyl alcohol-based polymer is preferably 10 to 120 ° C. The temperature is more preferably 30 ° C. or higher, and even more preferably 50 ° C. or higher. On the other hand, the temperature is more preferably 100 ° C. or lower, and even more preferably 90 ° C. or lower. The reaction time for reacting the unsaturated carboxylic acid with the vinyl alcohol polymer is usually 0.5 to 72 hours.
 変性ビニルアルコール系重合体(A)を粒子として得た場合、当該粒子をさらに洗浄することが好ましい。具体的な洗浄方法としては、前記粒子を溶媒で洗浄する方法が挙げられる。具体的には、前記粒子を溶媒に浸漬した後、脱液する方法や、洗浄塔にて溶媒を流通させながら当該溶媒と前記粒子を接触させて洗浄する方法、前記粒子を流動させながら洗浄溶媒を噴霧する方法等が挙げられる。使用される溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類;n-ヘキサン、n-ペンタン、シクロヘキサンなどの脂肪族または脂環式炭化水素類;ベンゼン、トルエンなどの芳香族炭化水素類;アセトニトリル、ベンゾニトリルなどのニトリル類;ジエチルエーテル、ジフェニルエーテル、アニソール、1,2-ジメトキシエタン、1,4-ジオキサンなどのエーテル類;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトンなどのケトン類;酢酸メチル、酢酸エチル、プロピオン酸エチルなどのエステル類などが挙げられる。中でも、アルコール類、エーテル類、ケトン類、エステル類がより好ましく、メタノール、エタノール、プロパノール、ジエチルエーテル、1,2-ジメトキシエタン、アセトン、メチルエチルケトン、酢酸メチル、酢酸エチルがさらに好ましく、メタノール、プロパノール、アセトン、メチルエチルケトン、酢酸メチル、酢酸エチルが特に好ましい。これらの有機溶媒は単独で用いてもよいし、2種以上を併用してもよい。 When the modified vinyl alcohol polymer (A) is obtained as particles, it is preferable to further wash the particles. Specific examples of the cleaning method include a method of cleaning the particles with a solvent. Specifically, a method of immersing the particles in a solvent and then removing the liquid, a method of contacting the particles with the particles while flowing the solvent in a washing tower for washing, and a washing solvent while flowing the particles. Examples include a method of spraying. Examples of the solvent used include alcohols such as methanol, ethanol, propanol and butanol; aliphatic or alicyclic hydrocarbons such as n-hexane, n-pentane and cyclohexane; aromatic carbides such as benzene and toluene. Hydrogens; nitriles such as acetonitrile and benzonitrile; ethers such as diethyl ether, diphenyl ether, anisole, 1,2-dimethoxyethane and 1,4-dioxane; ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone and methyl isobutyl ketone Kind: Esters such as methyl acetate, ethyl acetate, ethyl propionate and the like. Among them, alcohols, ethers, ketones and esters are more preferable, methanol, ethanol, propanol, diethyl ether, 1,2-dimethoxyethane, acetone, methyl ethyl ketone, methyl acetate and ethyl acetate are more preferable, and methanol, propanol, Acetone, methyl ethyl ketone, methyl acetate and ethyl acetate are particularly preferred. These organic solvents may be used alone or in combination of two or more.
 反応後の変性ビニルアルコール系重合体(A)を必要に応じて洗浄した後、乾燥させることが好ましい。このとき、通常、乾燥温度は20~150℃、乾燥時間は1~72時間である。また、変性ビニルアルコール系重合体(A)の乾燥は大気圧下で行ってもよいし、減圧下で行ってもよい。 It is preferable to wash the modified vinyl alcohol polymer (A) after the reaction, if necessary, and then dry it. At this time, the drying temperature is usually 20 to 150 ° C., and the drying time is 1 to 72 hours. Further, the modified vinyl alcohol polymer (A) may be dried under atmospheric pressure or under reduced pressure.
 本発明の効果を阻害しない範囲であれば、変性ビニルアルコール系重合体(A)がビニルアルコール単位及びビニルエステル単位以外の他の単量体単位を含有していてもよい。このような他の単量体単位としては、ビニルエステルと共重合可能なエチレン性不飽和単量体に由来するものが挙げられる。このようなエチレン性不飽和単量体として、例えば、エチレン、プロピレン、n-ブテン、イソブチレン、1-ヘキセン等のα-オレフィン類;アクリル酸及びその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル類;メタクリル酸及びその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその塩(例えば4級塩);メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその塩(例えば4級塩);メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル、2,3-ジアセトキシ-1-ビニルオキシプロパン等のビニルエーテル類;アクリロニトリル、メタクリロニトリル等のシアン化ビニル類;塩化ビニル、フッ化ビニル等のハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン類;酢酸アリル、2,3-ジアセトキシ-1-アリルオキシプロパン、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸及びその塩又はそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニルなどが挙げられる。 The modified vinyl alcohol-based polymer (A) may contain a monomer unit other than the vinyl alcohol unit and the vinyl ester unit as long as the effect of the present invention is not impaired. Examples of such other monomer units include those derived from ethylenically unsaturated monomers copolymerizable with vinyl ester. Examples of such ethylenically unsaturated monomers include α-olefins such as ethylene, propylene, n-butyl, isobutylene, and 1-hexene; acrylic acid and salts thereof; methyl acrylate, ethyl acrylate, and acrylic acid. Acrylic acid esters such as n-propyl, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid And salts thereof; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, methacrylate Methacrylate esters such as dodecyl and octadecyl methacrylate; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and its salts, acrylamidepropyldimethylamine and its salts. (For example, quaternary salt); methacrylamide, N-methylmethacrylate, N-ethylmethacrylate, methacrylicamidepropanesulfonic acid and its salt, methacrylamidepropyldimethylamine and its salt (for example, quaternary salt); methylvinyl ether, ethyl. Vinyl ethers such as vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether, 2,3-diacetoxy-1-vinyloxypropane; acrylonitrile , Vinyl cyanide such as methacrylonitrile; Vinyl halides such as vinyl chloride and vinyl fluoride; Vinylidene halides such as vinylidene chloride and vinylidene fluoride; Allyl acetate, 2,3-diacetoxy-1-allyloxy Allyl compounds such as propane and allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid and salts thereof or esters thereof; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like can be mentioned.
 変性ビニルアルコール系重合体(A)中の全構成単位に対する他の単量体単位の含有量は、通常10モル%以下であり、5モル%以下が好ましく、1モル%以下がより好ましい。 The content of other monomer units in the modified vinyl alcohol-based polymer (A) with respect to all the constituent units is usually 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
 インクの粘度安定性が向上する点から、変性ビニルアルコール系重合体(A)において、全ビニルエステル単位に対する、三連鎖以上で存在するビニルエステル単位の割合が20モル%以下であることが好ましい。前記割合は18モル%以下がより好ましく、16モル%以下がさらに好ましく、15モル%以下が特に好ましい。一方、三連鎖以上で存在するビニルエステル単位の割合は通常0.1モル%以上である。三連鎖以上で存在するビニルエステル単位の割合は、後述する実施例に記載されたH-NMR測定を用いた方法により求めることができる。 From the viewpoint of improving the viscosity stability of the ink, it is preferable that the ratio of the vinyl ester units present in three or more chains to the total vinyl ester units in the modified vinyl alcohol polymer (A) is 20 mol% or less. The ratio is more preferably 18 mol% or less, further preferably 16 mol% or less, and particularly preferably 15 mol% or less. On the other hand, the proportion of vinyl ester units present in three or more chains is usually 0.1 mol% or more. The proportion of vinyl ester units present in three or more chains can be determined by the method using 1 1 H-NMR measurement described in Examples described later.
 本発明のインク中の変性ビニルアルコール系重合体(A)の含有量は1~70質量%が好ましい。前記含有量が1質量%未満の場合、ゲル強度が不十分になるおそれがある。前記含有量は3質量%以上がより好ましく、5質量%以上がさらに好ましく、7質量%以上が特に好ましく、8質量%以上が最も好ましい。一方、前記含有量が70質量%を超える場合、インクの粘度が高くなりすぎて取り扱い難くなるおそれがある。前記含有量は50質量%以下がより好ましく、40質量%以下がさらに好ましく、30質量%以下が特に好ましく、20質量%以下が最も好ましい。 The content of the modified vinyl alcohol polymer (A) in the ink of the present invention is preferably 1 to 70% by mass. If the content is less than 1% by mass, the gel strength may be insufficient. The content is more preferably 3% by mass or more, further preferably 5% by mass or more, particularly preferably 7% by mass or more, and most preferably 8% by mass or more. On the other hand, if the content exceeds 70% by mass, the viscosity of the ink may become too high and it may be difficult to handle. The content is more preferably 50% by mass or less, further preferably 40% by mass or less, particularly preferably 30% by mass or less, and most preferably 20% by mass or less.
 前記インク中の硫黄分の含有量が0.001~2000ppmである必要がある。このように硫黄分の含有量が一定以下であることにより、当該インクや得られるハイドロゲルの臭気が低減する。このようなハイドロゲルは、安全性が高いうえに、環境面でも優れる。さらに、硫黄分の含有量が一定以下であることにより、驚くべきことに前記インクの粘度安定性が向上する。そして、前記インクの粘度安定性が向上することにより、高いゲル強度を有するハイドロゲルが安定して得られる。硫黄分の含有量は1500ppm以下が好ましく、1000ppm以下がより好ましく、500ppm以下がさらに好ましく、300ppm以下が特に好ましく、200ppm以下が最も好ましい。一方、硫黄分の含有量が0.001ppm未満の場合、変性ビニルアルコール系重合体(A)の工業的な製造が難しくなるおそれがある。硫黄分の含有量は0.01ppm以上がより好ましく、0.1ppm以上がさらに好ましく、1ppm以上が特に好ましい。 The sulfur content in the ink needs to be 0.001 to 2000 ppm. When the sulfur content is below a certain level in this way, the odor of the ink and the obtained hydrogel is reduced. Such hydrogels are not only highly safe but also environmentally friendly. Furthermore, when the sulfur content is below a certain level, the viscosity stability of the ink is surprisingly improved. Then, by improving the viscosity stability of the ink, a hydrogel having high gel strength can be stably obtained. The sulfur content is preferably 1500 ppm or less, more preferably 1000 ppm or less, further preferably 500 ppm or less, particularly preferably 300 ppm or less, and most preferably 200 ppm or less. On the other hand, if the sulfur content is less than 0.001 ppm, it may be difficult to industrially produce the modified vinyl alcohol-based polymer (A). The sulfur content is more preferably 0.01 ppm or more, further preferably 0.1 ppm or more, and particularly preferably 1 ppm or more.
 前記インクがさらに強度付与剤(C)を含むことが好ましい。強度付与剤(C)としては、ビニルアルコール系重合体以外の有機粒子(C-1)や、無機粒子(C-2)が挙げられ、後者が好ましい。 It is preferable that the ink further contains the strength-imparting agent (C). Examples of the strength-imparting agent (C) include organic particles (C-1) other than the vinyl alcohol-based polymer and inorganic particles (C-2), and the latter is preferable.
 有機粒子(C-1)としては、重合体粒子、セルロースナノファイバー、酸化グラフェン、竹炭、活性炭等の炭素材料の粒子等が挙げられる。前記重合体粒子を構成する重合体は一種の単量体単位からなる重合体でもよく、複数種の単量体単位からなる共重合体でもよい。また、複数の重合体の混合物であってもよい。 Examples of the organic particles (C-1) include polymer particles, cellulose nanofibers, graphene oxide, bamboo charcoal, particles of carbon material such as activated carbon, and the like. The polymer constituting the polymer particles may be a polymer composed of one kind of monomer unit or a copolymer composed of a plurality of types of monomer units. It may also be a mixture of a plurality of polymers.
 前記単量体単位としては、ブタジエン、イソプレン等の共役ジエン;スチレン、α-メチルスチレン、tert-ブチルスチレン等の芳香族ビニル化合物;(メタ)アクリル酸およびその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソプロピル、ジシクロペンタニル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート等の(メタ)アクリル酸エステル;(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体;(メタ)アクリロニトリル等のニトリル;メチルビニルエーテル、エチルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル;酢酸ビニル、n-プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;無水マレイン酸、無水イタコン酸等の不飽和ジカルボン酸無水物;エテン、プロペン、n-ブテン、イソブテン等のモノオレフィン;臭化ビニル、臭化ビニリデン、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化エチレン;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸およびその塩;マレイン酸エステル、イタコン酸エステル等の不飽和ジカルボン酸エステル;トリメトキシシラン等のビニルシリル化合物;シクロペンタジエン、ノルボルナジエン等の環状ジエン;インデン、テトラヒドロインデン等のインデン類;エチレンオキシド、プロピレンオキシド、オキセタン、テトラヒドロフラン等の環状エーテル;チイラン、チエタン等の環状スルフィド;アジリジン、アゼチジン等の環状アミン;1,3-ジオキソラン、1,3,5-トリオキサン、スピロオルソエステル等の環状アセタール;2-オキソザリン、イミノエーテル等の環状イミノエーテル;β-プロピオラクトン、δ-バレロラクトン、ε-カプロラクトン等のラクトン;エチレンカーボネート、プロピレンカーボネート等の環状カーボネート;ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等の環状シロキサン;などに由来するものが挙げられる。これらの中でも、生産性の観点から共役ジエン、芳香族ビニル化合物および(メタ)アクリル酸エステルからなる群から選ばれる少なくとも1種に由来する単量体単位が好ましく、(メタ)アクリル酸エステルに由来する単量体単位がより好ましい。 Examples of the monomer unit include conjugated diene such as butadiene and isoprene; aromatic vinyl compounds such as styrene, α-methylstyrene and tert-butylstyrene; (meth) acrylic acid and salts thereof; methyl (meth) acrylate, Ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isopropyl (meth) acrylate, dicyclopentanyl (meth) acrylate, trimethylpropanthry (meth) acrylate, (Meta) acrylic acid esters such as allyl (meth) acrylate; (meth) acrylamide; (meth) acrylamide derivatives such as N-methyl (meth) acrylamide and N-ethyl (meth) acrylamide; nitriles such as (meth) acrylonitrile; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether; vinyl esters such as vinyl acetate, vinyl n-propionate, vinyl butyrate, vinyl pivalate; unsaturated dicarboxylic acids such as maleic anhydride and itaconic anhydride. Anhydrous; monoolefins such as ether, propene, n-butene, isobutene; ethylene halides such as vinyl bromide, vinylidene bromide, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, etc .; allyl acetate, allyl chloride, etc. Allyl compounds; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid and salts thereof; unsaturated dicarboxylic acid esters such as maleic acid ester and itaconic acid ester; vinylsilyl compounds such as trimethoxysilane; cyclopentadiene, norbornadien, etc. Cyclic diene; indens such as inden and tetrahydroinden; cyclic ethers such as ethylene oxide, propylene oxide, oxetane and tetrahydrofuran; cyclic sulfides such as thirane and thietan; cyclic amines such as allyl and azetidine; 1,3-dioxolane, 1, Cyclic acetals such as 3,5-trioxane and spiroorthoester; cyclic iminoethers such as 2-oxozarin and iminoether; lactones such as β-propiolactone, δ-valerolactone and ε-caprolactone; ethylene carbonate, propylene carbonate and the like. (Cyclic carbonate); Cyclic siloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane; and the like. Among these, from the viewpoint of productivity, a monomer unit derived from at least one selected from the group consisting of conjugated diene, aromatic vinyl compound and (meth) acrylic acid ester is preferable, and derived from (meth) acrylic acid ester. The monomer unit to be used is more preferable.
 前記重合体粒子は、コアシェル構造を有する粒子であることが好ましい。コア及びシェルを構成する重合体として、前記重合体粒子を構成する重合体として上述したものが用いられる。 The polymer particles are preferably particles having a core-shell structure. As the polymer constituting the core and the shell, the above-mentioned polymer is used as the polymer constituting the polymer particles.
 前記重合体粒子は、特開2019-35043に記載された方法等により製造される。 The polymer particles are produced by the method described in JP-A-2019-35043 or the like.
 前記無機粒子(C-2)としては、コロイダルシリカ、沈降シリカ、ゲル状シリカ、気相法シリカ等のシリカ;アルミナ、ヒドロキシアパタイト、ジルコニア、酸化亜鉛、チタン酸バリウム等のセラミック;スメクタイト、ベントナイト、ゼオライト、タルク、モンモリロナイト等の鉱物(合成物を含む);硫酸カルシウム等の石膏;酸化カルシウム、酸化鉄等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;ケイソウ土、土壌、粘土、砂、砂利などが挙げられ、中でも、コロイダルシリカ、スメクタイト及びベントナイトが好ましい。 Examples of the inorganic particles (C-2) include silica such as colloidal silica, precipitated silica, gelled silica, and vapor phase silica; ceramics such as alumina, hydroxyapatite, zirconia, zinc oxide, and barium titanate; smectite, bentonite, and the like. Minerals such as zeolite, talc, montmorillonite (including compounds); gypsum such as calcium sulfate; metal oxides such as calcium oxide and iron oxide; metal carbonates such as calcium carbonate and magnesium carbonate; Examples thereof include sand and gravel, and among them, colloidal silica, smectite and bentonite are preferable.
 強度付与剤(C)の平均粒子径は、0.001~100μmが好ましい。前記平均粒子径は50μm以下がより好ましく、10μm以下がさらに好ましく、5μm以下が特に好ましく、1μm以下が最も好ましい。 The average particle size of the strength-imparting agent (C) is preferably 0.001 to 100 μm. The average particle size is more preferably 50 μm or less, further preferably 10 μm or less, particularly preferably 5 μm or less, and most preferably 1 μm or less.
 前記インク中の強度付与剤(C)の含有量は0.1~50質量%が好ましい。前記含有量が0.1質量%未満の場合、ゲル強度の向上効果が得られないおそれがある。前記含有量は0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましく、2.0質量%以上が特に好ましく、3.0質量%以上が最も好ましい。一方、前記含有量が50質量%を超える場合、ゲル化しにくくなるおそれがある。前記含有量は40質量%以下がより好ましく、30質量%以下がさらに好ましく、20質量%以下が特に好ましく、10質量%以下が最も好ましい。 The content of the strength-imparting agent (C) in the ink is preferably 0.1 to 50% by mass. If the content is less than 0.1% by mass, the effect of improving the gel strength may not be obtained. The content is more preferably 0.5% by mass or more, further preferably 1.0% by mass or more, particularly preferably 2.0% by mass or more, and most preferably 3.0% by mass or more. On the other hand, if the content exceeds 50% by mass, gelation may be difficult. The content is more preferably 40% by mass or less, further preferably 30% by mass or less, particularly preferably 20% by mass or less, and most preferably 10% by mass or less.
 前記インクは通常水を含有する。前記インク中の水の含有量は30質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上がさらに好ましい。前記インクは、水以外の他の溶媒を含有していてもよい。他の溶媒として、メタノール、エタノール、プロパノール、イソプロパノール等のモノアルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン等の多価アルコールなどの水溶性溶媒が挙げられる。前記インク中の他の溶媒の含有量は10質量%以下が好ましく、安全性や環境面からは前記ハイドロゲルが実質的に水以外の溶媒を含有しないことがより好ましい。 The ink usually contains water. The content of water in the ink is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass or more. The ink may contain a solvent other than water. Other solvents include monoalcohols such as methanol, ethanol, propanol and isopropanol; and water-soluble solvents such as polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol and glycerin. The content of the other solvent in the ink is preferably 10% by mass or less, and it is more preferable that the hydrogel does not substantially contain a solvent other than water from the viewpoint of safety and the environment.
 前記インクは開始剤(B)を含有する。開始剤(B)としては、光開始剤、熱開始剤、レドックス開始剤等が挙げられる。開始剤(B)の添加量は、変性ビニルアルコール系重合体(A)100質量部に対して、通常、0.01~10質量部である。 The ink contains an initiator (B). Examples of the initiator (B) include a photoinitiator, a heat initiator, a redox initiator and the like. The amount of the initiator (B) added is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the modified vinyl alcohol polymer (A).
 光開始剤としては、紫外線(UV)や可視光線などの光線等によってラジカル反応を開始させるものであれば特に問題なく使用できる。具体的には、例えばα-ケトグルタル酸、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名「Irgacure2959」、BASFジャパン社製)、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸リチウム塩(商品名「L0290」、東京化成工業(株)製)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](商品名「VA-086」、和光純薬工業(株)製)、エオジンYなどの比較的水溶性が高い光開始剤が挙げられる。 As the photoinitiator, any one that initiates a radical reaction with light rays such as ultraviolet rays (UV) and visible light can be used without any particular problem. Specifically, for example, α-ketoglutaric acid, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one (trade name "Irgacure2959", BASF Japan). , Phenyl (2,4,6-trimethylbenzoyl) phosphinic acid lithium salt (trade name "L0290", manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2,2'-azobis [2-methyl-N- (2) -Hydroxyethyl) propionamide] (trade name "VA-086", manufactured by Wako Pure Chemical Industries, Ltd.), eodin Y, and other photoinitiators with relatively high water solubility can be mentioned.
 前記インクが光開始剤を含む場合、当該インクがさらに光吸収剤を含んでいてもよい。光吸収剤を含有させることにより、3Dプリンター等を用いた光造形法によってハイドロゲルを造形する際に、さらに精密な形状の造形品が得られる。光吸収剤としては、水溶性を示すものであれば特に限定されないが、ケミプロ化成(株)製「KEMISORB111」、「KEMISORB11S」やBASFジャパン社製「Tinuvin477-DW」、「UVA805」、「Tinuvin1130」などが挙げられる。 When the ink contains a light initiator, the ink may further contain a light absorber. By containing a light absorber, a modeled product having a more precise shape can be obtained when a hydrogel is modeled by a stereolithography method using a 3D printer or the like. The light absorber is not particularly limited as long as it exhibits water solubility, but is "KEMISORB111" and "KEMISORB11S" manufactured by Chemipro Kasei Co., Ltd. and "Tinuvin 477-DW", "UVA805" and "Tinuvin 1130" manufactured by BASF Japan Ltd. And so on.
 熱開始剤としては、ラジカル反応の開始剤として一般的に使用される、アゾ系開始剤や過酸化物系開始剤が使用できるが、気体を発生せず、さらに優れた透明性やゲル強度を有するハイドロゲルが得られる点から、過酸化物系開始剤が好ましい。 As the heat initiator, an azo-based initiator or a peroxide-based initiator, which is generally used as a radical reaction initiator, can be used, but it does not generate gas and has more excellent transparency and gel strength. A peroxide-based initiator is preferable from the viewpoint of obtaining a hydrogel having.
 過酸化物系重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウムなどの無機過酸化物が挙げられる。 Examples of the peroxide-based polymerization initiator include inorganic peroxides such as ammonium persulfate, potassium persulfate, and sodium persulfate.
 アゾ系開始剤としては、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(商品名「VA-044」、和光純薬工業(株)製)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物(商品名「VA-044B」、和光純薬工業(株)製)、2,2’-アゾビス[2-メチルプロピオンアミジン]二塩酸塩(商品名「V-50」、和光純薬工業(株)製)、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物(商品名「VA-057」、和光純薬工業(株)製)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](商品名「VA-061」、和光純薬工業(株)製)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](商品名「VA-086」、和光純薬工業(株)製)、2,2’-アゾビス(4-シアノペンタン酸)(商品名「V-501」、和光純薬工業(株)製)などの比較的水溶性が高いアゾ系開始剤が挙げられる。 As an azo-based initiator, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (trade name "VA-044", manufactured by Wako Pure Chemical Industries, Ltd.), 2 , 2'-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate (trade name "VA-044B", manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'- Azobis [2-methylpropion amidine] dihydrochloride (trade name "V-50", manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion Amidine] tetrahydrate (trade name "VA-057", manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis [2- (2-imidazolin-2-yl) propane] (trade name "VA" -061 ", manufactured by Wako Pure Chemical Industries, Ltd., 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] (trade name" VA-086 ", Wako Pure Chemical Industries, Ltd. ( (Manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis (4-cyanopentanoic acid) (trade name "V-501", manufactured by Wako Pure Chemical Industries, Ltd.) Be done.
 レドックス系開始剤としては、上述した過酸化物系開始剤と還元剤とを組み合わせたものが使用され、両者を混合することにより、ラジカル反応(架橋反応)が開始される。還元剤としては、N,N,N’,N’-テトラメチルエチレンジアミン、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ハイドロサルファイトナトリウムなどの比較的水溶性が高い還元剤が用いられる。 As the redox-based initiator, a combination of the above-mentioned peroxide-based initiator and reducing agent is used, and the radical reaction (crosslinking reaction) is started by mixing the two. As the reducing agent, a reducing agent having relatively high water solubility such as N, N, N', N'-tetramethylethylenediamine, sodium sulfite, sodium hydrogen sulfite, and sodium hydrosulfite is used.
 前記インクがさらに重合禁止剤(D)を含むことが好ましい。重合禁止剤(D)は特に限定されないが、メトキノン及びヒドロキノン等の比較的水溶性が高い重合禁止剤(D)が好適であり、メトキノンがより好適である。前記インクが重合禁止剤(D)を含有することにより当該インクの粘度安定性をさらに高めることや、3Dプリンター等を用いた光造形法によってハイドロゲルを造形する際に、精密な形状の造形品を得ることができる。重合禁止剤(D)の添加量は、通常変性ビニルアルコール系重合体(A)100質量部に対して、0.001~1質量部である。 It is preferable that the ink further contains a polymerization inhibitor (D). The polymerization inhibitor (D) is not particularly limited, but a polymerization inhibitor (D) having a relatively high water solubility such as methquinone and hydroquinone is preferable, and methquinone is more preferable. When the ink contains a polymerization inhibitor (D) to further enhance the viscosity stability of the ink, or when a hydrogel is formed by a stereolithography method using a 3D printer or the like, a modeled product having a precise shape. Can be obtained. The amount of the polymerization inhibitor (D) added is usually 0.001 to 1 part by mass with respect to 100 parts by mass of the modified vinyl alcohol-based polymer (A).
 前記インクが架橋剤を含有していてもよい。このような架橋剤として水溶性を示すものが好ましく、例えば、N,N’-メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、N,N’-ジエチレングリコールジ(メタ)アクリレートなどのラジカル反応性のエチレン性二重結合を2個以上有する化合物が挙げられる。 The ink may contain a cross-linking agent. Such cross-linking agents preferably exhibit water solubility, and are radically reactive, for example, N, N'-methylenebisacrylamide, ethylene glycol di (meth) acrylate, N, N'-diethylene glycol di (meth) acrylate. Examples thereof include compounds having two or more ethylenic double bonds.
 前記インクには、本発明の効果を損なわない範囲内で、色素、防腐剤、防黴剤などの添加剤が含まれていてもよい。これらは、1種を単独で使用しても、2種以上を併用してもよい。 The ink may contain additives such as dyes, preservatives and fungicides as long as the effects of the present invention are not impaired. These may be used alone or in combination of two or more.
 前記インクの製造方法は特に限定されないが、変性ビニルアルコール系重合体(A)を水に溶解させることにより得られた水溶液に他の成分を添加する方法、変性ビニルアルコール系重合体(A)と他の成分を水に添加した後、前記変性ビニルアルコール系重合体(A)を溶解させる方法等が挙げられる。 The method for producing the ink is not particularly limited, but the method of adding other components to the aqueous solution obtained by dissolving the modified vinyl alcohol polymer (A) in water, the modified vinyl alcohol polymer (A) and the like. Examples thereof include a method of dissolving the modified vinyl alcohol-based polymer (A) after adding other components to water.
 こうして得られる本発明のインクは、硫黄分の含有量が少ないため、臭気が低減されるうえに、粘度変化が一定の範囲に抑えられるため、安定したゲル強度が発現される。また、本発明のインクは、刺激硬化性に優れるため、ハイドロゲルを簡便な操作で得られる。これらの特性を生かし、本発明のハイドロゲル造形用インクは、従来の型を用いたハイドロゲルの造形方法に用いられる他、3Dプリンター等の用途に好適に用いられる。 Since the ink of the present invention thus obtained has a low sulfur content, the odor is reduced and the change in viscosity is suppressed within a certain range, so that stable gel strength is exhibited. Further, since the ink of the present invention has excellent stimulus curability, a hydrogel can be obtained by a simple operation. Taking advantage of these characteristics, the hydrogel modeling ink of the present invention is used in a hydrogel modeling method using a conventional mold, and is also suitably used in applications such as 3D printers.
 上記課題は、ポリビニルアルコール(E)の架橋物を含むハイドロゲルであって、硫黄分の含有量が0.001~2000ppmであり、pHが0.5、5、10又は14である100℃の水に1時間浸漬した際の溶出率がいずれも50質量%以下であるハイドロゲルを提供することによっても解決される。このようなハイドロゲルは、硫黄分の含有量が少ないため低臭気である。したがって、当該ハイドロゲルは、安全性が高いうえに、環境への影響も少ない。しかも、当該ハイドロゲルは、広範な温度及びpHの水に浸漬した際の溶出率が低く、温度変化やpH変化に対する高い耐性を有するため、種々の用途に好適に用いられる。 The above problem is a hydrogel containing a crosslinked product of polyvinyl alcohol (E), which has a sulfur content of 0.001 to 2000 ppm and a pH of 0.5, 5, 10 or 14 at 100 ° C. It is also solved by providing a hydrogel having an elution rate of 50% by mass or less when immersed in water for 1 hour. Such hydrogels have a low odor due to their low sulfur content. Therefore, the hydrogel is highly safe and has little impact on the environment. Moreover, the hydrogel has a low elution rate when immersed in water having a wide range of temperatures and pH, and has high resistance to temperature changes and pH changes, so that it is suitably used for various purposes.
 ポリビニルアルコール(E)における、全構成単位に対するビニルアルコール単位の含有量及び粘度平均重合度は上述した変性ビニルアルコール系重合体(A)と同じであることが好ましい。 It is preferable that the content and viscosity average degree of polymerization of the vinyl alcohol unit with respect to all the constituent units in the polyvinyl alcohol (E) are the same as those of the modified vinyl alcohol-based polymer (A) described above.
 ポリビニルアルコール(E)のビニルアルコール単位は、加水分解や加アルコール分解などによってビニルエステル単位から誘導することができる。そのためビニルエステル単位からビニルアルコール単位に変換する際の条件等によってはポリビニルアルコール(E)中にビニルエステル単位が残存することがある。このようなビニルエステル単位としては、上述した変性ビニルアルコール系重合体(A)と同様のものが挙げられる。 The vinyl alcohol unit of polyvinyl alcohol (E) can be derived from the vinyl ester unit by hydrolysis, alcohol decomposition, or the like. Therefore, the vinyl ester unit may remain in the polyvinyl alcohol (E) depending on the conditions for converting the vinyl ester unit to the vinyl alcohol unit. Examples of such a vinyl ester unit include those similar to the above-mentioned modified vinyl alcohol-based polymer (A).
 得られるハイドロゲルの温度変化やpH変化に対する耐性や再膨潤性を向上させる点から、ポリビニルアルコール(E)が架橋性基を含有することが好ましい。架橋性基としては、水中でも高効率な反応が期待できる(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、アリル基、ビニルエーテル基、ビニルエステル基、ビニルフェニル基、ビニリデン基、ビニレン基およびこれらの誘導体等のエチレン性二重結合を有する基が好ましい。 It is preferable that the polyvinyl alcohol (E) contains a crosslinkable group from the viewpoint of improving the resistance to temperature change and pH change and the re-swelling property of the obtained hydrogel. As the crosslinkable group, a (meth) acryloyloxy group, a (meth) acryloylamino group, an allyl group, a vinyl ether group, a vinyl ester group, a vinylphenyl group, a vinylidene group, a vinylene group and these can be expected to react highly efficiently even in water. A group having an ethylenic double bond, such as a derivative of the above, is preferable.
 本発明の効果を阻害しない範囲であれば、ポリビニルアルコール(E)がビニルアルコール単位及びビニルエステル単位、及び架橋性基又はその誘導体を有する単量体以外の他の単量体単位を含有していてもよい。このような他の単量体単位としては、変性ビニルアルコール系重合体(A)に含有されていてもよいビニルアルコール単位及びビニルエステル単位以外の他の単量体単位として上述したものが挙げられる。 As long as the effect of the present invention is not impaired, the polyvinyl alcohol (E) contains a vinyl alcohol unit, a vinyl ester unit, and a monomer unit other than a monomer having a crosslinkable group or a derivative thereof. You may. Examples of such other monomer units include those described above as other monomer units other than the vinyl alcohol unit and the vinyl ester unit that may be contained in the modified vinyl alcohol-based polymer (A). ..
 ポリビニルアルコール(E)中の全構成単位に対する他の単量体単位の含有量は、通常10モル%以下であり、5モル%以下が好ましく、1モル%以下がより好ましい。 The content of other monomer units in the polyvinyl alcohol (E) with respect to all the constituent units is usually 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
 ハイドロゲルの再膨潤性が向上する点から、ポリビニルアルコール(E)において、全ビニルエステル単位に対する、三連鎖以上で存在するビニルエステル単位の割合が20モル%以下であることが好ましい。前記割合は18モル%以下がより好ましく、16モル%以下がさらに好ましく、15モル%以下が特に好ましい。一方、三連鎖以上で存在するビニルエステル単位の割合は通常0.1モル%以上である。 From the viewpoint of improving the re-swelling property of the hydrogel, it is preferable that the ratio of the vinyl ester units present in three or more chains to the total vinyl ester units in the polyvinyl alcohol (E) is 20 mol% or less. The ratio is more preferably 18 mol% or less, further preferably 16 mol% or less, and particularly preferably 15 mol% or less. On the other hand, the proportion of vinyl ester units present in three or more chains is usually 0.1 mol% or more.
 架橋性基を有するポリビニルアルコール(E)の製造方法としては、ポリビニルアルコールに対して、架橋性基又はその誘導体を有する化合物を反応させる方法や、架橋性基又はその誘導体を有する単量体をビニルエステルとともに共重合させた後にけん化する方法等が挙げられる。 As a method for producing polyvinyl alcohol (E) having a crosslinkable group, a method of reacting polyvinyl alcohol with a compound having a crosslinkable group or a derivative thereof, or a monomer having a crosslinkable group or a derivative thereof is vinyl. Examples thereof include a method of cross-linking with an ester and then cross-linking.
 架橋性基を有するポリビニルアルコール(E)として、中でも上述した変性ビニルアルコール系重合体(A)がより好ましい。すなわち、前記ハイドロゲルが、上述した、変性ビニルアルコール系重合体(A)及び開始剤(B)を含む本発明のインクの架橋物を含むものであることが好ましい。 As the polyvinyl alcohol (E) having a crosslinkable group, the above-mentioned modified vinyl alcohol-based polymer (A) is more preferable. That is, it is preferable that the hydrogel contains a crosslinked product of the ink of the present invention containing the modified vinyl alcohol polymer (A) and the initiator (B) described above.
 ポリビニルアルコール(E)中の全構成単位に対する架橋性基の含有量は、上述した変性ビニルアルコール系重合体(A)中の上記式(1)で示されるビニルエステル単位の含有量と同じであることが好ましい。 The content of the crosslinkable group with respect to all the structural units in the polyvinyl alcohol (E) is the same as the content of the vinyl ester unit represented by the above formula (1) in the above-mentioned modified vinyl alcohol-based polymer (A). Is preferable.
 本発明のハイドロゲル中のポリビニルアルコール(E)の含有量は1~70質量%が好ましい。前記含有量が1質量%未満の場合、ゲル強度が不十分になるおそれがある。前記含有量は3質量%以上がより好ましく、5質量%以上がさらに好ましく、7質量%以上が特に好ましく、8質量%以上が最も好ましい。一方、前記含有量が70質量%を超える場合、得られる水溶液の粘度が高くなりすぎて取り扱い難くなるおそれがある。前記含有量は50質量%以下がより好ましく、40質量%以下がさらに好ましく、30質量%以下が特に好ましく、20質量%以下が最も好ましい。 The content of polyvinyl alcohol (E) in the hydrogel of the present invention is preferably 1 to 70% by mass. If the content is less than 1% by mass, the gel strength may be insufficient. The content is more preferably 3% by mass or more, further preferably 5% by mass or more, particularly preferably 7% by mass or more, and most preferably 8% by mass or more. On the other hand, if the content exceeds 70% by mass, the viscosity of the obtained aqueous solution may become too high, making it difficult to handle. The content is more preferably 50% by mass or less, further preferably 40% by mass or less, particularly preferably 30% by mass or less, and most preferably 20% by mass or less.
 前記ハイドロゲルがさらに強度付与剤(C)を含むことが好ましい。強度付与剤(C)として、本発明のインクに含有されるものとして上述したものが用いられる。 It is preferable that the hydrogel further contains the strength-imparting agent (C). As the strength-imparting agent (C), those described above are used as those contained in the ink of the present invention.
 前記ハイドロゲル中の強度付与剤(C)の含有量は0.1~50質量%が好ましい。前記含有量が0.1質量%未満の場合、ゲル強度の向上効果が得られないおそれがある。前記含有量は0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましく、2.0質量%以上が特に好ましく、3.0質量%以上が最も好ましい。一方、前記含有量が50質量%を超える場合、ゲル化しにくくなるおそれがある。前記含有量は40質量%以下がより好ましく、30質量%以下がさらに好ましく、20質量%以下が特に好ましく、10質量%以下が最も好ましい。 The content of the strength-imparting agent (C) in the hydrogel is preferably 0.1 to 50% by mass. If the content is less than 0.1% by mass, the effect of improving the gel strength may not be obtained. The content is more preferably 0.5% by mass or more, further preferably 1.0% by mass or more, particularly preferably 2.0% by mass or more, and most preferably 3.0% by mass or more. On the other hand, if the content exceeds 50% by mass, gelation may be difficult. The content is more preferably 40% by mass or less, further preferably 30% by mass or less, particularly preferably 20% by mass or less, and most preferably 10% by mass or less.
 前記ハイドロゲルの製造方法は特に限定されないが、ポリビニルアルコール(E)、必要に応じて、強度付与剤(C)、その他の添加剤を含有する水溶液を得た後に、当該水溶液中のポリビニルアルコール(E)を架橋する方法が好ましい。 The method for producing the hydrogel is not particularly limited, but after obtaining an aqueous solution containing polyvinyl alcohol (E), a strength-imparting agent (C) if necessary, and other additives, the polyvinyl alcohol in the aqueous solution ( The method of cross-linking E) is preferable.
 前記ハイドロゲル中の水の含有量は30質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上がさらに好ましい。前記ハイドロゲルは、水以外の他の溶媒を含有していてもよい。他の溶媒として、メタノール、エタノール、プロパノール、イソプロパノール等のモノアルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン等の多価アルコールなどの水溶性溶媒が挙げられる。前記ハイドロゲル中の他の溶媒の含有量は10質量%以下が好ましく、安全性や環境面からは前記ハイドロゲルが実質的に水以外の溶媒を含有しないことがより好ましい。 The content of water in the hydrogel is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass or more. The hydrogel may contain a solvent other than water. Other solvents include monoalcohols such as methanol, ethanol, propanol and isopropanol; and water-soluble solvents such as polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol and glycerin. The content of the other solvent in the hydrogel is preferably 10% by mass or less, and it is more preferable that the hydrogel does not substantially contain a solvent other than water from the viewpoint of safety and the environment.
 前記水溶液の製造方法は特に限定されないが、ポリビニルアルコール(E)を水に溶解させることにより得られた水溶液に他の成分を添加する方法、ポリビニルアルコール(E)と他の成分を水に添加した後、前記ポリビニルアルコール(E)を溶解させる方法等が挙げられる。 The method for producing the aqueous solution is not particularly limited, but a method of adding other components to the aqueous solution obtained by dissolving polyvinyl alcohol (E) in water, polyvinyl alcohol (E) and other components are added to water. After that, a method of dissolving the polyvinyl alcohol (E) and the like can be mentioned.
 ポリビニルアルコール(E)として、上述した架橋性基を有するものを用いる場合、前記水溶液が開始剤(B)を含有することが好ましい。開始剤(B)として、本発明のインクに含有されるものとして上述したものが用いられる。開始剤(B)の添加量は、ポリビニルアルコール(E)100質量部に対して、通常、0.01~10質量部である。前記ハイドロゲルの製造に用いられる、架橋性基を有するポリビニルアルコール(E)及び開始剤(B)を含有する水溶液として、上述した本発明のインクが好適に用いられる。 When a polyvinyl alcohol (E) having the above-mentioned crosslinkable group is used, it is preferable that the aqueous solution contains the initiator (B). As the initiator (B), the above-mentioned one contained in the ink of the present invention is used. The amount of the initiator (B) added is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of polyvinyl alcohol (E). The ink of the present invention described above is preferably used as an aqueous solution containing polyvinyl alcohol (E) having a crosslinkable group and an initiator (B) used in the production of the hydrogel.
 前記水溶液が開始剤(B)を含む場合、当該水溶液がさらに重合禁止剤(D)を含むことが好ましい。重合禁止剤は特に限定されないが、本発明のインクに含有されるものとして上述したものが好適である。前記水溶液が重合禁止剤(D)を含有することにより当該溶液の保存安定性を高めることや、3Dプリンター等を用いた光造形法によってハイドロゲルを造形する際に、精密な形状の造形品を得ることができる。重合禁止剤(D)の添加量は、通常ポリビニルアルコール(E)100質量部に対して、0.001~1質量部である。 When the aqueous solution contains the initiator (B), it is preferable that the aqueous solution further contains the polymerization inhibitor (D). The polymerization inhibitor is not particularly limited, but those described above are preferable as those contained in the ink of the present invention. When the aqueous solution contains a polymerization inhibitor (D) to enhance the storage stability of the solution, or when a hydrogel is formed by a stereolithography method using a 3D printer or the like, a modeled product having a precise shape can be obtained. Obtainable. The amount of the polymerization inhibitor (D) added is usually 0.001 to 1 part by mass with respect to 100 parts by mass of polyvinyl alcohol (E).
 前記水溶液が架橋剤を含有していてもよい。このような架橋剤としては、本発明のインクに含有されるものとして上述したものが挙げられる。 The aqueous solution may contain a cross-linking agent. Examples of such a cross-linking agent include those described above as those contained in the ink of the present invention.
 前記水溶液には、本発明の効果を損なわない範囲内で、色素、防腐剤、防黴剤などの添加剤が含まれていてもよい。これらは、1種を単独で使用しても、2種以上を併用してもよい。 The aqueous solution may contain additives such as pigments, preservatives and fungicides as long as the effects of the present invention are not impaired. These may be used alone or in combination of two or more.
 前記水溶液中のポリビニルアルコール(E)を架橋することによってハイドロゲルが得られる。このときの方法は特に限定されないが、架橋性基を有するポリビニルアルコール(E)、開始剤(B)、及び必要に応じてその他の添加剤を含有する水溶液、好ましくは上述した本発明のインクに対して、活性エネルギー線の照射又は加熱を行う方法が好ましい。活性エネルギー線は、光開始剤を開裂してラジカルを生じさせることができるものであれば特に限定されず、遠紫外線、紫外線(UV)、近紫外線、可視光線、赤外線などの光線、X線、γ線などの電磁波、電子線(EB)、プロトン線(α線)、中性子線などの粒子線などが挙げられる。中でも開始効率、照射装置の入手性、価格等の観点から、紫外線、電子線が好ましく、紫外線がより好ましい。 A hydrogel can be obtained by cross-linking the polyvinyl alcohol (E) in the aqueous solution. The method at this time is not particularly limited, but an aqueous solution containing polyvinyl alcohol (E) having a crosslinkable group, an initiator (B), and if necessary, other additives, preferably the above-mentioned ink of the present invention. On the other hand, a method of irradiating or heating with active energy rays is preferable. The active energy beam is not particularly limited as long as it can cleave the photoinitiator to generate a radical, and is a ray of far ultraviolet rays, ultraviolet rays (UV), near ultraviolet rays, visible rays, infrared rays, X-rays, etc. Examples thereof include electromagnetic waves such as γ-rays, electron beams (EB), proton beams (α rays), and particle beams such as neutron rays. Among them, ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable, from the viewpoints of starting efficiency, availability of an irradiation device, price, and the like.
 前記ハイドロゲルの造形方法としては、(a)前記水溶液を、所定の型枠等に流し込んだ後、ポリビニルアルコール(E)を架橋させる方法、(b)3Dプリンターを用いて前記ハイドロゲルを造形する方法等が挙げられる。 The hydrogel molding method includes (a) a method of pouring the aqueous solution into a predetermined mold and the like, and then cross-linking polyvinyl alcohol (E), and (b) molding the hydrogel using a 3D printer. The method and the like can be mentioned.
 (b)の具体的な方法について、以下に説明する。造形用インクとして、架橋性基を有するポリビニルアルコール(E)、開始剤(B)、及び必要に応じてその他の添加剤を含有する水溶液、好ましくは、上述した本発明のインクが用いられる。3Dプリンターの方式としては、材料押出堆積法、インクジェット法、光造形法などが挙げられる。材料押出堆積法では、シリンジ等を用いて前記インクを所望の位置に吐出する工程と、吐出された前記インクに対して、活性エネルギー線を照射する工程とを繰り返してハイドロゲルを堆積させることにより造形物が得られる。インクジェット法では、インクジェットヘッドから前記インクを所望の位置に吐出する工程と、吐出された前記インクに対して、活性エネルギー線を照射する工程とを行うことにより造形物が得られる。光造形法では、容器に充填された前記インクの液面の所望の部分に活性エネルギー線を照射することにより当該部分をゲル化させる工程と、ゲル化した部分を前記インクに浸漬させることにより、その上面を前記インクで覆う工程とを繰り返してハイドロゲルを堆積させることにより造形物が得られる。 The specific method of (b) will be described below. As the modeling ink, an aqueous solution containing polyvinyl alcohol (E) having a crosslinkable group, an initiator (B), and if necessary, other additives, preferably the ink of the present invention described above is used. Examples of the 3D printer method include a material extrusion deposition method, an inkjet method, and a stereolithography method. In the material extrusion deposition method, the hydrogel is deposited by repeating a step of ejecting the ink to a desired position using a syringe or the like and a step of irradiating the ejected ink with active energy rays. A model is obtained. In the inkjet method, a modeled product is obtained by performing a step of ejecting the ink from the inkjet head to a desired position and a step of irradiating the ejected ink with active energy rays. In the stereolithography method, a step of irradiating a desired portion of the liquid surface of the ink filled in a container with active energy rays to gel the portion, and a step of immersing the gelled portion in the ink are used. A modeled product is obtained by repeating the step of covering the upper surface with the ink and depositing the hydrogel.
 こうして得られたハイドロゲルをそのまま使用することもできるが、水などの溶媒に浸漬して平衡膨潤状態にした後に使用してもよい。 The hydrogel thus obtained can be used as it is, but it may also be used after being immersed in a solvent such as water to bring it into an equilibrium swelling state.
 本発明において、pHが0.5、5、10又は14である100℃の水に前記ハイドロゲルを1時間浸漬した際の溶出率がいずれも50質量%以下である必要がある。このような条件を満たすハイドロゲルは広範な温度及びpHにおいて高い耐性を有するため、種々の用途において好適に用いられる。pHが0.5又は5の水は、水に硫酸を添加してpHを所定の値に調整することにより得られ、pHが10又は14の水は、水に水酸化ナトリウムを添加してpHを所定の値に調整することにより得られる。pHを所定の値に調整したそれぞれの水を100℃に加熱した後、ハイドロゲルの試験片を前記水に1時間浸漬させ、浸漬前後のハイドロゲルの質量(乾燥質量)から前記溶出率が求められ、具体的には実施例に記載された方法が採用される。 In the present invention, the elution rate when the hydrogel is immersed in water at 100 ° C. having a pH of 0.5, 5, 10 or 14 for 1 hour is required to be 50% by mass or less. Hydrogels that satisfy such conditions have high resistance to a wide range of temperatures and pH, and are therefore suitably used in various applications. Water having a pH of 0.5 or 5 is obtained by adding sulfuric acid to water to adjust the pH to a predetermined value, and water having a pH of 10 or 14 is obtained by adding sodium hydroxide to water. Is obtained by adjusting to a predetermined value. After heating each water whose pH has been adjusted to a predetermined value to 100 ° C., the test piece of the hydrogel is immersed in the water for 1 hour, and the elution rate is obtained from the mass (dry mass) of the hydrogel before and after the immersion. Specifically, the method described in the examples is adopted.
 本発明のハイドロゲル中の硫黄分の含有量が0.001~2000ppmである必要がある。このように硫黄分の含有量が一定以下であることにより、得られるハイドロゲルの臭気が低減する。したがって、本発明のハイドロゲルは、安全性が高いうえに、環境面でも優れる。硫黄分の含有量は1500ppm以下が好ましく、1000ppm以下がより好ましく、500ppm以下がさらに好ましく、300ppm以下が特に好ましく、200ppm以下が最も好ましい。一方、硫黄分の含有量が0.001ppm未満の場合、ポリビニルアルコール(A)の工業的な製造が難しくなるおそれがある。硫黄分の含有量は0.01ppm以上がより好ましく、0.1ppm以上がさらに好ましく、1ppm以上がさらに好ましい。 The sulfur content in the hydrogel of the present invention needs to be 0.001 to 2000 ppm. When the sulfur content is below a certain level in this way, the odor of the obtained hydrogel is reduced. Therefore, the hydrogel of the present invention is not only highly safe but also environmentally friendly. The sulfur content is preferably 1500 ppm or less, more preferably 1000 ppm or less, further preferably 500 ppm or less, particularly preferably 300 ppm or less, and most preferably 200 ppm or less. On the other hand, if the sulfur content is less than 0.001 ppm, it may be difficult to industrially produce polyvinyl alcohol (A). The sulfur content is more preferably 0.01 ppm or more, further preferably 0.1 ppm or more, still more preferably 1 ppm or more.
 本発明のハイドロゲルの初期含水率W1(質量%)及び前記ハイドロゲルを40℃で8時間真空乾燥し、さらに120℃で1時間真空乾燥してから、40℃の水に48時間浸漬した後の含水率W2(質量%)が下記式(I)を満足することが好ましい。このようなハイドロゲルは再膨潤性に優れるため、止水材等の乾燥と膨潤が繰り返し行われる用途において好適に用いられる。初期含水率W1及び再膨潤後のハイドロゲルの含水率W2は実施例に記載された方法により求められる。再膨潤後の含水率W2に対する初期含水率W1の比(W1/W2)は1以上がより好ましい。一方、当該比(W1/W2)は1.35以下がより好ましい。
 0.8<(W1/W2)<1.4  (I)
The initial moisture content W1 (mass%) of the hydrogel of the present invention and the hydrogel were vacuum-dried at 40 ° C. for 8 hours, further vacuum-dried at 120 ° C. for 1 hour, and then immersed in water at 40 ° C. for 48 hours. It is preferable that the water content W2 (mass%) of the above satisfies the following formula (I). Since such a hydrogel has excellent re-swelling property, it is suitably used in applications such as a water blocking material in which drying and swelling are repeatedly performed. The initial water content W1 and the water content W2 of the hydrogel after re-swelling are determined by the methods described in the examples. The ratio (W1 / W2) of the initial water content W1 to the water content W2 after re-swelling is more preferably 1 or more. On the other hand, the ratio (W1 / W2) is more preferably 1.35 or less.
0.8 <(W1 / W2) <1.4 (I)
 本発明のハイドロゲルは、広範な温度及びpHにおいて高い耐性を有する。また、当該ハイドロゲルは、硫黄分の含有量が一定以下であり、臭気が少ないため、安全性が高いうえに環境面でも優れる。さらに、当該ハイドロゲルは、ゲル強度が高い。したがって、当該ハイドロゲルは、様々な用途において好適に用いられる。当該ハイドロゲルで構成される、臓器モデル、コンタクトレンズ、ドラッグデリバリー基材、吸着担体、酵素固定化担体、アフィニティー担体、カプセル用担体、排水処理用担体、血管塞栓材、衝撃吸収材、制振材、防音材、地盤改良材、止水材又は防汚塗料が本発明の好適な実施態様であり、本発明のインクはこれらの製造に好適に用いられる。 The hydrogel of the present invention has high resistance to a wide range of temperatures and pH. In addition, the hydrogel has a sulfur content of a certain level or less and has a low odor, so that it is highly safe and environmentally friendly. Furthermore, the hydrogel has high gel strength. Therefore, the hydrogel is suitably used in various applications. Organ model, contact lens, drug delivery base material, adsorption carrier, enzyme-immobilized carrier, affinity carrier, capsule carrier, wastewater treatment carrier, vascular embolizing material, shock absorber, vibration damping material composed of the hydrogel. , Soundproofing material, ground improving material, water blocking material or antifouling paint are preferred embodiments of the present invention, and the ink of the present invention is suitably used for their production.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例、比較例中の「%」および「部」は特に断りのない限り、それぞれ「質量%」および「質量部」を表す。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Unless otherwise specified, "%" and "parts" in Examples and Comparative Examples represent "% by mass" and "parts by mass", respectively.
[ビニルアルコール単位の含有量の算出]
 日本電子株式会社製核磁気共鳴装置「LAMBDA 500」を用い、DMSO-d6溶媒中、室温で変性ビニルアルコール系重合体のH-NMRを測定し、水酸基の結合したメチンプロトン由来のピーク(3.4~4.0ppm)の積分値およびビニルエステル基のメチンプロトン由来のピーク(4.7~5.3ppm)の積分値から、当該重合体のビニルアルコール単位の含有量を算出した。
[Calculation of vinyl alcohol unit content]
Using a nuclear magnetic resonance apparatus "LAMBDA 500" manufactured by Nippon Denshi Co., Ltd., 1 H-NMR of a modified vinyl alcohol polymer was measured in a DMSO-d6 solvent at room temperature, and a peak derived from a methine proton to which a hydroxyl group was bonded (3). The content of the vinyl alcohol unit of the polymer was calculated from the integrated value of (4.4 to 4.0 ppm) and the integrated value of the peak (4.7 to 5.3 ppm) derived from the methine proton of the vinyl ester group.
[変性率の算出]
 日本電子株式会社製核磁気共鳴装置「LAMBDA 500」を用い、DMSO-d6溶媒中、室温で変性ビニルアルコール系重合体のH-NMRを測定し、オレフィンプロトン由来のピーク(5.0~7.5ppm)の積分値から、当該重合体の変性率[全構成単位に対する前記式(1)で示されるビニルエステル単位の含有量(モル%)]を算出した。例えば、実施例1においては、5.6ppmおよび6.0ppmに表れるオレフィンプロトン由来のピークの積分値から、変性率を算出した。
[Calculation of denaturation rate]
Using a nuclear magnetic resonance apparatus "LAMBDA 500" manufactured by Nippon Denshi Co., Ltd., 1 H-NMR of a modified vinyl alcohol polymer was measured in a DMSO-d6 solvent at room temperature, and peaks derived from olefin protons (5.0 to 7) were measured. From the integrated value of (5.5 ppm), the modification rate of the polymer [content of vinyl ester unit represented by the above formula (1) with respect to all constituent units (mol%)] was calculated. For example, in Example 1, the denaturation rate was calculated from the integral value of the peaks derived from olefin protons appearing at 5.6 ppm and 6.0 ppm.
[三連鎖以上で存在するビニルエステル基の割合の算出]
 日本電子株式会社製核磁気共鳴装置「LAMBDA 500」を用い、DMSO-d6溶媒にて80℃で変性ビニルアルコール系重合体のH-NMRを測定した。(a)4.7~4.9ppm(水酸基-ビニルエステル基-水酸基の真ん中のメチンプロトン)、(b)4.9~5.05ppm(水酸基-ビニルエステル基-ビニルエステル基の真ん中のメチンプロトン)、(c)5.05~5.25ppm(ビニルエステル基三連鎖の真ん中のメチンプロトン)の積分値から、以下の式に従い、全ビニルエステル単位に対する、三連鎖以上で存在するビニルエステル基の割合を算出した。
 
三連鎖以上で存在するビニルエステル基の割合(%)
=(c)/{(a)+(b)+(c)}×100
[Calculation of the proportion of vinyl ester groups present in three or more chains]
Using a nuclear magnetic resonance apparatus "LAMBDA 500" manufactured by JEOL Ltd., 1 H-NMR of a modified vinyl alcohol polymer was measured at 80 ° C. in a DMSO-d6 solvent. (A) 4.7 to 4.9 ppm (hydroxyl-vinyl ester group-methine proton in the middle of the hydroxyl group), (b) 4.9 to 5.05 ppm (hydroxyl-vinyl ester group-methine proton in the middle of the vinyl ester group) ), (C) From the integrated value of 5.05 to 5.25 ppm (methine proton in the middle of the three vinyl ester group chains), according to the following formula, the vinyl ester groups existing in three or more chains with respect to all vinyl ester units. The ratio was calculated.

Percentage of vinyl ester groups present in three or more chains (%)
= (C) / {(a) + (b) + (c)} × 100
[硫黄分の含量量の評価]
 実施例又は比較例で得られた変性ビニルアルコール系重合体を80℃で12時間乾燥させたのち、パーキンエルマー製有機元素分析装置2400IIを用いて、変性ビニルアルコール系重合体中の硫黄分の含有量を測定した。この数値から、インク中の硫黄分の含有量を算出した。実施例又は比較例で得られたハイドロゲル中の硫黄分の含有量も、変性ビニルアルコール系重合体と同様の方法により測定した。
[Evaluation of sulfur content]
The modified vinyl alcohol-based polymer obtained in Examples or Comparative Examples was dried at 80 ° C. for 12 hours, and then the sulfur content in the modified vinyl alcohol-based polymer was contained using an organic element analyzer 2400II manufactured by PerkinElmer. The amount was measured. From this value, the sulfur content in the ink was calculated. The sulfur content in the hydrogels obtained in Examples or Comparative Examples was also measured by the same method as for the modified vinyl alcohol polymer.
[粘度安定性の評価]
 Brookfield製粘度計「LVDV-2 +PRO」を用い、実施例又は比較例で得られたインクの、調製直後の粘度ηと、調製してから20℃で7日間静置した後の粘度ηをそれぞれ測定した後、粘度比η/ηを計算して下記の基準で粘度安定性を評価した。粘度比η/ηの値が大きいほど、粘度安定性が悪いことを意味する。
 A:ηが1.7未満
 B:ηが1.7以上1.9未満
 C:ηが1.9以上2.1未満
 D:ηが2.1以上
[Evaluation of viscosity stability]
Using the Brookfield viscometer "LVDV-2 + PRO", the viscosity η 0 of the ink obtained in Example or Comparative Example immediately after preparation and the viscosity η 7 after standing at 20 ° C. for 7 days after preparation. After each measurement, the viscosity ratio η 7 / η 0 was calculated and the viscosity stability was evaluated according to the following criteria. The larger the value of the viscosity ratio η 7 / η 0 , the worse the viscosity stability.
A: η 7 / η 0 is less than 1.7 B: η 7 / η 0 is 1.7 or more and less than 1.9 C: η 7 / η 0 is 1.9 or more and less than 2.1 D: η 7 / η 0 is 2.1 or more
[ハイドロゲルのゲル強度の評価]
 特開2015-004059号公報に記載された方法に従って、JIS K-6251-3規格のダンベルカッターを用いて、実施例又は比較例で得られたハイドロゲルシートから試験片を切り出した。食紅を使用して試験片に標点を2つ付け、ノギスでその標点間距離を測定した。マイクロメータを使用して、試験片の幅と厚みを測定した。インストロン社製引張試験機に試験片をセットして、画像データを取得しながら破断応力および破断歪を測定した。なお、歪が1%又は100%の場合におけるそれぞれの応力から簡易的に初期弾性率を求めた。結果を表2に示す。
[Evaluation of gel strength of hydrogel]
A test piece was cut out from the hydrogel sheet obtained in Example or Comparative Example using a dumbbell cutter of JIS K-6251-3 standard according to the method described in JP-A-2015-004059. Two gauge points were attached to the test piece using food coloring, and the distance between the gauge points was measured with a caliper. The width and thickness of the test piece were measured using a micrometer. The test piece was set on an Instron tensile tester, and the breaking stress and breaking strain were measured while acquiring image data. The initial elastic modulus was simply obtained from each stress when the strain was 1% or 100%. The results are shown in Table 2.
[刺激硬化性の評価]
 実施例又は比較例で得られたハイドロゲルについて、一体感のあるものはA、弱いが何とか一体感を示すものはB、一部しかゲル化せずゲルとして取り扱えないものはCと評価した。
[Evaluation of stimulus curability]
Regarding the hydrogels obtained in Examples or Comparative Examples, those having a sense of unity were evaluated as A, those that were weak but somehow showed a sense of unity were evaluated as B, and those that were only partially gelled and could not be treated as a gel were evaluated as C.
[臭気性の評価]
 実施例又は比較例で得られたハイドロゲルのにおいを嗅いで、腐臭をほとんど感じなかったものはA、腐臭を感じたものはBと評価した。
[Evaluation of odor]
When the hydrogels obtained in Examples or Comparative Examples were smelled, those with almost no odor were evaluated as A, and those with odor were evaluated as B.
[ハイドロゲルの耐加水分解性の評価]
 実施例又は比較例で得られたハイドロゲルから10gの試験片を採取して、当該試験片を80℃で12時間真空乾燥した後に質量(W3)を測定した。硫酸を添加してpH0.5と5の水1000gをそれぞれ得た。また、水酸化ナトリウムを添加してpH10と14の水1000gをそれぞれ得た。煮沸しているこれらの水に、別途採取した10gの試験片をそれぞれ添加してから、1時間、100℃にて加熱した後、取り出した。当該試験片を10分間流水で洗浄した後、80℃で12時間真空乾燥し、質量(W4)を測定した。以下の式に従って所定のpHである100℃の水に1時間浸漬した際のハイドロゲルの溶出率を算出し、この溶出率を耐加水分解性の指標とした。溶出率が低いほど耐加水分解性が高いことを意味する。
 溶出率(質量%)=100×([W3]-[W4])/[W3]
[Evaluation of hydrolysis resistance of hydrogel]
A 10 g test piece was taken from the hydrogel obtained in the Example or Comparative Example, and the test piece was vacuum dried at 80 ° C. for 12 hours, and then the mass (W3) was measured. Sulfuric acid was added to obtain 1000 g of water having pH 0.5 and 5, respectively. Further, sodium hydroxide was added to obtain 1000 g of water having pH 10 and 14, respectively. To each of these boiling waters, 10 g of a separately collected test piece was added, heated at 100 ° C. for 1 hour, and then taken out. The test piece was washed with running water for 10 minutes, vacuum dried at 80 ° C. for 12 hours, and the mass (W4) was measured. The elution rate of the hydrogel when immersed in water at 100 ° C. having a predetermined pH for 1 hour was calculated according to the following formula, and this elution rate was used as an index of hydrolysis resistance. The lower the elution rate, the higher the hydrolysis resistance.
Elution rate (mass%) = 100 × ([W3]-[W4]) / [W3]
[ハイドロゲルの再膨潤性の評価]
 実施例又は比較例で得られた架橋直後のハイドロゲルの質量(W5)を測定したのち、80℃にて12時間真空乾燥し、再度質量(W6)を計量した。以下の式に従って初期含水率W1(質量%)を算出した。
 初期含水率W1(質量%)=(W5-W6)/W5×100
[Evaluation of re-swelling property of hydrogel]
The mass (W5) of the hydrogel immediately after cross-linking obtained in Examples or Comparative Examples was measured, vacuum dried at 80 ° C. for 12 hours, and the mass (W6) was measured again. The initial water content W1 (mass%) was calculated according to the following formula.
Initial moisture content W1 (mass%) = (W5-W6) / W5 × 100
 実施例又は比較例で得られたハイドロゲルを40℃で8時間真空乾燥後、さらに120℃で1時間真空乾燥させた。得られた乾燥物を、40℃の水に48時間浸漬させて再膨潤させた後、得られた再膨潤ハイドロゲルの質量(W7)を計量した。前記再膨潤ハイドロゲルを、80℃にて12時間真空乾燥した後に、質量(W8)を計量し、以下の式に従って、再膨潤後の含水率W2(質量%)を算出した。
 再膨潤後の含水率W2(質量%)=(W7-W8)/W7×100
The hydrogels obtained in Examples or Comparative Examples were vacuum dried at 40 ° C. for 8 hours and then vacuum dried at 120 ° C. for 1 hour. The obtained dried product was immersed in water at 40 ° C. for 48 hours to re-swell, and then the mass (W7) of the obtained re-swelling hydrogel was measured. After vacuum-drying the re-swelling hydrogel at 80 ° C. for 12 hours, the mass (W8) was measured, and the water content W2 (mass%) after the re-swelling was calculated according to the following formula.
Moisture content after re-swelling W2 (mass%) = (W7-W8) / W7 × 100
 再膨潤後の含水率W2に対する初期含水率W1の比(W1/W2)を再膨潤性の指標とした。比(W1/W2)が1より大きいほど再膨潤性が低く、一旦乾燥させると元のゲルに復元しにくいことを示し、1より小さいほど再膨潤性が過大であり、元のゲルより膨張したゲルとなることを示す。 The ratio of the initial water content W1 to the water content W2 after re-swelling (W1 / W2) was used as an index of re-swelling property. When the ratio (W1 / W2) is larger than 1, the re-swelling property is low, and once dried, it is difficult to restore the original gel. When the ratio (W1 / W2) is smaller than 1, the re-swelling property is excessive and the gel swells more than the original gel. Indicates that it becomes a gel.
[合成例1]
 攪拌機、還流管、添加口を備えた反応器に、メタクリル酸527.3質量部、イオン交換水39.7質量部、p-メトキシフェノール1.3質量部、47質量%硫酸7.5質量部を順次仕込み、室温で撹拌しながら市販のポリビニルアルコール樹脂(粘度平均重合度1700、けん化度88モル%)100質量部を添加して、撹拌しながら70℃まで昇温し、スラリー状態で2時間反応させた。室温まで冷却し、内容物をろ過して変性ビニルアルコール系重合体を回収し、大量のメタノールで洗浄した後、40℃、1.3Paで20時間乾燥することにより、変性ビニルアルコール系重合体「PVOH-1」を得た。得られた変性ビニルアルコール系重合体の構造解析結果を表1に示す。
[Synthesis Example 1]
527.3 parts by mass of methacrylic acid, 39.7 parts by mass of ion-exchanged water, 1.3 parts by mass of p-methoxyphenol, 7.5 parts by mass of 47 mass% sulfuric acid in a reactor equipped with a stirrer, a reflux tube, and an addition port. , 100 parts by mass of a commercially available polyvinyl alcohol resin (viscosity average degree of polymerization 1700, saponification degree 88 mol%) was added while stirring at room temperature, and the temperature was raised to 70 ° C. while stirring for 2 hours in a slurry state. It was reacted. The modified vinyl alcohol polymer is cooled to room temperature, the contents are filtered to recover the modified vinyl alcohol polymer, washed with a large amount of methanol, and then dried at 40 ° C. and 1.3 Pa for 20 hours to obtain the modified vinyl alcohol polymer ". PVOH-1 ”was obtained. The structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
[合成例2]
 攪拌機、還流管、添加口を備えた反応器に、メタクリル酸499.0質量部、酢酸39.7質量部、イオン交換水28.4質量部、p-メトキシフェノール1.3質量部、パラトルエンスルホン酸一水和物9.1質量部を順次仕込み、室温で撹拌しながら市販のポリビニルアルコール樹脂(粘度平均重合度500、けん化度88モル%)100質量部を添加して、撹拌しながら65℃まで昇温し、スラリー状態で5時間反応させた。その後、実施例1と同様に後処理し、変性ビニルアルコール系重合体「PVOH-2」を得た。得られた変性ビニルアルコール系重合体の構造解析結果を表1に示す。
[Synthesis Example 2]
In a reactor equipped with a stirrer, a reflux tube, and an addition port, 499.0 parts by mass of methacrylic acid, 39.7 parts by mass of acetic acid, 28.4 parts by mass of ion-exchanged water, 1.3 parts by mass of p-methoxyphenol, and paratoluene. 9.1 parts by mass of sulfonic acid monohydrate was sequentially charged, 100 parts by mass of a commercially available polyvinyl alcohol resin (viscosity average polymerization degree 500, saponification degree 88 mol%) was added while stirring at room temperature, and 65 parts by mass was stirred. The temperature was raised to ° C., and the reaction was carried out in a slurry state for 5 hours. Then, it was post-treated in the same manner as in Example 1 to obtain a modified vinyl alcohol-based polymer "PVOH-2". The structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
[合成例3]
 攪拌機、還流管、添加口を備えた反応器に、メタクリル酸454.2質量部、酢酸30.0質量部、イオン交換水56.7質量部、p-メトキシフェノール1.3質量部、パラトルエンスルホン酸一水和物4.2質量部を順次仕込み、室温で撹拌しながら市販のポリビニルアルコール樹脂(粘度平均重合度1700、けん化度99.5モル%)100質量部を添加して、撹拌しながら90℃まで昇温し、スラリー状態で3時間反応させた。その後、実施例1と同様に後処理し、変性ビニルアルコール系重合体「PVOH-3」を得た。得られた変性ビニルアルコール系重合体の構造解析結果を表1に示す。
[Synthesis Example 3]
A reactor equipped with a stirrer, a reflux tube, and an addition port contains 454.2 parts by mass of methacrylic acid, 30.0 parts by mass of acetic acid, 56.7 parts by mass of ion-exchanged water, 1.3 parts by mass of p-methoxyphenol, and paratoluene. 4.2 parts by mass of sulfonic acid monohydrate was sequentially charged, and 100 parts by mass of a commercially available polyvinyl alcohol resin (viscosity average polymerization degree 1700, saponification degree 99.5 mol%) was added while stirring at room temperature, and the mixture was stirred. The temperature was raised to 90 ° C., and the mixture was reacted in a slurry state for 3 hours. Then, it was post-treated in the same manner as in Example 1 to obtain a modified vinyl alcohol-based polymer "PVOH-3". The structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
[合成例4]
 攪拌機、還流管、添加口を備えた反応器に、メタクリル酸510.3質量部、酢酸28.4質量部、イオン交換水28.4質量部、p-メトキシフェノール1.3質量部、パラトルエンスルホン酸一水和物8.1質量部を順次仕込み、室温で撹拌しながら市販のポリビニルアルコール樹脂(粘度平均重合度1700、けん化度95モル%)100質量部を添加して、撹拌しながら65℃まで昇温し、スラリー状態で5時間反応させた。その後、実施例1と同様に後処理し、変性ビニルアルコール系重合体「PVOH-4」を得た。得られた変性ビニルアルコール系重合体の構造解析結果を表1に示す。
[Synthesis Example 4]
A reactor equipped with a stirrer, a reflux tube, and an addition port contains 510.3 parts by mass of methacrylic acid, 28.4 parts by mass of acetic acid, 28.4 parts by mass of ion-exchanged water, 1.3 parts by mass of p-methoxyphenol, and paratoluene. 8.1 parts by mass of sulfonic acid monohydrate was sequentially charged, 100 parts by mass of a commercially available polyvinyl alcohol resin (viscosity average polymerization degree 1700, saponification degree 95 mol%) was added while stirring at room temperature, and 65 parts by mass was stirred. The temperature was raised to ° C., and the reaction was carried out in a slurry state for 5 hours. Then, it was post-treated in the same manner as in Example 1 to obtain a modified vinyl alcohol-based polymer "PVOH-4". The structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
[合成例5]
 攪拌機、還流管、添加口を備えた反応器に、アクリル酸493.3質量部、酢酸36.2質量部、イオン交換水56.7質量部、p-メトキシフェノール1.3質量部、パラトルエンスルホン酸一水和物4.2質量部を順次仕込み、室温で撹拌しながら市販のポリビニルアルコール樹脂(粘度重合度1000、けん化度98.5モル%)100質量部を添加して、撹拌しながら65℃まで昇温し、スラリー状態で5時間反応させた。その後、実施例1と同様に後処理し、変性ビニルアルコール系重合体「PVOH-5」を得た。得られた変性ビニルアルコール系重合体の構造解析結果を表1に示す。
[Synthesis Example 5]
A reactor equipped with a stirrer, a reflux tube, and an addition port contains 493.3 parts by mass of acrylic acid, 36.2 parts by mass of acetic acid, 56.7 parts by mass of ion-exchanged water, 1.3 parts by mass of p-methoxyphenol, and paratoluene. 4.2 parts by mass of sulfonic acid monohydrate was sequentially charged, and 100 parts by mass of a commercially available polyvinyl alcohol resin (viscosity polymerization degree 1000, saponification degree 98.5 mol%) was added while stirring at room temperature, and while stirring. The temperature was raised to 65 ° C., and the reaction was carried out in a slurry state for 5 hours. Then, it was post-treated in the same manner as in Example 1 to obtain a modified vinyl alcohol-based polymer "PVOH-5". The structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
[合成例6]
 攪拌機、還流管、添加口を備えた反応器に、4-ペンテン酸510.3質量部、イオン交換水56.7質量部、p-メトキシフェノール1.3質量部、パラトルエンスルホン酸一水和物4.2質量部を順次仕込み、室温で撹拌しながら市販のポリビニルアルコール樹脂(粘度平均重合度1700、けん化度98.5モル%)100質量部を添加して、撹拌しながら60℃まで昇温し、スラリー状態で3時間反応させた。その後、実施例1と同様に後処理し、変性ビニルアルコール系重合体「PVOH-6」を得た。得られた変性ビニルアルコール系重合体の構造解析結果を表1に示す。
[Synthesis Example 6]
In a reactor equipped with a stirrer, a reflux tube, and an addition port, 510.3 parts by mass of 4-pentenoic acid, 56.7 parts by mass of ion-exchanged water, 1.3 parts by mass of p-methoxyphenol, and paratoluenesulfonic acid monohydration. 4.2 parts by mass of the product was sequentially charged, 100 parts by mass of a commercially available polyvinyl alcohol resin (viscosity average polymerization degree 1700, saponification degree 98.5 mol%) was added while stirring at room temperature, and the temperature was raised to 60 ° C. while stirring. It was warmed and reacted in a slurry state for 3 hours. Then, it was post-treated in the same manner as in Example 1 to obtain a modified vinyl alcohol-based polymer "PVOH-6". The structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
 なお、得られた変性ビニルアルコール系重合体粒子のH-NMR測定を行った結果、不飽和炭化水素基由来のオレフィンプロトンピークとビニルエステル基のメチンプロトンピークが重複したため、三連鎖以上で存在するビニルエステル基の割合を算出できなかった。そこで、水に変性ビニルアルコール系重合体粒子を溶解(変性ビニルアルコール系重合体の含有量5質量%)した後、プロパンチオールを、前記オレフィン1モルに対して、1モル添加し、さらに、光開始剤である2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノンを、プロパンチオール1モルに対して、1モル添加した。こうして調製した溶液に3000mJ/cmの強度で紫外線を照射した。得られた溶液を大量のメタノールに添加して重合体粒子を析出させた後、当該粒子をH-NMRで分析したところ、チオールの付加によりオレフィンプロトンピークが消失したことで、三連鎖以上で存在するビニルエステル基の割合を算出できた。 As a result of 1 H-NMR measurement of the obtained modified vinyl alcohol-based polymer particles, the olefin proton peak derived from the unsaturated hydrocarbon group and the methine proton peak of the vinyl ester group overlapped, so that they existed in three or more chains. The ratio of vinyl ester groups to be produced could not be calculated. Therefore, after dissolving the modified vinyl alcohol-based polymer particles in water (content of the modified vinyl alcohol-based polymer is 5% by mass), 1 mol of propanethiol was added to 1 mol of the olefin, and further, light was added. The initiator 2-hydroxy-4'-(2-hydroxyethoxy) -2-methylpropiophenone was added in an amount of 1 mol per 1 mol of propanethiol. The solution thus prepared was irradiated with ultraviolet rays at an intensity of 3000 mJ / cm 2. After adding the obtained solution to a large amount of methanol to precipitate polymer particles, the particles were analyzed by 1 H-NMR. As a result, the olefin proton peak disappeared due to the addition of thiol, resulting in three or more chains. The proportion of vinyl ester groups present could be calculated.
[合成例7]
 攪拌機、還流管、添加口を備えた反応器に、市販のポリビニルアルコール樹脂(粘度平均重合度1700、けん化度95モル%)100質量部とジメチルスルホキシド960質量部を仕込み、撹拌しながら80℃に昇温し、そのまま4時間加熱撹拌してポリビニルアルコール樹脂を完溶させた。80℃で撹拌を続けながら、メタクリル酸ビニル3.0質量部を添加し、さらに80℃で3時間反応させた。その後、内容物を室温まで放冷した後、大量のメタノール中に撹拌しながら注ぎ込み、変性ビニルアルコール系重合体を析出させた。得られた変性ビニルアルコール系重合体を回収した後、メタノールに1時間浸漬してろ過する洗浄操作を3回繰り返し、回収した固体を40℃、1.3Paで12時間乾燥することにより、変性ビニルアルコール系重合体「PVOH-7」を得た。得られた変性ビニルアルコール系重合体の構造解析結果を表1に示す。
[Synthesis Example 7]
A reactor equipped with a stirrer, a reflux tube, and an addition port is charged with 100 parts by mass of a commercially available polyvinyl alcohol resin (viscosity average degree of polymerization 1700, saponification degree 95 mol%) and 960 parts by mass of dimethyl sulfoxide, and is heated to 80 ° C. while stirring. The temperature was raised and the mixture was heated and stirred for 4 hours to completely dissolve the polyvinyl alcohol resin. While continuing stirring at 80 ° C., 3.0 parts by mass of vinyl methacrylate was added, and the mixture was further reacted at 80 ° C. for 3 hours. Then, after allowing the contents to cool to room temperature, the contents were poured into a large amount of methanol with stirring to precipitate a modified vinyl alcohol-based polymer. After recovering the obtained modified vinyl alcohol-based polymer, the washing operation of immersing in methanol for 1 hour and filtering is repeated 3 times, and the recovered solid is dried at 40 ° C. and 1.3 Pa for 12 hours to modify vinyl. An alcohol-based polymer "PVOH-7" was obtained. The structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
[合成例8]
 攪拌機、還流管、添加口を備えた反応器に、市販のポリビニルアルコール樹脂(粘度平均重合度1700、けん化度98.5モル%)100質量部とイオン交換水9000質量部を仕込み、撹拌しながら80℃に昇温し、そのまま4時間加熱撹拌してポリビニルアルコール樹脂を完溶させた。40℃まで降温し、撹拌を続けながら、5-ノルボルネン-2-カルボキシアルデヒド4.2質量部を添加し、さらに10vol%硫酸水溶液36.7質量部を直接加えた後、40℃で4時間反応させた。その後、内容物を室温まで放冷した後、1モル/LのNaOH水溶液を133質量部添加して中和してから、分画分子量3500の透析膜に入れて脱塩した(8000質量部のイオン交換水を用いて4回実施)。得られた水溶液を大量のメタノール中に撹拌しながら注ぎ込み、変性ビニルアルコール系重合体を析出させた。得られた変性ビニルアルコール系重合体を回収した後、メタノールに1時間浸漬してろ過する洗浄操作を3回繰り返し、回収した固体を40℃、1.3Paで12時間乾燥することにより、変性ビニルアルコール系重合体「PVOH-8」を得た。得られた変性ビニルアルコール系重合体の構造解析結果を表1に示す。
[Synthesis Example 8]
A reactor equipped with a stirrer, a reflux tube, and an addition port is charged with 100 parts by mass of a commercially available polyvinyl alcohol resin (viscosity average degree of polymerization 1700, saponification degree 98.5 mol%) and 9000 parts by mass of ion-exchanged water, and while stirring. The temperature was raised to 80 ° C., and the mixture was heated and stirred for 4 hours to completely dissolve the polyvinyl alcohol resin. The temperature was lowered to 40 ° C., while stirring was continued, 4.2 parts by mass of 5-norbornene-2-carboxyaldehyde was added, and 36.7 parts by mass of a 10 vol% sulfuric acid aqueous solution was directly added, followed by a reaction at 40 ° C. for 4 hours. I let you. Then, the contents were allowed to cool to room temperature, neutralized by adding 133 parts by mass of a 1 mol / L NaOH aqueous solution, and then placed in a dialysis membrane having a molecular weight cut off of 3500 for desalting (8000 parts by mass). Performed 4 times with ion-exchanged water). The obtained aqueous solution was poured into a large amount of methanol with stirring to precipitate a modified vinyl alcohol-based polymer. After recovering the obtained modified vinyl alcohol-based polymer, the washing operation of immersing in methanol for 1 hour and filtering is repeated 3 times, and the recovered solid is dried at 40 ° C. and 1.3 Pa for 12 hours to modify vinyl. An alcohol-based polymer "PVOH-8" was obtained. The structural analysis results of the obtained modified vinyl alcohol polymer are shown in Table 1.
[合成例9]
 攪拌機を備えた耐圧重合槽に、脱イオン水240質量部、三洋化成工業株式会社製乳化剤「エレミノールJS-20」91.4質量部、ペルオキソ二硫酸ナトリウム1.1質量部を添加した後、30分間窒素ガスにてバブリングすることで脱酸素処理を行った。その後60℃まで昇温した後、脱酸素処理後の単量体混合物(アクリル酸n-ブチル/トリメチロールプロパントリメタクリレート/アリルメタクリレート=360/1.8/3.6(質量比))365.4質量部を重合槽内に10mL/分の速度で連続的に添加した。単量体転化率が99%を超えたことを確認した後、脱酸素処理後のジシクロペンタニルメタクリレート45質量部を重合槽内に10mL/分の速度で連続的に添加した。単量体転化率が99%を超えたことを確認した後、100℃まで昇温し、2時間撹拌することで残留重合開始剤の分解処理を行った。重合槽を室温まで冷却した後、コアシェル構造を有するアクリル粒子(乳化液、平均粒子径0.047μm)を得た。固形分濃度は28質量%であった。
[Synthesis Example 9]
After adding 240 parts by mass of deionized water, 91.4 parts by mass of emulsifier "Eleminor JS-20" manufactured by Sanyo Kasei Kogyo Co., Ltd., and 1.1 parts by mass of sodium peroxodisulfate to a pressure-resistant polymerization tank equipped with a stirrer, 30 parts by mass. The deoxidizing treatment was performed by bubbling with nitrogen gas for 1 minute. After that, the temperature was raised to 60 ° C., and then the monomer mixture after deoxidation treatment (n-butyl acrylate / trimethylolpropane trimethacrylate / allyl methacrylate = 360 / 1.8 / 3.6 (mass ratio)) 365. 4 parts by mass was continuously added into the polymerization tank at a rate of 10 mL / min. After confirming that the monomer conversion rate exceeded 99%, 45 parts by mass of the deoxidized dicyclopentanyl methacrylate was continuously added into the polymerization tank at a rate of 10 mL / min. After confirming that the monomer conversion rate exceeded 99%, the temperature was raised to 100 ° C. and the mixture was stirred for 2 hours to decompose the residual polymerization initiator. After cooling the polymerization tank to room temperature, acrylic particles having a core-shell structure (emulsion solution, average particle size 0.047 μm) were obtained. The solid content concentration was 28% by mass.
[実施例1~10]
 変性ビニルアルコール系重合体(A)を溶解させた水溶液に、開始剤(B)として水溶性光重合開始剤であるBASFジャパン製「Irgacure2959」、強度付与剤(C)(実施例7~10)、重合禁止剤(D)としてメトキノンを混合し(実施例10)、変性ビニルアルコール系重合体(A)が溶解した水溶液に強度付与剤(C)の粒子が分散してなるハイドロゲル造形用インクを得た。インクの組成および評価結果を表2に示す。なお、すべての実施例及び比較例において、インクとそれを用いて得られたハイドロゲルとは組成が実質的に同じであった。実施例2では、粘度安定性及び刺激硬化性の評価を行わなかった。強度付与剤(C)は以下に示す化合物を使用した。
 アクリル粒子:合成例9に記載の粒子
 合成スメクタイト:クニミネ工業株式会社製「スメクトンSA」、平均粒子径43μm
 コロイダルシリカ:日産化学株式会社製コロイダルシリカ「スノーテックスC」、平均粒子径0.012μm
[Examples 1 to 10]
BASF Japan's "Irgacure2959", which is a water-soluble photopolymerization initiator as an initiator (B), and a strength-imparting agent (C) (Examples 7 to 10) in an aqueous solution in which a modified vinyl alcohol-based polymer (A) is dissolved. Hydrogel modeling ink in which particles of the strength-imparting agent (C) are dispersed in an aqueous solution in which methquinone is mixed as a polymerization inhibitor (D) (Example 10) and a modified vinyl alcohol-based polymer (A) is dissolved. Got Table 2 shows the composition of the ink and the evaluation results. In all the examples and comparative examples, the composition of the ink and the hydrogel obtained by using the ink was substantially the same. In Example 2, the viscosity stability and the stimulus curability were not evaluated. The following compounds were used as the strength-imparting agent (C).
Acrylic particles: Particles according to Synthesis Example 9 Synthetic smectite: "Smecton SA" manufactured by Kunimine Kogyo Co., Ltd., average particle diameter 43 μm
Colloidal silica: Colloidal silica "Snowtex C" manufactured by Nissan Chemical Industries, Ltd., average particle size 0.012 μm
 得られたインクを、2mm厚のスペーサーを挟み込んだガラス板間に流し込み、GSユアサ製メタルハライドランプを用いて145mW/cmにて30秒(照射エネルギー量:1200mJ/cm)の紫外線を照射し、ハイドロゲル(厚み2mmのシート)を得た後、上記のとおり評価した。ハイドロゲルの組成および評価結果を表2に示す。 The obtained ink is poured between glass plates sandwiching a 2 mm thick spacer, and irradiated with ultraviolet rays at 145 mW / cm 2 for 30 seconds (irradiation energy amount: 1200 mJ / cm 2) using a metal halide lamp manufactured by GS Yuasa. , Hydrogel (sheet with a thickness of 2 mm) was obtained, and then evaluated as described above. The composition of the hydrogel and the evaluation results are shown in Table 2.
[比較例1、2]
 PVOH-1の代わりに市販のポリビニルアルコール樹脂(粘度平均重合度1700、けん化度98.5モル%、比較例1)又はPVOH-7(比較例2)を使用した以外は実施例1と同様にしてインク及びハイドロゲルの作製並びにそれらの評価を行った。インクの組成および評価結果を表2に示す。なお、市販のポリビニルアルコール樹脂を用いた場合(比較例1)、紫外線を照射しても水溶液がゲル化せずハイドロゲルが得られなかったため、ハイドロゲルのゲル強度、耐加水分解性及び再膨潤性の評価を行わなかった。
[Comparative Examples 1 and 2]
Same as in Example 1 except that a commercially available polyvinyl alcohol resin (viscosity average degree of polymerization 1700, saponification degree 98.5 mol%, Comparative Example 1) or PVOH-7 (Comparative Example 2) was used instead of PVOH-1. Inks and hydrogels were prepared and evaluated. Table 2 shows the composition of the ink and the evaluation results. When a commercially available polyvinyl alcohol resin was used (Comparative Example 1), the aqueous solution did not gel even when irradiated with ultraviolet rays, and a hydrogel could not be obtained. Therefore, the gel strength, hydrolysis resistance and reswelling of the hydrogel were not obtained. No sexual evaluation was performed.
[比較例3]
 90質量部のイオン交換水に、市販の無変性ポリビニルアルコール樹脂(粘度平均重合度1700、けん化度98.5モル%)を10質量部添加し、完溶させて10質量%水溶液を調製した。得られた水溶液50質量部に対し、25℃の4.8質量%の飽和ホウ砂水溶液50質量部を添加し均一になるまで十分混合することにより、変性ビニルアルコール系重合体(A)5質量部、水92.6質量部、ホウ砂2.4質量部を含有する水溶液を得た。この水溶液を、2mm厚のスペーサーを挟み込んだガラス板間に流し込み、そのまま2日間室温で静置することにより、ハイドロゲルを得た後、上記のとおり評価した。インクの組成および評価結果を表2に示す。
[Comparative Example 3]
To 90 parts by mass of ion-exchanged water, 10 parts by mass of a commercially available non-modified polyvinyl alcohol resin (viscosity average degree of polymerization 1700, saponification degree 98.5 mol%) was added and completely dissolved to prepare a 10% by mass aqueous solution. To 50 parts by mass of the obtained aqueous solution, 50 parts by mass of a 4.8% by mass saturated borosand aqueous solution at 25 ° C. was added and sufficiently mixed until uniform to make 5 parts by mass of the modified vinyl alcohol-based polymer (A). An aqueous solution containing 92.6 parts by mass of water and 2.4 parts by mass of boar sand was obtained. This aqueous solution was poured between glass plates sandwiching a spacer having a thickness of 2 mm, and allowed to stand at room temperature for 2 days to obtain a hydrogel, which was then evaluated as described above. Table 2 shows the composition of the ink and the evaluation results.
[比較例4]
 40質量部のイオン交換水に、PVOH-8を10質量部添加し、80℃にて4時間攪拌することにより完溶させた。得られた水溶液に合成例8に記載のアクリル粒子の乳化液(固形分濃度28wt%)を15質量部、イオン交換水を35質量部、ポリチオールとして3,6-ジオキサ-1,8-オクタンジチオールを0.27質量部加えて攪拌した。続けて、水溶性光重合開始剤である「Irgacure2959」を0.1質量%となるように加えることにより、PVOH-8を10質量部、水を85質量部、アクリル粒子を4.2質量部含有するハイドロゲル造形用インクを作製した。この溶液を用いたこと以外は実施例1と同様にして、ハイドロゲルを得た後、上記のとおり評価した。インクの組成および評価結果を表2に示す。
[Comparative Example 4]
To 40 parts by mass of ion-exchanged water, 10 parts by mass of PVOH-8 was added, and the mixture was completely dissolved by stirring at 80 ° C. for 4 hours. In the obtained aqueous solution, 15 parts by mass of the emulsion of acrylic particles (solid content concentration 28 wt%) described in Synthesis Example 8, 35 parts by mass of ion-exchanged water, and 3,6-dioxa-1,8-octanedithiol as polythiol. Was added by 0.27 parts by mass and stirred. Subsequently, by adding the water-soluble photopolymerization initiator "Irgacure2959" in an amount of 0.1% by mass, PVOH-8 was added in an amount of 10 parts by mass, water was added in an amount of 85 parts by mass, and acrylic particles were added in an amount of 4.2 parts by mass. A hydrogel molding ink containing the mixture was prepared. A hydrogel was obtained in the same manner as in Example 1 except that this solution was used, and then evaluated as described above. Table 2 shows the composition of the ink and the evaluation results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記式(1)で示されるビニルエステル単位を含有する変性ビニルアルコール系重合体を含有し、硫黄分の含有量が2000ppm以下である本発明のインクは、粘度安定性が良好であるうえに刺激硬化性も良好であった(実施例1、3~10)。また、これらのインクを用いて得られたハイドロゲルは臭気が少なくゲル強度も高かった(実施例1~10)。特に、強度付与剤(C)を含有するハイドロゲル(実施例7~10)は、破断応力及び破断歪が極めて高く、ハイドロゲルとして極めて優れた物性(ゲル強度)を有していた。さらに、本発明のハイドロゲルは、いずれのpHの水(100℃)に対しても溶出率が低く、広範な温度及びpHにおいて高い耐性を有するとともに、臭気も少なく、再膨潤性にも優れていた(実施例1~5、7~9)。 The ink of the present invention containing a modified vinyl alcohol-based polymer containing a vinyl ester unit represented by the above formula (1) and having a sulfur content of 2000 ppm or less has good viscosity stability and is irritating. The curability was also good (Examples 1, 3 to 10). Further, the hydrogels obtained by using these inks had less odor and high gel strength (Examples 1 to 10). In particular, the hydrogels (Examples 7 to 10) containing the strength-imparting agent (C) had extremely high breaking stress and breaking strain, and had extremely excellent physical properties (gel strength) as a hydrogel. Furthermore, the hydrogel of the present invention has a low elution rate with respect to water (100 ° C.) of any pH, has high resistance to a wide range of temperatures and pH, has little odor, and is excellent in reswelling property. (Examples 1 to 5, 7 to 9).
 一方、無変性ポリビニルアルコールを用いた場合(比較例1)、水溶液がゲル化せず、ハイドロゲルが得られなかった。また、硫黄分が多く、三連鎖以上のビニルエステル単位の割合が高いハイドロゲル(比較例2)は、臭気が強いうえに、粘度安定性が低く、再膨潤性も不良であった。さらに、無変性ポリビニルアルコールをホウ砂を用いて架橋させることにより得られたハイドロゲル(比較例3)や5-ノルボルネン-2-カルボキシアルデヒドで変性させたポリビニルアルコールの架橋物を含有するハイドロゲル(比較例4)は、pH変化に対する耐性が低かった。 On the other hand, when unmodified polyvinyl alcohol was used (Comparative Example 1), the aqueous solution did not gel and a hydrogel could not be obtained. Further, the hydrogel (Comparative Example 2) having a high sulfur content and a high proportion of vinyl ester units having three or more chains had a strong odor, low viscosity stability, and poor reswelling property. Further, a hydrogel obtained by cross-linking unmodified polyvinyl alcohol with borax (Comparative Example 3) or a hydrogel containing a cross-linked product of polyvinyl alcohol modified with 5-norbornene-2-carboxyaldehyde (Comparative Example 3). Comparative Example 4) had low resistance to changes in pH.

Claims (15)

  1.  下記式(1)で示されるビニルエステル単位を含む変性ビニルアルコール系重合体(A)及び開始剤(B)を含み、硫黄分の含有量が0.001~2000ppmである、ハイドロゲル造形用インク。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Xは炭素-炭素結合または炭素数1~10の分岐構造を有していてもよい2価の飽和炭化水素基を表し、Yは水素原子または炭素数1~6の分岐構造を有していてもよい飽和炭化水素基を表し、Zは水素原子またはメチル基を表す。]
    Hydrogel molding ink containing a modified vinyl alcohol polymer (A) containing a vinyl ester unit represented by the following formula (1) and an initiator (B), and having a sulfur content of 0.001 to 2000 ppm. ..
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), X represents a divalent saturated hydrocarbon group which may have a carbon-carbon bond or a branched structure having 1 to 10 carbon atoms, and Y represents a hydrogen atom or a branched structure having 1 to 6 carbon atoms. It represents a saturated hydrocarbon group which may have a branched structure, and Z represents a hydrogen atom or a methyl group. ]
  2.  変性ビニルアルコール系重合体(A)における、全構成単位に対するビニルアルコール単位の含有量が60~99.99モル%である、請求項1に記載のハイドロゲル造形用インク。 The hydrogel molding ink according to claim 1, wherein the content of the vinyl alcohol unit with respect to all the constituent units in the modified vinyl alcohol-based polymer (A) is 60 to 99.99 mol%.
  3.  変性ビニルアルコール系重合体(A)における、全ビニルエステル単位に対する、三連鎖以上で存在するビニルエステル単位の割合が20モル%以下である、請求項1または2に記載のハイドロゲル造形用インク。 The hydrogel molding ink according to claim 1 or 2, wherein the ratio of the vinyl ester units present in three or more chains to the total vinyl ester units in the modified vinyl alcohol polymer (A) is 20 mol% or less.
  4.  変性ビニルアルコール系重合体(A)における、全構成単位に対する前記式(1)で示されるビニルエステル単位の含有量が0.01~10モル%である、請求項1~3のいずれかに記載のハイドロゲル造形用インク。 The invention according to any one of claims 1 to 3, wherein the content of the vinyl ester unit represented by the formula (1) in the modified vinyl alcohol polymer (A) with respect to all the constituent units is 0.01 to 10 mol%. Hydrogel modeling ink.
  5.  Yが水素原子である、請求項1~4のいずれかに記載のハイドロゲル造形用インク。 The hydrogel modeling ink according to any one of claims 1 to 4, wherein Y is a hydrogen atom.
  6.  Xが炭素-炭素結合である、請求項1~5のいずれかに記載のハイドロゲル造形用インク。 The hydrogel modeling ink according to any one of claims 1 to 5, wherein X is a carbon-carbon bond.
  7.  さらに強度付与剤(C)を含む、請求項1~6のいずれかに記載のハイドロゲル造形用インク。 The hydrogel modeling ink according to any one of claims 1 to 6, further comprising a strength-imparting agent (C).
  8.  強度付与剤(C)が無機粒子である、請求項7に記載のハイドロゲル造形用インク。 The hydrogel modeling ink according to claim 7, wherein the strength-imparting agent (C) is inorganic particles.
  9.  さらに重合禁止剤(D)を含む、請求項1~8のいずれかに記載のハイドロゲル造形用インク。 The hydrogel modeling ink according to any one of claims 1 to 8, further comprising a polymerization inhibitor (D).
  10.  3Dプリンター用インクである、請求項1~9のいずれかに記載のハイドロゲル造形用インク。 The hydrogel modeling ink according to any one of claims 1 to 9, which is an ink for a 3D printer.
  11.  臓器モデル、コンタクトレンズ、ドラッグデリバリー基材、吸着担体、酵素固定化担体、アフィニティー担体、カプセル用担体、排水処理用担体、血管塞栓材、衝撃吸収材、制振材、防音材、地盤改良材、止水材又は防汚塗料の製造に用いられる、請求項1~10のいずれかに記載のハイドロゲル造形用インク。 Organ model, contact lens, drug delivery base material, adsorption carrier, enzyme-immobilized carrier, affinity carrier, capsule carrier, wastewater treatment carrier, vascular embolization material, shock absorber, vibration damping material, soundproofing material, ground improvement material, The hydrogel molding ink according to any one of claims 1 to 10, which is used for producing a water blocking material or an antifouling paint.
  12.  請求項1に記載のハイドロゲル造形用インクの架橋物を含むハイドロゲルであって、pHが0.5、5、10又は14である100℃の水に1時間浸漬した際の溶出率がいずれも50質量%以下である、ハイドロゲル。 A hydrogel containing a crosslinked product of the hydrogel molding ink according to claim 1, which has an elution rate when immersed in water at 100 ° C. having a pH of 0.5, 5, 10 or 14 for 1 hour. Hydrogel, which is less than 50% by mass.
  13.  前記ハイドロゲルの初期含水率W1(質量%)及び前記ハイドロゲルを40℃で8時間真空乾燥し、さらに120℃で1時間真空乾燥してから、40℃の水に48時間浸漬した後の含水率W2(質量%)が下記式(I)を満足する、請求項12に記載のハイドロゲル。
     0.8<(W1/W2)<1.4  (I)
    The initial moisture content W1 (mass%) of the hydrogel and the hydrogel are vacuum dried at 40 ° C. for 8 hours, further vacuum dried at 120 ° C. for 1 hour, and then immersed in water at 40 ° C. for 48 hours. The hydrogel according to claim 12, wherein the rate W2 (% by mass) satisfies the following formula (I).
    0.8 <(W1 / W2) <1.4 (I)
  14.  さらに強度付与剤(C)を含む、請求項12又は13に記載のハイドロゲル。 The hydrogel according to claim 12 or 13, further comprising a strength-imparting agent (C).
  15.  請求項12~14のいずれかに記載のハイドロゲルで構成される、臓器モデル、コンタクトレンズ、ドラッグデリバリー基材、吸着担体、酵素固定化担体、アフィニティー担体、カプセル用担体、排水処理用担体、血管塞栓材、衝撃吸収材、制振材、防音材、地盤改良材、止水材又は防汚塗料。 Organ model, contact lens, drug delivery substrate, adsorption carrier, enzyme-immobilized carrier, affinity carrier, capsule carrier, wastewater treatment carrier, blood vessel, which are composed of the hydrogel according to any one of claims 12 to 14. Enzyme material, shock absorber, vibration damping material, soundproofing material, ground improvement material, water blocking material or antifouling paint.
PCT/JP2020/048098 2019-12-24 2020-12-23 Ink for hydrogel shaping, and hydrogel using same WO2021132303A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021567516A JPWO2021132303A1 (en) 2019-12-24 2020-12-23

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-233591 2019-12-24
JP2019233591 2019-12-24
JP2019-233592 2019-12-24
JP2019233592 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021132303A1 true WO2021132303A1 (en) 2021-07-01

Family

ID=76575964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048098 WO2021132303A1 (en) 2019-12-24 2020-12-23 Ink for hydrogel shaping, and hydrogel using same

Country Status (2)

Country Link
JP (1) JPWO2021132303A1 (en)
WO (1) WO2021132303A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034610A1 (en) * 2022-08-08 2024-02-15 三菱ケミカル株式会社 Frozen and thawed hydrogel, production method therefor, ophthalmic medical device, and contact lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623727A (en) * 2018-05-30 2018-10-09 雷周玥 A kind of polyelectrolyte elastomer, preparation method and applications
JP2019035043A (en) * 2017-08-18 2019-03-07 株式会社クラレ Stimulus-curable gel
CN110153406A (en) * 2019-05-10 2019-08-23 广东峰华卓立科技股份有限公司 Binder and preparation method thereof for metal 3DP technique
WO2020138284A1 (en) * 2018-12-28 2020-07-02 株式会社クラレ Production method for modified vinyl alcohol polymer particle and particle obtained thereby
WO2020184659A1 (en) * 2019-03-14 2020-09-17 株式会社クラレ Production method for modified vinyl alcohol-based polymer particles and particles obtained using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035043A (en) * 2017-08-18 2019-03-07 株式会社クラレ Stimulus-curable gel
CN108623727A (en) * 2018-05-30 2018-10-09 雷周玥 A kind of polyelectrolyte elastomer, preparation method and applications
WO2020138284A1 (en) * 2018-12-28 2020-07-02 株式会社クラレ Production method for modified vinyl alcohol polymer particle and particle obtained thereby
WO2020184659A1 (en) * 2019-03-14 2020-09-17 株式会社クラレ Production method for modified vinyl alcohol-based polymer particles and particles obtained using same
CN110153406A (en) * 2019-05-10 2019-08-23 广东峰华卓立科技股份有限公司 Binder and preparation method thereof for metal 3DP technique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUHLEBACH A., MULLER B., PHARISA C., HOFMANN M., SEIFERLING B., GUERRY D.: "New Water-Soluble Photo Crosslinkable Polymers Based on Modified Poly(vinyl alcohol)", JOURNAL OF POLYMER SCIENCE : PART A: POLYMER CHEMISTRY, vol. 35, no. 16, 30 November 1997 (1997-11-30), pages 3603 - 3611, XP002560108 *
TANG ZHAOHUI, WEI JIE, YUNG LEWIS, JI BOWEI, MA HONGYANG, QIU CHANGQUAN, YOON KYUNGHWAN, WAN FEN, FANG DUFEI, HSIAO BENJAMIN S., C: "UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds", JOURNAL OF MEMBRANE SCIENCE, vol. 328, no. 1-2, 6 December 2008 (2008-12-06), pages 1 - 5, XP025909362 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034610A1 (en) * 2022-08-08 2024-02-15 三菱ケミカル株式会社 Frozen and thawed hydrogel, production method therefor, ophthalmic medical device, and contact lens

Also Published As

Publication number Publication date
JPWO2021132303A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
KR101350958B1 (en) Preparation Method for Water Absorbent Resin with High Productivity
JP6884068B2 (en) Stimulation curable gel
CN1845939A (en) Spray polymerisation method
CN111819230A (en) Method for preparing super absorbent polymer
CN111868152A (en) Method for preparing super absorbent polymer
US20140031507A1 (en) Method for producing water-absorbing resin
JP7463299B2 (en) Hydrogel-forming composition, hydrogel, and method for producing hydrogel-forming composition
KR20210118762A (en) Preparation method for super absorbent polymer film
WO2021132303A1 (en) Ink for hydrogel shaping, and hydrogel using same
JP3349768B2 (en) Method and composition for producing acrylate polymer
JPH06122707A (en) Production of water-absorbent resin
JPH06122708A (en) Production of water-absorbent resin
JP2901368B2 (en) Method for producing salt-resistant water-absorbent resin
JP3951039B2 (en) Solid electrolyte and method for producing the same
EP0590988B1 (en) Process for producing crosslinked polymer containing carboxyl group
JP7014485B2 (en) Polyvinyl alcohol-based mutual penetration type gel
CN112638348B (en) Method and composition for stabilizing nanogels and dental compositions produced from nanogels
KR20110133973A (en) Process for preparing water absorbent resin using azo type cross-linker
JPH06184211A (en) Improvement in production of powdery superabsorbent by reverse suspension polymerization of acrylic monomer
WO2019216592A1 (en) Method for manufacturing superabsorbent polymer sheet
CN108137743B (en) Process for the preparation of acrylic acid-based polymers
JP3852515B2 (en) Method for producing porous water-absorbing resin
KR101677735B1 (en) Composition for anti-scaling agent of polymerization and method of preventing polymerization scale deposition using the same
JP6555832B2 (en) Method for producing aqueous liquid absorbent resin
JP2006225455A (en) Manufacturing process of water-absorbing resin having high absorption ratio under high pressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567516

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905992

Country of ref document: EP

Kind code of ref document: A1