WO2024034610A1 - Frozen and thawed hydrogel, production method therefor, ophthalmic medical device, and contact lens - Google Patents

Frozen and thawed hydrogel, production method therefor, ophthalmic medical device, and contact lens Download PDF

Info

Publication number
WO2024034610A1
WO2024034610A1 PCT/JP2023/028930 JP2023028930W WO2024034610A1 WO 2024034610 A1 WO2024034610 A1 WO 2024034610A1 JP 2023028930 W JP2023028930 W JP 2023028930W WO 2024034610 A1 WO2024034610 A1 WO 2024034610A1
Authority
WO
WIPO (PCT)
Prior art keywords
freeze
thaw
hydrogel
drug
mass
Prior art date
Application number
PCT/JP2023/028930
Other languages
French (fr)
Japanese (ja)
Inventor
修作 万代
千津子 風呂
祐哉 金森
潤 磯部
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024034610A1 publication Critical patent/WO2024034610A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present invention relates to a freeze-thaw hydrogel, a method for producing the same, an ophthalmic medical device, and a contact lens.
  • This application claims priority based on Japanese Patent Application No. 2022-126533 filed in Japan on August 8, 2022 and Japanese Patent Application No. 2023-050956 filed in Japan on March 28, 2023. , the contents of which are incorporated herein.
  • a contact lens with sustained drug release properties has been studied so that the drug can be delivered to the affected area of the eye over a long period of time by wearing a contact lens containing a therapeutic drug (Patent Document 1).
  • Chemically cross-linked hydrogel is used in contact lenses.
  • a contact lens contains a drug
  • hydrogels with sustained release properties have a problem in that they are difficult to impregnate with drugs.
  • Patent Document 2 On the other hand, by repeatedly freezing and thawing an aqueous solution of polyvinyl alcohol, polyvinyl alcohol can be physically crosslinked to form a hydrogel (Patent Document 2).
  • a hydrogel containing the drug By adding the drug to an aqueous solution of polyvinyl alcohol in advance, a hydrogel containing the drug can be created, and there is no need to impregnate the crosslinked hydrogel with the drug.
  • a hydrogel containing the drug can be created, and there is no need to impregnate the crosslinked hydrogel with the drug.
  • the drug existing near the surface will elute, but the drug existing inside the hydrogel will not elute, resulting in a sustained release. There is a problem with being inferior.
  • An object of the present invention is to provide a hydrogel, an ophthalmological medical device, and a contact lens that exhibit excellent sustained drug release properties, and a manufacturing method that yields a hydrogel that exhibits excellent sustained drug release properties.
  • Polyvinyl alcohol hydrogels produced by the conventional freeze-thaw method have problems such as a portion of the polyvinyl alcohol eluting even in water heated to around body temperature, and the hydrogel becoming cloudy after the freeze-thaw process, resulting in decreased transparency. It was difficult to form a high-quality hydrogel, making it unsuitable for use as a contact lens.
  • Another object of the present invention is to provide a hydrogel with low elution and high transparency, an ophthalmic medical device, and a contact lens, and a manufacturing method that yields a hydrogel with low elution and high transparency.
  • the present inventors discovered the following.
  • modified polyvinyl alcohol By using modified polyvinyl alcohol, the amount of physical crosslinking points can be controlled and a freeze-thaw hydrogel with excellent sustained drug release properties can be obtained.
  • the onset temperature of the absorption peak on the low temperature side is -5°C or lower in the range where the melting point of water in the gel is 0°C or lower when measured at a heating rate of 10°C/min.
  • the freeze-thaw hydrogel becomes a highly transparent freeze-thaw hydrogel with less elution.
  • the water content of the hydrogel is reduced to 75% or less, and then the second freeze-thaw treatment is performed to reduce elution and make it transparent.
  • a polyvinyl alcohol hydrogel with excellent properties can be obtained.
  • the present invention has the following aspects.
  • the modified polyvinyl alcohol has a cationic group, The freeze-thaw hydrogel according to any one of [1] to [7], wherein the drug includes an anionic drug.
  • the modified polyvinyl alcohol has an anionic group, The freeze-thaw hydrogel according to any one of [1] to [7], wherein the drug includes a cationic drug.
  • the cumulative dissolution rate of the drug after 1 hour is 80% by mass or less of the cumulative dissolution rate after 24 hours, according to any one of [1] to [9]. Freeze-thaw hydrogel.
  • Sustained release test The frozen and thawed hydrogel was placed in a 24-well cell culture plate, 1000 ⁇ L of phosphate buffered saline was added, and after standing at 37°C for 15 minutes, the entire amount of the phosphate buffered saline was collected, and then freshly After adding 1000 ⁇ L of phosphate buffered saline and allowing it to stand at 37°C for 15 minutes (30 minutes in total), the entire amount of the phosphate buffered saline was collected, and then 1000 ⁇ L of fresh phosphate buffered saline was added. After adding physiological saline and allowing it to stand at 37° C.
  • the entire amount of the phosphate buffered saline is collected. Repeat this and measure the phosphate buffered saline collected 15 minutes, 30 minutes, 1 hour, 4 hours, 8 hours, and 24 hours after adding the phosphate buffered saline for the first time. The elution amount of the drug is determined as a sample, and the cumulative elution rate at each time is calculated.
  • [11] Prepare a composition containing water, modified polyvinyl alcohol, and a drug, A method for producing a freeze-thaw hydrogel, comprising repeating a cycle of lowering the temperature of the composition to a temperature of -5°C or lower, freezing it, and raising the temperature of the frozen composition to a temperature of 5°C or higher to melt it, twice or more.
  • An ophthalmic medical device comprising the freeze-thaw hydrogel according to any one of [1] to [10].
  • a contact lens comprising the freeze-thaw hydrogel according to any one of [1] to [10].
  • a freeze-thaw hydrogel of polyvinyl alcohol which exhibits an endothermic peak observed in the range of 0°C or less in differential scanning calorimetry under the conditions of -50°C to 150°C and a heating rate of 10°C/min.
  • An ophthalmological medical device comprising the freeze-thaw hydrogel according to any one of [14] to [16].
  • a contact lens comprising the freeze-thaw hydrogel according to any one of [14] to [16].
  • a hydrogel, an ophthalmological medical device, and a contact lens that exhibit excellent sustained drug release properties, and a manufacturing method that yields a hydrogel that exhibits excellent sustained drug release properties.
  • FIG. 1 is a graph showing the sustained release test results of the hydrogels of Examples A1 to A5.
  • Figure 2 is a graph of the endothermic peaks of the PVOH freeze-thaw hydrogel of Example B1 obtained by differential scanning calorimetry.
  • hydrogel is a structure that has a network structure formed by physically or chemically crosslinking polymer molecular chains, and that swells by incorporating water into this network structure.
  • Freeze-thaw hydrogel is a hydrogel in which physical crosslinking points are formed between the molecular chains of polyvinyl alcohol (hereinafter also referred to as "PVOH”) by hydrogen bonds. It is a hydrogel formed by repeatedly freezing and thawing (thawing) an aqueous solution. When an aqueous solution of PVOH is repeatedly frozen and thawed, physical crosslinking points are formed between molecular chains of PVOH by hydrogen bonds, resulting in a hydrogel.
  • PVOH polyvinyl alcohol
  • Freeze-thaw hydrogels can be redissolved at high temperatures, and are different from chemically crosslinked hydrogels obtained by using crosslinking agents or irradiating with energy rays.
  • Conditions for redissolution include, for example, 1 hour at 100°C. " ⁇ " indicating a numerical range means that the numerical values written before and after it are included as lower and upper limits.
  • freeze-thaw hydrogel [Freeze-thaw hydrogel] ⁇ First embodiment ⁇
  • the freeze-thaw hydrogel according to the first embodiment of the present invention includes modified PVOH and a drug.
  • Modified PVOH is PVOH having a modifying group.
  • PVOH is a polymer containing vinyl alcohol units, and is typically a saponified product of a polymer containing vinyl ester monomer units.
  • PVOH may be a polymer containing vinyl ester monomer units.
  • Modified PVOH typically includes vinyl alcohol units and units with modifying groups.
  • the unit having a modifying group is a unit other than vinyl alcohol units and vinyl ester monomer units.
  • the modified PVOH may contain vinyl ester monomer units.
  • Modified PVOH can be produced by saponifying a polymer of a vinyl ester monomer and another unsaturated monomer or by post-modifying PVOH.
  • the modifying group is preferably at least one selected from the group consisting of cationic groups, anionic groups, and nonionic groups.
  • the cationic group include quaternary ammonium bases such as diallyldimethylammonium base, (3-methacrylamidopropyl)trimethylammonium base, [2-(methacryloyloxy)ethyl]trimethylammonium chloride, sulfonium group, oxonium group, and phosphonium group.
  • examples include groups.
  • anionic groups include carboxy groups and salts thereof, sulfo groups and salts thereof, and phosphoric acid groups and salts thereof.
  • nonionic group examples include an acetoacetate group, an acetal group, a urethane group, an ether group, a phosphate group, an oxyalkylene group, an alkylene group, an amide group, a silanol group, an epoxy group, an olefin group, and a diol group.
  • a cationic group is preferred as the modifying group because it has a high affinity with the anionic drug and provides good sustained release properties of the anionic drug.
  • an anionic group is preferable as the modifying group because it has a high affinity with the cationic drug and provides good sustained release properties of the cationic drug.
  • Modified PVOH having a cationic group is also referred to as cationically modified PVOH.
  • Modified PVOH having an anionic group is also referred to as anion-modified PVOH.
  • modified PVOH is copolymerized modified PVOH.
  • Copolymerized modified PVOH is produced by copolymerizing a vinyl ester monomer and another unsaturated monomer that can be copolymerized with the vinyl ester monomer, and saponifying the resulting copolymer. can be manufactured.
  • vinyl ester monomers include vinyl acetate, vinyl formate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, and vinyl versatate.
  • vinyl acetate is preferred from the viewpoint of stable polymerization.
  • unsaturated monomers copolymerizable with the vinyl ester monomer include unsaturated monomers having at least one modification group selected from the group consisting of cationic groups, anionic groups, and nonionic groups.
  • An unsaturated monomer having a cationic group or an unsaturated monomer having an anionic group is particularly preferred.
  • the unsaturated monomer having a cationic group include N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, and diallyltrimethylammonium chloride.
  • unsaturated monomers having an anionic group examples include unsaturated carboxylic acids or salts thereof such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, and undecylenic acid; maleic acid, itaconic acid; , esters in which part of the carboxyl group of polycarboxylic acids such as fumaric acid is esterified (monoalkyl esters of unsaturated dicarboxylic acids, etc.); Olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid, meta-allylsulfonic acid, etc.
  • unsaturated monomers having a nonionic group examples include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, and ⁇ -octadecene; acrylic acid, methacrylic acid, crotonic acid, maleic acid, and maleic anhydride.
  • esters in which all the carboxy groups of unsaturated carboxylic acids such as itaconic acid and undecylenic acid are esterified dialkyl esters of unsaturated dicarboxylic acids, etc.
  • Nitriles such as acrylonitrile and methacrylonitrile; diacetone acrylamide, acrylamide , amides such as methacrylamide; alkyl vinyl ethers; dimethylallyl vinyl ketone; N-vinylpyrrolidone; vinyl chloride; vinylidene chloride; polyoxyalkylenes such as polyoxyethylene (meth)allyl ether, polyoxypropylene (meth)allyl ether, etc.
  • polyoxyalkylene (meth)acrylate such as polyoxyethylene (meth)acrylate, polyoxypropylene (meth)acrylate
  • polyoxy such as polyoxyethylene (meth)acrylamide, polyoxypropylene (meth)acrylamide, etc.
  • Vinyl compounds are; isopropenyl acetate; substituted vinyl acetates such as 1-methoxyvinyl acetate, 1,4-diacetoxy-2-butene, vinylene carbonate, vinyl acetoacetate, and the like.
  • unsaturated monomers may be used alone or in combination of two or more.
  • diallyldimethylammonium chloride and monomethyl maleate are preferred.
  • the ratio of other unsaturated monomers to the total of 100 mol% of the vinyl ester monomer and other unsaturated monomers is preferably 0.2 to 20 mol%, and 0.4 to 10 mol%. More preferred. If the proportion of other unsaturated monomers is within the above range, the amount of modification of the modified PVOH is likely to be within the preferred range described below. The proportion of other unsaturated monomers may be 0.5 to 20 mol%, or 0.8 to 10 mol%.
  • Copolymerization can be performed by any known polymerization method, such as solution polymerization, suspension polymerization, emulsion polymerization, etc. Among these, it is preferable to carry out solution polymerization under reflux because it can efficiently remove the heat of reaction.
  • a solvent for solution polymerization alcohol is usually used, preferably a lower alcohol having 1 to 3 carbon atoms.
  • saponification of the obtained copolymer known saponification methods can be employed. That is, the copolymer can be dissolved in alcohol or a water/alcohol solvent using an alkali catalyst or an acid catalyst.
  • alkali metal hydroxides or alcoholates such as potassium hydroxide, sodium hydroxide, sodium methylate, sodium ethylate, potassium methylate, and lithium methylate can be used.
  • a transesterification reaction using an alkali catalyst in an anhydrous alcohol solvent is preferably used from the viewpoint of reaction rate and the ability to reduce impurities such as fatty acid salts.
  • the reaction temperature of the saponification reaction is usually 20 to 60°C. If the reaction temperature is too low, the reaction rate tends to be low and the reaction efficiency is reduced; if it is too high, the temperature may exceed the boiling point of the reaction solvent, which tends to reduce safety in production.
  • the obtained copolymerized modified PVOH is preferably washed with a washing liquid.
  • the cleaning liquid include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, and methanol is preferred from the viewpoint of cleaning efficiency and drying efficiency.
  • a continuous method may be used as the cleaning method, a batch method is usually adopted.
  • the bath ratio (mass of cleaning liquid/mass of copolymerization-modified PVOH) is usually 1 to 30, preferably 2 to 20. If the bath ratio is too large, a large cleaning device will be required, which tends to increase costs, and if the bath ratio is too small, the cleaning effect will decrease and the number of cleanings will tend to increase.
  • the temperature during washing is usually 10 to 80°C, preferably 20 to 70°C. If the temperature is too high, the amount of volatilization of the cleaning liquid increases, which tends to require reflux equipment. If the temperature is too low, cleaning efficiency tends to decrease. Washing time is typically 5 minutes to 12 hours. If the cleaning time is too long, production efficiency tends to decrease, and if the cleaning time is too short, cleaning tends to be insufficient. Further, the number of times of washing is usually 1 to 10 times, particularly preferably 1 to 5 times. If the number of washings is too large, productivity tends to deteriorate and costs increase.
  • the washed copolymerized modified PVOH is dried with hot air or the like in a continuous or batch manner.
  • the drying temperature is usually 50 to 150°C. If the drying temperature is too high, the copolymerized modified PVOH tends to be thermally degraded, and if the drying temperature is too low, the drying tends to take a long time. Drying time is typically 1 to 48 hours. If the drying time is too long, the copolymerized modified PVOH tends to be thermally degraded, and if the drying time is too short, the drying tends to be insufficient or high temperature drying is required.
  • the content of the solvent contained in the copolymerized modified PVOH after drying is usually 0 to 10% by mass, preferably 0.1 to 5% by mass, and more preferably 0.1 to 1% by mass.
  • the resulting copolymerized modified PVOH usually contains an alkali metal salt of acetic acid derived from the alkali catalyst used during saponification.
  • the content of the alkali metal salt is usually 0.001 to 2% by mass, preferably 0.005 to 1% by mass, and more preferably 0.01 to 0.1% by mass based on the total mass of the copolymerized modified PVOH. It is.
  • methods for adjusting the content of the alkali metal salt include a method of adjusting the amount of an alkali catalyst used during saponification, and a method of washing the copolymerized modified PVOH with alcohol such as ethanol and methanol.
  • Examples of methods for quantifying alkali metal salts include dissolving copolymerized modified PVOH powder in water, using methyl orange as an indicator, and performing neutralization titration with hydrochloric acid to determine the content of alkali metal salts. .
  • modified PVOH examples include post-modified PVOH.
  • Post-modified PVOH can be produced by post-modifying unmodified PVOH.
  • Unmodified PVOH consists only of vinyl alcohol units, or consists of vinyl alcohol units and vinyl ester monomer units before saponification.
  • a modifying group is typically introduced into the OH group of the vinyl alcohol unit of unmodified PVOH.
  • post-modification methods include methods in which unmodified PVOH is subjected to acetoacetic acid esterification, acetalization, urethanization, etherification, phosphoric acid esterification, oxyalkylenization, or dehydration condensation with an acid.
  • Examples of the method for acetoacetate esterification include a method in which a hydroxyl group of unmodified PVOH and acetoacetate are subjected to a transesterification reaction, a method in which unmodified PVOH and diketene are reacted, and the like.
  • acetoacetic esterified modified PVOH is preferable from the viewpoint of solubility in water.
  • any one of the above-mentioned modified PVOH may be used alone, or a mixture of two or more may be used. Further, as the modified PVOH, a mixture of one or more of the above-mentioned modified PVOH and unmodified PVOH may be used.
  • the amount of modification of modified PVOH varies depending on the nature of the modifying group, but is preferably 0.1 to 30 mol%, more preferably 0.3 to 20 mol%, and 0.5 to 10 mol%. It is more preferable that If the amount of modification is above the lower limit, the crosslinking density of the freeze-thaw hydrogel will be low, and not only the drug present near the surface of the freeze-thaw hydrogel but also the drug present inside the freeze-thaw hydrogel will tend to be easily eluted. There is. If the amount of denaturation is below the upper limit, rapid elution of the drug immediately after applying the freeze-thaw hydrogel to the affected area tends to be suppressed.
  • the amount of modification of the modified PVOH may be 0.5 to 20 mol%, or 1 to 10 mol%.
  • the amount of modification is the ratio of the modifying group to 100 mol% of the total units constituting the modified PVOH.
  • the amount of modification is measured by NMR or titration. Note that the amount of denaturation of the denatured PVOH does not change before and after forming it into a freeze-thaw hydrogel. By redissolving the freeze-thawed hydrogel, the amount of denaturation of the denatured PVOH can be measured.
  • a method for redissolving a freeze-thawed hydrogel includes dissolution at high temperature and high pressure.
  • the average saponification degree of the modified PVOH is preferably 95 mol% or more, more preferably 96 mol% or more, even more preferably 97 mol% or more, and may be 100 mol%. If the average degree of saponification is equal to or higher than the lower limit, gelation tends to occur easily and the gel elution rate tends to be reduced.
  • the average degree of saponification is measured according to 3.5 of JIS K 6726:1994. Note that the average degree of saponification of the modified PVOH does not change before and after it is made into a freeze-thaw hydrogel. By redissolving the freeze-thawed hydrogel, the average degree of saponification of the modified PVOH can be measured.
  • the average degree of polymerization of modified PVOH can generally be expressed by the viscosity of an aqueous solution.
  • the viscosity at 20° C. of a 4% by mass aqueous solution of modified PVOH is preferably 5 to 100 mPa ⁇ s, more preferably 13 to 70 mPa ⁇ s, and even more preferably 17 to 40 mPa ⁇ s. If the viscosity is above the above lower limit, gelation tends to occur easily and the dissolution rate of the gel can be reduced. On the other hand, if the viscosity is below the above upper limit, the PVOH aqueous solution is easier to handle and the release of the drug is improved. It tends to be better.
  • the viscosity is measured according to 3.11.2 of JIS K 6726:1994. Note that the average degree of polymerization of the modified PVOH does not change before and after forming it into a freeze-thaw hydrogel. By redissolving the freeze-thaw hydrogel, the average degree of polymerization of the modified PVOH can be measured.
  • the drug is not particularly limited and can be appropriately selected from known drugs depending on the disease to be treated.
  • the agent may be, for example, a nucleic acid, a protein, a carbohydrate (such as a polysaccharide), another organic compound, an inorganic compound, or a combination of two or more thereof.
  • drugs applied to ophthalmological diseases include, but are not limited to, anti-infective agents (antibacterial agents, anti-viral agents, anti-fungal agents, antiprotozoal agents, etc.), angiogenesis inhibitors (anti-vascular endothelial agents, etc.) Cell growth factor (VEGF) agents, etc.), anti-inflammatory agents, intraocular hypotensive agents, antineoplastic agents, anesthetics, autonomic nerve agents, steroids (corticosteroids, etc.), antihistamines, mast cell stabilizers, immunosuppressants , mitosis inhibitors, and the like.
  • anti-infective agents antibacterial agents, anti-viral agents, anti-fungal agents, antiprotozoal agents, etc.
  • angiogenesis inhibitors anti-vascular endothelial agents, etc.
  • VEGF Cell growth factor
  • Non-limiting examples of antimicrobial agents include bacitracin, chloramphenicol, ciprofloxacin, erythromycin, moxifloxacin, gatifloxacin, gentamicin, levofloxacin, sulfacetamide, polymyxin B, vancomycin, tobramycin, or the like. Examples include combinations.
  • Non-limiting examples of antiviral agents include trifluridine, vidarabine, acyclovir, valacyclovir, famciclovir, foscarnet, ganciclovir, formivirsen, cidofovir, or combinations thereof.
  • Non-limiting examples of antifungal agents include amphotericin B, natamycin, fluconazole, itraconazole, ketoconazole, miconazole, or combinations thereof.
  • Non-limiting examples of antiprotozoal agents include polymyxin B, neomycin, clotrimazole, miconazole, ketoconazole, propamidine, polyhexamethylene biguanide, chlorhexidine, itraconazole, or combinations thereof.
  • Non-limiting examples of anti-inflammatory agents include any known steroidal anti-inflammatory drugs (SAIDs), any known non-steroidal anti-inflammatory drugs (NSAIDs), or combinations thereof.
  • SAIDs include glucocorticoids such as dexamethasone, prednisolone, fluorometholone, loteprednol, medrysone, rimexolone, and the like.
  • NSAIDs include diclofenac, flurbiprofen, ketorolac, bromofenac, nepafenac, or combinations thereof.
  • Non-limiting examples of antineoplastic agents include chemotherapeutic agents well known in the art.
  • Non-limiting examples of anesthetics include aminoamides, aminoesters, or combinations thereof.
  • Non-limiting examples of aminoamides include lidocaine, prilocaine, mepivacaine, ropivacaine, or combinations thereof.
  • Non-limiting examples of possible amino esters include benzocaine, procaine, proparacaine, tetracaine, or combinations thereof.
  • Non-limiting examples of autonomic agents include acetylcholine, carbachol, pilocarpine, physostigmine, ecothiophate, atropine, scopolamine, homotrapine, cyclopentolate, tropicamide, dipivefrin, epinephrine, phenylephrine, apraclonidine, brimonidine, cocaine, hydroxy Included are amphetamine, naphazoline, tetrahydrozoline, dapiprazole, betaxolol, carteolol, levobunolol, methiplanolol, timolol, bepotastine besylate, or combinations thereof.
  • Non-limiting examples of antihistamines include pheniramine, antazoline, naphazoline, emedastine, levocarbastine, cromolyn, or combinations thereof.
  • Non-limiting examples of mast cell stabilizers include lodoxamide, pemirolast, nedocromil, olopatadine, ketotifen, azelastine, epinastine, or combinations thereof.
  • the drug is preferably an anionic drug, an amphoteric drug, or a cationic drug because it is easily adsorbed to the gel and its release can be easily controlled.
  • Anionic drugs are drugs that have an anionic group and exhibit a negative charge in water.
  • Non-limiting examples of anionic agents include nucleic acids, tranilast, acitazanolast hydrate, sodium cromoglycate, glutathione, pranoprofen, bromfenac sodium, diclofenac sodium, or combinations thereof.
  • nucleic acids used as drugs include antisense oligonucleotides.
  • Antisense oligonucleotides are also referred to as antisense nucleic acids, and contain a base sequence that can hybridize (i.e., are complementary) to a transcript of a target gene or at least a portion of a target transcript, and are mainly used for antisense oligonucleotides.
  • a single-stranded oligonucleotide whose effect is to suppress the expression of a target gene transcript or the level of a target transcript.
  • the target gene or target transcript whose expression is suppressed, altered, or modified by the antisense effect is not particularly limited, but includes, for example, a gene derived from an organism into which the nucleic acid complex is introduced, for example, its expression in various diseases.
  • the transcription product of the target gene is mRNA transcribed from genomic DNA encoding the target gene, and further includes unbase-modified mRNA, unprocessed mRNA precursor, and the like.
  • Target transcripts can include not only mRNA but also non-coding RNA (ncRNA) such as miRNA. More generally, a transcription product may be any RNA synthesized by a DNA-dependent RNA polymerase.
  • the target transcript is, for example, metastasis associated lung adenocarcinoma transcript 1 (malat1) non-coding RNA, scavenger receptor B1 (SR-B1) mRNA or DMPK (dystrophia myotonica-protein kinase) mRNA may be used.
  • malat1 metastasis associated lung adenocarcinoma transcript 1
  • SR-B1 scavenger receptor B1
  • DMPK distrophia myotonica-protein kinase
  • the base sequences of genes and transcripts can be obtained from known databases such as the NCBI (National Center for Biotechnology Information) database. Anionic drugs and other drugs may be used in combination.
  • Amphoteric drugs are drugs that have an anionic group and a cationic group and have zero charge in water.
  • the ophthalmic drug olopatadine has a single positively charged tertiary amine group and a single negatively charged carboxylic acid group and is therefore considered to have a net charge of zero.
  • Non-limiting examples of amphoteric drugs include levocabastine hydrochloride, amlexanox, olopatadine, lomefloxacin hydrochloride, ofloxacin, norfloxacin, levofloxacin, tosufloxacin, pirenoxine, rapamycin, or combinations thereof. Amphoteric drugs may be used in combination with other drugs.
  • a cationic drug is a drug that has a cationic group and exhibits a positive charge in water.
  • the cationic drug is a polymer.
  • Exemplary cationic polymers include epsilon polylysine ( ⁇ PLL), polyquat, and the like, which are antimicrobial peptides containing multiple arginine and/or lysine groups.
  • a cationic drug is a positively charged group that includes a central carbon atom covalently bonded to three nitrogen atoms and has a double bond between one nitrogen atom and the central carbon. Contains a guanidium group.
  • Typical useful agents for ophthalmic use containing at least one guanidinium group include antihistamines such as epinastine and emedastine; glaucoma drugs such as apraclonidine and brimonidine; guanine derivative antivirals such as ganciclovir and valganciclovir; arginine Containing antimicrobial peptides such as defensins and indolicidin; and biguanide antimicrobials such as chlorhexidine, alexidine, and polyhexamethylene biguanide (PHMB).
  • antihistamines such as epinastine and emedastine
  • glaucoma drugs such as apraclonidine and brimonidine
  • guanine derivative antivirals such as ganciclovir and valganciclovir
  • arginine Containing antimicrobial peptides such as defensins and indolicidin
  • cationic drugs for ophthalmic use include ketotifen, cationic steroids, neostigmine methyl sulfate, oxybuprocaine hydrochloride, naphazoline nitrate, sodium chondroitin sulfate, pilocarpine hydrochloride, distigmine bromide, ecothiopate iodide, epinepherine, Examples include epinepherine bitartrate, carteolol hydrochloride, befunolol hydrochloride, and ripasudil hydrochloride hydrate. A cationic drug and another drug may be used in combination.
  • the freeze-thaw hydrogel may further contain other components other than the modified PVOH and the drug, if necessary, to the extent that the effects of the present invention are not significantly impaired.
  • the freeze-thaw hydrogel when used to treat an ophthalmological disease, it may contain known components other than drugs in formulations for ophthalmological diseases (eye drops, etc.).
  • a freeze-thaw hydrogel when used for a contact lens, it can contain known ingredients (antioxidants, stabilizers, preservatives, osmotic pressure regulators, etc.) as compounded ingredients other than drugs in the contact lens. .
  • the other components may be used alone or in combination of two or more.
  • the content of modified PVOH is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, based on the total mass of the freeze-thaw hydrogel. If the content of modified PVOH is at least the lower limit, the strength of the lens tends to be better. If the content of modified PVOH is below the upper limit, oxygen permeability tends to be better.
  • the content of the drug is determined by taking into consideration the dosage, release amount, etc. of the drug.
  • the content of the drug is not particularly limited, but can be set, for example, in the range of 0.1 to 20% by mass based on the total mass of the freeze-thaw hydrogel. Further, it can be set in a range of 0.2 to 80% by mass based on modified PVOH.
  • the saturated moisture content of the freeze-thaw hydrogel is preferably 50 to 90% by mass, more preferably 60 to 88% by mass. When the saturated moisture content is equal to or higher than the lower limit, oxygen permeability tends to be better. If the saturated moisture content is below the upper limit, the gel strength tends to be better.
  • the compressive modulus of the freeze-thaw hydrogel at 37°C is preferably 0.001 to 0.5 MPa, more preferably 0.005 to 0.4 MPa, and more preferably 0.01 to 0.3 MPa. is even more preferable. If the compressive elastic modulus is equal to or higher than the lower limit value, the wearing feeling tends to be better. If the compressive elastic modulus is below the upper limit, the wearing comfort tends to be better. Compressive modulus is measured by thermomechanical analysis (TMA method).
  • TMA method thermomechanical analysis
  • the compressive elastic modulus of the freeze-thaw hydrogel can be adjusted by the number of repetitions of the freeze-thaw cycle, the degree of saponification of modified PVOH, the degree of polymerization, etc., which will be described later. For example, as the number of repeated freeze-thaw cycles increases, the compressive modulus tends to increase.
  • the freeze-thaw hydrogel preferably has a cumulative dissolution rate of the drug after 1 hour of 90% by mass or less, and preferably 80% by mass or less of the cumulative dissolution rate after 24 hours. is more preferable, and even more preferably 70% by mass or less. If the cumulative dissolution rate after 1 hour is below the upper limit, sustained release properties are excellent.
  • PBS phosphate buffered saline
  • the "cumulative elution ratio" is the mass percentage of the "total amount of drugs eluted by each time” relative to the "drug content of the freeze-thaw hydrogel.”
  • the elution amount of the drug can be determined by measuring the absorbance corresponding to the drug using high performance liquid chromatography (hereinafter also referred to as "HPLC") or a spectrophotometer.
  • the shape of the freeze-thaw hydrogel is not particularly limited, and may be, for example, sheet-shaped, lens-shaped, etc.
  • its shape when viewed from above is not particularly limited, and may be, for example, a polygonal shape such as a quadrangle, an annular shape, a semicircular shape, a crescent shape, an arch shape, or the like.
  • a method for producing the freeze-thaw hydrogel of the first embodiment for example, a composition containing water, modified PVOH, and a drug is prepared, and the composition is cooled to a temperature of ⁇ 5° C. or lower and frozen.
  • a method for producing the freeze-thaw hydrogel of the first embodiment for example, a composition containing water, modified PVOH, and a drug is prepared, and the composition is cooled to a temperature of ⁇ 5° C. or lower and frozen.
  • Examples include a method in which a cycle of heating the composition to a temperature of 5° C. or higher and melting it (hereinafter also referred to as a "freeze-thaw cycle”) is repeated two or more times.
  • the composition can be prepared by mixing water, modified PVOH and drug.
  • the content of modified PVOH in the composition is preferably 5 to 30% by mass, more preferably 10 to 20% by mass, based on the total mass of the composition. If the modified PVOH is at least the lower limit, the gel strength tends to be better. If the modified PVOH is below the upper limit, oxygen permeability tends to be better.
  • the content of water in the composition is preferably 60 to 95% by mass, more preferably 70 to 90% by mass, based on the total mass of the composition.
  • the freezing temperature of the composition is preferably -5°C or lower, more preferably -10°C or lower, from the viewpoint of ease of physical crosslinking. After freezing and before thawing the frozen composition, it is preferred to maintain the composition at freezing temperatures.
  • the holding time at freezing temperature is preferably 30 minutes or more, more preferably 1 hour or more.
  • the upper limit of the holding time at freezing temperature is not particularly limited, but is, for example, 24 hours.
  • the melting temperature of the composition is preferably 5°C or higher, more preferably 10°C or higher, from the viewpoint of ease of physical crosslinking.
  • the upper limit of the melting temperature is not particularly limited, but is, for example, 40°C.
  • the holding time at the melting temperature is preferably 30 minutes or more, more preferably 1 hour or more.
  • the upper limit of the holding time at the melting temperature is not particularly limited, but is, for example, 24 hours.
  • the upper limit of the number of times the freeze-thaw cycle is repeated is not particularly limited, but is, for example, 20 times.
  • a film-like freeze-thaw hydrogel can be obtained by forming a coating film of the composition on a substrate and performing a freeze-thaw cycle.
  • the freeze-thaw hydrogel peeled from the base material may be further processed, such as cutting.
  • a freeze-thaw hydrogel having a shape corresponding to the mold can be obtained.
  • the freeze-thaw hydrogel removed from the mold may be further processed, such as cutting.
  • the method for producing the freeze-thaw hydrogel of the present embodiment includes converting an aqueous solution of PVOH into a hydrogel by a first-stage freeze-thaw treatment, and then reducing the water content of the hydrogel to 75% by mass or less, and then performing a second-stage freeze-thaw treatment.
  • a method of freezing and thawing is preferred.
  • freeze-thaw cycle In the first freeze-thaw process, the operation of lowering the temperature of the PVOH aqueous solution, freezing it, and raising the temperature of the frozen aqueous solution to thaw it (hereinafter also referred to as "freeze-thaw cycle") is performed one or more times.
  • a hydrogel can be obtained by one freeze-thaw cycle, it is preferable to repeat the freeze-thaw cycle two or more times, more preferably three or more times, in order to obtain a hydrogel with sufficiently high strength.
  • the upper limit of the number of times the freeze-thaw cycle is repeated is not particularly limited, but is, for example, 20 times, or even 10 times.
  • the freezing temperature of the aqueous solution is preferably -5°C or lower, more preferably -10°C or lower, from the viewpoint of ease of physical crosslinking. After freezing the aqueous solution, it is preferable to maintain the frozen aqueous solution at a freezing temperature before thawing the frozen aqueous solution.
  • the holding time at freezing temperature is preferably 30 minutes or more, more preferably 1 hour or more.
  • the upper limit of the holding time at freezing temperature is not particularly limited, but is, for example, 24 hours.
  • the melting temperature of the aqueous solution is preferably 5°C or higher, more preferably 10°C or higher, from the viewpoint of ease of physical crosslinking.
  • the holding time at the melting temperature is preferably 30 minutes or more, more preferably 1 hour or more.
  • the upper limit of the holding time at the melting temperature is not particularly limited, but is, for example, 24 hours.
  • the hydrogel After performing the first freeze-thaw treatment, the hydrogel is dried to reduce the water content of the hydrogel to 75% by mass or less.
  • the water content may be adjusted by first drying the hydrogel to a large extent (for example, to a water content of 10% by mass or less) and then humidifying it. By setting the water content to 75% by mass or less, the onset temperature on the low temperature side of the absorption peak in differential scanning calorimetry becomes -5° C. or less, as shown in the second embodiment described below. This results in a highly transparent hydrogel with less elution.
  • the water content of the hydrogel is more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the lower limit of the water content is preferably 10% by mass or more, particularly preferably 20% by mass or more, and particularly preferably 30% by mass or more.
  • Water content is the ratio of the mass of water to the mass of the hydrogel.
  • the water content is calculated by the following formula from the mass of the hydrogel and the mass after drying the hydrogel at 140° C. for 1 hour (mass after drying).
  • Water content (mass%) (mass of hydrogel - mass after drying) / mass of hydrogel x 100
  • a second freeze-thaw process is performed.
  • the conditions for the second-stage freeze-thaw treatment may be the same as those for the first-stage freeze-thaw treatment described above.
  • a film-like freeze-thaw hydrogel is obtained by forming a coating film of an aqueous PVOH solution on a base material, performing the first freeze-thaw treatment, adjusting the water content, and performing the second freeze-thaw treatment. Can be done.
  • the freeze-thaw hydrogel peeled from the base material may be further processed, such as cutting.
  • the freeze-thaw hydrogel removed from the mold may be further processed, such as cutting.
  • the freeze-thaw hydrogel of the first embodiment has excellent sustained drug release properties.
  • PVOH is physically crosslinked, and thus uncrosslinked low molecules are less likely to remain, making it highly safe compared to hydrogels in which PVOH is chemically crosslinked.
  • the content of vinyl alcohol units is lower and the crosslinking density is lower than when PVOH is not modified. Therefore, the drug easily diffuses through the hydrogel, and not only the drug present near the surface of the freeze-thaw hydrogel but also the drug present inside the freeze-thaw hydrogel is eluted, so that the elution of the drug continues for a long time.
  • the freeze-thaw hydrogel of the first embodiment can be used to treat ophthalmological diseases.
  • the freeze-thaw hydrogel of the first embodiment is brought into contact with the cornea or conjunctiva, the drug gradually dissolves into the tear fluid from the freeze-thaw hydrogel.
  • Non-limiting examples of ophthalmological diseases include infections of the eye (including skin, eyelids, conjunctiva or lacrimal drainage system), orbital cellulitis, dacryoadenitis, stye, blepharitis, conjunctivitis, keratitis, corneal infiltrates, Ulcer, endophthalmitis, panophthalmitis, viral keratitis, fungal keratitis ocular herpes zoster, viral conjunctivitis, viral retinitis, uveitis, strabismus, retinal necrosis, scleritis, mucorbacterium infections, dacryotinitis, Acanthamoeba keratitis, toxoplasmosis, giardiasis, leishmaniasis, malaria, helminth infections, and glaucoma.
  • the freeze-thaw hydrogel of the first embodiment can be used as an ophthalmic medical device, specifically a contact lens, a punctal plug, an intraocular lens, an intraocular ring, and the like. Since the freeze-thaw hydrogel of the first embodiment has excellent sustained drug release properties, the ophthalmic medical device including the freeze-thaw hydrogel of the first embodiment also has excellent sustained drug release properties.
  • the freeze-thaw hydrogel according to the second embodiment of the present invention contains PVOH.
  • PVOH is a polymer containing vinyl alcohol units, and is typically a saponified product of a polymer containing vinyl ester monomer units.
  • PVOH may be a polymer containing vinyl ester monomer units.
  • PVOH may be unmodified PVOH or modified PVOH. Modified PVOH is preferred in terms of sustained drug release.
  • Unmodified PVOH is PVOH that does not contain any other monomer units other than vinyl alcohol units and vinyl ester monomer units. Unmodified PVOH consists only of vinyl alcohol units, or consists of vinyl alcohol units and vinyl ester monomer units. Unmodified PVOH can usually be produced by polymerizing a vinyl ester monomer and then saponifying it.
  • vinyl ester monomers examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl versatate.
  • aliphatic vinyl esters such as vinyl trifluoroacetate
  • aromatic vinyl esters such as vinyl benzoate.
  • aliphatic vinyl esters having 3 to 20 carbon atoms, more preferably 4 to 10 carbon atoms, particularly preferably 4 to 7 carbon atoms are preferred, and vinyl acetate is particularly preferred. These are usually used alone, but multiple types may be used simultaneously if necessary.
  • the vinyl ester monomer can be polymerized by any known polymerization method, such as solution polymerization, suspension polymerization, emulsion polymerization, etc. Among these, it is preferable to carry out solution polymerization under reflux because it can efficiently remove the heat of reaction.
  • a solvent for solution polymerization alcohol is usually used, preferably a lower alcohol having 1 to 3 carbon atoms.
  • saponification of the obtained polymer conventionally known saponification methods can be employed. That is, it can be carried out using an alkali catalyst or an acid catalyst in a state in which the polymer is dissolved in alcohol or a water/alcohol solvent.
  • an alkali catalyst for example, alkali metal hydroxides or alcoholates such as potassium hydroxide, sodium hydroxide, sodium methylate, sodium ethylate, potassium methylate, and lithium methylate can be used.
  • a transesterification reaction using an alkali catalyst in an anhydrous alcohol solvent is preferably used from the viewpoint of reaction rate and the ability to reduce impurities such as fatty acid salts.
  • the reaction temperature of the saponification reaction is usually 20 to 60°C. If the reaction temperature is too low, the reaction rate tends to be low and the reaction efficiency is reduced; if it is too high, the temperature may exceed the boiling point of the reaction solvent, which tends to reduce safety in production.
  • saponifying under high pressure using a column-type continuous saponification tower with high pressure resistance it is possible to saponify at a higher temperature, for example, 80 to 150°C, and a small amount of saponification catalyst is used. It is also possible to obtain a product with a high degree of saponification in a short period of time.
  • a cleaning liquid examples include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, and methanol is preferred from the viewpoint of cleaning efficiency and drying efficiency.
  • the washed unmodified PVOH is dried with hot air or the like in a continuous or batch manner.
  • the drying temperature is usually 50 to 150°C. If the drying temperature is too high, unmodified PVOH tends to be thermally degraded, and if the drying temperature is too low, drying tends to take a long time. Drying time is typically 1 to 48 hours. If the drying time is too long, the unmodified PVOH tends to be thermally degraded, and if the drying time is too short, the drying tends to be insufficient or high temperature drying is required.
  • the content of the solvent contained in the unmodified PVOH after drying is usually 0 to 10% by weight, particularly preferably 0.1 to 5% by weight, and even more preferably 0.1 to 1% by weight.
  • the average saponification degree of unmodified PVOH is preferably 95 mol% or more, more preferably 96 mol% or more, even more preferably 97 mol% or more, and may be 100 mol%. . If the average degree of saponification is equal to or higher than the lower limit, gelation tends to occur easily and the gel elution rate tends to be reduced.
  • the average degree of saponification is measured according to 3.5 of JIS K 6726:1994. Note that the average saponification degree of PVOH does not change before and after forming the freeze-thaw hydrogel. By redissolving the freeze-thawed hydrogel, the average degree of saponification of PVOH can be measured.
  • the average degree of polymerization of unmodified PVOH can generally be expressed by the viscosity of an aqueous solution.
  • the viscosity of a 4% by mass aqueous solution of unmodified PVOH at 20° C. is preferably 5 to 100 mPa ⁇ s, more preferably 13 to 70 mPa ⁇ s, and even more preferably 17 to 40 mPa ⁇ s. If the viscosity is above the above lower limit, gelation tends to occur easily and the dissolution rate of the gel can be reduced. On the other hand, if the viscosity is below the above upper limit, the PVOH aqueous solution is easier to handle and the release of the drug is improved. It tends to be better.
  • the viscosity is measured according to 3.11.2 of JIS K 6726:1994. Note that the average degree of polymerization of PVOH does not change before and after forming the freeze-thaw hydrogel. By redissolving the freeze-thaw hydrogel, the average degree of polymerization of PVOH can be measured.
  • modified PVOH examples include those similar to the modified PVOH mentioned in the first embodiment.
  • the freeze-thaw hydrogel of the second embodiment preferably contains a drug.
  • examples of the drug include the same drugs as those mentioned in the first embodiment.
  • the freeze-thaw hydrogel may further contain other components other than PVOH and the drug, if necessary, to the extent that the effects of the present invention are not significantly impaired.
  • the freeze-thaw hydrogel when used to treat an ophthalmological disease, it may contain known components other than drugs in formulations for ophthalmological diseases (eye drops, etc.).
  • a freeze-thaw hydrogel when used for a contact lens, it can contain known ingredients (antioxidants, stabilizers, preservatives, osmotic pressure regulators, etc.) as compounded ingredients other than drugs in the contact lens. .
  • the other components may be used alone or in combination of two or more.
  • the content of PVOH is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, based on the total mass of the freeze-thaw hydrogel. If the content of PVOH is at least the lower limit, the strength of the lens tends to be better. If the content of PVOH is below the upper limit, oxygen permeability tends to be better.
  • the content of the drug is determined by taking into consideration the dosage, release amount, etc. of the drug.
  • the content of the drug is not particularly limited, but can be set, for example, in the range of 0.1 to 20% by mass based on the total mass of the freeze-thaw hydrogel. Further, it can be set in a range of 0.2 to 80% by mass based on PVOH.
  • the saturated moisture content of the freeze-thaw hydrogel is preferably 50 to 90% by mass, more preferably 60 to 88% by mass, and even more preferably 60 to 80% by mass.
  • the saturated moisture content of the freeze-thaw hydrogel is the water content of the freeze-thaw hydrogel immersed in purified water at 37° C. for 24 hours. The saturated moisture content is measured by the dry weight method and calculated using the following formula.
  • the compressive modulus of the freeze-thaw hydrogel at 37° C. is preferably 0.1 to 500 kPa, more preferably 1 to 400 kPa, and even more preferably 3 to 300 kPa. If the compressive elastic modulus is equal to or higher than the lower limit value, the wearing feeling tends to be better. If the compressive elastic modulus is below the upper limit, the wearing comfort tends to be better. Compressive modulus is measured by thermomechanical analysis (TMA method).
  • TMA method thermomechanical analysis
  • the compressive elastic modulus of the freeze-thaw hydrogel can be adjusted by the number of repetitions of the freeze-thaw cycle, the degree of saponification of PVOH, the degree of polymerization, etc., which will be described later. For example, as the number of repeated freeze-thaw cycles increases, the compressive modulus tends to increase.
  • the freeze-thaw hydrogel preferably has a cumulative dissolution rate of the drug after 1 hour of 90% by mass or less, and preferably 80% by mass or less of the cumulative dissolution rate after 24 hours. is more preferable, and even more preferably 70% by mass or less. If the cumulative dissolution rate after 1 hour is below the upper limit, sustained release properties are excellent.
  • PBS phosphate buffered saline
  • the "cumulative elution ratio" is the mass percentage of the "total amount of drugs eluted by each time” relative to the "drug content of the freeze-thaw hydrogel.”
  • the elution amount of the drug can be determined by measuring the absorbance corresponding to the drug using HPLC or a spectrophotometer.
  • the shape of the freeze-thaw hydrogel is not particularly limited, and may be, for example, sheet-shaped, lens-shaped, etc.
  • its shape when viewed from above is not particularly limited, and may be, for example, a polygonal shape such as a quadrangle, an annular shape, a semicircular shape, a crescent shape, an arch shape, or the like.
  • the method for producing the freeze-thaw hydrogel of the second embodiment includes, for example, converting an aqueous solution of PVOH into a hydrogel by a first-stage freeze-thaw treatment, and then reducing the water content of the hydrogel to 75% or less, and then performing a second-stage freeze-thaw treatment. Examples include a method of performing freeze-thaw treatment.
  • the aqueous solution of PVOH contains PVOH and water.
  • the aqueous solution of PVOH may contain a drug.
  • the aqueous solution of PVOH may further contain other components other than PVOH, water and the drug.
  • Aqueous solutions of PVOH can be prepared by mixing water and PVOH, optionally drugs and other ingredients.
  • the content of PVOH in the aqueous solution is preferably 5 to 30% by mass, more preferably 10 to 20% by mass, based on the total mass of the aqueous solution. If the content of PVOH is at least the lower limit, the resulting gel tends to have better gel strength. If the content of PVOH is below the upper limit, the resulting gel tends to have better oxygen permeability.
  • the content of water in the aqueous solution is preferably 60 to 95% by mass, more preferably 70 to 90% by mass, based on the total mass of the aqueous solution.
  • freeze-thaw cycle In the first freeze-thaw process, the operation of lowering the temperature of the PVOH aqueous solution, freezing it, and raising the temperature of the frozen aqueous solution to thaw it (hereinafter also referred to as "freeze-thaw cycle") is performed one or more times.
  • a hydrogel can be obtained by one freeze-thaw cycle, it is preferable to repeat the freeze-thaw cycle two or more times, more preferably three or more times, in order to obtain a hydrogel with sufficiently high strength.
  • the upper limit of the number of times the freeze-thaw cycle is repeated is not particularly limited, but is, for example, 20 times, or even 10 times.
  • the freezing temperature of the aqueous solution is preferably -5°C or lower, more preferably -10°C or lower, from the viewpoint of ease of physical crosslinking. After freezing the aqueous solution, it is preferable to maintain the frozen aqueous solution at a freezing temperature before thawing the frozen aqueous solution.
  • the holding time at freezing temperature is preferably 30 minutes or more, more preferably 1 hour or more.
  • the upper limit of the holding time at freezing temperature is not particularly limited, but is, for example, 24 hours.
  • the melting temperature of the aqueous solution is preferably 5°C or higher, more preferably 10°C or higher, from the viewpoint of ease of physical crosslinking.
  • the holding time at the melting temperature is preferably 30 minutes or more, more preferably 1 hour or more.
  • the upper limit of the holding time at the melting temperature is not particularly limited, but is, for example, 24 hours.
  • the hydrogel After performing the first freeze-thaw treatment, the hydrogel is dried to reduce the water content of the hydrogel to 75% by mass or less.
  • the water content may be adjusted by first drying the hydrogel to a large extent (for example, to a water content of 10% by mass or less) and then humidifying it. When the water content exceeds 75% by mass, the onset temperature on the low-temperature side of the absorption peak of the melting point of water in the hydrogel in differential scanning calorimetry does not fall below -5°C, resulting in a large amount of elution and decreased transparency. It becomes a hydrogel.
  • the water content of the hydrogel is more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the lower limit of the water content is preferably 10% by mass or more, particularly preferably 20% by mass or more, and particularly preferably 30% by mass or more.
  • a second freeze-thaw treatment is performed to obtain the freeze-thaw hydrogel of the second embodiment.
  • the conditions for the second-stage freeze-thaw treatment may be the same as those for the first-stage freeze-thaw treatment described above.
  • a film-like freeze-thaw hydrogel is obtained by forming a coating film of an aqueous solution of PVOH on a base material, performing the first freeze-thaw treatment, adjusting the water content, and performing the second freeze-thaw treatment. Can be done.
  • the freeze-thaw hydrogel peeled from the base material may be further processed, such as cutting.
  • a freeze-thaw hydrogel with a shape corresponding to the mold is created. can be obtained.
  • the freeze-thaw hydrogel removed from the mold may be further processed, such as cutting.
  • the freeze-thaw hydrogel of the second embodiment has a temperature range of 0°C or less in differential scanning calorimetry (hereinafter also referred to as "DSC") under the conditions of -50°C to 150°C and a heating rate of 10°C/min.
  • the onset temperature of the observed endothermic peak (hereinafter also referred to as “DSC onset temperature”) is -5°C or lower.
  • the DSC onset temperature is the temperature at which ice melts, and can also be called the melting point of water in the freeze-thaw hydrogel. When the DSC onset temperature is ⁇ 5° C. or lower, a freeze-thaw hydrogel with little elution and excellent transparency can be obtained.
  • the DSC onset temperature is more preferably -7°C or lower, particularly preferably -8°C or lower.
  • the lower limit of the DSC onset temperature is usually -20°C or higher.
  • the hydrogel contains modified PVOH, crystallization of PVOH will be more uniformly produced, so it is preferable that the hydrogel contains modified PVOH.
  • the amount of modification of the modified PVOH in the second embodiment is preferably 10 mol% or less, more preferably 5 mol% or less, further preferably 3 mol% or less, and even more preferably 1.5 mol% or less, in terms of reducing the amount of elution. Particularly preferred.
  • the preferable lower limit of the amount of modification is the same as above. These upper limit values and lower limit values can be combined as appropriate.
  • the freeze-thaw hydrogel of the second embodiment preferably has a light transmittance of 80% or more at a wavelength of 600 nm, more preferably 90% or more, and most preferably 95% or more.
  • the upper limit of the light transmittance at a wavelength of 600 nm is usually 100% or less.
  • the freeze-thaw hydrogel of the second embodiment preferably has a haze value of 30% or less, more preferably 20% or less, and most preferably 15% or less.
  • the lower limit of the haze value is usually 1% or more.
  • the freeze-thaw hydrogel of the second embodiment has little elution and excellent transparency.
  • the crystallization of polyvinyl alcohol progresses densely and uniformly through the freeze-thaw process, so there is little elution and it has excellent transparency, so when used as a medical contact lens, it can be Visibility is secured without any problems, making it an excellent hydrogel for use in contact lenses.
  • the freeze-thaw hydrogel of the second embodiment contains a drug
  • the freeze-thaw hydrogel can be used, for example, to treat ophthalmological diseases.
  • the freeze-thaw hydrogel of the second embodiment is brought into contact with the cornea or conjunctiva, the drug gradually dissolves into the tear fluid from the freeze-thaw hydrogel.
  • Non-limiting examples of ophthalmological diseases include infections of the eye (including skin, eyelids, conjunctiva or lacrimal drainage system), orbital cellulitis, dacryoadenitis, stye, blepharitis, conjunctivitis, keratitis, corneal infiltrates, Ulcer, endophthalmitis, panophthalmitis, viral keratitis, fungal keratitis ocular herpes zoster, viral conjunctivitis, viral retinitis, uveitis, strabismus, retinal necrosis, scleritis, mucorbacterium infections, dacryotinitis, Acanthamoeba keratitis, toxoplasmosis, giardiasis, leishmaniasis, malaria, helminth infections, and glaucoma.
  • the freeze-thaw hydrogel of the second embodiment can be used as an ophthalmic medical device, specifically a contact lens, a punctal plug, an intraocular lens, an intraocular ring, and the like. Since the freeze-thaw hydrogel of the second embodiment has less elution and excellent transparency, the ophthalmological medical device containing the freeze-thaw hydrogel of the second embodiment also has less elution and excellent transparency.
  • the contact lens of the present invention includes the freeze-thaw hydrogel of the first embodiment or the second embodiment.
  • the contact lens of the present invention may consist only of the freeze-thaw hydrogel of the first embodiment or the second embodiment, or may consist of the freeze-thaw hydrogel of the first embodiment or the second embodiment and other lens materials. It may consist of.
  • the freeze-thaw hydrogel is opaque or translucent, it is preferable that the region through which the optical axis of the contact lens passes is made of another lens material.
  • lens materials known in the field of contact lenses can be used.
  • Other lens materials may be hydrogels.
  • Non-limiting examples of other lens materials include Polymacon, Ocufilcon D, Etafilcom, Omafilcon A, Nelfilcon, Hilafilcom B, Lotrafilcon B, Senofilcon A, Galyfilcon A, Net rafilcon A, Lidofilcon B, Bufilcon A, Deltafilcon A, Phemfilcon , Hioxifilcon A, Perfilcon A, Methafilcon A, and the like.
  • Examples of forms of contact lenses made of freeze-thaw hydrogel and other lens materials include (1) a form in which freeze-thaw hydrogel is embedded in a lens-shaped other lens material, and (2) a lens-shaped other lens material. and (3) a form in which freeze-thaw hydrogel is layered on another lens-shaped lens material.
  • the number of freeze-thaw hydrogels embedded in the other lens material may be one or more.
  • a portion of the freeze-thaw hydrogel may be exposed on the surface of the contact lens (for example, the surface that contacts the cornea or conjunctiva).
  • the freeze-thaw hydrogel is preferably placed in a region other than the region through which the optical axis of the contact lens passes.
  • the shape of the freeze-thaw hydrogel may be annular, semicircular, crescent, arch, etc. Since the freeze-thaw hydrogel of the second embodiment has excellent transparency, it may be placed in a region through which the optical axis of a contact lens passes.
  • Contact lenses made of freeze-thaw hydrogel and other lens materials can be manufactured with reference to known methods (for example, the method described in Japanese Patent Publication No. 2012-511395). For example, by placing the freeze-thaw hydrogel of the present invention in a contact lens mold, injecting a liquid lens material precursor, and curing the injected lens material precursor, a contact lens of the form (1) above can be formed. We can manufacture lenses.
  • the contact lens of the present invention can be housed in a container to form a contact lens product.
  • a container containers similar to known contact lens containers can be used.
  • the container may contain an aqueous solution of the drug along with the contact lens.
  • the aqueous solution of the drug may contain an antioxidant, a stabilizer, a preservative, an osmotic pressure regulator, and the like, if necessary.
  • the contact lens of the present invention can be used, for example, to treat ophthalmological diseases.
  • the ophthalmological diseases include those mentioned above.
  • Part indicates “part by mass.”
  • the obtained methanol solution was diluted with methanol to adjust the solid content concentration to 32% by mass, and the mixture was charged into a kneader, and while maintaining the solution temperature at 35°C, the methanol solution of sodium hydroxide was added to the copolymer. Saponification was carried out by adding sodium hydroxide at a ratio of 20 mmol to 1 mole of vinyl acetate units. The generated solid was filtered, thoroughly washed with methanol, and dried in a hot air drier to obtain the target product, PVOH1.
  • the average degree of saponification of the obtained PVOH1 was 99.4 mol%, the viscosity of a 4% by mass aqueous solution was 25.9 mPa ⁇ s, and the amount of quaternary ammonium modification was 1 mol%.
  • Modified PVOH (hereinafter also referred to as "PVOH2") having a maleic acid group, which is an anionic group, was produced by the following procedure.
  • a reaction vessel equipped with a reflux condenser, a dropping funnel, and a stirrer was charged with 26 parts of methanol, 100 parts of vinyl acetate, and 0.1 part of monomethyl maleate, and the temperature was raised to 60°C under a nitrogen stream while stirring.
  • As a polymerization catalyst 0.001 mol% (based on the total amount of vinyl acetate) of t-butyl peroxyneodecanoate (temperature at which the half-life is 1 hour is 65°C) was added to initiate polymerization.
  • Modified PVOH (hereinafter also referred to as "PVOH3") having an acetoacetyl group, which is a nonionic group, was produced by the following procedure. 100 parts of vinyl acetate and 33 parts of methanol were placed in a reaction vessel equipped with a reflux condenser, a dropping device, and a stirrer, and the temperature was raised under a nitrogen stream while stirring. After reaching the boiling point, 1 part of acetyl peroxide was added. .3 parts were added to start polymerization.
  • the saponified product precipitates, and when it becomes particulate, it is filtered, washed thoroughly with methanol, and dried in a hot air dryer to obtain a 4% by mass aqueous solution with an average saponification degree of 98.0 mol%.
  • Unmodified PVOH with a viscosity of 28 mPa ⁇ s was obtained. 100 parts of the obtained unmodified PVOH was placed in a kneader, 30 parts of acetic acid was added thereto to swell it, the temperature was raised to 60°C while stirring at a rotational speed of 20 rpm, and 5 parts of diketene was added dropwise over 5 hours. The reaction was further continued for 1 hour.
  • the product was washed with methanol and then dried at 70°C for 12 hours to obtain the target product, PVOH3.
  • the average degree of saponification of the obtained PVOH3 was 98.6 mol%
  • the viscosity of a 4% by mass aqueous solution was 27.5 mPa ⁇ s
  • the amount of acetoacetyl group modification was 2.1 mol%.
  • Unmodified PVOH (hereinafter also referred to as "PVOH4") was produced according to the following procedure. 100 parts of vinyl acetate and 33 parts of methanol were placed in a reaction vessel equipped with a reflux condenser, a dropping device, and a stirrer, and the temperature was raised under a nitrogen stream while stirring. After reaching the boiling point, 1 part of acetyl peroxide was added. .3 parts were added to start polymerization. When the polymerization rate of vinyl acetate reaches 81%, a predetermined amount of hydroquinone monomethyl ether is added to terminate the polymerization, and unreacted vinyl acetate monomer is removed from the system by distillation while blowing methanol vapor.
  • PVOH4 Unmodified PVOH
  • Examples A1 to A3, Example A5 ⁇ Manufacture of drug-containing hydrogel contact lenses>
  • the PVOH shown in Table 1 was added to purified water with stirring, heated to 90° C., and stirred for 1 hour to completely dissolve. After slowly cooling to room temperature while stirring, purified water was added to adjust the PVOH concentration to 15% by mass, and the mixture was sterilized in an autoclave at 120° C. for 30 minutes. After cooling to room temperature, 0.8% by mass of nucleic acid as a model drug was mixed with the PVOH aqueous solution based on PVOH to obtain a drug-containing PVOH solution.
  • the obtained drug-containing PVOH solution was transferred to DIA 11 mm, B. C.
  • the obtained drug-containing hydrogel contact lens was placed in a container with 1 mL of phosphate buffered saline (PBS) (approximately 150 times the dry mass of the contact lens) as a storage solution, and the container was heated to prevent PBS from leaking.
  • PBS phosphate buffered saline
  • the container was sealed, immediately cooled to -20°C at a cooling rate of -1°C/min or higher, and stored in a freezer at -20°C for 72 hours. After storage, the container was taken out of the freezer and warmed to room temperature for 10 minutes to obtain a saturated, water-containing, drug-containing hydrogel contact lens for evaluation.
  • the compressive elastic modulus of the drug-containing hydrogel contact lens containing saturated water was measured by penetration measurement using a thermomechanical analyzer (TMA method). Specifically, after a drug-containing hydrogel contact lens was immersed in water to bring it to a saturated hydrated state, a probe with a diameter of 1 mm and a cross-sectional area of 0.785 mm was inserted into an aluminum pan containing water and a sample. A load of 10 mN was held for 30 minutes until the sample temperature stabilized at 37°C, and then a load of 5 mN/min was applied to 300 mN at 37°C to calculate a stress-strain curve and measure the compressive elastic modulus. The results are shown in Table 1.
  • ⁇ Sustained release test> A drug-containing hydrogel contact lens saturated with water was placed in a 24-well cell culture plate, 1000 ⁇ L of phosphate buffered saline (PBS) was added, and after standing at 37° C. for 15 minutes, the entire amount of PBS was collected. Next, 1000 ⁇ L of PBS was newly added, and after standing at 37° C. for 15 minutes (30 minutes in total), the entire amount of PBS was collected. Next, 1000 ⁇ L of PBS was newly added, and after standing at 37° C. for 30 minutes (1 hour in total), the entire amount of PBS was collected. After that, addition of new PBS, standing at 37° C. for 30 minutes, and collection of the entire amount of PBS were repeated.
  • PBS phosphate buffered saline
  • Example A4 the low molecular weight cationic drug ripasudil hydrochloride dihydrate (4-Fluoro-5- ⁇ [(2S)-2-methyl-1,4-diazepan-1-yl]sulfonyl ⁇ isoquinoline monohydrochloride dihydrate) was used as a model drug. ) was used in the same manner as in Example A2 to obtain a saturated hydrated drug-containing hydrogel contact lens for evaluation, and the saturated moisture content and compressive elastic modulus were evaluated. In addition, sustained release test 2 below was conducted. The results are shown in Table 1 and Figure 1.
  • ⁇ Sustained release test 2> A drug-containing hydrogel contact lens saturated with water was placed in a 24-well cell culture plate, 1000 ⁇ L of phosphate buffered saline (PBS) was added, and after standing at 37° C. for 15 minutes, the entire amount of PBS was collected. Next, 1000 ⁇ L of PBS was newly added, and after standing at 37° C. for 15 minutes (30 minutes in total), the entire amount of PBS was collected. Next, 1000 ⁇ L of PBS was newly added, and after standing at 37° C. for 30 minutes (1 hour in total), the entire amount of PBS was collected. After that, addition of new PBS, standing at 37° C. for 30 minutes, and collection of the entire amount of PBS were repeated.
  • PBS phosphate buffered saline
  • the elution of the drug stopped after about 30 minutes, and the elution rate was also low, resulting in poor sustained release properties. This is thought to be because the crosslinking density of the hydrogel is high, and the drug present near the surface of the hydrogel is eluted at once, but the drug inside the hydrogel is not eluted.
  • the drug-containing hydrogel contact lenses of Examples A1 to A4 using modified PVOH tended to have a high elution rate, and the drug was gradually eluted even after 1 hour, showing excellent sustained release properties. It was confirmed that there is.
  • Example A1 which is a combination of PVOH1 having a cationic group and a nucleic acid
  • Example A4 which is a combination of PVOH2 having an anionic group and ripasudil
  • Example A4 which is a combination of PVOH2 having an anionic group and ripasudil
  • Example B1, B2 ⁇ Manufacture of drug-containing hydrogel contact lenses>
  • the PVOH shown in Table 2 was added to purified water with stirring, heated to 90° C., and stirred for 1 hour to completely dissolve. After slowly cooling to room temperature while stirring, purified water was added to adjust the PVOH concentration to 15% by mass, and the mixture was sterilized in an autoclave at 120° C. for 30 minutes. After cooling to room temperature, 0.8% by mass of nucleic acid as a model drug was mixed with the PVOH aqueous solution based on PVOH to obtain a drug-containing PVOH solution.
  • the obtained drug-containing PVOH solution was transferred to DIA 11 mm, B. C.
  • the hydrogel was placed between contact lens molds again, and freezing at -20°C for 2 hours and thawing at 20°C for 1 hour was repeated five times to obtain a contact lens-shaped drug-containing PVOH freeze-thaw hydrogel.
  • the obtained drug-containing PVOH freeze-thaw hydrogel is placed in a container with 1 mL of phosphate buffered saline (PBS) (approximately 150 times the dry mass of the drug-containing PVOH freeze-thaw hydrogel) as a storage solution,
  • PBS phosphate buffered saline
  • the container was sealed to prevent PBS from leaking, immediately cooled to -20°C at a cooling rate of -1°C/min or higher, and stored at -20°C in a freezer for 72 hours. After storage, the container was taken out of the freezer and warmed to room temperature for 10 minutes to obtain a saturated hydrated drug-containing PVOH freeze-thaw hydrogel for evaluation.
  • Example B3, B4 The same drug-containing PVOH solution as in Examples B1 and B2 was added to DIA 11 mm, B. C. (Base curve) Inject into a contact lens mold of 6.5, sandwich between male and female molds, freeze at -20°C for 2 hours, and thaw at 20°C for 1 hour. Repeat the process 10 times to freeze the drug-containing PVOH in the shape of a contact lens. A melted hydrogel was obtained. The obtained drug-containing PVOH freeze-thaw hydrogel was placed in a container with 1 mL of PBS (approximately 150 times the dry mass of the drug-containing PVOH freeze-thaw hydrogel), the container was sealed to prevent PBS from leaking, and the container was immediately poured.
  • PBS approximately 150 times the dry mass of the drug-containing PVOH freeze-thaw hydrogel
  • FIG. 2 shows a graph of the endothermic peak of water obtained by differential scanning calorimetry of the PVOH freeze-thaw hydrogel of Example B1.
  • the PVOH freeze-thaw hydrogels of Examples B1 and B2 in which the water content of the hydrogel was adjusted between the first freeze-thaw treatment and the second freeze-thaw treatment, had a low dissolution rate in warm water, and The light transmittance at 600 nm was high and the haze value was low, indicating that it had excellent stability and transparency in hot water. It can be seen that Examples B3 and B4 in which the water content was not adjusted had high elution rates and insufficient transparency.
  • the PVOH freeze-thaw hydrogels of Examples B1 and B2 had lower DSC onset temperatures than the PVOH freeze-thaw hydrogels of Examples B3 and B4, respectively. This shows that the DSC onset temperature affects the dissolution rate and transparency.
  • freeze-thaw hydrogel of the present invention can be used as ophthalmic medical devices such as contact lenses, punctal plugs, intraocular lenses, and intraocular rings.

Abstract

This frozen and thawed hydrogel comprises a modified polyvinyl alcohol, and a drug. This method for producing a frozen and thawed hydrogel comprises: executing, at least twice, a freezing and thawing cycle in which a composition containing water, a modified polyvinyl alcohol, and a drug is cooled to a temperature of at most -5°C to be frozen, and the frozen composition is heated to a temperature of at least 5°C to be thawed.

Description

凍結融解ハイドロゲル、その製造方法、眼科用医療器具及びコンタクトレンズFreeze-thaw hydrogel, its manufacturing method, ophthalmological medical instruments and contact lenses
 本発明は、凍結融解ハイドロゲル、その製造方法、眼科用医療器具及びコンタクトレンズに関する。
 本願は、2022年8月8日に、日本に出願された特願2022-126533号、及び2023年3月28日に、日本に出願された特願2023-050956号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a freeze-thaw hydrogel, a method for producing the same, an ophthalmic medical device, and a contact lens.
This application claims priority based on Japanese Patent Application No. 2022-126533 filed in Japan on August 8, 2022 and Japanese Patent Application No. 2023-050956 filed in Japan on March 28, 2023. , the contents of which are incorporated herein.
 治療のための薬剤を含むコンタクトレンズを装着することで眼中の患部に薬剤を長期間に渡って送出できる様、薬剤の徐放性を有するコンタクトレンズが検討されている(特許文献1)。 A contact lens with sustained drug release properties has been studied so that the drug can be delivered to the affected area of the eye over a long period of time by wearing a contact lens containing a therapeutic drug (Patent Document 1).
 コンタクトレンズには化学的に架橋されたハイドロゲルが用いられている。かかるコンタクトレンズに薬剤を含有させる場合、コンタクトレンズに成形された架橋後のハイドロゲルに薬剤を含浸させる必要がある。しかし、徐放性を有するようなハイドロゲルには薬剤が含浸しにくいという問題がある。 Chemically cross-linked hydrogel is used in contact lenses. When such a contact lens contains a drug, it is necessary to impregnate the crosslinked hydrogel formed into the contact lens with the drug. However, hydrogels with sustained release properties have a problem in that they are difficult to impregnate with drugs.
 一方、ポリビニルアルコールの水溶液の凍結と融解を繰り返すことで、ポリビニルアルコールを物理的に架橋させてハイドロゲルとすることができる(特許文献2)。 On the other hand, by repeatedly freezing and thawing an aqueous solution of polyvinyl alcohol, polyvinyl alcohol can be physically crosslinked to form a hydrogel (Patent Document 2).
特表2008-539837号公報Special Publication No. 2008-539837 特開平8-239538号公報Japanese Patent Application Publication No. 8-239538
 ポリビニルアルコールの水溶液に事前に薬剤を添加しておくことで、薬剤を含有するハイドロゲルを作成することができ、架橋後のハイドロゲルに薬剤を含浸させる必要はなくなる。
 しかし、従来のポリビニルアルコールを用いたハイドロゲルでは、薬剤を含有させても、表面近くに存在する薬剤は溶出してくるが、ハイドロゲル内部に存在する薬剤は溶出してこず、徐放性に劣るという問題がある。
By adding the drug to an aqueous solution of polyvinyl alcohol in advance, a hydrogel containing the drug can be created, and there is no need to impregnate the crosslinked hydrogel with the drug.
However, in conventional hydrogels using polyvinyl alcohol, even if a drug is contained, the drug existing near the surface will elute, but the drug existing inside the hydrogel will not elute, resulting in a sustained release. There is a problem with being inferior.
 本発明の目的は、薬剤の徐放性に優れるハイドロゲル、眼科用医療器具及びコンタクトレンズ、並びに薬剤の徐放性に優れるハイドロゲルが得られる製造方法を提供することにある。 An object of the present invention is to provide a hydrogel, an ophthalmological medical device, and a contact lens that exhibit excellent sustained drug release properties, and a manufacturing method that yields a hydrogel that exhibits excellent sustained drug release properties.
 従来の凍結融解法で作製されたポリビニルアルコールのハイドロゲルでは、体温付近に加温された水中でもポリビニルアルコールの一部が溶出する問題や、凍結融解処理後のハイドロゲルが白濁し、透明性の高いハイドロゲルとすることが難しい問題があり、コンタクトレンズとして使用するには適さなかった。 Polyvinyl alcohol hydrogels produced by the conventional freeze-thaw method have problems such as a portion of the polyvinyl alcohol eluting even in water heated to around body temperature, and the hydrogel becoming cloudy after the freeze-thaw process, resulting in decreased transparency. It was difficult to form a high-quality hydrogel, making it unsuitable for use as a contact lens.
 本発明の他の目的は、溶出が少なく、透明性の高いハイドロゲル、眼科用医療器具及びコンタクトレンズ、並びに溶出が少なく、透明性の高いハイドロゲルが得られる製造方法を提供することにある。 Another object of the present invention is to provide a hydrogel with low elution and high transparency, an ophthalmic medical device, and a contact lens, and a manufacturing method that yields a hydrogel with low elution and high transparency.
 本発明者らは鋭意検討の結果、以下のことを見出した。
 変性ポリビニルアルコールを用いることで、物理架橋点の量をコントロールでき、薬剤の徐放性に優れる凍結融解ハイドロゲルが得られる。
As a result of intensive studies, the present inventors discovered the following.
By using modified polyvinyl alcohol, the amount of physical crosslinking points can be controlled and a freeze-thaw hydrogel with excellent sustained drug release properties can be obtained.
 示差走査熱量測定において、昇温速度10℃/minの条件で測定したゲル中の水の融点が0℃以下の範囲において低温側の吸収ピークのオンセット温度が-5℃以下であるポリビニルアルコールの凍結融解ハイドロゲルが、溶出が少なく、透明性の高い凍結融解ハイドロゲルとなる。また、ポリビニルアルコールの水溶液を1段目の凍結融解処理によりハイドロゲルとした後、ハイドロゲルの含水率を75%以下とし、さらに2段目の凍結融解処理を行うことで、溶出が少なく、透明性に優れたポリビニルアルコールのハイドロゲルが得られる。 In differential scanning calorimetry, the onset temperature of the absorption peak on the low temperature side is -5°C or lower in the range where the melting point of water in the gel is 0°C or lower when measured at a heating rate of 10°C/min. The freeze-thaw hydrogel becomes a highly transparent freeze-thaw hydrogel with less elution. In addition, after the aqueous solution of polyvinyl alcohol is made into a hydrogel by the first freeze-thaw treatment, the water content of the hydrogel is reduced to 75% or less, and then the second freeze-thaw treatment is performed to reduce elution and make it transparent. A polyvinyl alcohol hydrogel with excellent properties can be obtained.
 本発明は以下の態様を有する。
 [1]変性ポリビニルアルコール及び薬剤を含む凍結融解ハイドロゲル。
 [2]前記変性ポリビニルアルコールの平均ケン化度が95モル%以上である[1]に記載の凍結融解ハイドロゲル。
 [3]前記変性ポリビニルアルコールの4質量%水溶液の20℃における粘度が5~100mPa・sである[1]又は[2]に記載の凍結融解ハイドロゲル。
 [4]前記変性ポリビニルアルコールがカチオン性基、アニオン性基及びノニオン性基からなる群から選ばれる少なくとも1種を有する[1]~[3]のいずれかに記載の凍結融解ハイドロゲル。
 [5]前記変性ポリビニルアルコールの変性量が0.1~30モル%である[1]~[4]のいずれかに記載の凍結融解ハイドロゲル。
 [6]飽和水分率が50~90質量%である[1]~[5]のいずれかに記載の凍結融解ハイドロゲル。
 [7]37℃における圧縮弾性率が0.001~0.5MPaである[1]~[6]のいずれかに記載の凍結融解ハイドロゲル。
 [8]前記変性ポリビニルアルコールがカチオン性基を有し、
 前記薬剤がアニオン系薬剤を含む[1]~[7]のいずれかに記載の凍結融解ハイドロゲル。
 [9]前記変性ポリビニルアルコールがアニオン性基を有し、
 前記薬剤がカチオン系薬剤を含む[1]~[7]のいずれかに記載の凍結融解ハイドロゲル。
 [10]以下の徐放性試験において、前記薬剤の1時間後の累積溶出割合が、24時間後の累積溶出割合の80質量%以下である[1]~[9]のいずれかに記載の凍結融解ハイドロゲル。
 徐放性試験:
 前記凍結融解ハイドロゲルを24well細胞培養プレートに入れ、1000μLのリン酸緩衝生理食塩水を添加し、37℃で15分静置した後、前記リン酸緩衝生理食塩水を全量採取し、次いで、新たな1000μLのリン酸緩衝生理食塩水を添加し、37℃で15分静置した後(計30分後)、前記リン酸緩衝生理食塩水を全量採取し、次いで、新たな1000μLのリン酸緩衝生理食塩水を添加し、37℃で30分静置した後(計1時間後)、前記リン酸緩衝生理食塩水を全量採取する。これを繰り返し、最初にリン酸緩衝生理食塩水を添加してから15分後、30分後、1時間後、4時間後、8時間後、24時間後に採取したリン酸緩衝生理食塩水を測定サンプルとして前記薬剤の溶出量を求め、各時間での累積溶出割合を算出する。
 [11]水、変性ポリビニルアルコール及び薬剤を含む組成物を調製し、
 前記組成物を-5℃以下の温度に降温して凍結し、凍結した前記組成物を5℃以上の温度に昇温して融解するサイクルを2回以上繰り返す凍結融解ハイドロゲルの製造方法。
 [12][1]~[10]のいずれかに記載の凍結融解ハイドロゲルを含む眼科用医療器具。
 [13][1]~[10]のいずれかに記載の凍結融解ハイドロゲルを含むコンタクトレンズ。
The present invention has the following aspects.
[1] Freeze-thaw hydrogel containing modified polyvinyl alcohol and drug.
[2] The freeze-thaw hydrogel according to [1], wherein the average degree of saponification of the modified polyvinyl alcohol is 95 mol% or more.
[3] The freeze-thaw hydrogel according to [1] or [2], wherein the 4% by mass aqueous solution of the modified polyvinyl alcohol has a viscosity of 5 to 100 mPa·s at 20°C.
[4] The freeze-thaw hydrogel according to any one of [1] to [3], wherein the modified polyvinyl alcohol has at least one type selected from the group consisting of cationic groups, anionic groups, and nonionic groups.
[5] The freeze-thaw hydrogel according to any one of [1] to [4], wherein the amount of modification of the modified polyvinyl alcohol is 0.1 to 30 mol%.
[6] The freeze-thaw hydrogel according to any one of [1] to [5], which has a saturated moisture content of 50 to 90% by mass.
[7] The freeze-thaw hydrogel according to any one of [1] to [6], which has a compressive modulus of elasticity at 37°C of 0.001 to 0.5 MPa.
[8] The modified polyvinyl alcohol has a cationic group,
The freeze-thaw hydrogel according to any one of [1] to [7], wherein the drug includes an anionic drug.
[9] The modified polyvinyl alcohol has an anionic group,
The freeze-thaw hydrogel according to any one of [1] to [7], wherein the drug includes a cationic drug.
[10] In the following sustained release test, the cumulative dissolution rate of the drug after 1 hour is 80% by mass or less of the cumulative dissolution rate after 24 hours, according to any one of [1] to [9]. Freeze-thaw hydrogel.
Sustained release test:
The frozen and thawed hydrogel was placed in a 24-well cell culture plate, 1000 μL of phosphate buffered saline was added, and after standing at 37°C for 15 minutes, the entire amount of the phosphate buffered saline was collected, and then freshly After adding 1000 μL of phosphate buffered saline and allowing it to stand at 37°C for 15 minutes (30 minutes in total), the entire amount of the phosphate buffered saline was collected, and then 1000 μL of fresh phosphate buffered saline was added. After adding physiological saline and allowing it to stand at 37° C. for 30 minutes (1 hour in total), the entire amount of the phosphate buffered saline is collected. Repeat this and measure the phosphate buffered saline collected 15 minutes, 30 minutes, 1 hour, 4 hours, 8 hours, and 24 hours after adding the phosphate buffered saline for the first time. The elution amount of the drug is determined as a sample, and the cumulative elution rate at each time is calculated.
[11] Prepare a composition containing water, modified polyvinyl alcohol, and a drug,
A method for producing a freeze-thaw hydrogel, comprising repeating a cycle of lowering the temperature of the composition to a temperature of -5°C or lower, freezing it, and raising the temperature of the frozen composition to a temperature of 5°C or higher to melt it, twice or more.
[12] An ophthalmic medical device comprising the freeze-thaw hydrogel according to any one of [1] to [10].
[13] A contact lens comprising the freeze-thaw hydrogel according to any one of [1] to [10].
 [14]ポリビニルアルコールの凍結融解ハイドロゲルであって、-50℃から150℃、昇温速度10℃/minの条件での示差走査熱量測定において0℃以下の範囲に観察される吸熱ピークのオンセット温度が-5℃以下であるポリビニルアルコールの凍結融解ハイドロゲル。
 [15]前記ポリビニルアルコールが変性ポリビニルアルコールである[14]に記載の凍結融解ハイドロゲル。
 [16]薬剤を含有する[14]又は[15]に記載の凍結融解ハイドロゲル。
 [17][14」~[16]のいずれかに記載の凍結融解ハイドロゲルを含む眼科用医療器具。
 [18][14]~[16]のいずれかに記載の凍結融解ハイドロゲルを含むコンタクトレンズ。
 [19]ポリビニルアルコールの水溶液を1段目の凍結融解処理によりハイドロゲルとした後、前記ハイドロゲルの含水率を75質量%以下とし、さらに2段目の凍結融解処理を行うポリビニルアルコールの凍結融解ハイドロゲルの製造方法。
[14] A freeze-thaw hydrogel of polyvinyl alcohol, which exhibits an endothermic peak observed in the range of 0°C or less in differential scanning calorimetry under the conditions of -50°C to 150°C and a heating rate of 10°C/min. A polyvinyl alcohol freeze-thaw hydrogel with a set temperature of -5°C or lower.
[15] The freeze-thaw hydrogel according to [14], wherein the polyvinyl alcohol is modified polyvinyl alcohol.
[16] The freeze-thaw hydrogel according to [14] or [15], which contains a drug.
[17] An ophthalmological medical device comprising the freeze-thaw hydrogel according to any one of [14] to [16].
[18] A contact lens comprising the freeze-thaw hydrogel according to any one of [14] to [16].
[19] Freezing and thawing of polyvinyl alcohol, after turning an aqueous solution of polyvinyl alcohol into a hydrogel through a first-stage freeze-thaw treatment, reducing the water content of the hydrogel to 75% by mass or less, and then performing a second-stage freeze-thaw treatment Method for producing hydrogel.
 本発明の一態様によれば、薬剤の徐放性に優れるハイドロゲル、眼科用医療器具及びコンタクトレンズ、並びに薬剤の徐放性に優れるハイドロゲルが得られる製造方法を提供できる。 According to one aspect of the present invention, it is possible to provide a hydrogel, an ophthalmological medical device, and a contact lens that exhibit excellent sustained drug release properties, and a manufacturing method that yields a hydrogel that exhibits excellent sustained drug release properties.
 本発明の他の一態様によれば、溶出が少なく、透明性に優れるハイドロゲル、眼科用医療器具及びコンタクトレンズ、並びに溶出が少なく、透明性に優れるハイドロゲルが得られる製造方法を提供できる。 According to another aspect of the present invention, it is possible to provide a hydrogel with low elution and excellent transparency, an ophthalmic medical device and a contact lens, and a manufacturing method that yields a hydrogel with low elution and excellent transparency.
例A1~A5のハイドロゲルの徐放性試験結果を示すグラフである。1 is a graph showing the sustained release test results of the hydrogels of Examples A1 to A5. 示差走査熱量測定で得られた、例B1のPVOH凍結融解ハイドロゲルの吸熱ピークのグラフである。Figure 2 is a graph of the endothermic peaks of the PVOH freeze-thaw hydrogel of Example B1 obtained by differential scanning calorimetry.
 本明細書において、「ハイドロゲル」とは、重合体の分子鎖同士が物理的又は化学的に架橋されて形成された網目構造を有し、この網目構造に水を取り込んで膨潤する構造体である。
 「凍結融解ハイドロゲル」とは、ポリビニルアルコール(以下、「PVOH」とも記す。)の分子鎖間に水素結合による物理的架橋点が形成されたハイドロゲルであり、より具体的には、PVOHの水溶液について凍結と融解(解凍)を繰り返すことで形成されたハイドロゲルである。PVOHの水溶液について凍結と融解を繰り返すと、PVOHの分子鎖間に水素結合による物理的架橋点が形成され、ハイドロゲルとなる。凍結融解ハイドロゲルは、高温下で再溶解が可能であり、架橋剤を用いたりエネルギー線を照射したりして得られる化学架橋ハイドロゲルとは異なる。再溶解の条件としては、例えば100℃で1時間の条件が挙げられる。
 数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
As used herein, "hydrogel" is a structure that has a network structure formed by physically or chemically crosslinking polymer molecular chains, and that swells by incorporating water into this network structure. be.
"Freeze-thaw hydrogel" is a hydrogel in which physical crosslinking points are formed between the molecular chains of polyvinyl alcohol (hereinafter also referred to as "PVOH") by hydrogen bonds. It is a hydrogel formed by repeatedly freezing and thawing (thawing) an aqueous solution. When an aqueous solution of PVOH is repeatedly frozen and thawed, physical crosslinking points are formed between molecular chains of PVOH by hydrogen bonds, resulting in a hydrogel. Freeze-thaw hydrogels can be redissolved at high temperatures, and are different from chemically crosslinked hydrogels obtained by using crosslinking agents or irradiating with energy rays. Conditions for redissolution include, for example, 1 hour at 100°C.
"~" indicating a numerical range means that the numerical values written before and after it are included as lower and upper limits.
〔凍結融解ハイドロゲル〕
≪第1実施形態≫
 本発明の第1実施形態に係る凍結融解ハイドロゲルは、変性PVOH及び薬剤を含む。
[Freeze-thaw hydrogel]
≪First embodiment≫
The freeze-thaw hydrogel according to the first embodiment of the present invention includes modified PVOH and a drug.
<変性PVOH>
 変性PVOHは、変性基を有するPVOHである。
 PVOHは、ビニルアルコール単位を含む重合体であり、典型的には、ビニルエステル系単量体単位を含む重合体のケン化物である。PVOHは、ビニルエステル系単量体単位を含んだ重合体であってもよい。
 変性PVOHは、典型的には、ビニルアルコール単位と、変性基を有する単位とを含む。変性基を有する単位は、ビニルアルコール単位及びビニルエステル系単量体単位以外の単位である。変性PVOHは、ビニルエステル系単量体単位を含んでいてもよい。
 変性PVOHは、ビニルエステル系モノマーと他の不飽和単量体との重合体をケン化したり、PVOHを後変性したりすることにより製造することができる。
<Modified PVOH>
Modified PVOH is PVOH having a modifying group.
PVOH is a polymer containing vinyl alcohol units, and is typically a saponified product of a polymer containing vinyl ester monomer units. PVOH may be a polymer containing vinyl ester monomer units.
Modified PVOH typically includes vinyl alcohol units and units with modifying groups. The unit having a modifying group is a unit other than vinyl alcohol units and vinyl ester monomer units. The modified PVOH may contain vinyl ester monomer units.
Modified PVOH can be produced by saponifying a polymer of a vinyl ester monomer and another unsaturated monomer or by post-modifying PVOH.
 変性基としては、カチオン性基、アニオン性基及びノニオン性基からなる群から選ばれる少なくとも1種が好ましい。カチオン性基としては、例えばジアリルジメチルアンモニウム塩基、(3-メタクリルアミドプロピル)トリメチルアンモニウム塩基、[2-(メタクリロイルオキシ)エチル]トリメチルアンモニウムクロリド等の第4級アンモニウム塩基、スルホニウム基、オキソニウム基、ホスホニウム基が挙げられる。アニオン性基としては、例えばカルボキシ基及びその塩、スルホ基及びその塩、リン酸基及びその塩が挙げられる。ノニオン性基としては、例えばアセト酢酸エステル基、アセタール基、ウレタン基、エーテル基、リン酸エステル基、オキシアルキレン基、アルキレン基、アミド基、シラノール基、エポキシ基、オレフィン基、ジオール基が挙げられる。
 薬剤としてアニオン系薬剤を用いる場合、変性基としては、アニオン系薬剤との親和性が高く、アニオン系薬剤の徐放性が良好となる点で、カチオン性基が好ましい。薬剤としてカチオン系薬剤を用いる場合、変性基としては、カチオン系薬剤との親和性が高く、カチオン系薬剤の徐放性が良好となる点で、アニオン性基が好ましい。
 カチオン性基を有する変性PVOHをカチオン変性PVOHとも記す。アニオン性基を有する変性PVOHをアニオン変性PVOHとも記す。
The modifying group is preferably at least one selected from the group consisting of cationic groups, anionic groups, and nonionic groups. Examples of the cationic group include quaternary ammonium bases such as diallyldimethylammonium base, (3-methacrylamidopropyl)trimethylammonium base, [2-(methacryloyloxy)ethyl]trimethylammonium chloride, sulfonium group, oxonium group, and phosphonium group. Examples include groups. Examples of anionic groups include carboxy groups and salts thereof, sulfo groups and salts thereof, and phosphoric acid groups and salts thereof. Examples of the nonionic group include an acetoacetate group, an acetal group, a urethane group, an ether group, a phosphate group, an oxyalkylene group, an alkylene group, an amide group, a silanol group, an epoxy group, an olefin group, and a diol group. .
When an anionic drug is used as the drug, a cationic group is preferred as the modifying group because it has a high affinity with the anionic drug and provides good sustained release properties of the anionic drug. When a cationic drug is used as the drug, an anionic group is preferable as the modifying group because it has a high affinity with the cationic drug and provides good sustained release properties of the cationic drug.
Modified PVOH having a cationic group is also referred to as cationically modified PVOH. Modified PVOH having an anionic group is also referred to as anion-modified PVOH.
 変性PVOHの一例として、共重合変性PVOHが挙げられる。
 共重合変性PVOHは、ビニルエステル系単量体と、ビニルエステル系単量体と共重合可能な他の不飽和単量体とを共重合させ、得られた共重合体をケン化することにより製造することができる。
 ビニルエステル系単量体としては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられるが、安定して重合を行えるという観点から酢酸ビニルが好ましい。
An example of modified PVOH is copolymerized modified PVOH.
Copolymerized modified PVOH is produced by copolymerizing a vinyl ester monomer and another unsaturated monomer that can be copolymerized with the vinyl ester monomer, and saponifying the resulting copolymer. can be manufactured.
Examples of vinyl ester monomers include vinyl acetate, vinyl formate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, and vinyl versatate. However, vinyl acetate is preferred from the viewpoint of stable polymerization.
 ビニルエステル系単量体と共重合可能な他の不飽和単量体としては、カチオン性基、アニオン性基及びノニオン性基からなる群から選ばれる少なくとも1種の変性基を有する不飽和単量体が好ましく、カチオン性基を有する不飽和単量体又はアニオン性基を有する不飽和単量体が特に好ましい。
 カチオン性基を有する不飽和単量体としては、例えばN-アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジアリルトリメチルアンモニウムクロライドが挙げられる。
 アニオン性基を有する不飽和単量体としては、例えばアクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸、ウンデシレン酸等の不飽和カルボン酸類又はその塩;マレイン酸、イタコン酸、フマル酸等の多価カルボン酸のカルボキシ基の一部がエステル化されたエステル(不飽和ジカルボン酸のモノアルキルエステル等);エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸又はその塩;が挙げられる。
 ノニオン性基を有する不飽和単量体としては、例えばエチレン、プロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸、ウンデシレン酸等の不飽和カルボン酸類のカルボキシ基の全てがエステル化されたエステル(不飽和ジカルボン酸のジアルキルエステル等);アクリロニトリル、メタクリロニトリル等のニトリル類;ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類;アルキルビニルエーテル類;ジメチルアリルビニルケトン;N-ビニルピロリドン;塩化ビニル;塩化ビニリデン;ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテル等のポリオキシアルキレン(メタ)アリルエーテル;ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート;ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド;ポリオキシエチレン(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)エステル;ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル等のポリオキシアルキレンビニルエーテル;ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン等のポリオキシアルキレンアリルアミン;ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等のポリオキシアルキレンビニルアミン;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン類又はそのアシル化物、ビニルエチレンカーボネート;2,2-ジアルキル-4-ビニル-1,3-ジオキソラン;グリセリンモノアリルエーテル;3,4-ジアセトキシ-1-ブテン等のビニル化合物;酢酸イソプロペニル;1-メトキシビニルアセテート等の置換酢酸ビニル類、1,4-ジアセトキシ-2-ブテン、ビニレンカーボネート、アセト酢酸ビニル等が挙げられる。
 これらの不飽和単量体は1種を単独で用いてもよく2種以上を併用してもよい。
 上記の中でも、ジアリルジメチルアンモニウムクロライド、マレイン酸モノメチルが好ましい。
Other unsaturated monomers copolymerizable with the vinyl ester monomer include unsaturated monomers having at least one modification group selected from the group consisting of cationic groups, anionic groups, and nonionic groups. An unsaturated monomer having a cationic group or an unsaturated monomer having an anionic group is particularly preferred.
Examples of the unsaturated monomer having a cationic group include N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, and diallyltrimethylammonium chloride.
Examples of unsaturated monomers having an anionic group include unsaturated carboxylic acids or salts thereof such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, and undecylenic acid; maleic acid, itaconic acid; , esters in which part of the carboxyl group of polycarboxylic acids such as fumaric acid is esterified (monoalkyl esters of unsaturated dicarboxylic acids, etc.); Olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid, meta-allylsulfonic acid, etc. or a salt thereof;
Examples of unsaturated monomers having a nonionic group include olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene, and α-octadecene; acrylic acid, methacrylic acid, crotonic acid, maleic acid, and maleic anhydride. esters in which all the carboxy groups of unsaturated carboxylic acids such as itaconic acid and undecylenic acid are esterified (dialkyl esters of unsaturated dicarboxylic acids, etc.); Nitriles such as acrylonitrile and methacrylonitrile; diacetone acrylamide, acrylamide , amides such as methacrylamide; alkyl vinyl ethers; dimethylallyl vinyl ketone; N-vinylpyrrolidone; vinyl chloride; vinylidene chloride; polyoxyalkylenes such as polyoxyethylene (meth)allyl ether, polyoxypropylene (meth)allyl ether, etc. (meth)allyl ether; polyoxyalkylene (meth)acrylate such as polyoxyethylene (meth)acrylate, polyoxypropylene (meth)acrylate; polyoxy such as polyoxyethylene (meth)acrylamide, polyoxypropylene (meth)acrylamide, etc. Alkylene (meth)acrylamide; polyoxyethylene (1-(meth)acrylamide-1,1-dimethylpropyl) ester; polyoxyalkylene vinyl ether such as polyoxyethylene vinyl ether, polyoxypropylene vinyl ether; polyoxyethylene allylamine, polyoxypropylene Polyoxyalkylene allylamine such as allylamine; polyoxyalkylene vinylamine such as polyoxyethylene vinylamine, polyoxypropylene vinylamine; 3-buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol hydroxy group-containing α-olefins such as or acylated products thereof, vinyl ethylene carbonate; 2,2-dialkyl-4-vinyl-1,3-dioxolane; glycerin monoallyl ether; 3,4-diacetoxy-1-butene, etc. Vinyl compounds; isopropenyl acetate; substituted vinyl acetates such as 1-methoxyvinyl acetate, 1,4-diacetoxy-2-butene, vinylene carbonate, vinyl acetoacetate, and the like.
These unsaturated monomers may be used alone or in combination of two or more.
Among the above, diallyldimethylammonium chloride and monomethyl maleate are preferred.
 ビニルエステル系単量体と他の不飽和単量体との合計100モル%に対する他の不飽和単量体の割合は、0.2~20モル%が好ましく、0.4~10モル%がより好ましい。他の不飽和単量体の割合が前記範囲内であれば、変性PVOHの変性量が後述する好ましい範囲内となりやすい。他の不飽和単量体の割合は、0.5~20モル%であってもよく、0.8~10モル%であってもよい。 The ratio of other unsaturated monomers to the total of 100 mol% of the vinyl ester monomer and other unsaturated monomers is preferably 0.2 to 20 mol%, and 0.4 to 10 mol%. More preferred. If the proportion of other unsaturated monomers is within the above range, the amount of modification of the modified PVOH is likely to be within the preferred range described below. The proportion of other unsaturated monomers may be 0.5 to 20 mol%, or 0.8 to 10 mol%.
 共重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより行うことができる。なかでも、反応熱を効率的に除去できる溶液重合を還流下で行うことが好ましい。溶液重合の溶媒としては、通常はアルコールが用いられ、好ましくは炭素数1~3の低級アルコールが用いられる。
 得られた共重合体のケン化についても、公知のケン化方法を採用することができる。すなわち、共重合体をアルコール又は水/アルコール溶媒に溶解させた状態で、アルカリ触媒又は酸触媒を用いて行うことができる。
 アルカリ触媒としては、例えば、水酸化カリウム、水酸化ナトリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートを用いることができる。
 通常、無水アルコール系溶媒下、アルカリ触媒を用いたエステル交換反応が反応速度の点や脂肪酸塩等の不純物を低減できる等の点で好適に用いられる。
 ケン化反応の反応温度は、通常20~60℃である。反応温度が低すぎると、反応速度が小さくなり反応効率が低下する傾向があり、高すぎると反応溶媒の沸点以上となる場合があり、製造面における安全性が低下する傾向がある。なお、耐圧性の高い塔式連続ケン化塔などを用いて高圧下でケン化する場合には、より高温、例えば、80~150℃でケン化することが可能であり、少量のケン化触媒も短時間、高ケン化度のものを得ることが可能である。
Copolymerization can be performed by any known polymerization method, such as solution polymerization, suspension polymerization, emulsion polymerization, etc. Among these, it is preferable to carry out solution polymerization under reflux because it can efficiently remove the heat of reaction. As a solvent for solution polymerization, alcohol is usually used, preferably a lower alcohol having 1 to 3 carbon atoms.
Also for saponification of the obtained copolymer, known saponification methods can be employed. That is, the copolymer can be dissolved in alcohol or a water/alcohol solvent using an alkali catalyst or an acid catalyst.
As the alkali catalyst, for example, alkali metal hydroxides or alcoholates such as potassium hydroxide, sodium hydroxide, sodium methylate, sodium ethylate, potassium methylate, and lithium methylate can be used.
Usually, a transesterification reaction using an alkali catalyst in an anhydrous alcohol solvent is preferably used from the viewpoint of reaction rate and the ability to reduce impurities such as fatty acid salts.
The reaction temperature of the saponification reaction is usually 20 to 60°C. If the reaction temperature is too low, the reaction rate tends to be low and the reaction efficiency is reduced; if it is too high, the temperature may exceed the boiling point of the reaction solvent, which tends to reduce safety in production. In addition, when saponifying under high pressure using a column-type continuous saponification tower with high pressure resistance, it is possible to saponify at a higher temperature, for example, 80 to 150°C, and a small amount of saponification catalyst is used. It is also possible to obtain a product with a high degree of saponification in a short period of time.
 ケン化後、得られた共重合変性PVOHを、洗浄液で洗浄することが好ましい。
 洗浄液としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類が挙げられ、洗浄効率と乾燥効率の観点からメタノールが好ましい。
 洗浄方法としては、連続式でもよいが、通常はバッチ式が採用される。浴比(洗浄液の質量/共重合変性PVOHの質量)は、通常、1~30であり、2~20が好ましい。浴比が大きすぎると、大きな洗浄装置が必要となり、コスト増につながる傾向があり、浴比が小さすぎると、洗浄効果が低下し、洗浄回数を増加させる傾向がある。
 洗浄時の温度は、通常、10~80℃であり、20~70℃が好ましい。温度が高すぎると、洗浄液の揮発量が多くなり、還流設備を必要とする傾向がある。温度が低すぎると、洗浄効率が低下する傾向がある。
 洗浄時間は、通常、5分間~12時間である。洗浄時間が長すぎると、生産効率が低下する傾向があり、洗浄時間が短すぎると、洗浄が不十分となる傾向がある。また、洗浄回数は、通常、1~10回であり、特に1~5回が好ましい。洗浄回数が多すぎると、生産性が悪くなり、コストがかかる傾向がある。
After saponification, the obtained copolymerized modified PVOH is preferably washed with a washing liquid.
Examples of the cleaning liquid include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, and methanol is preferred from the viewpoint of cleaning efficiency and drying efficiency.
Although a continuous method may be used as the cleaning method, a batch method is usually adopted. The bath ratio (mass of cleaning liquid/mass of copolymerization-modified PVOH) is usually 1 to 30, preferably 2 to 20. If the bath ratio is too large, a large cleaning device will be required, which tends to increase costs, and if the bath ratio is too small, the cleaning effect will decrease and the number of cleanings will tend to increase.
The temperature during washing is usually 10 to 80°C, preferably 20 to 70°C. If the temperature is too high, the amount of volatilization of the cleaning liquid increases, which tends to require reflux equipment. If the temperature is too low, cleaning efficiency tends to decrease.
Washing time is typically 5 minutes to 12 hours. If the cleaning time is too long, production efficiency tends to decrease, and if the cleaning time is too short, cleaning tends to be insufficient. Further, the number of times of washing is usually 1 to 10 times, particularly preferably 1 to 5 times. If the number of washings is too large, productivity tends to deteriorate and costs increase.
 洗浄された共重合変性PVOHは、連続式又はバッチ式にて熱風などで乾燥される。
 乾燥温度は、通常、50~150℃である。乾燥温度が高すぎると、共重合変性PVOHが熱劣化する傾向があり、乾燥温度が低すぎると、乾燥に長時間を要する傾向がある。
 乾燥時間は、通常、1~48時間である。乾燥時間が長すぎると、共重合変性PVOHが熱劣化する傾向があり、乾燥時間が短すぎると、乾燥が不十分となったり、高温乾燥を要したりする傾向がある。
 乾燥後の共重合変性PVOHに含まれる溶媒の含有量は、通常、0~10質量%であり、好ましくは0.1~5質量%、より好ましくは0.1~1質量%である。
The washed copolymerized modified PVOH is dried with hot air or the like in a continuous or batch manner.
The drying temperature is usually 50 to 150°C. If the drying temperature is too high, the copolymerized modified PVOH tends to be thermally degraded, and if the drying temperature is too low, the drying tends to take a long time.
Drying time is typically 1 to 48 hours. If the drying time is too long, the copolymerized modified PVOH tends to be thermally degraded, and if the drying time is too short, the drying tends to be insufficient or high temperature drying is required.
The content of the solvent contained in the copolymerized modified PVOH after drying is usually 0 to 10% by mass, preferably 0.1 to 5% by mass, and more preferably 0.1 to 1% by mass.
 得られる共重合変性PVOHには、通常、ケン化時に用いるアルカリ触媒に由来する酢酸のアルカリ金属塩が含まれている。アルカリ金属塩の含有量は、共重合変性PVOHの総質量に対して通常、0.001~2質量%、好ましくは0.005~1質量%、より好ましくは0.01~0.1質量%である。
 アルカリ金属塩の含有量の調整方法としては、ケン化時に用いるアルカリ触媒の量を調節する方法、エタノールやメタノールなどのアルコールで共重合変性PVOHを洗浄する方法等が挙げられる。
 アルカリ金属塩の定量法としては、例えば、共重合変性PVOHの粉体を水に溶かし、メチルオレンジを指示薬とし、塩酸にて中和滴定を行い、アルカリ金属塩の含有量を求める方法が挙げられる。
The resulting copolymerized modified PVOH usually contains an alkali metal salt of acetic acid derived from the alkali catalyst used during saponification. The content of the alkali metal salt is usually 0.001 to 2% by mass, preferably 0.005 to 1% by mass, and more preferably 0.01 to 0.1% by mass based on the total mass of the copolymerized modified PVOH. It is.
Examples of methods for adjusting the content of the alkali metal salt include a method of adjusting the amount of an alkali catalyst used during saponification, and a method of washing the copolymerized modified PVOH with alcohol such as ethanol and methanol.
Examples of methods for quantifying alkali metal salts include dissolving copolymerized modified PVOH powder in water, using methyl orange as an indicator, and performing neutralization titration with hydrochloric acid to determine the content of alkali metal salts. .
 変性PVOHの他の例として、後変性PVOHが挙げられる。
 後変性PVOHは、未変性のPVOHを後変性することにより製造することができる。未変性のPVOHは、ビニルアルコール単位のみからなるか、又はビニルアルコール単位とケン化前のビニルエステル系単量体単位とからなる。後変性では、典型的には、未変性のPVOHのビニルアルコール単位のOH基の部分に変性基が導入される。
 後変性の方法としては、例えば、未変性のPVOHをアセト酢酸エステル化、アセタール化、ウレタン化、エーテル化、リン酸エステル化、オキシアルキレン化、又は酸と脱水縮合する方法が挙げられる。アセト酢酸エステル化の方法としては、未変性のPVOHの水酸基とアセト酢酸エステルとをエステル交換反応させる方法、未変性のPVOHとジケテンとを反応させる方法等が挙げられる。
 後変性PVOHとしては、水への溶解性の点から、アセト酢酸エステル化された変性PVOHが好ましい。
Other examples of modified PVOH include post-modified PVOH.
Post-modified PVOH can be produced by post-modifying unmodified PVOH. Unmodified PVOH consists only of vinyl alcohol units, or consists of vinyl alcohol units and vinyl ester monomer units before saponification. In post-modification, a modifying group is typically introduced into the OH group of the vinyl alcohol unit of unmodified PVOH.
Examples of post-modification methods include methods in which unmodified PVOH is subjected to acetoacetic acid esterification, acetalization, urethanization, etherification, phosphoric acid esterification, oxyalkylenization, or dehydration condensation with an acid. Examples of the method for acetoacetate esterification include a method in which a hydroxyl group of unmodified PVOH and acetoacetate are subjected to a transesterification reaction, a method in which unmodified PVOH and diketene are reacted, and the like.
As the post-modified PVOH, acetoacetic esterified modified PVOH is preferable from the viewpoint of solubility in water.
 変性PVOHとしては、上述の変性PVOHのいずれか1種を単独で用いてもよく、2種以上を混合したものを用いてもよい。また、変性PVOHとして、上述の変性PVOHのいずれか1種以上と未変性PVOHとを混合したものを用いてもよい。 As the modified PVOH, any one of the above-mentioned modified PVOH may be used alone, or a mixture of two or more may be used. Further, as the modified PVOH, a mixture of one or more of the above-mentioned modified PVOH and unmodified PVOH may be used.
 変性PVOHの変性量は、変性基の性質によっても異なるが、0.1~30モル%であることが好ましく、0.3~20モル%であることがより好ましく、0.5~10モル%であることがさらに好ましい。変性量が前記下限値以上であれば、凍結融解ハイドロゲルの架橋密度が低くなり、凍結融解ハイドロゲルの表面近くに存在する薬剤だけでなく凍結融解ハイドロゲル内部に存在する薬剤も溶出しやすい傾向がある。変性量が前記上限値以下であれば、凍結融解ハイドロゲルを患部に適用した直後の薬剤の急速な溶出が抑制される傾向がある。変性PVOHの変性量は、0.5~20モル%であってもよく、1~10モル%であってもよい。
 変性量は、変性PVOHを構成する全単位100モル%に対する変性基の割合である。変性量は、NMRや滴定により測定される。
 なお、凍結融解ハイドロゲルとする前と後で、変性PVOHの変性量は変化しない。凍結融解ハイドロゲルを再溶解することで、変性PVOHの変性量を測定できる。凍結融解ハイドロゲルを再溶解する方法としては、高温高圧での溶解が挙げられる。
The amount of modification of modified PVOH varies depending on the nature of the modifying group, but is preferably 0.1 to 30 mol%, more preferably 0.3 to 20 mol%, and 0.5 to 10 mol%. It is more preferable that If the amount of modification is above the lower limit, the crosslinking density of the freeze-thaw hydrogel will be low, and not only the drug present near the surface of the freeze-thaw hydrogel but also the drug present inside the freeze-thaw hydrogel will tend to be easily eluted. There is. If the amount of denaturation is below the upper limit, rapid elution of the drug immediately after applying the freeze-thaw hydrogel to the affected area tends to be suppressed. The amount of modification of the modified PVOH may be 0.5 to 20 mol%, or 1 to 10 mol%.
The amount of modification is the ratio of the modifying group to 100 mol% of the total units constituting the modified PVOH. The amount of modification is measured by NMR or titration.
Note that the amount of denaturation of the denatured PVOH does not change before and after forming it into a freeze-thaw hydrogel. By redissolving the freeze-thawed hydrogel, the amount of denaturation of the denatured PVOH can be measured. A method for redissolving a freeze-thawed hydrogel includes dissolution at high temperature and high pressure.
 変性PVOHの平均ケン化度は、95モル%以上であることが好ましく、96モル%以上であることがより好ましく、97モル%以上であることがさらに好ましく、100モル%であってもよい。平均ケン化度が前記下限値以上であれば、ゲル化しやすく、ゲルの溶出率を低減できる傾向がある。
 平均ケン化度は、JIS K 6726:1994の3.5に準じて測定される。
 なお、凍結融解ハイドロゲルとする前と後で、変性PVOHの平均ケン化度は変化しない。凍結融解ハイドロゲルを再溶解することで、変性PVOHの平均ケン化度を測定できる。
The average saponification degree of the modified PVOH is preferably 95 mol% or more, more preferably 96 mol% or more, even more preferably 97 mol% or more, and may be 100 mol%. If the average degree of saponification is equal to or higher than the lower limit, gelation tends to occur easily and the gel elution rate tends to be reduced.
The average degree of saponification is measured according to 3.5 of JIS K 6726:1994.
Note that the average degree of saponification of the modified PVOH does not change before and after it is made into a freeze-thaw hydrogel. By redissolving the freeze-thawed hydrogel, the average degree of saponification of the modified PVOH can be measured.
 変性PVOHの平均重合度は、一般的に水溶液の粘度で示すことができる。
 変性PVOHの4質量%水溶液の20℃における粘度は、5~100mPa・sであることが好ましく、13~70mPa・sであることがより好ましく、17~40mPa・sであることがさらに好ましい。粘度が前記下限値以上であれば、ゲル化しやすく、ゲルの溶出率を低減できる傾向があり、一方、粘度が前記上限値以下であれば、PVOH水溶液の扱いやすさと、薬物の放出性がより優れる傾向がある。
 粘度は、JIS K 6726:1994の3.11.2に準じて測定される。
 なお、凍結融解ハイドロゲルとする前と後で、変性PVOHの平均重合度は変化しない。凍結融解ハイドロゲルを再溶解することで、変性PVOHの平均重合度を測定できる。
The average degree of polymerization of modified PVOH can generally be expressed by the viscosity of an aqueous solution.
The viscosity at 20° C. of a 4% by mass aqueous solution of modified PVOH is preferably 5 to 100 mPa·s, more preferably 13 to 70 mPa·s, and even more preferably 17 to 40 mPa·s. If the viscosity is above the above lower limit, gelation tends to occur easily and the dissolution rate of the gel can be reduced. On the other hand, if the viscosity is below the above upper limit, the PVOH aqueous solution is easier to handle and the release of the drug is improved. It tends to be better.
The viscosity is measured according to 3.11.2 of JIS K 6726:1994.
Note that the average degree of polymerization of the modified PVOH does not change before and after forming it into a freeze-thaw hydrogel. By redissolving the freeze-thaw hydrogel, the average degree of polymerization of the modified PVOH can be measured.
<薬剤>
 薬剤としては、特に制限は無く、治療しようとする疾患に応じ、公知の薬剤のなかから適宜選定できる。
 薬剤は、例えば、核酸、タンパク質、炭水化物(多糖等)、その他の有機化合物、無機化合物、又はこれらの2以上の組み合わせであってよい。
<Drug>
The drug is not particularly limited and can be appropriately selected from known drugs depending on the disease to be treated.
The agent may be, for example, a nucleic acid, a protein, a carbohydrate (such as a polysaccharide), another organic compound, an inorganic compound, or a combination of two or more thereof.
 眼科疾患に適用される薬剤の例としては、特に限定するものではないが、抗感染症剤(抗菌剤、抗ウイルス剤、抗真菌剤、抗原虫剤等)、血管新生抑制剤(抗血管内皮細胞増殖因子(VEGF)剤等)、抗炎症剤、眼圧降下剤、抗悪性腫瘍剤、麻酔剤、自律神経剤、ステロイド(コルチコステロイド等)、抗ヒスタミン剤、肥満細胞安定化剤、免疫抑制剤、有糸分裂阻害剤等が挙げられる。 Examples of drugs applied to ophthalmological diseases include, but are not limited to, anti-infective agents (antibacterial agents, anti-viral agents, anti-fungal agents, antiprotozoal agents, etc.), angiogenesis inhibitors (anti-vascular endothelial agents, etc.) Cell growth factor (VEGF) agents, etc.), anti-inflammatory agents, intraocular hypotensive agents, antineoplastic agents, anesthetics, autonomic nerve agents, steroids (corticosteroids, etc.), antihistamines, mast cell stabilizers, immunosuppressants , mitosis inhibitors, and the like.
 抗菌剤の非限定的な例としては、バシトラシン、クロラムフェニコール、シプロフロキサシン、エリスロマイシン、モキシフロキサシン、ガチフロキサシン、ゲンタマイシン、レボフロキサシン、スルファセタミド、ポリミキシンB、バンコマイシン、トブラマイシン、又はそれらの組み合わせが挙げられる。
 抗ウイルス剤の非限定的な例としては、トリフルリジン、ビダラビン、アシクロビル、バラシクロビル、ファムシクロビル、フォスカーネット、ガンシクロビル、フォルミビルセン、シドフォビル、又はそれらの組み合わせが挙げられる。
 抗真菌剤の非限定的な例としては、アンフォテリシンB、ナタマイシン、フルコナゾール、イトラコナゾール、ケトコナゾール、ミコナゾール、又はそれらの組み合わせが挙げられる。
 抗原虫剤の非限定的な例としては、ポリミキシンB、ネオマイシン、クロトリマゾール、ミコナゾール、ケトコナゾール、プロパミジン、ポリヘキサメチレンビグアニド、クロルヘキシジン、イトラコナゾール、又はそれらの組み合わせが挙げられる。
Non-limiting examples of antimicrobial agents include bacitracin, chloramphenicol, ciprofloxacin, erythromycin, moxifloxacin, gatifloxacin, gentamicin, levofloxacin, sulfacetamide, polymyxin B, vancomycin, tobramycin, or the like. Examples include combinations.
Non-limiting examples of antiviral agents include trifluridine, vidarabine, acyclovir, valacyclovir, famciclovir, foscarnet, ganciclovir, formivirsen, cidofovir, or combinations thereof.
Non-limiting examples of antifungal agents include amphotericin B, natamycin, fluconazole, itraconazole, ketoconazole, miconazole, or combinations thereof.
Non-limiting examples of antiprotozoal agents include polymyxin B, neomycin, clotrimazole, miconazole, ketoconazole, propamidine, polyhexamethylene biguanide, chlorhexidine, itraconazole, or combinations thereof.
 抗炎症剤の非限定的な例としては、任意の公知のステロイド性抗炎症剤(SAIDs)、任意の公知の非ステロイド性抗炎症剤(NSAIDs)、又はそれらの組み合わせが挙げられる。SAIDsの非限定的な例としては、デキサメタゾン、プレドニゾロン、フルオロメトロン、ロテプレドノール、メドリゾン、リメキソロン等のグルココルチコイドが挙げられる。NSAIDsの非限定的な例としては、ジクロフェナク、フルルビプロフェン、ケトロラック、ブロモフェナク、ネパフェナク、又はそれらの組み合わせが挙げられる。 Non-limiting examples of anti-inflammatory agents include any known steroidal anti-inflammatory drugs (SAIDs), any known non-steroidal anti-inflammatory drugs (NSAIDs), or combinations thereof. Non-limiting examples of SAIDs include glucocorticoids such as dexamethasone, prednisolone, fluorometholone, loteprednol, medrysone, rimexolone, and the like. Non-limiting examples of NSAIDs include diclofenac, flurbiprofen, ketorolac, bromofenac, nepafenac, or combinations thereof.
 抗悪性腫瘍剤の非限定的な例としては、当該分野で周知の化学療法剤が挙げられる。
 麻酔剤の非限定的な例としては、アミノアミド、アミノエステル、又はそれらの組み合わせが挙げられる。アミノアミドの非限定的な例としては、リドカイン、プリロカイン、メピバカイン、ロピバカイン、又はそれらの組み合わせが挙げられる。可能なアミノエステルの非限定的な例としては、ベンゾカイン、プロカイン、プロパラカイン、テトラカイン、又はそれらの組み合わせが挙げられる。
Non-limiting examples of antineoplastic agents include chemotherapeutic agents well known in the art.
Non-limiting examples of anesthetics include aminoamides, aminoesters, or combinations thereof. Non-limiting examples of aminoamides include lidocaine, prilocaine, mepivacaine, ropivacaine, or combinations thereof. Non-limiting examples of possible amino esters include benzocaine, procaine, proparacaine, tetracaine, or combinations thereof.
 自律神経剤の非限定的な例としては、アセチルコリン、カルバコール、ピロカルピン、フィゾスチグミン、エコチオフェート、アトロピン、スコポラミン、ホモトラピン、シクロペントレート、トロピカミド、ジピベフリン、エピネフリン、フェニレフリン、アプラクロニジン、ブリモニジン、コカイン、ヒドロキシアンフェタミン、ナファゾリン、テトラヒドロゾリン、ダピプラゾール、ベタキソロール、カルテオロール、レボブノロール、メチプラノロール、チモロール、ベポタスチンベシル酸塩、又はそれらの組み合わせが挙げられる。 Non-limiting examples of autonomic agents include acetylcholine, carbachol, pilocarpine, physostigmine, ecothiophate, atropine, scopolamine, homotrapine, cyclopentolate, tropicamide, dipivefrin, epinephrine, phenylephrine, apraclonidine, brimonidine, cocaine, hydroxy Included are amphetamine, naphazoline, tetrahydrozoline, dapiprazole, betaxolol, carteolol, levobunolol, methiplanolol, timolol, bepotastine besylate, or combinations thereof.
 抗ヒスタミン剤の非限定的な例としては、フェニラミン、アンタゾリン、ナファゾリン、エメダスチン、レボカルバスチン、クロモリン、又はそれらの組み合わせが挙げられる。
 肥満細胞安定化剤の非限定的な例としては、ロドキサミド、ペミロラスト、ネドクロミル、オロパタジン、ケトチフェン、アゼラスチン、エピナスチン、又はそれらの組み合わせが挙げられる。
Non-limiting examples of antihistamines include pheniramine, antazoline, naphazoline, emedastine, levocarbastine, cromolyn, or combinations thereof.
Non-limiting examples of mast cell stabilizers include lodoxamide, pemirolast, nedocromil, olopatadine, ketotifen, azelastine, epinastine, or combinations thereof.
 薬剤としては、ゲルへ吸着しやすく放出を制御しやすい点から、アニオン系薬剤、両性薬剤又はカチオン性薬剤が好ましい。
 アニオン系薬剤は、アニオン性基を有し、水中で負電荷を示す薬剤である。
 アニオン系薬剤の非限定的な例としては、核酸、トラニラスト、アシタザノラスト水和物、クロモグリク酸ナトリウム、グルタチオン、プラノプロフェン、ブロムフェナクナトリウム、ジクロフェナクナトリウム、又はそれらの組み合わせが挙げられる。
 薬剤としての核酸としては、例えばアンチセンスオリゴヌクレオチドが挙げられる。アンチセンスオリゴヌクレオチドは、アンチセンス核酸とも称され、標的遺伝子の転写産物又は標的転写産物の少なくとも一部にハイブリダイズすることが可能な(すなわち、相補的な)塩基配列を含み、主にアンチセンス効果により標的遺伝子の転写産物の発現又は標的転写産物のレベルを抑制し得る、一本鎖オリゴヌクレオチドを指す。
 アンチセンス効果によってその発現が抑制され、変更され、あるいは改変される標的遺伝子又は標的転写産物は特に限定されないが、例えば、核酸複合体を導入する生物由来の遺伝子、例えば、様々な疾患においてその発現が増加している遺伝子が挙げられる。また、標的遺伝子の転写産物は、標的遺伝子をコードするゲノムDNAから転写されるmRNAであり、さらにまた、塩基修飾を受けていないmRNA、プロセシングされていないmRNA前駆体などを含む。標的転写産物は、mRNAだけでなく、miRNAなどのノンコーディングRNA(non-coding RNA、ncRNA)も含み得る。さらに一般的には、転写産物は、DNA依存性RNAポリメラーゼによって合成される任意のRNAであってよい。一実施形態では、標的転写産物は、例えば、転移関連肺腺癌転写産物1(metastasis associated lungadenocarcinoma transcript 1、malat1)ノンコーディングRNA、スカベンジャー受容体B1(scavenger receptor B1、SR-B1) mRNA、又はDMPK(dystrophia myotonica-protein kinase) mRNAであってもよい。遺伝子及び転写産物の塩基配列は、例えばNCBI(米国国立生物工学情報センター)データベースなどの公知のデータベースから入手できる。
 アニオン系薬剤と他の薬剤とを併用してもよい。
The drug is preferably an anionic drug, an amphoteric drug, or a cationic drug because it is easily adsorbed to the gel and its release can be easily controlled.
Anionic drugs are drugs that have an anionic group and exhibit a negative charge in water.
Non-limiting examples of anionic agents include nucleic acids, tranilast, acitazanolast hydrate, sodium cromoglycate, glutathione, pranoprofen, bromfenac sodium, diclofenac sodium, or combinations thereof.
Examples of nucleic acids used as drugs include antisense oligonucleotides. Antisense oligonucleotides are also referred to as antisense nucleic acids, and contain a base sequence that can hybridize (i.e., are complementary) to a transcript of a target gene or at least a portion of a target transcript, and are mainly used for antisense oligonucleotides. Refers to a single-stranded oligonucleotide whose effect is to suppress the expression of a target gene transcript or the level of a target transcript.
The target gene or target transcript whose expression is suppressed, altered, or modified by the antisense effect is not particularly limited, but includes, for example, a gene derived from an organism into which the nucleic acid complex is introduced, for example, its expression in various diseases. Examples include genes with an increased number of genes. Furthermore, the transcription product of the target gene is mRNA transcribed from genomic DNA encoding the target gene, and further includes unbase-modified mRNA, unprocessed mRNA precursor, and the like. Target transcripts can include not only mRNA but also non-coding RNA (ncRNA) such as miRNA. More generally, a transcription product may be any RNA synthesized by a DNA-dependent RNA polymerase. In one embodiment, the target transcript is, for example, metastasis associated lung adenocarcinoma transcript 1 (malat1) non-coding RNA, scavenger receptor B1 (SR-B1) mRNA or DMPK (dystrophia myotonica-protein kinase) mRNA may be used. The base sequences of genes and transcripts can be obtained from known databases such as the NCBI (National Center for Biotechnology Information) database.
Anionic drugs and other drugs may be used in combination.
 両性薬剤は、アニオン性基及びカチオン性基を有し、水中での電荷がゼロとなる薬剤である。眼科用薬のオロパタジンは単一の正に荷電した三級アミン基、及び単一の負に荷電したカルボン酸基を有するので、ゼロの正味電荷を有するとみなされる。
 両性薬剤の非限定的な例としては、塩酸レボカバスチン、アンレキサノクス、オロパタジン、ロメフロキサシン塩酸塩、オフロキサシン、ノルフロキサシン、レボフロキサシン、トスフロキサシン、ピレノキシン、ラパマイシン、又はそれらの組み合わせが挙げられる。
 両性薬剤と他の薬剤とを併用してもよい。
Amphoteric drugs are drugs that have an anionic group and a cationic group and have zero charge in water. The ophthalmic drug olopatadine has a single positively charged tertiary amine group and a single negatively charged carboxylic acid group and is therefore considered to have a net charge of zero.
Non-limiting examples of amphoteric drugs include levocabastine hydrochloride, amlexanox, olopatadine, lomefloxacin hydrochloride, ofloxacin, norfloxacin, levofloxacin, tosufloxacin, pirenoxine, rapamycin, or combinations thereof.
Amphoteric drugs may be used in combination with other drugs.
 カチオン性薬剤は、カチオン性基を有し、水中で正電荷を示す薬剤である。
 一例では、カチオン性薬剤はポリマーである。例となるカチオン性ポリマーとしては、複数のアルギニン及び/又はリジン基を含む抗菌性ペプチドであるイプシロンポリリジン(εPLL)、ポリコート(polyquat)等が挙げられる。
 他の一例では、カチオン性薬剤は、3個の窒素原子に共有結合した中心炭素原子を含み、1個の窒素原子と中心炭素との間に二重結合を有する、正に荷電した基であるグアニジウム基を含む。少なくとも1つのグアニジウム基を含む眼科用途に典型的な有益な薬剤としては、抗ヒスタミン薬、例えばエピナスチン及びエメダスチン;緑内障薬、例えばアプラクロニジン及びブリモニジン;グアニン誘導体抗ウイルス薬、例えばガンシクロビル及びバルガンシクロビル;アルギニン含有抗菌性ペプチド、例えばデフェンシン及びインドリシジン;並びにビグアナイド系抗菌剤、例えばクロルヘキシジン、アレキシジン、及びポリヘキサメチレンビグアナイド(PHMB)が挙げられる。
 眼科用途の他のカチオン性薬剤としては、ケトチフェン、カチオン性ステロイド、メチル硫酸ネオスチグミン、塩酸オキシブプロカイン、硝酸ナファゾリン、塩酸ナファゾリン、コンドロイチン硫酸ナトリウム、塩酸ピロカルピン、臭化ジスチグミン、ヨウ化エコチオパート、エピネフェリン、酒石酸水素エピネフェリン、塩酸カルテオロール、塩酸ベフノロール、リパスジル塩酸塩水和物が挙げられる。
 カチオン系薬剤と他の薬剤とを併用してもよい。
A cationic drug is a drug that has a cationic group and exhibits a positive charge in water.
In one example, the cationic drug is a polymer. Exemplary cationic polymers include epsilon polylysine (εPLL), polyquat, and the like, which are antimicrobial peptides containing multiple arginine and/or lysine groups.
In another example, a cationic drug is a positively charged group that includes a central carbon atom covalently bonded to three nitrogen atoms and has a double bond between one nitrogen atom and the central carbon. Contains a guanidium group. Typical useful agents for ophthalmic use containing at least one guanidinium group include antihistamines such as epinastine and emedastine; glaucoma drugs such as apraclonidine and brimonidine; guanine derivative antivirals such as ganciclovir and valganciclovir; arginine Containing antimicrobial peptides such as defensins and indolicidin; and biguanide antimicrobials such as chlorhexidine, alexidine, and polyhexamethylene biguanide (PHMB).
Other cationic drugs for ophthalmic use include ketotifen, cationic steroids, neostigmine methyl sulfate, oxybuprocaine hydrochloride, naphazoline nitrate, sodium chondroitin sulfate, pilocarpine hydrochloride, distigmine bromide, ecothiopate iodide, epinepherine, Examples include epinepherine bitartrate, carteolol hydrochloride, befunolol hydrochloride, and ripasudil hydrochloride hydrate.
A cationic drug and another drug may be used in combination.
 凍結融解ハイドロゲルは、必要に応じて、本発明の効果を著しく損なわない範囲で、変性PVOH及び薬剤以外の他の成分をさらに含んでいてもよい。
 例えば凍結融解ハイドロゲルが眼科疾患の治療に用いられる場合、眼科疾患用の製剤(点眼剤等)における薬剤以外の配合成分として公知の成分を含有させることができる。
 例えば凍結融解ハイドロゲルがコンタクトレンズに用いられる場合、コンタクトレンズにおける薬剤以外の配合成分として公知の成分(酸化防止剤、安定化剤、防腐剤、浸透圧調整整剤等)を含有させることができる。
 他の成分は1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
The freeze-thaw hydrogel may further contain other components other than the modified PVOH and the drug, if necessary, to the extent that the effects of the present invention are not significantly impaired.
For example, when the freeze-thaw hydrogel is used to treat an ophthalmological disease, it may contain known components other than drugs in formulations for ophthalmological diseases (eye drops, etc.).
For example, when a freeze-thaw hydrogel is used for a contact lens, it can contain known ingredients (antioxidants, stabilizers, preservatives, osmotic pressure regulators, etc.) as compounded ingredients other than drugs in the contact lens. .
The other components may be used alone or in combination of two or more.
 凍結融解ハイドロゲルにおいて、変性PVOHの含有量は、凍結融解ハイドロゲルの総質量に対し、5~50質量%が好ましく、10~40質量%がより好ましい。変性PVOHの含有量が前記下限値以上であれば、レンズの強度がより優れる傾向がある。変性PVOHの含有量が前記上限値以下であれば、酸素透過性がより優れる傾向がある。 In the freeze-thaw hydrogel, the content of modified PVOH is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, based on the total mass of the freeze-thaw hydrogel. If the content of modified PVOH is at least the lower limit, the strength of the lens tends to be better. If the content of modified PVOH is below the upper limit, oxygen permeability tends to be better.
 凍結融解ハイドロゲルにおいて、薬剤の含有量は、薬剤の投与量、放出量等を考慮して設定される。
 薬剤の含有量は特に限定するものではないが、例えば、凍結融解ハイドロゲルの総質量に対し、0.1~20質量%の範囲で設定することができる。また、変性PVOHに対し、0.2~80質量%の範囲で設定することができる。
In the freeze-thaw hydrogel, the content of the drug is determined by taking into consideration the dosage, release amount, etc. of the drug.
The content of the drug is not particularly limited, but can be set, for example, in the range of 0.1 to 20% by mass based on the total mass of the freeze-thaw hydrogel. Further, it can be set in a range of 0.2 to 80% by mass based on modified PVOH.
 凍結融解ハイドロゲルの飽和水分率は、50~90質量%であることが好ましく、60~88質量%であることがより好ましい。飽和水分率が前記下限値以上であれば、酸素透過性がより優れる傾向がある。飽和水分率が前記上限値以下であれば、ゲルの強度がより優れる傾向がある。
 凍結融解ハイドロゲルの飽和水分率は、37℃の精製水に24時間浸漬させた凍結融解ハイドロゲルの水分率である。飽和水分率は、乾燥重量法により測定され、下記式で算出される。凍結融解ハイドロゲルの乾燥は、140℃1時間の条件で行われる。
 飽和水分率={(浸漬後の質量)-(乾燥後の質量)}/(浸漬後の質量)×100
The saturated moisture content of the freeze-thaw hydrogel is preferably 50 to 90% by mass, more preferably 60 to 88% by mass. When the saturated moisture content is equal to or higher than the lower limit, oxygen permeability tends to be better. If the saturated moisture content is below the upper limit, the gel strength tends to be better.
The saturated moisture content of the freeze-thaw hydrogel is the water content of the freeze-thaw hydrogel immersed in purified water at 37° C. for 24 hours. The saturated moisture content is measured by the dry weight method and calculated using the following formula. The freeze-thaw hydrogel is dried at 140° C. for 1 hour.
Saturated moisture content = {(mass after immersion) - (mass after drying)}/(mass after immersion) x 100
 凍結融解ハイドロゲルの37℃における圧縮弾性率は、0.001~0.5MPaであることが好ましく、0.005~0.4MPaであることがより好ましく、0.01~0.3MPaであることがさらに好ましい。圧縮弾性率が前記下限値以上であれば、装着感がより優れる傾向がある。圧縮弾性率が前記上限値以下であれば、装着感がより優れる傾向がある。
 圧縮弾性率は、熱機械分析(TMA法)により測定される。
 凍結融解ハイドロゲルの圧縮弾性率は、後述する凍結融解サイクルの繰り返し回数、変性PVOHのケン化度、重合度等によって調節できる。例えば、凍結融解サイクルの繰り返し回数が増えるにつれて、圧縮弾性率が高くなる傾向がある。
The compressive modulus of the freeze-thaw hydrogel at 37°C is preferably 0.001 to 0.5 MPa, more preferably 0.005 to 0.4 MPa, and more preferably 0.01 to 0.3 MPa. is even more preferable. If the compressive elastic modulus is equal to or higher than the lower limit value, the wearing feeling tends to be better. If the compressive elastic modulus is below the upper limit, the wearing comfort tends to be better.
Compressive modulus is measured by thermomechanical analysis (TMA method).
The compressive elastic modulus of the freeze-thaw hydrogel can be adjusted by the number of repetitions of the freeze-thaw cycle, the degree of saponification of modified PVOH, the degree of polymerization, etc., which will be described later. For example, as the number of repeated freeze-thaw cycles increases, the compressive modulus tends to increase.
 凍結融解ハイドロゲルは、以下の徐放性試験において、薬剤の1時間後の累積溶出割合が、24時間後の累積溶出割合の90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。1時間後の累積溶出割合が前記上限値以下であれば、徐放性に優れる。 In the sustained release test below, the freeze-thaw hydrogel preferably has a cumulative dissolution rate of the drug after 1 hour of 90% by mass or less, and preferably 80% by mass or less of the cumulative dissolution rate after 24 hours. is more preferable, and even more preferably 70% by mass or less. If the cumulative dissolution rate after 1 hour is below the upper limit, sustained release properties are excellent.
 徐放性試験:
 凍結融解ハイドロゲルを24well細胞培養プレートに入れ、1000μLのリン酸緩衝生理食塩水(以下、「PBS」とも記す。)を添加し、37℃で15分静置した後、前記PBSを全量採取し、次いで、新たな1000μLのPBSを添加し、37℃で15分静置した後(計30分後)、前記PBSを全量採取し、次いで、新たな1000μLのPBSを添加し、37℃で30分静置した後(計1時間後)、前記PBSを全量採取する。これを繰り返し、最初にPBSを添加してから15分後、30分後、1時間後、4時間後、8時間後、24時間後に採取したPBSを測定サンプルとして前記薬剤の溶出量を求め、各時間での累積溶出割合を算出する。
 ここで、「累積溶出割合」は、「凍結融解ハイドロゲルの薬剤含有量」に対する「各時間までに溶出した薬剤の合計」の質量百分率である。薬剤の溶出量は、高速液体クロマトグラフィ(以下、「HPLC」とも記す。)や分光光度計で、薬剤に対応した吸光度を測定することで求められる。
Sustained release test:
The frozen and thawed hydrogel was placed in a 24-well cell culture plate, 1000 μL of phosphate buffered saline (hereinafter also referred to as "PBS") was added, and after standing at 37°C for 15 minutes, the entire amount of the PBS was collected. Next, 1000 μL of new PBS was added, and after standing at 37°C for 15 minutes (30 minutes in total), the entire amount of the PBS was collected. After standing for a minute (1 hour in total), the entire amount of the PBS is collected. Repeat this, and use the PBS collected 15 minutes, 30 minutes, 1 hour, 4 hours, 8 hours, and 24 hours after the first addition of PBS as a measurement sample to determine the elution amount of the drug, Calculate the cumulative elution percentage at each time.
Here, the "cumulative elution ratio" is the mass percentage of the "total amount of drugs eluted by each time" relative to the "drug content of the freeze-thaw hydrogel." The elution amount of the drug can be determined by measuring the absorbance corresponding to the drug using high performance liquid chromatography (hereinafter also referred to as "HPLC") or a spectrophotometer.
 凍結融解ハイドロゲルの形状に特に制限は無く、例えばシート状、レンズ状等であってよい。凍結融解ハイドロゲルがシート状である場合、その上面視での形状にも特に制限は無く、例えば四角形等の多角形状、環状、半円形状、三日月形状、アーチ状等であってよい。 The shape of the freeze-thaw hydrogel is not particularly limited, and may be, for example, sheet-shaped, lens-shaped, etc. When the freeze-thaw hydrogel is in the form of a sheet, its shape when viewed from above is not particularly limited, and may be, for example, a polygonal shape such as a quadrangle, an annular shape, a semicircular shape, a crescent shape, an arch shape, or the like.
<凍結融解ハイドロゲルの製造方法>
 第1実施形態の凍結融解ハイドゲルの製造方法としては、例えば、水、変性PVOH及び薬剤を含有する組成物を調製し、前記組成物を-5℃以下の温度に降温して凍結し、凍結した前記組成物を5℃以上の温度に昇温して融解するサイクル(以下、「凍結融解サイクル」とも記す。)を2回以上繰り返す方法が挙げられる。
<Method for producing freeze-thaw hydrogel>
As a method for producing the freeze-thaw hydrogel of the first embodiment, for example, a composition containing water, modified PVOH, and a drug is prepared, and the composition is cooled to a temperature of −5° C. or lower and frozen. Examples include a method in which a cycle of heating the composition to a temperature of 5° C. or higher and melting it (hereinafter also referred to as a "freeze-thaw cycle") is repeated two or more times.
 組成物は、水、変性PVOH及び薬剤を混合することにより調製できる。
 組成物中の変性PVOHの含有量は、組成物の総質量に対し、5~30質量%であることが好ましく、10~20質量%であることがより好ましい。変性PVOHが前記下限値以上であれば、ゲル強度がより優れる傾向がある。変性PVOHが前記上限値以下であれば、酸素透過性がより優れる傾向がある。
 組成物中の水の含有量は、組成物の総質量に対し、60~95質量%であることが好ましく、70~90質量%であることがより好ましい。
The composition can be prepared by mixing water, modified PVOH and drug.
The content of modified PVOH in the composition is preferably 5 to 30% by mass, more preferably 10 to 20% by mass, based on the total mass of the composition. If the modified PVOH is at least the lower limit, the gel strength tends to be better. If the modified PVOH is below the upper limit, oxygen permeability tends to be better.
The content of water in the composition is preferably 60 to 95% by mass, more preferably 70 to 90% by mass, based on the total mass of the composition.
 組成物の凍結温度は、物理架橋のしやすさの点から、-5℃以下が好ましく、-10℃以下がより好ましい。
 凍結後、凍結した組成物を融解する前に、組成物を凍結温度で保持することが好ましい。凍結温度での保持時間は、30分以上が好ましく、1時間以上がより好ましい。凍結温度での保持時間の上限は特に限定されないが、例えば24時間である。
 組成物の融解温度は、物理架橋のしやすさの点から、5℃以上が好ましく、10℃以上がより好ましい。融解温度の上限は特に限定されないが、例えば40℃である。
 融解後、次回の凍結融解サイクルで組成物を凍結する前に、組成物を融解温度で保持することが好ましい。融解温度での保持時間は、30分以上が好ましく、1時間以上がより好ましい。融解温度での保持時間の上限は特に限定されないが、例えば24時間である。
 1回の凍結融解サイクルによっても凍結融解ハイドロゲルを得ることができるが、強度が充分高い凍結融解ハイドロゲルが得られる点で、凍結融解サイクルを2回以上繰り返すことが好ましく、3回以上繰り返すことがより好ましい。凍結融解サイクルを繰り返す回数の上限は特に限定されないが、例えば20回である。
The freezing temperature of the composition is preferably -5°C or lower, more preferably -10°C or lower, from the viewpoint of ease of physical crosslinking.
After freezing and before thawing the frozen composition, it is preferred to maintain the composition at freezing temperatures. The holding time at freezing temperature is preferably 30 minutes or more, more preferably 1 hour or more. The upper limit of the holding time at freezing temperature is not particularly limited, but is, for example, 24 hours.
The melting temperature of the composition is preferably 5°C or higher, more preferably 10°C or higher, from the viewpoint of ease of physical crosslinking. The upper limit of the melting temperature is not particularly limited, but is, for example, 40°C.
After thawing, it is preferred to maintain the composition at the thawing temperature before freezing the composition in the next freeze-thaw cycle. The holding time at the melting temperature is preferably 30 minutes or more, more preferably 1 hour or more. The upper limit of the holding time at the melting temperature is not particularly limited, but is, for example, 24 hours.
Although it is possible to obtain a freeze-thaw hydrogel by one freeze-thaw cycle, it is preferable to repeat the freeze-thaw cycle two or more times, and it is preferable to repeat the freeze-thaw cycle three or more times in order to obtain a freeze-thaw hydrogel with sufficiently high strength. is more preferable. The upper limit of the number of times the freeze-thaw cycle is repeated is not particularly limited, but is, for example, 20 times.
 基材上に組成物の塗膜を形成し、凍結融解サイクルを行うことで、フィルム状の凍結融解ハイドロゲルを得ることができる。基材から剥離した凍結融解ハイドロゲルに対し、さらに、裁断等の加工を行ってもよい。
 任意の形状の型に組成物を注型し、凍結融解サイクルを行うことで、型に対応した形状の凍結融解ハイドロゲルを得ることができる。型から取り出した凍結融解ハイドロゲルに対し、さらに、裁断等の加工を行ってもよい。
A film-like freeze-thaw hydrogel can be obtained by forming a coating film of the composition on a substrate and performing a freeze-thaw cycle. The freeze-thaw hydrogel peeled from the base material may be further processed, such as cutting.
By casting the composition into a mold of any shape and performing a freeze-thaw cycle, a freeze-thaw hydrogel having a shape corresponding to the mold can be obtained. The freeze-thaw hydrogel removed from the mold may be further processed, such as cutting.
 本実施形態の凍結融解ハイドロゲルの製造方法としては、PVOHの水溶液を1段目の凍結融解処理によりハイドロゲルとした後、前記ハイドロゲルの含水率を75質量%以下とし、さらに2段目の凍結融解処理を行う方法が好ましい。 The method for producing the freeze-thaw hydrogel of the present embodiment includes converting an aqueous solution of PVOH into a hydrogel by a first-stage freeze-thaw treatment, and then reducing the water content of the hydrogel to 75% by mass or less, and then performing a second-stage freeze-thaw treatment. A method of freezing and thawing is preferred.
 1段目の凍結融解処理では、PVOHの水溶液を降温して凍結し、凍結した水溶液を昇温して融解する操作(以下、「凍結融解サイクル」とも記す)を1回以上行う。1回の凍結融解サイクルによってもハイドロゲルを得ることができるが、強度が充分高いハイドロゲルが得られる点で、凍結融解サイクルを2回以上繰り返すことが好ましく、3回以上繰り返すことがより好ましい。凍結融解サイクルを繰り返す回数の上限は特に限定されないが、例えば20回、さらには10回である。
 水溶液の凍結温度は、物理架橋のしやすさの点から、-5℃以下が好ましく、-10℃以下がより好ましい。
 水溶液の凍結後、凍結した水溶液を融解する前に、凍結した水溶液を凍結温度で保持することが好ましい。凍結温度での保持時間は、30分以上が好ましく、1時間以上がより好ましい。凍結温度での保持時間の上限は特に限定されないが、例えば24時間である。
 水溶液の融解温度は、物理架橋のしやすさの点から、5℃以上が好ましく、10℃以上がより好ましい。
 融解後、次回の凍結融解サイクルで水溶液を凍結する前に、又はハイドロゲルの含水率の調整を行う前に、水溶液を融解温度で保持することが好ましい。融解温度での保持時間は、30分以上が好ましく、1時間以上がより好ましい。融解温度での保持時間の上限は特に限定されないが、例えば24時間である。
In the first freeze-thaw process, the operation of lowering the temperature of the PVOH aqueous solution, freezing it, and raising the temperature of the frozen aqueous solution to thaw it (hereinafter also referred to as "freeze-thaw cycle") is performed one or more times. Although a hydrogel can be obtained by one freeze-thaw cycle, it is preferable to repeat the freeze-thaw cycle two or more times, more preferably three or more times, in order to obtain a hydrogel with sufficiently high strength. The upper limit of the number of times the freeze-thaw cycle is repeated is not particularly limited, but is, for example, 20 times, or even 10 times.
The freezing temperature of the aqueous solution is preferably -5°C or lower, more preferably -10°C or lower, from the viewpoint of ease of physical crosslinking.
After freezing the aqueous solution, it is preferable to maintain the frozen aqueous solution at a freezing temperature before thawing the frozen aqueous solution. The holding time at freezing temperature is preferably 30 minutes or more, more preferably 1 hour or more. The upper limit of the holding time at freezing temperature is not particularly limited, but is, for example, 24 hours.
The melting temperature of the aqueous solution is preferably 5°C or higher, more preferably 10°C or higher, from the viewpoint of ease of physical crosslinking.
After thawing, it is preferred to maintain the aqueous solution at the melting temperature before freezing it in the next freeze-thaw cycle or adjusting the water content of the hydrogel. The holding time at the melting temperature is preferably 30 minutes or more, more preferably 1 hour or more. The upper limit of the holding time at the melting temperature is not particularly limited, but is, for example, 24 hours.
 1段目の凍結融解処理を行った後、ハイドロゲルを乾燥することで、ハイドロゲルの含水率を75質量%以下とする。一旦、ハイドロゲルを大きく(例えば含水率10質量%以下まで)乾燥したのち、加湿することにより含水率を調整してもよい。含水率を75質量%以下とすることで、後述する第2実施形態に示すように、示差走査熱量測定での吸収ピークの低温側のオンセット温度が-5℃以下となる。これにより、溶出が少なく、透明性の高いハイドロゲルとなる。
 ハイドロゲルの含水率は、60質量%以下にすることがより好ましく、50質量%以下にすることがさらに好ましい。含水率の下限としては10質量%以上が好ましく、20質量%以上が特に好ましく、30質量%以上が殊に好ましい。
After performing the first freeze-thaw treatment, the hydrogel is dried to reduce the water content of the hydrogel to 75% by mass or less. The water content may be adjusted by first drying the hydrogel to a large extent (for example, to a water content of 10% by mass or less) and then humidifying it. By setting the water content to 75% by mass or less, the onset temperature on the low temperature side of the absorption peak in differential scanning calorimetry becomes -5° C. or less, as shown in the second embodiment described below. This results in a highly transparent hydrogel with less elution.
The water content of the hydrogel is more preferably 60% by mass or less, and even more preferably 50% by mass or less. The lower limit of the water content is preferably 10% by mass or more, particularly preferably 20% by mass or more, and particularly preferably 30% by mass or more.
 含水率は、ハイドロゲルの質量に対する水の質量の割合である。含水率は、ハイドロゲルの質量とハイドロゲルを140℃1時間の条件で乾燥させた後の質量(乾燥後の質量)から下記式により算出される。
 含水率(質量%)=(ハイドロゲルの質量-乾燥後の質量)/ハイドロゲルの質量×100
Water content is the ratio of the mass of water to the mass of the hydrogel. The water content is calculated by the following formula from the mass of the hydrogel and the mass after drying the hydrogel at 140° C. for 1 hour (mass after drying).
Water content (mass%) = (mass of hydrogel - mass after drying) / mass of hydrogel x 100
 含水率を調整したのち、2段目の凍結融解処理を行う。2段目の凍結融解処理の条件は前述の1段目の凍結融解処理と同様であってよい。 After adjusting the moisture content, a second freeze-thaw process is performed. The conditions for the second-stage freeze-thaw treatment may be the same as those for the first-stage freeze-thaw treatment described above.
 基材上にPVOHの水溶液の塗膜を形成し、上記1段目の凍結融解処理、含水率の調整及び2段目の凍結融解処理を行うことで、フィルム状の凍結融解ハイドロゲルを得ることができる。基材から剥離した凍結融解ハイドロゲルに対し、さらに、裁断等の加工を行ってもよい。
 任意の形状の型にPVOHの水溶液を注型し、上記1段目の凍結融解処理、含水率の調整及び2段目の凍結融解処理を行うことで、型に対応した形状の凍結融解ハイドロゲルを得ることができる。型から取り出した凍結融解ハイドロゲルに対し、さらに、裁断等の加工を行ってもよい。
A film-like freeze-thaw hydrogel is obtained by forming a coating film of an aqueous PVOH solution on a base material, performing the first freeze-thaw treatment, adjusting the water content, and performing the second freeze-thaw treatment. Can be done. The freeze-thaw hydrogel peeled from the base material may be further processed, such as cutting.
By pouring an aqueous solution of PVOH into a mold with an arbitrary shape and performing the above-mentioned first freeze-thaw treatment, adjustment of the water content, and second freeze-thaw treatment, a freeze-thaw hydrogel with a shape corresponding to the mold is created. can be obtained. The freeze-thaw hydrogel removed from the mold may be further processed, such as cutting.
<作用効果>
 第1実施形態の凍結融解ハイドロゲルは、薬剤の徐放性に優れる。
 第1実施形態の凍結融解ハイドロゲルは、PVOHが物理的に架橋されていることで、PVOHが化学的に架橋されたハイドロゲルに比べ、未架橋の低分子が残存しにくく安全性が高い。また、PVOHが変性されているので、PVOHが変性されていない場合に比べ、ビニルアルコール単位の含有割合が少なく、架橋密度が低い。そのため、薬剤がハイドロゲル中を拡散しやすく、凍結融解ハイドロゲルの表面近くに存在する薬剤だけでなく凍結融解ハイドロゲル内部に存在する薬剤も溶出するので、薬剤の溶出が長時間にわたって持続する。
<Effect>
The freeze-thaw hydrogel of the first embodiment has excellent sustained drug release properties.
In the freeze-thaw hydrogel of the first embodiment, PVOH is physically crosslinked, and thus uncrosslinked low molecules are less likely to remain, making it highly safe compared to hydrogels in which PVOH is chemically crosslinked. Furthermore, since PVOH is modified, the content of vinyl alcohol units is lower and the crosslinking density is lower than when PVOH is not modified. Therefore, the drug easily diffuses through the hydrogel, and not only the drug present near the surface of the freeze-thaw hydrogel but also the drug present inside the freeze-thaw hydrogel is eluted, so that the elution of the drug continues for a long time.
 第1実施形態の凍結融解ハイドロゲルは、眼科疾患の治療に用いることができる。第1実施形態の凍結融解ハイドロゲルを角膜や結膜に接触させると、凍結融解ハイドロゲルから涙液へ薬剤が徐々に溶出する。
 眼科疾患の非限定的な例としては、眼(皮膚、眼瞼、結膜又は涙液排出系を含む)の感染症、眼窩蜂巣炎、涙腺炎、麦粒腫、眼瞼炎、結膜炎、角膜炎、角膜浸潤、潰瘍、眼内炎、全眼球炎、ウイルス性角膜炎、真菌性の角膜炎眼部帯状疱疹、ウイルス性結膜炎、ウイルス性網膜炎、ぶどう膜炎、斜視、網膜の壊死、強膜炎、ムコール菌症、涙管炎、アカントアメーバ角膜炎、トキソプラズマ症、ジアルジア症、リーシュマニア症、マラリア、蠕虫感染、緑内障が挙げられる。
The freeze-thaw hydrogel of the first embodiment can be used to treat ophthalmological diseases. When the freeze-thaw hydrogel of the first embodiment is brought into contact with the cornea or conjunctiva, the drug gradually dissolves into the tear fluid from the freeze-thaw hydrogel.
Non-limiting examples of ophthalmological diseases include infections of the eye (including skin, eyelids, conjunctiva or lacrimal drainage system), orbital cellulitis, dacryoadenitis, stye, blepharitis, conjunctivitis, keratitis, corneal infiltrates, Ulcer, endophthalmitis, panophthalmitis, viral keratitis, fungal keratitis ocular herpes zoster, viral conjunctivitis, viral retinitis, uveitis, strabismus, retinal necrosis, scleritis, mucorbacterium infections, dacryotinitis, Acanthamoeba keratitis, toxoplasmosis, giardiasis, leishmaniasis, malaria, helminth infections, and glaucoma.
 第1実施形態の凍結融解ハイドロゲルは、眼科用医療器具、具体的にはコンタクトレンズ、涙点プラグ、眼内レンズ、眼内リング等とすることができる。
 第1実施形態の凍結融解ハイドロゲルは、薬剤の徐放性に優れるので、第1実施形態の凍結融解ハイドロゲルを含む眼科用医療器具も、薬剤の徐放性に優れる。
The freeze-thaw hydrogel of the first embodiment can be used as an ophthalmic medical device, specifically a contact lens, a punctal plug, an intraocular lens, an intraocular ring, and the like.
Since the freeze-thaw hydrogel of the first embodiment has excellent sustained drug release properties, the ophthalmic medical device including the freeze-thaw hydrogel of the first embodiment also has excellent sustained drug release properties.
≪第2実施形態≫
 本発明の第2実施形態に係る凍結融解ハイドロゲルは、PVOHを含む。
 PVOHは、ビニルアルコール単位を含む重合体であり、典型的には、ビニルエステル系単量体単位を含む重合体のケン化物である。PVOHは、ビニルエステル系単量体単位を含んだ重合体であってもよい。
 PVOHは、未変性のPVOHであってもよく、変性PVOHであってもよい。薬剤の徐放性の点では、変性PVOHが好ましい。
≪Second embodiment≫
The freeze-thaw hydrogel according to the second embodiment of the present invention contains PVOH.
PVOH is a polymer containing vinyl alcohol units, and is typically a saponified product of a polymer containing vinyl ester monomer units. PVOH may be a polymer containing vinyl ester monomer units.
PVOH may be unmodified PVOH or modified PVOH. Modified PVOH is preferred in terms of sustained drug release.
<未変性PVOH>
 未変性PVOHは、ビニルアルコール単位及びビニルエステル系単量体単位以外の他の単量体単位を含まないPVOHである。未変性PVOHは、ビニルアルコール単位のみからなるか、又はビニルアルコール単位とビニルエステル系単量体単位とからなる。
 未変性PVOHは、通常、ビニルエステル系モノマーを重合し、さらにそれをケン化することにより製造することができる。
<Undenatured PVOH>
Unmodified PVOH is PVOH that does not contain any other monomer units other than vinyl alcohol units and vinyl ester monomer units. Unmodified PVOH consists only of vinyl alcohol units, or consists of vinyl alcohol units and vinyl ester monomer units.
Unmodified PVOH can usually be produced by polymerizing a vinyl ester monomer and then saponifying it.
 上記ビニルエステル系モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、バーサチック酸ビニル、トリフロロ酢酸ビニル等の脂肪族ビニルエステル、安息香酸ビニル等の芳香族ビニルエステル等が挙げられる。なかでも、好ましくは炭素数3~20、より好ましくは炭素数4~10、特に好ましくは炭素数4~7の脂肪族ビニルエステルであり、殊に好ましくは酢酸ビニルである。これらは通常単独で用いるが、必要に応じて複数種を同時に用いてもよい。 Examples of the vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl versatate. , aliphatic vinyl esters such as vinyl trifluoroacetate, and aromatic vinyl esters such as vinyl benzoate. Among these, aliphatic vinyl esters having 3 to 20 carbon atoms, more preferably 4 to 10 carbon atoms, particularly preferably 4 to 7 carbon atoms are preferred, and vinyl acetate is particularly preferred. These are usually used alone, but multiple types may be used simultaneously if necessary.
 ビニルエステル系モノマーの重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより行うことができる。なかでも、反応熱を効率的に除去できる溶液重合を還流下で行うことが好ましい。溶液重合の溶媒としては、通常はアルコールが用いられ、好ましくは炭素数1~3の低級アルコールが用いられる。 The vinyl ester monomer can be polymerized by any known polymerization method, such as solution polymerization, suspension polymerization, emulsion polymerization, etc. Among these, it is preferable to carry out solution polymerization under reflux because it can efficiently remove the heat of reaction. As a solvent for solution polymerization, alcohol is usually used, preferably a lower alcohol having 1 to 3 carbon atoms.
 得られた重合体のケン化についても、従来行われている公知のケン化方法を採用することができる。すなわち、重合体をアルコール又は水/アルコール溶媒に溶解させた状態で、アルカリ触媒又は酸触媒を用いて行うことができる。
 前記アルカリ触媒としては、例えば、水酸化カリウム、水酸化ナトリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートを用いることができる。
Regarding the saponification of the obtained polymer, conventionally known saponification methods can be employed. That is, it can be carried out using an alkali catalyst or an acid catalyst in a state in which the polymer is dissolved in alcohol or a water/alcohol solvent.
As the alkali catalyst, for example, alkali metal hydroxides or alcoholates such as potassium hydroxide, sodium hydroxide, sodium methylate, sodium ethylate, potassium methylate, and lithium methylate can be used.
 通常、無水アルコール系溶媒下、アルカリ触媒を用いたエステル交換反応が、反応速度の点や脂肪酸塩等の不純物を低減できるなどの点で好適に用いられる。ケン化反応の反応温度は、通常20~60℃である。反応温度が低すぎると、反応速度が小さくなり反応効率が低下する傾向があり、高すぎると反応溶媒の沸点以上となる場合があり、製造面における安全性が低下する傾向がある。なお、耐圧性の高い塔式連続ケン化塔などを用いて高圧下でケン化する場合には、より高温、例えば、80~150℃でケン化することが可能であり、少量のケン化触媒も短時間、高ケン化度のものを得ることが可能である。 Usually, a transesterification reaction using an alkali catalyst in an anhydrous alcohol solvent is preferably used from the viewpoint of reaction rate and the ability to reduce impurities such as fatty acid salts. The reaction temperature of the saponification reaction is usually 20 to 60°C. If the reaction temperature is too low, the reaction rate tends to be low and the reaction efficiency is reduced; if it is too high, the temperature may exceed the boiling point of the reaction solvent, which tends to reduce safety in production. In addition, when saponifying under high pressure using a column-type continuous saponification tower with high pressure resistance, it is possible to saponify at a higher temperature, for example, 80 to 150°C, and a small amount of saponification catalyst is used. It is also possible to obtain a product with a high degree of saponification in a short period of time.
 また、ケン化後、得られた未変性PVOHを、洗浄液で洗浄することが好ましい。かかる洗浄液としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類が挙げられ、洗浄効率と乾燥効率の観点からメタノールが好ましい。 Furthermore, after saponification, it is preferable to wash the obtained unmodified PVOH with a washing liquid. Examples of such a cleaning liquid include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, and methanol is preferred from the viewpoint of cleaning efficiency and drying efficiency.
 洗浄された未変性PVOHは、連続式又はバッチ式にて熱風などで乾燥される。乾燥温度は、通常、50~150℃である。乾燥温度が高すぎると、未変性PVOHが熱劣化する傾向があり、乾燥温度が低すぎると、乾燥に長時間を要する傾向がある。乾燥時間は、通常、1~48時間である。乾燥時間が長すぎると、未変性PVOHが熱劣化する傾向があり、乾燥時間が短すぎると、乾燥が不十分となったり、高温乾燥を要したりする傾向がある。乾燥後の未変性PVOHに含まれる溶媒の含有量は、通常、0~10重量%であり、特に好ましくは0.1~5重量%、さらに好ましくは0.1~1重量%である。 The washed unmodified PVOH is dried with hot air or the like in a continuous or batch manner. The drying temperature is usually 50 to 150°C. If the drying temperature is too high, unmodified PVOH tends to be thermally degraded, and if the drying temperature is too low, drying tends to take a long time. Drying time is typically 1 to 48 hours. If the drying time is too long, the unmodified PVOH tends to be thermally degraded, and if the drying time is too short, the drying tends to be insufficient or high temperature drying is required. The content of the solvent contained in the unmodified PVOH after drying is usually 0 to 10% by weight, particularly preferably 0.1 to 5% by weight, and even more preferably 0.1 to 1% by weight.
 未変性PVOHの平均ケン化度は、95モル%以上であることが好ましく、96モル%以上であることがより好ましく、97モル%以上であることがさらに好ましく、100モル%であってもよい。平均ケン化度が前記下限値以上であれば、ゲル化しやすく、ゲルの溶出率を低減できる傾向がある。
 平均ケン化度は、JIS K 6726:1994の3.5に準じて測定される。
 なお、凍結融解ハイドロゲルとする前と後で、PVOHの平均ケン化度は変化しない。凍結融解ハイドロゲルを再溶解することで、PVOHの平均ケン化度を測定できる。
The average saponification degree of unmodified PVOH is preferably 95 mol% or more, more preferably 96 mol% or more, even more preferably 97 mol% or more, and may be 100 mol%. . If the average degree of saponification is equal to or higher than the lower limit, gelation tends to occur easily and the gel elution rate tends to be reduced.
The average degree of saponification is measured according to 3.5 of JIS K 6726:1994.
Note that the average saponification degree of PVOH does not change before and after forming the freeze-thaw hydrogel. By redissolving the freeze-thawed hydrogel, the average degree of saponification of PVOH can be measured.
 未変性PVOHの平均重合度は、一般的に水溶液の粘度で示すことができる。
 未変性PVOHの4質量%水溶液の20℃における粘度は、5~100mPa・sであることが好ましく、13~70mPa・sであることがより好ましく、17~40mPa・sであることがさらに好ましい。粘度が前記下限値以上であれば、ゲル化しやすく、ゲルの溶出率を低減できる傾向があり、一方、粘度が前記上限値以下であれば、PVOH水溶液の扱いやすさと、薬物の放出性がより優れる傾向がある。
 粘度は、JIS K 6726:1994の3.11.2に準じて測定される。
 なお、凍結融解ハイドロゲルとする前と後で、PVOHの平均重合度は変化しない。凍結融解ハイドロゲルを再溶解することで、PVOHの平均重合度を測定できる。
The average degree of polymerization of unmodified PVOH can generally be expressed by the viscosity of an aqueous solution.
The viscosity of a 4% by mass aqueous solution of unmodified PVOH at 20° C. is preferably 5 to 100 mPa·s, more preferably 13 to 70 mPa·s, and even more preferably 17 to 40 mPa·s. If the viscosity is above the above lower limit, gelation tends to occur easily and the dissolution rate of the gel can be reduced. On the other hand, if the viscosity is below the above upper limit, the PVOH aqueous solution is easier to handle and the release of the drug is improved. It tends to be better.
The viscosity is measured according to 3.11.2 of JIS K 6726:1994.
Note that the average degree of polymerization of PVOH does not change before and after forming the freeze-thaw hydrogel. By redissolving the freeze-thaw hydrogel, the average degree of polymerization of PVOH can be measured.
<変性PVOH>
 変性PVOHとしては、第1実施形態で挙げた変性PVOHと同様のものが挙げられる。
<Modified PVOH>
Examples of the modified PVOH include those similar to the modified PVOH mentioned in the first embodiment.
<薬剤>
 第2実施形態の凍結融解ハイドロゲルは、薬剤を含有することが好ましい。
 薬剤としては、第1実施形態で挙げた薬剤と同様のものが挙げられる。
<Drug>
The freeze-thaw hydrogel of the second embodiment preferably contains a drug.
Examples of the drug include the same drugs as those mentioned in the first embodiment.
 凍結融解ハイドロゲルは、必要に応じて、本発明の効果を著しく損なわない範囲で、PVOH及び薬剤以外の他の成分をさらに含んでいてもよい。
 例えば凍結融解ハイドロゲルが眼科疾患の治療に用いられる場合、眼科疾患用の製剤(点眼剤等)における薬剤以外の配合成分として公知の成分を含有させることができる。
 例えば凍結融解ハイドロゲルがコンタクトレンズに用いられる場合、コンタクトレンズにおける薬剤以外の配合成分として公知の成分(酸化防止剤、安定化剤、防腐剤、浸透圧調整整剤等)を含有させることができる。
 他の成分は1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
The freeze-thaw hydrogel may further contain other components other than PVOH and the drug, if necessary, to the extent that the effects of the present invention are not significantly impaired.
For example, when the freeze-thaw hydrogel is used to treat an ophthalmological disease, it may contain known components other than drugs in formulations for ophthalmological diseases (eye drops, etc.).
For example, when a freeze-thaw hydrogel is used for a contact lens, it can contain known ingredients (antioxidants, stabilizers, preservatives, osmotic pressure regulators, etc.) as compounded ingredients other than drugs in the contact lens. .
The other components may be used alone or in combination of two or more.
 凍結融解ハイドロゲルにおいて、PVOHの含有量は、凍結融解ハイドロゲルの総質量に対し、5~60質量%が好ましく、10~50質量%がより好ましい。PVOHの含有量が前記下限値以上であれば、レンズの強度がより優れる傾向がある。PVOHの含有量が前記上限値以下であれば、酸素透過性がより優れる傾向がある。 In the freeze-thaw hydrogel, the content of PVOH is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, based on the total mass of the freeze-thaw hydrogel. If the content of PVOH is at least the lower limit, the strength of the lens tends to be better. If the content of PVOH is below the upper limit, oxygen permeability tends to be better.
 凍結融解ハイドロゲルにおいて、薬剤の含有量は、薬剤の投与量、放出量等を考慮して設定される。
 薬剤の含有量は特に限定するものではないが、例えば、凍結融解ハイドロゲルの総質量に対し、0.1~20質量%の範囲で設定することができる。また、PVOHに対し、0.2~80質量%の範囲で設定することができる。
In the freeze-thaw hydrogel, the content of the drug is determined by taking into consideration the dosage, release amount, etc. of the drug.
The content of the drug is not particularly limited, but can be set, for example, in the range of 0.1 to 20% by mass based on the total mass of the freeze-thaw hydrogel. Further, it can be set in a range of 0.2 to 80% by mass based on PVOH.
 凍結融解ハイドロゲルの飽和水分率は、50~90質量%であることが好ましく、60~88質量%であることがより好ましく、60~80質量%であることがさらに好ましい。飽和水分率が前記下限値以上であれば、酸素透過性がより優れる傾向がある。飽和水分率が前記上限値以下であれば、ゲルの強度がより優れる傾向がある。
 凍結融解ハイドロゲルの飽和水分率は、37℃の精製水に24時間浸漬させた凍結融解ハイドロゲルの水分率である。飽和水分率は、乾燥重量法により測定され、下記式で算出される。凍結融解ハイドロゲルの乾燥は、140℃1時間の条件で行われる。
 飽和水分率={(浸漬後の質量)-(乾燥後の質量)}/(浸漬後の質量)×100
The saturated moisture content of the freeze-thaw hydrogel is preferably 50 to 90% by mass, more preferably 60 to 88% by mass, and even more preferably 60 to 80% by mass. When the saturated moisture content is equal to or higher than the lower limit, oxygen permeability tends to be better. If the saturated moisture content is below the upper limit, the gel strength tends to be better.
The saturated moisture content of the freeze-thaw hydrogel is the water content of the freeze-thaw hydrogel immersed in purified water at 37° C. for 24 hours. The saturated moisture content is measured by the dry weight method and calculated using the following formula. The freeze-thaw hydrogel is dried at 140° C. for 1 hour.
Saturated moisture content = {(mass after immersion) - (mass after drying)}/(mass after immersion) x 100
 凍結融解ハイドロゲルの37℃における圧縮弾性率は、0.1~500kPaであることが好ましく、1~400kPaであることがより好ましく、3~300kPaであることがさらに好ましい。圧縮弾性率が前記下限値以上であれば、装着感がより優れる傾向がある。圧縮弾性率が前記上限値以下であれば、装着感がより優れる傾向がある。
 圧縮弾性率は、熱機械分析(TMA法)により測定される。
 凍結融解ハイドロゲルの圧縮弾性率は、後述する凍結融解サイクルの繰り返し回数、PVOHのケン化度、重合度等によって調節できる。例えば、凍結融解サイクルの繰り返し回数が増えるにつれて、圧縮弾性率が高くなる傾向がある。
The compressive modulus of the freeze-thaw hydrogel at 37° C. is preferably 0.1 to 500 kPa, more preferably 1 to 400 kPa, and even more preferably 3 to 300 kPa. If the compressive elastic modulus is equal to or higher than the lower limit value, the wearing feeling tends to be better. If the compressive elastic modulus is below the upper limit, the wearing comfort tends to be better.
Compressive modulus is measured by thermomechanical analysis (TMA method).
The compressive elastic modulus of the freeze-thaw hydrogel can be adjusted by the number of repetitions of the freeze-thaw cycle, the degree of saponification of PVOH, the degree of polymerization, etc., which will be described later. For example, as the number of repeated freeze-thaw cycles increases, the compressive modulus tends to increase.
 凍結融解ハイドロゲルは、以下の徐放性試験において、薬剤の1時間後の累積溶出割合が、24時間後の累積溶出割合の90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。1時間後の累積溶出割合が前記上限値以下であれば、徐放性に優れる。 In the sustained release test below, the freeze-thaw hydrogel preferably has a cumulative dissolution rate of the drug after 1 hour of 90% by mass or less, and preferably 80% by mass or less of the cumulative dissolution rate after 24 hours. is more preferable, and even more preferably 70% by mass or less. If the cumulative dissolution rate after 1 hour is below the upper limit, sustained release properties are excellent.
 徐放性試験:
 凍結融解ハイドロゲルを24well細胞培養プレートに入れ、1000μLのリン酸緩衝生理食塩水(以下、「PBS」とも記す。)を添加し、37℃で15分静置した後、前記PBSを全量採取し、次いで、新たな1000μLのPBSを添加し、37℃で15分静置した後(計30分後)、前記PBSを全量採取し、次いで、新たな1000μLのPBSを添加し、37℃で30分静置した後(計1時間後)、前記PBSを全量採取する。これを繰り返し、最初にPBSを添加してから15分後、30分後、1時間後、4時間後、8時間後、24時間後に採取したPBSを測定サンプルとして前記薬剤の溶出量を求め、各時間での累積溶出割合を算出する。
 ここで、「累積溶出割合」は、「凍結融解ハイドロゲルの薬剤含有量」に対する「各時間までに溶出した薬剤の合計」の質量百分率である。薬剤の溶出量は、HPLCや分光光度計で、薬剤に対応した吸光度を測定することで求められる。
Sustained release test:
The frozen and thawed hydrogel was placed in a 24-well cell culture plate, 1000 μL of phosphate buffered saline (hereinafter also referred to as "PBS") was added, and after standing at 37°C for 15 minutes, the entire amount of the PBS was collected. Next, 1000 μL of new PBS was added, and after standing at 37°C for 15 minutes (30 minutes in total), the entire amount of the PBS was collected. After standing for a minute (1 hour in total), the entire amount of the PBS is collected. Repeat this, and use the PBS collected 15 minutes, 30 minutes, 1 hour, 4 hours, 8 hours, and 24 hours after the first addition of PBS as a measurement sample to determine the elution amount of the drug, Calculate the cumulative elution percentage at each time.
Here, the "cumulative elution ratio" is the mass percentage of the "total amount of drugs eluted by each time" relative to the "drug content of the freeze-thaw hydrogel." The elution amount of the drug can be determined by measuring the absorbance corresponding to the drug using HPLC or a spectrophotometer.
 凍結融解ハイドロゲルの形状に特に制限は無く、例えばシート状、レンズ状等であってよい。凍結融解ハイドロゲルがシート状である場合、その上面視での形状にも特に制限は無く、例えば四角形等の多角形状、環状、半円形状、三日月形状、アーチ状等であってよい。 The shape of the freeze-thaw hydrogel is not particularly limited, and may be, for example, sheet-shaped, lens-shaped, etc. When the freeze-thaw hydrogel is in the form of a sheet, its shape when viewed from above is not particularly limited, and may be, for example, a polygonal shape such as a quadrangle, an annular shape, a semicircular shape, a crescent shape, an arch shape, or the like.
<凍結融解ハイドロゲルの製造方法>
 第2実施形態の凍結融解ハイドゲルの製造方法としては、例えば、PVOHの水溶液を1段目の凍結融解処理によりハイドロゲルとした後、前記ハイドロゲルの含水率を75%以下とし、さらに2段目の凍結融解処理を行う方法が挙げられる。
<Method for producing freeze-thaw hydrogel>
The method for producing the freeze-thaw hydrogel of the second embodiment includes, for example, converting an aqueous solution of PVOH into a hydrogel by a first-stage freeze-thaw treatment, and then reducing the water content of the hydrogel to 75% or less, and then performing a second-stage freeze-thaw treatment. Examples include a method of performing freeze-thaw treatment.
 PVOHの水溶液は、PVOH及び水を含有する。PVOHの水溶液は、薬剤を含有していてもよい。PVOHの水溶液は、PVOH、水及び薬剤以外の他の成分をさらに含んでいてもよい。
 PVOHの水溶液は、水及びPVOH、必要に応じて薬剤や他の成分を混合することにより調製できる。
 水溶液中のPVOHの含有量は、水溶液の総質量に対し、5~30質量%であることが好ましく、10~20質量%であることがより好ましい。PVOHの含有量が前記下限値以上であれば、得られるゲルのゲル強度がより優れる傾向がある。PVOHの含有量が前記上限値以下であれば、得られるゲルの酸素透過性がより優れる傾向がある。
 水溶液中の水の含有量は、水溶液の総質量に対し、60~95質量%であることが好ましく、70~90質量%であることがより好ましい。
The aqueous solution of PVOH contains PVOH and water. The aqueous solution of PVOH may contain a drug. The aqueous solution of PVOH may further contain other components other than PVOH, water and the drug.
Aqueous solutions of PVOH can be prepared by mixing water and PVOH, optionally drugs and other ingredients.
The content of PVOH in the aqueous solution is preferably 5 to 30% by mass, more preferably 10 to 20% by mass, based on the total mass of the aqueous solution. If the content of PVOH is at least the lower limit, the resulting gel tends to have better gel strength. If the content of PVOH is below the upper limit, the resulting gel tends to have better oxygen permeability.
The content of water in the aqueous solution is preferably 60 to 95% by mass, more preferably 70 to 90% by mass, based on the total mass of the aqueous solution.
 1段目の凍結融解処理では、PVOHの水溶液を降温して凍結し、凍結した水溶液を昇温して融解する操作(以下、「凍結融解サイクル」とも記す)を1回以上行う。1回の凍結融解サイクルによってもハイドロゲルを得ることができるが、強度が充分高いハイドロゲルが得られる点で、凍結融解サイクルを2回以上繰り返すことが好ましく、3回以上繰り返すことがより好ましい。凍結融解サイクルを繰り返す回数の上限は特に限定されないが、例えば20回、さらには10回である。
 水溶液の凍結温度は、物理架橋のしやすさの点から、-5℃以下が好ましく、-10℃以下がより好ましい。
 水溶液の凍結後、凍結した水溶液を融解する前に、凍結した水溶液を凍結温度で保持することが好ましい。凍結温度での保持時間は、30分以上が好ましく、1時間以上がより好ましい。凍結温度での保持時間の上限は特に限定されないが、例えば24時間である。
 水溶液の融解温度は、物理架橋のしやすさの点から、5℃以上が好ましく、10℃以上がより好ましい。
 融解後、次回の凍結融解サイクルで水溶液を凍結する前に、又はハイドロゲルの含水率の調整を行う前に、水溶液を融解温度で保持することが好ましい。融解温度での保持時間は、30分以上が好ましく、1時間以上がより好ましい。融解温度での保持時間の上限は特に限定されないが、例えば24時間である。
In the first freeze-thaw process, the operation of lowering the temperature of the PVOH aqueous solution, freezing it, and raising the temperature of the frozen aqueous solution to thaw it (hereinafter also referred to as "freeze-thaw cycle") is performed one or more times. Although a hydrogel can be obtained by one freeze-thaw cycle, it is preferable to repeat the freeze-thaw cycle two or more times, more preferably three or more times, in order to obtain a hydrogel with sufficiently high strength. The upper limit of the number of times the freeze-thaw cycle is repeated is not particularly limited, but is, for example, 20 times, or even 10 times.
The freezing temperature of the aqueous solution is preferably -5°C or lower, more preferably -10°C or lower, from the viewpoint of ease of physical crosslinking.
After freezing the aqueous solution, it is preferable to maintain the frozen aqueous solution at a freezing temperature before thawing the frozen aqueous solution. The holding time at freezing temperature is preferably 30 minutes or more, more preferably 1 hour or more. The upper limit of the holding time at freezing temperature is not particularly limited, but is, for example, 24 hours.
The melting temperature of the aqueous solution is preferably 5°C or higher, more preferably 10°C or higher, from the viewpoint of ease of physical crosslinking.
After thawing, it is preferred to maintain the aqueous solution at the melting temperature before freezing it in the next freeze-thaw cycle or adjusting the water content of the hydrogel. The holding time at the melting temperature is preferably 30 minutes or more, more preferably 1 hour or more. The upper limit of the holding time at the melting temperature is not particularly limited, but is, for example, 24 hours.
 1段目の凍結融解処理を行った後、ハイドロゲルを乾燥することで、ハイドロゲルの含水率を75質量%以下とする。一旦、ハイドロゲルを大きく(例えば含水率10質量%以下まで)乾燥したのち、加湿することにより含水率を調整してもよい。含水率が75質量%を超えると、示差走査熱量測定でのハイドロゲル中の水の融点の吸収ピークの低温側のオンセット温度が-5℃以下とならず、溶出が多く、透明性が低下したハイドロゲルとなる。
 ハイドロゲルの含水率は、60質量%以下にすることがより好ましく、50質量%以下にすることがさらに好ましい。含水率の下限としては10質量%以上が好ましく、20質量%以上が特に好ましく、30質量%以上が殊に好ましい。
 含水率は、ハイドロゲルの質量に対する水の質量の割合である。含水率は、ハイドロゲルの質量とハイドロゲルを140℃1時間の条件で乾燥させた後の質量(乾燥後の質量)から下記式により算出される。
 含水率(質量%)=(ハイドロゲルの質量-乾燥後の質量)/ハイドロゲルの質量×100
After performing the first freeze-thaw treatment, the hydrogel is dried to reduce the water content of the hydrogel to 75% by mass or less. The water content may be adjusted by first drying the hydrogel to a large extent (for example, to a water content of 10% by mass or less) and then humidifying it. When the water content exceeds 75% by mass, the onset temperature on the low-temperature side of the absorption peak of the melting point of water in the hydrogel in differential scanning calorimetry does not fall below -5°C, resulting in a large amount of elution and decreased transparency. It becomes a hydrogel.
The water content of the hydrogel is more preferably 60% by mass or less, and even more preferably 50% by mass or less. The lower limit of the water content is preferably 10% by mass or more, particularly preferably 20% by mass or more, and particularly preferably 30% by mass or more.
Water content is the ratio of the mass of water to the mass of the hydrogel. The water content is calculated by the following formula from the mass of the hydrogel and the mass after drying the hydrogel at 140° C. for 1 hour (mass after drying).
Water content (mass%) = (mass of hydrogel - mass after drying) / mass of hydrogel x 100
 含水率を調整したのち、2段目の凍結融解処理を行うことで、第2実施形態の凍結融解ハイドロゲルが得られる。2段目の凍結融解処理の条件は前述の1段目の凍結融解処理と同様であってよい。 After adjusting the water content, a second freeze-thaw treatment is performed to obtain the freeze-thaw hydrogel of the second embodiment. The conditions for the second-stage freeze-thaw treatment may be the same as those for the first-stage freeze-thaw treatment described above.
 基材上にPVOHの水溶液の塗膜を形成し、上記1段目の凍結融解処理、含水率の調整及び2段目の凍結融解処理を行うことで、フィルム状の凍結融解ハイドロゲルを得ることができる。基材から剥離した凍結融解ハイドロゲルに対し、さらに、裁断等の加工を行ってもよい。
 任意の形状の型にPVOHの水溶液を注型し、上記1段目の凍結融解処理、含水率の調整及び2段目の凍結融解処理を行うことで、型に対応した形状の凍結融解ハイドロゲルを得ることができる。型から取り出した凍結融解ハイドロゲルに対し、さらに、裁断等の加工を行ってもよい。
A film-like freeze-thaw hydrogel is obtained by forming a coating film of an aqueous solution of PVOH on a base material, performing the first freeze-thaw treatment, adjusting the water content, and performing the second freeze-thaw treatment. Can be done. The freeze-thaw hydrogel peeled from the base material may be further processed, such as cutting.
By pouring an aqueous solution of PVOH into a mold with an arbitrary shape, and performing the first freeze-thaw treatment, adjustment of water content, and second freeze-thaw treatment, a freeze-thaw hydrogel with a shape corresponding to the mold is created. can be obtained. The freeze-thaw hydrogel removed from the mold may be further processed, such as cutting.
<DSCオンセット温度>
 第2実施形態の凍結融解ハイドロゲルは、-50℃から150℃、昇温速度10℃/minの条件での示差走査熱量測定(以下、「DSC」とも記す。)において0℃以下の範囲に観察される吸熱ピークのオンセット温度(以下、「DSCオンセット温度」とも記す。)が-5℃以下である。
 DSCオンセット温度は、氷の融解が起こる温度であり、凍結融解ハイドロゲル中の水の融点ともいえる。
 DSCオンセット温度が-5℃以下であることで、溶出が少なく、透明性に優れた凍結融解ハイドロゲルとなる。DSCオンセット温度は-7℃以下がより好ましく、-8℃以下が特に好ましい。DSCオンセット温度の下限は通常-20℃以上である。
<DSC onset temperature>
The freeze-thaw hydrogel of the second embodiment has a temperature range of 0°C or less in differential scanning calorimetry (hereinafter also referred to as "DSC") under the conditions of -50°C to 150°C and a heating rate of 10°C/min. The onset temperature of the observed endothermic peak (hereinafter also referred to as "DSC onset temperature") is -5°C or lower.
The DSC onset temperature is the temperature at which ice melts, and can also be called the melting point of water in the freeze-thaw hydrogel.
When the DSC onset temperature is −5° C. or lower, a freeze-thaw hydrogel with little elution and excellent transparency can be obtained. The DSC onset temperature is more preferably -7°C or lower, particularly preferably -8°C or lower. The lower limit of the DSC onset temperature is usually -20°C or higher.
 DSCオンセット温度の測定方法の詳細を以下に示す。
 ハイドロゲルを30℃で1時間水に浸漬させた後、約5mgのハイドロゲルを切り出して測定試料とし、測定用の高圧パンに密閉する。メトラー・トレド社製示差走査熱量計を用いて、測定試料をホルダー内にて-50℃で1分間保持した後、10℃/minで-50℃から150℃まで昇温させた時の吸熱ピークを測定する。0℃以下にハイドロゲル中の水の吸熱ピークがあり、その吸熱ピークの低温側(融解開始側)の変曲点における接線とベースラインの延長線との交点の温度をDSCオンセット温度とする。
Details of the method for measuring DSC onset temperature are shown below.
After immersing the hydrogel in water at 30° C. for 1 hour, about 5 mg of the hydrogel is cut out and used as a measurement sample, and the sample is sealed in a high-pressure pan for measurement. Endothermic peak when the measurement sample was held at -50°C in a holder for 1 minute and then heated from -50°C to 150°C at 10°C/min using a METTLER TOLEDO differential scanning calorimeter. Measure. There is an endothermic peak of water in the hydrogel below 0°C, and the temperature at the intersection of the tangent at the inflection point on the low temperature side (melting start side) of that endothermic peak and the extension of the baseline is the DSC onset temperature. .
 DSCオンセット温度が-5℃以下であることで溶出が少なく透明性に優れたハイドロゲルとなる理由は明らかではないが、凍結融解によってポリビニルアルコールの結晶化が進む際により緻密かつ均一に結晶が生成されるためと推測される。
 ハイドロゲル中の水のクラスターが占める領域が小さくなると、表面自由エネルギーが小さくなり融解温度が下がるため、オンセット温度が低温側にシフトする。凍結融解処理によりポリビニルアルコールの結晶が一部、形成している状態で、含水率を調整し再度、凍結融解処理を行うことによってハイドロゲル中の水が綺麗に分散した状態でポリビニルアルコールの結晶が均一かつ緻密に生成されることでオンセット温度が下がり、溶出が少なく、透明性に優れたハイドロゲルが得られる。
Although it is not clear why a DSC onset temperature of -5°C or lower results in a hydrogel with less elution and excellent transparency, it is clear that when the crystallization of polyvinyl alcohol progresses through freezing and thawing, the crystals form more densely and uniformly. It is assumed that this is because it is generated.
As the area occupied by water clusters in the hydrogel becomes smaller, the surface free energy decreases and the melting temperature decreases, causing the onset temperature to shift toward lower temperatures. While some polyvinyl alcohol crystals have formed due to the freeze-thaw treatment, by adjusting the water content and performing the freeze-thaw treatment again, the polyvinyl alcohol crystals are formed while the water in the hydrogel is neatly dispersed. Uniform and dense formation results in a lower onset temperature, less elution, and a highly transparent hydrogel.
 ハイドロゲルが変性PVOHを含んでいるとPVOHの結晶化がより均一に生成されることから、ハイドロゲルは変性PVOHを含むことが好ましい。
 第2実施形態における変性PVOHの変性量は、溶出量が少なくなる点で、10モル%以下が好ましく、5モル%以下がより好ましく、3モル%以下がさらに好ましく、1.5モル%以下が特に好ましい。変性量の好ましい下限は前記と同様である。これらの上限値及び下限値は適宜組み合わせることができる。
 第2実施形態の凍結融解ハイドロゲルは、波長600nmにおける光透過率が80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが最も好ましい。波長600nmにおける光透過率の上限としては通常100%以下ある。
 また、第2実施形態の凍結融解ハイドロゲルは、ヘイズ値が30%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることが最も好ましい。ヘイズ値の下限としては通常1%以上である。
If the hydrogel contains modified PVOH, crystallization of PVOH will be more uniformly produced, so it is preferable that the hydrogel contains modified PVOH.
The amount of modification of the modified PVOH in the second embodiment is preferably 10 mol% or less, more preferably 5 mol% or less, further preferably 3 mol% or less, and even more preferably 1.5 mol% or less, in terms of reducing the amount of elution. Particularly preferred. The preferable lower limit of the amount of modification is the same as above. These upper limit values and lower limit values can be combined as appropriate.
The freeze-thaw hydrogel of the second embodiment preferably has a light transmittance of 80% or more at a wavelength of 600 nm, more preferably 90% or more, and most preferably 95% or more. The upper limit of the light transmittance at a wavelength of 600 nm is usually 100% or less.
Further, the freeze-thaw hydrogel of the second embodiment preferably has a haze value of 30% or less, more preferably 20% or less, and most preferably 15% or less. The lower limit of the haze value is usually 1% or more.
<作用効果>
 第2実施形態の凍結融解ハイドロゲルは、溶出が少なく、透明性に優れる。
 第2実施形態の凍結融解ハイドロゲルは、凍結融解処理によってポリビニルアルコールの結晶化が緻密かつ均一に進行するので、溶出が少なく、透明性に優れる為、医療用コンタクトレンズとして用いた場合、装着による問題が生じることなく、視界が確保され、コンタクトレンズ用として優れたハイドロゲルとなる。
<Effect>
The freeze-thaw hydrogel of the second embodiment has little elution and excellent transparency.
In the freeze-thaw hydrogel of the second embodiment, the crystallization of polyvinyl alcohol progresses densely and uniformly through the freeze-thaw process, so there is little elution and it has excellent transparency, so when used as a medical contact lens, it can be Visibility is secured without any problems, making it an excellent hydrogel for use in contact lenses.
 第2実施形態の凍結融解ハイドロゲルが薬剤を含有する場合、凍結融解ハイドロゲルは、例えば眼科疾患の治療に用いることができる。第2実施形態の凍結融解ハイドロゲルを角膜や結膜に接触させると、凍結融解ハイドロゲルから涙液へ薬剤が徐々に溶出する。
 眼科疾患の非限定的な例としては、眼(皮膚、眼瞼、結膜又は涙液排出系を含む)の感染症、眼窩蜂巣炎、涙腺炎、麦粒腫、眼瞼炎、結膜炎、角膜炎、角膜浸潤、潰瘍、眼内炎、全眼球炎、ウイルス性角膜炎、真菌性の角膜炎眼部帯状疱疹、ウイルス性結膜炎、ウイルス性網膜炎、ぶどう膜炎、斜視、網膜の壊死、強膜炎、ムコール菌症、涙管炎、アカントアメーバ角膜炎、トキソプラズマ症、ジアルジア症、リーシュマニア症、マラリア、蠕虫感染、緑内障が挙げられる。
When the freeze-thaw hydrogel of the second embodiment contains a drug, the freeze-thaw hydrogel can be used, for example, to treat ophthalmological diseases. When the freeze-thaw hydrogel of the second embodiment is brought into contact with the cornea or conjunctiva, the drug gradually dissolves into the tear fluid from the freeze-thaw hydrogel.
Non-limiting examples of ophthalmological diseases include infections of the eye (including skin, eyelids, conjunctiva or lacrimal drainage system), orbital cellulitis, dacryoadenitis, stye, blepharitis, conjunctivitis, keratitis, corneal infiltrates, Ulcer, endophthalmitis, panophthalmitis, viral keratitis, fungal keratitis ocular herpes zoster, viral conjunctivitis, viral retinitis, uveitis, strabismus, retinal necrosis, scleritis, mucorbacterium infections, dacryotinitis, Acanthamoeba keratitis, toxoplasmosis, giardiasis, leishmaniasis, malaria, helminth infections, and glaucoma.
 第2実施形態の凍結融解ハイドロゲルは、眼科用医療器具、具体的にはコンタクトレンズ、涙点プラグ、眼内レンズ、眼内リング等とすることができる。
 第2実施形態の凍結融解ハイドロゲルは、溶出が少なく、透明性に優れるので、第2実施形態の凍結融解ハイドロゲルを含む眼科用医療器具も、溶出が少なく、透明性に優れる。
The freeze-thaw hydrogel of the second embodiment can be used as an ophthalmic medical device, specifically a contact lens, a punctal plug, an intraocular lens, an intraocular ring, and the like.
Since the freeze-thaw hydrogel of the second embodiment has less elution and excellent transparency, the ophthalmological medical device containing the freeze-thaw hydrogel of the second embodiment also has less elution and excellent transparency.
〔コンタクトレンズ〕
 本発明のコンタクトレンズは、第1実施形態又は第2実施形態の凍結融解ハイドロゲルを含む。
 本発明のコンタクトレンズは、第1実施形態又は第2実施形態の凍結融解ハイドロゲルのみからなるものであってもよく、第1実施形態又は第2実施形態の凍結融解ハイドロゲルと他のレンズ材料とからなるものであってもよい。
 凍結融解ハイドロゲルが不透明又は半透明である場合には、コンタクトレンズの光軸が通る領域を他のレンズ材料で構成することが好ましい。
〔contact lens〕
The contact lens of the present invention includes the freeze-thaw hydrogel of the first embodiment or the second embodiment.
The contact lens of the present invention may consist only of the freeze-thaw hydrogel of the first embodiment or the second embodiment, or may consist of the freeze-thaw hydrogel of the first embodiment or the second embodiment and other lens materials. It may consist of.
When the freeze-thaw hydrogel is opaque or translucent, it is preferable that the region through which the optical axis of the contact lens passes is made of another lens material.
 他のレンズ材料としては、例えば、コンタクトレンズの分野で公知のレンズ材料を使用できる。他のレンズ材料は、ハイドロゲルであってもよい。
 他のレンズ材料の非限定的な例としては、Polymacon、Ocufilcon D、Etafilcom、Omafilcon A、Nelfilcon、 Hilafilcom B、Lotrafilcon B、 Senofilcon A、Galyfilcon A、Netrafilcon A、Lidofilcon B、Bufilcon A、Deltafilcon A、Phemfilcon、Hioxifilcon A、Perfilcon A、Methafilcon A等が挙げられる。
As other lens materials, for example, lens materials known in the field of contact lenses can be used. Other lens materials may be hydrogels.
Non-limiting examples of other lens materials include Polymacon, Ocufilcon D, Etafilcom, Omafilcon A, Nelfilcon, Hilafilcom B, Lotrafilcon B, Senofilcon A, Galyfilcon A, Net rafilcon A, Lidofilcon B, Bufilcon A, Deltafilcon A, Phemfilcon , Hioxifilcon A, Perfilcon A, Methafilcon A, and the like.
 凍結融解ハイドロゲルと他のレンズ材料とからなるコンタクトレンズの形態例として、(1)レンズ状の他のレンズ材料に凍結融解ハイドロゲルが埋め込まれた形態、(2)レンズ状の他のレンズ材料と凍結融解ハイドロゲルとが積層された形態、(3)レンズ状の他のレンズ材料に凍結融解ハイドロゲルが点在している形態等が挙げられる。 Examples of forms of contact lenses made of freeze-thaw hydrogel and other lens materials include (1) a form in which freeze-thaw hydrogel is embedded in a lens-shaped other lens material, and (2) a lens-shaped other lens material. and (3) a form in which freeze-thaw hydrogel is layered on another lens-shaped lens material.
 上記(1)の形態において、他のレンズ材料に埋め込まれる凍結融解ハイドロゲルは1つでも2つ以上でもよい。凍結融解ハイドロゲルの一部がコンタクトレンズの表面(例えば角膜や結膜との接触面)に露出していてもよい。
 凍結融解ハイドロゲルは、コンタクトレンズの光軸が通る領域以外の領域に配置されることが好ましい。この場合、凍結融解ハイドロゲルの形状は、環状、半円形状、三日月形状、アーチ状等であってよい。
 第2実施形態の凍結融解ハイドロゲルは透明性に優れるので、コンタクトレンズの光軸が通る領域に配置されてもよい。
In the form (1) above, the number of freeze-thaw hydrogels embedded in the other lens material may be one or more. A portion of the freeze-thaw hydrogel may be exposed on the surface of the contact lens (for example, the surface that contacts the cornea or conjunctiva).
The freeze-thaw hydrogel is preferably placed in a region other than the region through which the optical axis of the contact lens passes. In this case, the shape of the freeze-thaw hydrogel may be annular, semicircular, crescent, arch, etc.
Since the freeze-thaw hydrogel of the second embodiment has excellent transparency, it may be placed in a region through which the optical axis of a contact lens passes.
 凍結融解ハイドロゲルと他のレンズ材料とからなるコンタクトレンズは、公知の方法(例えば特表2012-511395号公報に記載の方法)を参照して製造できる。例えば、コンタクトレンズの型の中に本発明の凍結融解ハイドロゲルを配置し、液状のレンズ材料前駆体を注入し、注入したレンズ材料前駆体を硬化させることで、上記(1)の形態のコンタクトレンズを製造できる。 Contact lenses made of freeze-thaw hydrogel and other lens materials can be manufactured with reference to known methods (for example, the method described in Japanese Patent Publication No. 2012-511395). For example, by placing the freeze-thaw hydrogel of the present invention in a contact lens mold, injecting a liquid lens material precursor, and curing the injected lens material precursor, a contact lens of the form (1) above can be formed. We can manufacture lenses.
 本発明のコンタクトレンズは、容器に収容してコンタクトレンズ製品とすることができる。容器としては、公知のコンタクトレンズの容器と同様のものが使用できる。
 容器に、コンタクトレンズとともに、薬剤の水溶液を収容してもよい。薬剤の水溶液には、必要に応じて、酸化防止剤、安定化剤、防腐剤、浸透圧調整剤等を含有させてもよい。
The contact lens of the present invention can be housed in a container to form a contact lens product. As the container, containers similar to known contact lens containers can be used.
The container may contain an aqueous solution of the drug along with the contact lens. The aqueous solution of the drug may contain an antioxidant, a stabilizer, a preservative, an osmotic pressure regulator, and the like, if necessary.
 本発明のコンタクトレンズは、例えば、眼科疾患の治療に用いることができる。眼科疾患としては、前記と同様のものが挙げられる。 The contact lens of the present invention can be used, for example, to treat ophthalmological diseases. The ophthalmological diseases include those mentioned above.
 以下、実施例によって本発明をさらに詳しく説明するが、本発明は実施例によって何ら限定されるものではない。「部」は「質量部」を示す。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by the Examples in any way. "Part" indicates "part by mass."
〔PVOHの製造〕
 <製造例1>
 カチオン性基である4級アンモニウム塩基を有する変性PVOH(以下、「PVOH1」とも記す。)を以下の手順で製造した。
 還流冷却機、滴下漏斗、攪拌機を備えた反応缶に、メタノール20部、酢酸ビニル100部、ジアリルジメチルアンモニウムクロライドの65質量%水溶液0.7部を仕込み、開始剤としてアセチルパーオキサイドを用い、窒素気流下で加熱還流させ重合を開始した。ジアリルジメチルアンモニウムクロライドの65質量%水溶液2.7部を重合開始直後から5時間かけて滴下し、重合率71%となった時点で重合禁止剤としてm-ジニトロベンゼンを投入し、重合を終了した。続いてメタノール蒸気を吹き込む方法により、未反応モノマーを系外に除去し、共重合体のメタノール溶液を得た。
 次いで、得られたメタノール溶液をメタノールで希釈して固形分濃度を32質量%に調整し、ニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムのメタノール溶液を、共重合体中の酢酸ビニル単位1モルに対して水酸化ナトリウムが20ミリモルとなる割合で加えてケン化を行った。生成した固形物を濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的物であるPVOH1を得た。得られたPVOH1の平均ケン化度は99.4mol%、4質量%水溶液粘度は25.9mPa・s、4級アンモニウム変性量は1mol%であった。
[Manufacture of PVOH]
<Manufacture example 1>
Modified PVOH (hereinafter also referred to as "PVOH1") having a quaternary ammonium base as a cationic group was produced by the following procedure.
A reaction vessel equipped with a reflux condenser, a dropping funnel, and a stirrer was charged with 20 parts of methanol, 100 parts of vinyl acetate, and 0.7 parts of a 65% by mass aqueous solution of diallyldimethylammonium chloride. Using acetyl peroxide as an initiator, nitrogen was added. The mixture was heated to reflux under a stream of air to initiate polymerization. Immediately after the start of polymerization, 2.7 parts of a 65% by mass aqueous solution of diallyldimethylammonium chloride was added dropwise over 5 hours, and when the polymerization rate reached 71%, m-dinitrobenzene was added as a polymerization inhibitor to terminate the polymerization. . Subsequently, unreacted monomers were removed from the system by blowing methanol vapor to obtain a methanol solution of the copolymer.
Next, the obtained methanol solution was diluted with methanol to adjust the solid content concentration to 32% by mass, and the mixture was charged into a kneader, and while maintaining the solution temperature at 35°C, the methanol solution of sodium hydroxide was added to the copolymer. Saponification was carried out by adding sodium hydroxide at a ratio of 20 mmol to 1 mole of vinyl acetate units. The generated solid was filtered, thoroughly washed with methanol, and dried in a hot air drier to obtain the target product, PVOH1. The average degree of saponification of the obtained PVOH1 was 99.4 mol%, the viscosity of a 4% by mass aqueous solution was 25.9 mPa·s, and the amount of quaternary ammonium modification was 1 mol%.
 <製造例2>
 アニオン性基であるマレイン酸基を有する変性PVOH(以下、「PVOH2」とも記す。)を以下の手順で製造した。
 還流冷却器、滴下漏斗、撹拌機を備えた反応缶に、メタノール26部、酢酸ビニル100部、マレイン酸モノメチル0.1部を仕込み、撹拌しながら窒素気流下で60℃まで上昇させてから、重合触媒としてt-ブチルパーオキシネオデカノエート(半減期が1時間になる温度が65℃)0.001モル%(酢酸ビニル総量に対して)を投入し、重合を開始した。重合開始直後にマレイン酸モノメチル2.2部(酢酸ビニル総量に対して2モル%)、t-ブチルパーオキシネオデカノエート0.008モル%(酢酸ビニル総量に対して)を重合速度に合わせて連続追加し、酢酸ビニルの重合率が73%となった時点で、4-メトキシフェノール0.01部及び希釈・冷却用のメタノール58部を添加して重合を終了した。重合終了時における残存活性触媒量は、反応液総量に対して2ppmであった。続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
 次いで、得られたメタノール溶液をメタノールで希釈して固形分濃度を40質量%に調整し、水酸化ナトリウムの4質量%メタノール溶液を共重合体中の酢酸ビニル単位1モルに対して水酸化ナトリウムが30ミリモルとなる割合で混合し、温度を40~50℃にて25分間ケン化反応を行った。ケン化反応により固化した樹脂をカットし、目的物であるPVOH2を得た。得られたPVOH2の平均ケン化度は99mol%、4質量%水溶液粘度は29mPa・s、マレイン酸変性量は2.1mol%であった。
<Manufacture example 2>
Modified PVOH (hereinafter also referred to as "PVOH2") having a maleic acid group, which is an anionic group, was produced by the following procedure.
A reaction vessel equipped with a reflux condenser, a dropping funnel, and a stirrer was charged with 26 parts of methanol, 100 parts of vinyl acetate, and 0.1 part of monomethyl maleate, and the temperature was raised to 60°C under a nitrogen stream while stirring. As a polymerization catalyst, 0.001 mol% (based on the total amount of vinyl acetate) of t-butyl peroxyneodecanoate (temperature at which the half-life is 1 hour is 65°C) was added to initiate polymerization. Immediately after the start of polymerization, 2.2 parts of monomethyl maleate (2 mol % based on the total amount of vinyl acetate) and 0.008 mol % (based on the total amount of vinyl acetate) of t-butyl peroxyneodecanoate were adjusted to the polymerization rate. When the polymerization rate of vinyl acetate reached 73%, 0.01 part of 4-methoxyphenol and 58 parts of methanol for dilution and cooling were added to terminate the polymerization. The amount of active catalyst remaining at the end of the polymerization was 2 ppm based on the total amount of the reaction solution. Subsequently, unreacted vinyl acetate monomer was removed from the system by blowing methanol vapor to obtain a methanol solution of the copolymer.
Next, the obtained methanol solution was diluted with methanol to adjust the solid content concentration to 40% by mass, and a 4% by mass methanol solution of sodium hydroxide was added to 1 mole of vinyl acetate units in the copolymer with sodium hydroxide. were mixed at a ratio of 30 mmol, and a saponification reaction was carried out at a temperature of 40 to 50° C. for 25 minutes. The resin solidified by the saponification reaction was cut to obtain the target product, PVOH2. The average degree of saponification of the obtained PVOH2 was 99 mol%, the viscosity of a 4% by mass aqueous solution was 29 mPa·s, and the amount of modification with maleic acid was 2.1 mol%.
 <製造例3>
 ノニオン性基であるアセトアセチル基を有する変性PVOH(以下、「PVOH3」とも記す。)を以下の手順で製造した。
 還流冷却器、滴下装置、撹拌機を備えた反応缶に、酢酸ビニル100部、メタノール33部を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを1.3部投入し、重合を開始した。酢酸ビニルの重合率が81%となった時点で、ヒドロキノンモノメチルエーテルを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し酢酸ビニル重合体のメタノール溶液を得た。
 次いで、得られたメタノール溶液をメタノールで希釈して固形分濃度を47質量%に調整し、ニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムのメタノール溶液を、共重合体中の酢酸ビニル単位1モルに対して水酸化ナトリウムが7ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、平均ケン化度98.0mol%、4質量%水溶液の粘度28mPa・sの未変性PVOHを得た。
 得られた未変性PVOHをニーダーに100部仕込み、これに酢酸30部を入れ、膨潤させ、回転数20rpmで撹拌しながら、60℃に昇温後、ジケテン5部を5時間かけて滴下し、更に1時間反応させた。反応終了後、メタノールで洗浄した後、70℃で12時間乾燥し、目的物であるPVOH3を得た。得られたPVOH3の平均ケン化度は98.6mol%、4質量%水溶液粘度は27.5mPa・s、アセトアセチル基変性量は2.1mol%であった。
<Manufacture example 3>
Modified PVOH (hereinafter also referred to as "PVOH3") having an acetoacetyl group, which is a nonionic group, was produced by the following procedure.
100 parts of vinyl acetate and 33 parts of methanol were placed in a reaction vessel equipped with a reflux condenser, a dropping device, and a stirrer, and the temperature was raised under a nitrogen stream while stirring. After reaching the boiling point, 1 part of acetyl peroxide was added. .3 parts were added to start polymerization. When the polymerization rate of vinyl acetate reaches 81%, a predetermined amount of hydroquinone monomethyl ether is added to terminate the polymerization, and unreacted vinyl acetate monomer is removed from the system by distillation while blowing methanol vapor. This was removed to obtain a methanol solution of vinyl acetate polymer.
Next, the obtained methanol solution was diluted with methanol to adjust the solid content concentration to 47% by mass, and the mixture was charged into a kneader, and while maintaining the solution temperature at 35°C, the methanol solution of sodium hydroxide was added to the copolymer. Saponification was carried out by adding sodium hydroxide at a ratio of 7 mmol to 1 mol of vinyl acetate units. As saponification progresses, the saponified product precipitates, and when it becomes particulate, it is filtered, washed thoroughly with methanol, and dried in a hot air dryer to obtain a 4% by mass aqueous solution with an average saponification degree of 98.0 mol%. Unmodified PVOH with a viscosity of 28 mPa·s was obtained.
100 parts of the obtained unmodified PVOH was placed in a kneader, 30 parts of acetic acid was added thereto to swell it, the temperature was raised to 60°C while stirring at a rotational speed of 20 rpm, and 5 parts of diketene was added dropwise over 5 hours. The reaction was further continued for 1 hour. After the reaction was completed, the product was washed with methanol and then dried at 70°C for 12 hours to obtain the target product, PVOH3. The average degree of saponification of the obtained PVOH3 was 98.6 mol%, the viscosity of a 4% by mass aqueous solution was 27.5 mPa·s, and the amount of acetoacetyl group modification was 2.1 mol%.
 <製造例4>
 未変性のPVOH(以下、「PVOH4」とも記す。)を以下の手順で製造した。
 還流冷却器、滴下装置、撹拌機を備えた反応缶に、酢酸ビニル100部、メタノール33部を仕込み、撹拌しながら窒素気流下で温度を上昇させ、沸点に到達した後、アセチルパーオキサイドを1.3部投入し、重合を開始した。酢酸ビニルの重合率が81%となった時点で、ヒドロキノンモノメチルエーテルを所定量添加して重合を終了し、続いて、メタノール蒸気を吹き込みつつ蒸留することで未反応の酢酸ビニルモノマーを系外に除去し酢酸ビニル重合体のメタノール溶液を得た。
 次いで、得られたメタノール溶液をメタノールで希釈し、固形分濃度を47質量%に調整し、ニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムのメタノール溶液を、共重合体中の酢酸ビニル単位1モルに対して水酸化ナトリウムが7ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的物であるPVOH4を得た。得られたPVOH4の平均ケン化度は98.5mol%、4質量%水溶液粘度は27mPa・sであった。
<Manufacture example 4>
Unmodified PVOH (hereinafter also referred to as "PVOH4") was produced according to the following procedure.
100 parts of vinyl acetate and 33 parts of methanol were placed in a reaction vessel equipped with a reflux condenser, a dropping device, and a stirrer, and the temperature was raised under a nitrogen stream while stirring. After reaching the boiling point, 1 part of acetyl peroxide was added. .3 parts were added to start polymerization. When the polymerization rate of vinyl acetate reaches 81%, a predetermined amount of hydroquinone monomethyl ether is added to terminate the polymerization, and unreacted vinyl acetate monomer is removed from the system by distillation while blowing methanol vapor. This was removed to obtain a methanol solution of vinyl acetate polymer.
Next, the obtained methanol solution was diluted with methanol, the solid content concentration was adjusted to 47% by mass, and the mixture was charged into a kneader.While maintaining the solution temperature at 35°C, the methanol solution of sodium hydroxide was added to the copolymer. Saponification was carried out by adding sodium hydroxide at a ratio of 7 mmol to 1 mol of vinyl acetate units. As the saponification progressed, the saponified product precipitated, and when it became particulate, it was filtered out, thoroughly washed with methanol, and dried in a hot air drier to obtain the target product, PVOH4. The average degree of saponification of the obtained PVOH4 was 98.5 mol%, and the viscosity of the 4% by mass aqueous solution was 27 mPa·s.
〔例A1~A3、例A5〕
 <薬剤含有ハイドロゲルコンタクトレンズの製造>
 表1に示すPVOHを精製水に攪拌しながら添加し、90℃に昇温して1時間攪拌して完全に溶解させた。攪拌しながら室温まで徐冷した後、精製水を加えてPVOHの濃度が15質量%となるように調整し、オートクレーブ中で120℃、30分間滅菌処理した。室温に冷却後、PVOHの水溶液にモデル薬剤として核酸をPVOHに対し0.8質量%混合し、薬剤含有PVOH溶液を得た。核酸としては、Malat1アンチセンスであってCdsTdsAdsGdsTdsTdsCdsAdsCdsTdsGdsAdsAdsTdsGdsCdで示されるオリゴヌクレオチド(式中、各核酸塩基はA=アデニン、T=チミン、G=グアニン、C=シトシンで示され、各糖部分はd=2’-デオキシリボースで示され、各ヌクレオシド間結合はs=ホスホロチオエートで示される。)を用いた。
 得られた薬剤含有PVOH溶液をDIA11mm、B.C.(ベースカーブ)6.5のコンタクトレンズ型に注入し、オス型とメス型で挟み込み、-20℃で4時間凍結させ、20℃で2時間溶解する工程を5回繰り返し、コンタクトレンズ状の薬剤含有ハイドロゲルを作成した。コンタクトレンズメス型を外しオス型の上でハイドロゲルを40℃のオーブン内で1時間乾燥したのち、60℃、100%RHの恒温恒湿機内で吸湿させ、ハイドロゲルの含水率が75質量%以下となる様に調整を行った後、再度、ハイドロゲルをコンタクトレンズ型に挟み、-20℃、4時間の凍結と20℃、2時間の溶解を5回繰り返し、薬剤含有ハイドロゲルコンタクトレンズを得た。
 得られた薬剤含有ハイドロゲルコンタクトレンズを、保存液としてリン酸緩衝生理食塩水(PBS)1mL(コンタクトレンズの乾燥質量に対して約150倍の質量)とともに容器に入れ、PBSが漏れ出ないよう容器を密閉し、直ちに-1℃/min以上の冷却速度で-20℃まで冷却し、冷凍庫内にて-20℃で72時間保管した。保管後、容器を冷凍庫から取り出し、10分間で室温まで加温して、評価用の飽和含水した薬剤含有ハイドロゲルコンタクトレンズを得た。
[Examples A1 to A3, Example A5]
<Manufacture of drug-containing hydrogel contact lenses>
The PVOH shown in Table 1 was added to purified water with stirring, heated to 90° C., and stirred for 1 hour to completely dissolve. After slowly cooling to room temperature while stirring, purified water was added to adjust the PVOH concentration to 15% by mass, and the mixture was sterilized in an autoclave at 120° C. for 30 minutes. After cooling to room temperature, 0.8% by mass of nucleic acid as a model drug was mixed with the PVOH aqueous solution based on PVOH to obtain a drug-containing PVOH solution. The nucleic acid is a Malat1 antisense oligonucleotide represented by CdsTdsAdsGdsTdsTdsCdsAdsCdsTdsGdsAdsAdsAdsTdsGdsCd (in the formula, each nucleobase is represented by A=adenine, T=thymine, G=guanine, C=cytosine, and each sugar moiety is d=2 '-deoxyribose, and each internucleoside bond is represented by s=phosphorothioate).
The obtained drug-containing PVOH solution was transferred to DIA 11 mm, B. C. (Base Curve) 6.5 Injected into a contact lens mold, sandwiched between male and female molds, frozen at -20℃ for 4 hours, and melted at 20℃ for 2 hours, repeated 5 times to form a contact lens-shaped drug. A containing hydrogel was created. After removing the female contact lens mold and drying the hydrogel on the male mold in an oven at 40°C for 1 hour, it was allowed to absorb moisture in a constant temperature and humidity oven at 60°C and 100% RH, until the water content of the hydrogel was 75% by mass. After making the following adjustments, the hydrogel was placed between contact lens molds again, and the process of freezing at -20°C for 4 hours and melting at 20°C for 2 hours was repeated 5 times to form a drug-containing hydrogel contact lens. Obtained.
The obtained drug-containing hydrogel contact lens was placed in a container with 1 mL of phosphate buffered saline (PBS) (approximately 150 times the dry mass of the contact lens) as a storage solution, and the container was heated to prevent PBS from leaking. The container was sealed, immediately cooled to -20°C at a cooling rate of -1°C/min or higher, and stored in a freezer at -20°C for 72 hours. After storage, the container was taken out of the freezer and warmed to room temperature for 10 minutes to obtain a saturated, water-containing, drug-containing hydrogel contact lens for evaluation.
 <飽和水分率の測定方法>
 飽和含水した薬剤含有ハイドロゲルコンタクトレンズの質量(浸漬後の質量)を測定した。次いで、薬剤含有ハイドロゲルコンタクトレンズを140℃1時間の条件で乾燥させた後、その質量(乾燥後の質量)を測定した。測定結果から、下記式により飽和水分率を算出した。結果を表1に示す。
 飽和水分率={(浸漬後の質量)-(乾燥後の質量)}/(浸漬後の質量)×100
<Measurement method of saturated moisture content>
The mass (mass after immersion) of the drug-containing hydrogel contact lens with saturated water content was measured. Next, the drug-containing hydrogel contact lens was dried at 140° C. for 1 hour, and then its mass (mass after drying) was measured. From the measurement results, the saturated moisture content was calculated using the following formula. The results are shown in Table 1.
Saturated moisture content = {(mass after immersion) - (mass after drying)}/(mass after immersion) x 100
 <圧縮弾性率の測定方法>
 飽和含水した薬剤含有ハイドロゲルコンタクトレンズについて、熱機械分析装置(TMA法)を用いて針入測定により圧縮弾性率を測定した。具体的には、薬剤含有ハイドロゲルコンタクトレンズを水中に浸漬して飽和含水状態とした後、アルミパンに水とサンプルを入れた状態で直径1mm、断面面積0.785mmのプローブを針入し、37℃で試料温度が安定するまで荷重10mNで30分間ホールドした後、37℃で300mNまで5mN/minで荷重をかけ応力ひずみ曲線を算出し、圧縮弾性率を測定した。結果を表1に示す。
<Method of measuring compressive elastic modulus>
The compressive elastic modulus of the drug-containing hydrogel contact lens containing saturated water was measured by penetration measurement using a thermomechanical analyzer (TMA method). Specifically, after a drug-containing hydrogel contact lens was immersed in water to bring it to a saturated hydrated state, a probe with a diameter of 1 mm and a cross-sectional area of 0.785 mm was inserted into an aluminum pan containing water and a sample. A load of 10 mN was held for 30 minutes until the sample temperature stabilized at 37°C, and then a load of 5 mN/min was applied to 300 mN at 37°C to calculate a stress-strain curve and measure the compressive elastic modulus. The results are shown in Table 1.
 <徐放性試験>
 飽和含水した薬剤含有ハイドロゲルコンタクトレンズを24well細胞培養プレートに入れ、1000μLのリン酸緩衝生理食塩水(PBS)を添加し、37℃で15分静置した後、PBSを全量採取した。次いで、新たに1000μLのPBSを添加し、37℃で15分静置した後(計30分後)、PBSを全量採取した。次いで、新たに1000μLのPBSを添加し、37℃で30分静置した後(計1時間後)、PBSを全量採取した。その後も、新たなPBSの添加、37℃で30分の静置及びPBSの全量採取を繰り返した。最初にPBSを添加してから15分後、30分後、1時間後、4時間後、8時間後、24時間後に採取したPBSを測定サンプルとし、HPLC[Agilent Technologies社製]で、0.1Mトリエチレンアミン水溶液と0.1Mトリエチルアミンの50%アセトニトリル/水溶液でグラジエントをかけ、波長260nmの吸光度を測定し、事前に作成した検量線を用いて核酸濃度を求め、各時間での累積溶出割合を算出した。結果を表1及び図1に示す。
<Sustained release test>
A drug-containing hydrogel contact lens saturated with water was placed in a 24-well cell culture plate, 1000 μL of phosphate buffered saline (PBS) was added, and after standing at 37° C. for 15 minutes, the entire amount of PBS was collected. Next, 1000 μL of PBS was newly added, and after standing at 37° C. for 15 minutes (30 minutes in total), the entire amount of PBS was collected. Next, 1000 μL of PBS was newly added, and after standing at 37° C. for 30 minutes (1 hour in total), the entire amount of PBS was collected. After that, addition of new PBS, standing at 37° C. for 30 minutes, and collection of the entire amount of PBS were repeated. PBS collected 15 minutes, 30 minutes, 1 hour, 4 hours, 8 hours, and 24 hours after the initial addition of PBS was used as a measurement sample, and was analyzed by HPLC [manufactured by Agilent Technologies] with 0. Apply a gradient with a 1M triethyleneamine aqueous solution and a 50% acetonitrile/aqueous solution of 0.1M triethylamine, measure the absorbance at a wavelength of 260 nm, determine the nucleic acid concentration using a calibration curve prepared in advance, and calculate the cumulative elution rate at each time. was calculated. The results are shown in Table 1 and Figure 1.
〔例A4〕
 例A2において、モデル薬剤として低分子カチオン性薬剤のリパスジル塩酸塩水和物(4-Fluoro-5-{[(2S)-2-methyl-1,4-diazepan-1-yl]sulfonyl}isoquinoline monohydrochloride dihydrate)を用いた以外は例A2と同様にして、評価用の飽和含水した薬剤含有ハイドロゲルコンタクトレンズを得、飽和水分率及び圧縮弾性率を評価した。また、以下の徐放試験2を行った。結果を表1及び図1に示す。
[Example A4]
In Example A2, the low molecular weight cationic drug ripasudil hydrochloride dihydrate (4-Fluoro-5-{[(2S)-2-methyl-1,4-diazepan-1-yl]sulfonyl}isoquinoline monohydrochloride dihydrate) was used as a model drug. ) was used in the same manner as in Example A2 to obtain a saturated hydrated drug-containing hydrogel contact lens for evaluation, and the saturated moisture content and compressive elastic modulus were evaluated. In addition, sustained release test 2 below was conducted. The results are shown in Table 1 and Figure 1.
 <徐放性試験2>
 飽和含水した薬剤含有ハイドロゲルコンタクトレンズを24well細胞培養プレートに入れ、1000μLのリン酸緩衝生理食塩水(PBS)を添加し、37℃で15分静置した後、PBSを全量採取した。次いで、新たに1000μLのPBSを添加し、37℃で15分静置した後(計30分後)、PBSを全量採取した。次いで、新たに1000μLのPBSを添加し、37℃で30分静置した後(計1時間後)、PBSを全量採取した。その後も、新たなPBSの添加、37℃で30分の静置及びPBSの全量採取を繰り返した。最初にPBSを添加してから15分後、30分後、1時間後、4時間後、8時間後、24時間後に採取したPBSを測定サンプルとし、分光光度計[ジャスコエンジニアリング株式会社製分光光度計JASCO V-750]で波長279nmの吸光度を測定し、事前に作成した検量線を用いて薬剤濃度を求め、各時間での累積溶出割合を算出した。
<Sustained release test 2>
A drug-containing hydrogel contact lens saturated with water was placed in a 24-well cell culture plate, 1000 μL of phosphate buffered saline (PBS) was added, and after standing at 37° C. for 15 minutes, the entire amount of PBS was collected. Next, 1000 μL of PBS was newly added, and after standing at 37° C. for 15 minutes (30 minutes in total), the entire amount of PBS was collected. Next, 1000 μL of PBS was newly added, and after standing at 37° C. for 30 minutes (1 hour in total), the entire amount of PBS was collected. After that, addition of new PBS, standing at 37° C. for 30 minutes, and collection of the entire amount of PBS were repeated. PBS collected 15 minutes, 30 minutes, 1 hour, 4 hours, 8 hours, and 24 hours after the initial addition of PBS was used as the measurement sample, and a spectrophotometer [Spectrophotometer manufactured by Jusco Engineering Co., Ltd.] was used. Absorbance at a wavelength of 279 nm was measured using a JASCO V-750], the drug concentration was determined using a calibration curve prepared in advance, and the cumulative elution rate at each time was calculated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 未変性PVOHを用いた例A5の薬剤含有ハイドロゲルコンタクトレンズでは、30分程度で薬剤の溶出が止まっており、また溶出割合も低く、徐放性に劣っていた。これは、ハイドロゲルの架橋密度が高く、ハイドロゲルの表面付近に存在する薬剤は一気に溶出するが、ハイドロゲル内部の薬剤は溶出しなかったためと考えられる。
 これに対し、変性PVOHを用いた例A1~A4の薬剤含有ハイドロゲルコンタクトレンズは、溶出割合が高くなる傾向があり、1時間以降も徐々に薬剤が溶出されており、徐放性に優れていることが確認された。これは、変性によりハイドロゲルの架橋密度が制御され、ハイドロゲルの表面付近だけでなく、内部からも薬剤が溶出したためと考えられる。
 特にカチオン性基を有するPVOH1と核酸とを組み合わせた例A1、及びアニオン性基を有するPVOH2とリパスジルとを組み合わせた例A4の薬剤含有ハイドロゲルコンタクトレンズは、より溶出が緩やかで徐放性に優れていた。具体的には、初期の溶出の絶対量は少ないものの、4時間以降も薬剤が溶出していた。また、図1から、24時間以降も溶出が続くことが予想された。これは、カチオン性基を有するPVOH1を用いたハイドロゲルはアニオン系薬剤との親和性が高く、アニオン性基を有するPVOH2を用いたハイドロゲルはカチオン系薬剤との親和性が高いためと考えられる。
In the drug-containing hydrogel contact lens of Example A5 using unmodified PVOH, the elution of the drug stopped after about 30 minutes, and the elution rate was also low, resulting in poor sustained release properties. This is thought to be because the crosslinking density of the hydrogel is high, and the drug present near the surface of the hydrogel is eluted at once, but the drug inside the hydrogel is not eluted.
On the other hand, the drug-containing hydrogel contact lenses of Examples A1 to A4 using modified PVOH tended to have a high elution rate, and the drug was gradually eluted even after 1 hour, showing excellent sustained release properties. It was confirmed that there is. This is thought to be because the crosslinking density of the hydrogel was controlled by the denaturation, and the drug was eluted not only from near the surface of the hydrogel but also from within.
In particular, the drug-containing hydrogel contact lenses of Example A1, which is a combination of PVOH1 having a cationic group and a nucleic acid, and Example A4, which is a combination of PVOH2 having an anionic group and ripasudil, have slower elution and excellent sustained release properties. was. Specifically, although the absolute amount of initial elution was small, the drug continued to elute after 4 hours. Furthermore, from FIG. 1, it was predicted that elution would continue even after 24 hours. This is thought to be because the hydrogel using PVOH1, which has a cationic group, has a high affinity with anionic drugs, and the hydrogel using PVOH2, which has an anionic group, has a high affinity with cationic drugs. .
〔例B1、B2〕
 <薬剤含有ハイドロゲルコンタクトレンズの製造>
 表2に示すPVOHを精製水に攪拌しながら添加し、90℃に昇温して1時間攪拌して完全に溶解させた。攪拌しながら室温まで徐冷した後、精製水を加えてPVOHの濃度が15質量%となるように調整し、オートクレーブ中で120℃、30分間滅菌処理した。室温に冷却後、PVOHの水溶液にモデル薬剤として核酸をPVOHに対し0.8質量%混合し、薬剤含有PVOH溶液を得た。核酸としては、Malat1アンチセンスであってCdsTdsAdsGdsTdsTdsCdsAdsCdsTdsGdsAdsAdsTdsGdsCdで示されるオリゴヌクレオチド(式中、各核酸塩基はA=アデニン、T=チミン、G=グアニン、C=シトシンで示され、各糖部分はd=2’-デオキシリボースで示され、各ヌクレオシド間結合はs=ホスホロチオエートで示される。)を用いた。
 得られた薬剤含有PVOH溶液をDIA11mm、B.C.(ベースカーブ)6.5のコンタクトレンズ型に注入し、オス型とメス型で挟み込み、-20℃で2時間凍結させ、20℃で1時間溶解する工程を5回繰り返し、コンタクトレンズ状の薬剤含有ハイドロゲルを作製した。コンタクトレンズメス型を外しオス型の上でハイドロゲルを40℃のオーブン内で1時間乾燥したのち、60℃、100%RHの恒温恒湿機内で吸湿させ、ハイドロゲルの含水率を表2に記載の含水率に調整した。再度、ハイドロゲルをコンタクトレンズ型に挟み、-20℃、2時間の凍結と20℃、1時間の融解を5回繰り返し、コンタクトレンズ状の薬剤含有PVOH凍結融解ハイドロゲルを得た。
 得られた薬剤含有PVOH凍結融解ハイドロゲルを、保存液としてリン酸緩衝生理食塩水(PBS)1mL(薬剤含有PVOH凍結融解ハイドロゲルの乾燥質量に対して約150倍の質量)とともに容器に入れ、PBSが漏れ出ないよう容器を密閉し、直ちに-1℃/min以上の冷却速度で-20℃まで冷却し、冷凍庫内にて-20℃で72時間保管した。保管後、容器を冷凍庫から取り出し、10分間で室温まで加温して、評価用の飽和含水した薬剤含有PVOH凍結融解ハイドロゲルを得た。
[Example B1, B2]
<Manufacture of drug-containing hydrogel contact lenses>
The PVOH shown in Table 2 was added to purified water with stirring, heated to 90° C., and stirred for 1 hour to completely dissolve. After slowly cooling to room temperature while stirring, purified water was added to adjust the PVOH concentration to 15% by mass, and the mixture was sterilized in an autoclave at 120° C. for 30 minutes. After cooling to room temperature, 0.8% by mass of nucleic acid as a model drug was mixed with the PVOH aqueous solution based on PVOH to obtain a drug-containing PVOH solution. The nucleic acid is a Malat1 antisense oligonucleotide represented by CdsTdsAdsGdsTdsTdsCdsAdsCdsTdsGdsAdsAdsAdsTdsGdsCd (in the formula, each nucleobase is represented by A=adenine, T=thymine, G=guanine, C=cytosine, and each sugar moiety is d=2 '-deoxyribose, and each internucleoside bond is represented by s=phosphorothioate).
The obtained drug-containing PVOH solution was transferred to DIA 11 mm, B. C. (Base Curve) 6.5 Injected into a contact lens mold, sandwiched between male and female molds, frozen at -20℃ for 2 hours, and melted at 20℃ for 1 hour, repeated 5 times to form a contact lens-shaped drug. A containing hydrogel was prepared. After removing the female contact lens mold and drying the hydrogel on the male mold in an oven at 40°C for 1 hour, it was allowed to absorb moisture in a constant temperature and humidity oven at 60°C and 100% RH, and the water content of the hydrogel is shown in Table 2. The water content was adjusted to the specified moisture content. The hydrogel was placed between contact lens molds again, and freezing at -20°C for 2 hours and thawing at 20°C for 1 hour was repeated five times to obtain a contact lens-shaped drug-containing PVOH freeze-thaw hydrogel.
The obtained drug-containing PVOH freeze-thaw hydrogel is placed in a container with 1 mL of phosphate buffered saline (PBS) (approximately 150 times the dry mass of the drug-containing PVOH freeze-thaw hydrogel) as a storage solution, The container was sealed to prevent PBS from leaking, immediately cooled to -20°C at a cooling rate of -1°C/min or higher, and stored at -20°C in a freezer for 72 hours. After storage, the container was taken out of the freezer and warmed to room temperature for 10 minutes to obtain a saturated hydrated drug-containing PVOH freeze-thaw hydrogel for evaluation.
〔例B3、B4〕
 例B1、B2と同じ薬剤含有のPVOH溶液をDIA11mm、B.C.(ベースカーブ)6.5のコンタクトレンズ型に注入しオスメスの型で挟み込み、-20℃で2時間凍結させ、20℃で1時間融解する工程を10回繰り返し、コンタクトレンズ状の薬剤含有PVOH凍結融解ハイドロゲルを得た。
 得られた薬剤含有PVOH凍結融解ハイドロゲルを、PBS1mL(薬剤含有PVOH凍結融解ハイドロゲルの乾燥質量に対して約150倍の質量)とともに容器に入れ、PBSが漏れ出ないよう容器を密閉し、直ちに-1℃/min以上の冷却速度で-20℃まで冷却し、冷凍庫内にて-20℃で72時間保管した。保管後、容器を冷凍庫から取り出し、10分間で室温まで加温して、評価用の飽和含水した薬剤含有PVOH凍結融解ハイドロゲルを得た。
[Example B3, B4]
The same drug-containing PVOH solution as in Examples B1 and B2 was added to DIA 11 mm, B. C. (Base curve) Inject into a contact lens mold of 6.5, sandwich between male and female molds, freeze at -20℃ for 2 hours, and thaw at 20℃ for 1 hour. Repeat the process 10 times to freeze the drug-containing PVOH in the shape of a contact lens. A melted hydrogel was obtained.
The obtained drug-containing PVOH freeze-thaw hydrogel was placed in a container with 1 mL of PBS (approximately 150 times the dry mass of the drug-containing PVOH freeze-thaw hydrogel), the container was sealed to prevent PBS from leaking, and the container was immediately poured. It was cooled to -20°C at a cooling rate of -1°C/min or higher and stored at -20°C in a freezer for 72 hours. After storage, the container was taken out of the freezer and warmed to room temperature for 10 minutes to obtain a saturated hydrated drug-containing PVOH freeze-thaw hydrogel for evaluation.
 各例で得られた飽和含水した薬剤含有PVOH凍結融解ハイドロゲルを評価試料として、以下の特性を評価した。 The following characteristics were evaluated using the saturated hydrated drug-containing PVOH freeze-thaw hydrogel obtained in each example as an evaluation sample.
 <飽和水分率>
 評価試料の質量(浸漬後の質量)を測定した。次いで、評価試料を140℃1時間の条件で乾燥させた後、その質量(乾燥後の質量)を測定した。測定結果から、下記式により飽和水分率を算出した。結果を表2に示す。
 飽和水分率={(浸漬後の質量)-(乾燥後の質量)}/(浸漬後の質量)×100
<Saturated moisture content>
The mass of the evaluation sample (mass after immersion) was measured. Next, the evaluation sample was dried at 140° C. for 1 hour, and then its mass (mass after drying) was measured. From the measurement results, the saturated moisture content was calculated using the following formula. The results are shown in Table 2.
Saturated moisture content = {(mass after immersion) - (mass after drying)}/(mass after immersion) x 100
 <DSCオンセット温度>
 評価試料を30℃で1時間水に浸漬させた後、約5mgの評価試料を切り出して測定試料とし、測定用の高圧パンに密閉した。メトラー・トレド社製示差走査熱量計を用いて、測定試料をホルダー内にて-50℃で1分間保持した後、10℃/minで-50℃から150℃まで昇温させた時の吸熱ピークを測定した。0℃以下に評価試料中の水の吸熱ピークがあるので、その吸熱ピークの低温側(融解開始側)のベースラインと変曲点の接線との交点の温度をDSCオンセット温度とした。結果を表2に示す。また、図2に、例B1のPVOH凍結融解ハイドロゲルの示差走査熱量測定で得られた水の吸熱ピークのグラフを示す。
<DSC onset temperature>
After the evaluation sample was immersed in water at 30° C. for 1 hour, about 5 mg of the evaluation sample was cut out and used as a measurement sample, and the sample was sealed in a high-pressure pan for measurement. Endothermic peak when the measurement sample was held at -50°C in a holder for 1 minute and then heated from -50°C to 150°C at 10°C/min using a METTLER TOLEDO differential scanning calorimeter. was measured. Since there is an endothermic peak of water in the evaluation sample below 0° C., the temperature at the intersection of the baseline on the low temperature side (melting start side) of the endothermic peak and the tangent of the inflection point was defined as the DSC onset temperature. The results are shown in Table 2. Moreover, FIG. 2 shows a graph of the endothermic peak of water obtained by differential scanning calorimetry of the PVOH freeze-thaw hydrogel of Example B1.
 <溶出率>
 評価試料を37℃の精製水に24時間浸漬し、浸漬前後の質量変化から下記の式で溶出率を算出した。結果を表2に示す。
 溶出率(%)=(浸漬前の評価試料の質量)-(浸漬後の評価試料の質量)/(浸漬前の評価試料の質量)×100
<Elution rate>
The evaluation sample was immersed in purified water at 37° C. for 24 hours, and the elution rate was calculated from the change in mass before and after immersion using the following formula. The results are shown in Table 2.
Elution rate (%) = (mass of evaluation sample before immersion) - (mass of evaluation sample after immersion) / (mass of evaluation sample before immersion) x 100
 <光透過率>
 評価試料を厚みが1mmになるようにガラス板に挟み、日本分光株式会社社製の紫外可視近赤外分光光度計(モデル:V-7200)を用いて、600nmにおける光透過率を測定した。なお、ガラス板の光透過率をリファレンスとして光透過率を補正した。結果を表2に示す。
<Light transmittance>
The evaluation sample was sandwiched between glass plates to a thickness of 1 mm, and the light transmittance at 600 nm was measured using an ultraviolet-visible near-infrared spectrophotometer (model: V-7200) manufactured by JASCO Corporation. Note that the light transmittance was corrected using the light transmittance of the glass plate as a reference. The results are shown in Table 2.
 <ヘイズ測定>
 評価試料を厚みが1mmになるようにガラス板に挟み、日本電色工業株式会社社製のHaza Meter NDH4000を用いて、ヘイズ値を測定した。なお、ガラス板のヘイズ値をリファレンスとしてヘイズ値を補正した。結果を表2に示す。
<Haze measurement>
The evaluation sample was sandwiched between glass plates to a thickness of 1 mm, and the haze value was measured using Haza Meter NDH4000 manufactured by Nippon Denshoku Industries Co., Ltd. Note that the haze value was corrected using the haze value of the glass plate as a reference. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1段目の凍結融解処理と2段目の凍結融解処理の間にハイドロゲルの含水率の調整を行った例B1、B2のPVOH凍結融解ハイドロゲルは、温水中での溶出率が低く、かつ600nmの光透過率が高く、ヘイズ値が低いことから、温水中での安定性、透明性に優れていたことが分かる。
 含水率の調整を行わなかった例B3、B4は溶出率が高く、透明性も不十分であったことが分かる。
 例B1、B2のPVOH凍結融解ハイドロゲルはそれぞれ、例B3、B4のPVOH凍結融解ハイドロゲルに比べ、DSCオンセット温度が低下していた。このことから、DSCオンセット温度が溶出率、透明性に影響していることが分かる。
The PVOH freeze-thaw hydrogels of Examples B1 and B2, in which the water content of the hydrogel was adjusted between the first freeze-thaw treatment and the second freeze-thaw treatment, had a low dissolution rate in warm water, and The light transmittance at 600 nm was high and the haze value was low, indicating that it had excellent stability and transparency in hot water.
It can be seen that Examples B3 and B4 in which the water content was not adjusted had high elution rates and insufficient transparency.
The PVOH freeze-thaw hydrogels of Examples B1 and B2 had lower DSC onset temperatures than the PVOH freeze-thaw hydrogels of Examples B3 and B4, respectively. This shows that the DSC onset temperature affects the dissolution rate and transparency.
 本発明の凍結融解ハイドロゲルは、例えば、コンタクトレンズ、涙点プラグ、眼内レンズ、眼内リング等の眼科用医療器具とすることができる。 The freeze-thaw hydrogel of the present invention can be used as ophthalmic medical devices such as contact lenses, punctal plugs, intraocular lenses, and intraocular rings.

Claims (19)

  1.  変性ポリビニルアルコール及び薬剤を含む凍結融解ハイドロゲル。 Freeze-thaw hydrogel containing modified polyvinyl alcohol and drugs.
  2.  前記変性ポリビニルアルコールの平均ケン化度が95モル%以上である請求項1に記載の凍結融解ハイドロゲル。 The freeze-thaw hydrogel according to claim 1, wherein the average degree of saponification of the modified polyvinyl alcohol is 95 mol% or more.
  3.  前記変性ポリビニルアルコールの4質量%水溶液の20℃における粘度が5~100mPa・sである請求項1又は2に記載の凍結融解ハイドロゲル。 The freeze-thaw hydrogel according to claim 1 or 2, wherein the 4% by mass aqueous solution of the modified polyvinyl alcohol has a viscosity of 5 to 100 mPa·s at 20°C.
  4.  前記変性ポリビニルアルコールがカチオン性基、アニオン性基及びノニオン性基からなる群から選ばれる少なくとも1種を有する請求項1又は2に記載の凍結融解ハイドロゲル。 The freeze-thaw hydrogel according to claim 1 or 2, wherein the modified polyvinyl alcohol has at least one selected from the group consisting of cationic groups, anionic groups, and nonionic groups.
  5.  前記変性ポリビニルアルコールの変性量が0.1~30モル%である請求項4に記載の凍結融解ハイドロゲル。 The freeze-thaw hydrogel according to claim 4, wherein the amount of modification of the modified polyvinyl alcohol is 0.1 to 30 mol%.
  6.  飽和水分率が50~90質量%である請求項1に記載の凍結融解ハイドロゲル。 The freeze-thaw hydrogel according to claim 1, which has a saturated moisture content of 50 to 90% by mass.
  7.  37℃における圧縮弾性率が0.001~0.5MPaである請求項1又は6に記載の凍結融解ハイドロゲル。 The freeze-thaw hydrogel according to claim 1 or 6, which has a compressive modulus of elasticity at 37°C of 0.001 to 0.5 MPa.
  8.  前記変性ポリビニルアルコールがカチオン性基を有し、
     前記薬剤がアニオン系薬剤を含む請求項1又は2に記載の凍結融解ハイドロゲル。
    the modified polyvinyl alcohol has a cationic group,
    The freeze-thaw hydrogel according to claim 1 or 2, wherein the drug includes an anionic drug.
  9.  前記変性ポリビニルアルコールがアニオン性基を有し、
     前記薬剤がカチオン系薬剤を含む請求項1又は2に記載の凍結融解ハイドロゲル。
    the modified polyvinyl alcohol has an anionic group,
    The freeze-thaw hydrogel according to claim 1 or 2, wherein the drug includes a cationic drug.
  10.  以下の徐放性試験において、前記薬剤の1時間後の累積溶出割合が、24時間後の累積溶出割合の80質量%以下である請求項1又は2に記載の凍結融解ハイドロゲル。
     徐放性試験:
     前記凍結融解ハイドロゲルを24well細胞培養プレートに入れ、1000μLのリン酸緩衝生理食塩水を添加し、37℃で15分静置した後、前記リン酸緩衝生理食塩水を全量採取し、次いで、新たな1000μLのリン酸緩衝生理食塩水を添加し、37℃で15分静置した後(計30分後)、前記リン酸緩衝生理食塩水を全量採取し、次いで、新たな1000μLのリン酸緩衝生理食塩水を添加し、37℃で30分静置した後(計1時間後)、前記リン酸緩衝生理食塩水を全量採取する。これを繰り返し、最初にリン酸緩衝生理食塩水を添加してから15分後、30分後、1時間後、4時間後、8時間後、24時間後に採取したリン酸緩衝生理食塩水を測定サンプルとして前記薬剤の溶出量を求め、各時間での累積溶出割合を算出する。
    The freeze-thaw hydrogel according to claim 1 or 2, wherein in the sustained release test below, the cumulative dissolution rate of the drug after 1 hour is 80% by mass or less of the cumulative dissolution rate after 24 hours.
    Sustained release test:
    The frozen and thawed hydrogel was placed in a 24-well cell culture plate, 1000 μL of phosphate buffered saline was added, and after standing at 37°C for 15 minutes, the entire amount of the phosphate buffered saline was collected, and then freshly After adding 1000 μL of phosphate buffered saline and allowing it to stand at 37°C for 15 minutes (30 minutes in total), the entire amount of the phosphate buffered saline was collected, and then 1000 μL of fresh phosphate buffered saline was added. After adding physiological saline and allowing it to stand at 37° C. for 30 minutes (1 hour in total), the entire amount of the phosphate buffered saline is collected. Repeat this and measure the phosphate buffered saline collected 15 minutes, 30 minutes, 1 hour, 4 hours, 8 hours, and 24 hours after adding the phosphate buffered saline for the first time. The elution amount of the drug is determined as a sample, and the cumulative elution rate at each time is calculated.
  11.  水、変性ポリビニルアルコール及び薬剤を含む組成物を調製し、
     前記組成物を-5℃以下の温度に降温して凍結し、凍結した前記組成物を5℃以上の温度に昇温して融解するサイクルを2回以上繰り返す凍結融解ハイドロゲルの製造方法。
    preparing a composition comprising water, modified polyvinyl alcohol and a drug;
    A method for producing a freeze-thaw hydrogel, comprising repeating a cycle of lowering the temperature of the composition to a temperature of -5°C or lower, freezing it, and raising the temperature of the frozen composition to a temperature of 5°C or higher to melt it, twice or more.
  12.  請求項1又は2に記載の凍結融解ハイドロゲルを含む眼科用医療器具。 An ophthalmological medical device comprising the freeze-thaw hydrogel according to claim 1 or 2.
  13.  請求項1又は2に記載の凍結融解ハイドロゲルを含むコンタクトレンズ。 A contact lens comprising the freeze-thaw hydrogel according to claim 1 or 2.
  14.  ポリビニルアルコールの凍結融解ハイドロゲルであって、
     -50℃から150℃、昇温速度10℃/minの条件での示差走査熱量測定において0℃以下の範囲に観察される吸熱ピークのオンセット温度が-5℃以下であるポリビニルアルコールの凍結融解ハイドロゲル。
    A freeze-thaw hydrogel of polyvinyl alcohol,
    Freezing and thawing of polyvinyl alcohol whose onset temperature of the endothermic peak observed in the range of 0°C or lower is -5°C or lower in differential scanning calorimetry under the conditions of -50°C to 150°C and a heating rate of 10°C/min. Hydrogel.
  15.  前記ポリビニルアルコールが変性ポリビニルアルコールである請求項14に記載の凍結融解ハイドロゲル。 The freeze-thaw hydrogel according to claim 14, wherein the polyvinyl alcohol is modified polyvinyl alcohol.
  16.  薬剤を含有する請求項14に記載の凍結融解ハイドロゲル。 The freeze-thaw hydrogel according to claim 14, which contains a drug.
  17.  請求項14~16のいずれか1項に記載の凍結融解ハイドロゲルを含む眼科用医療器具。 An ophthalmic medical device comprising the freeze-thaw hydrogel according to any one of claims 14 to 16.
  18.  請求項14~16のいずれか1項に記載の凍結融解ハイドロゲルを含むコンタクトレンズ。 A contact lens comprising the freeze-thaw hydrogel according to any one of claims 14 to 16.
  19.  ポリビニルアルコールの水溶液を1段目の凍結融解処理によりハイドロゲルとした後、前記ハイドロゲルの含水率を75質量%以下とし、さらに2段目の凍結融解処理を行うポリビニルアルコールの凍結融解ハイドロゲルの製造方法。 After turning an aqueous solution of polyvinyl alcohol into a hydrogel through a first-stage freeze-thaw treatment, the water content of the hydrogel is reduced to 75% by mass or less, and then a second-stage freeze-thaw treatment is performed to produce a freeze-thaw hydrogel of polyvinyl alcohol. Production method.
PCT/JP2023/028930 2022-08-08 2023-08-08 Frozen and thawed hydrogel, production method therefor, ophthalmic medical device, and contact lens WO2024034610A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022126533 2022-08-08
JP2022-126533 2022-08-08
JP2023-050956 2023-03-28
JP2023050956 2023-03-28

Publications (1)

Publication Number Publication Date
WO2024034610A1 true WO2024034610A1 (en) 2024-02-15

Family

ID=89851853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028930 WO2024034610A1 (en) 2022-08-08 2023-08-08 Frozen and thawed hydrogel, production method therefor, ophthalmic medical device, and contact lens

Country Status (1)

Country Link
WO (1) WO2024034610A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873691A (en) * 1994-06-27 1996-03-19 Shin Etsu Chem Co Ltd Polyvinyl alcohol hydrogel and its production
JP2003048841A (en) * 2001-08-03 2003-02-21 Yasuhiko Tabata Composition for blocking blood vessel
JP2019089962A (en) * 2017-11-16 2019-06-13 大日精化工業株式会社 Production method of polymer molded body
WO2021132303A1 (en) * 2019-12-24 2021-07-01 株式会社クラレ Ink for hydrogel shaping, and hydrogel using same
WO2021157625A1 (en) * 2020-02-06 2021-08-12 信越化学工業株式会社 Neovascularization device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873691A (en) * 1994-06-27 1996-03-19 Shin Etsu Chem Co Ltd Polyvinyl alcohol hydrogel and its production
JP2003048841A (en) * 2001-08-03 2003-02-21 Yasuhiko Tabata Composition for blocking blood vessel
JP2019089962A (en) * 2017-11-16 2019-06-13 大日精化工業株式会社 Production method of polymer molded body
WO2021132303A1 (en) * 2019-12-24 2021-07-01 株式会社クラレ Ink for hydrogel shaping, and hydrogel using same
WO2021157625A1 (en) * 2020-02-06 2021-08-12 信越化学工業株式会社 Neovascularization device

Similar Documents

Publication Publication Date Title
CN108463323B (en) Adjustable lens with cavity
Netto et al. Femtosecond laser and microkeratome corneal flaps: comparison of stromal wound healing and inflammation
EP1848749B1 (en) Contact drug delivery system
CN102316833A (en) Ring device
WO2009032267A2 (en) Contact lens based bioactive agent delivery system
White et al. Controlled release of multiple therapeutics from silicone hydrogel contact lenses
JP2003511734A (en) Contact lens and method of coating contact lens
Luo et al. The role of alkyl chain length of monothiol-terminated alkyl carboxylic acid in the synthesis, characterization, and application of gelatin-g-poly (N-isopropylacrylamide) carriers for antiglaucoma drug delivery
JP6510497B2 (en) Anionic drug-containing medical device
WO2024034610A1 (en) Frozen and thawed hydrogel, production method therefor, ophthalmic medical device, and contact lens
WO2009032266A2 (en) Dispersions of microparticles and microgels in hydrogels for drug delivery
JPH11335301A (en) Formulation for oculist
JP6205364B2 (en) Drug sustained release ophthalmic lens and method for producing the same
JP2024023164A (en) Freeze-thaw hydrogel, its manufacturing method, ophthalmological medical instruments and contact lenses
US20040247681A1 (en) Drug release system for controlled therapy
I Tartara et al. New mucoadhesive polymeric film for ophthalmic administration of acetazolamide
TWI812881B (en) Wet-packed soft hydrogel ocular inserts
Goggin et al. Haze following photorefractive and photoastigmatic refractive keratectomy with the Nidek EC5000 and the Summit ExciMed UV200
JP5209827B2 (en) Drug sustained-release medical device
Umadevi et al. Design and characterization of Timolol maleate and Travoprost hydrogel drug delivery system
Al-Shohani et al. The preparation of HEMA-MPC films for ocular drug delivery
CN112791047A (en) Resveratrol lamellar liquid crystal and preparation method thereof
AL-SHOHANI et al. The Effect of Molecular Imprinting on the Loading and Release of Poorly Water Soluble Drug in Hydrogel Gontact Lenses
EP4337170A1 (en) Extended-wear silicone hydrogel contact lenses and uses thereof
Dubey Investigation of hydrogel membranes containing a combination of timolol maleate and brimonidine tartrate for ocular delivery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852572

Country of ref document: EP

Kind code of ref document: A1