JPWO2020121807A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JPWO2020121807A1
JPWO2020121807A1 JP2020559092A JP2020559092A JPWO2020121807A1 JP WO2020121807 A1 JPWO2020121807 A1 JP WO2020121807A1 JP 2020559092 A JP2020559092 A JP 2020559092A JP 2020559092 A JP2020559092 A JP 2020559092A JP WO2020121807 A1 JPWO2020121807 A1 JP WO2020121807A1
Authority
JP
Japan
Prior art keywords
abnormality
calculation unit
change amount
generated torque
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020559092A
Other languages
English (en)
Other versions
JP7185704B2 (ja
Inventor
茂美 大野
茂美 大野
貞人 堀内
貞人 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Publication of JPWO2020121807A1 publication Critical patent/JPWO2020121807A1/ja
Application granted granted Critical
Publication of JP7185704B2 publication Critical patent/JP7185704B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/107Safety-related aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • B60W2050/0054Cut-off filters, retarders, delaying means, dead zones, threshold values or cut-off frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • B60W2050/0292Fail-safe or redundant systems, e.g. limp-home or backup systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • B60W2510/0609Throttle change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • B60W2510/0661Torque change rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

車両の運転操作量、作動状態のばらつきの影響により、駆動源の異常を適切に判定できないことがあった。そのため、車載制御装置217は、車両の運転状態に基づいて要求トルクを算出する要求トルク算出部100と、要求トルクの単位時間当たりの変化量を要求トルク変化量として算出する要求トルク変化量算出部と、エンジン201で発生していると推定される推定発生トルクを算出する推定発生トルク算出部111と、推定発生トルクの単位時間当たりの変化量を推定発生トルク変化量として算出する推定発生トルク変化量算出部と、要求トルク変化量と推定発生トルク変化量との差分の積算値に基づいて検出したエンジン201の異常を検出し、エンジン201の異常判定を出力する異常検出部112と、を備える。

Description

本発明は、例えば、車両に搭載され、車両の駆動源が発生する推進力を制御する制御装置に関する。
従来の制御装置では、運転者による運転操作量、例えばアクセル開度の検出値等に基づいて算出した運転者の要求トルクと、駆動源(例えば、内燃機関)の作動状態、例えば内燃機関への吸入空気量の検出値等に基づいて算出した推定発生トルクを比較する。そして、制御装置は、要求トルクに対して推定発生トルクが過大になっている場合に駆動源を異常と判定していた。
例えば、特許文献1には、「実トルクと要求トルクとを比較して、要求トルクに対して実トルクが過大になるトルク増大異常の有無を判定する。」と記載されている。
特許第4924905号公報
しかし、運転操作量(例えばアクセル開度)を検出するために使用されるセンサや、駆動源の作動状態(例えば内燃機関への吸入空気量)を検出するために使用されるセンサには、性能のばらつきや経時劣化による性能の変化等がある。また、駆動源が、例えば内燃機関である場合、駆動源には、各構成部品の重さや組み付け誤差等によるフリクションばらつきがある。このように駆動源の作動状態を検出するセンサには性能のばらつきがあり、駆動源の構成にもばらつきがある。従来の制御装置では、推定発生トルクと閾値とを比較して、推定発生トルクが閾値より大きくなると推定発生トルクが過大であると判定していたため、推定発生トルクと比較される閾値には、マージンを設定しておく必要があった。
しかし、閾値のマージンを大きく設定しすぎると、制御装置は、駆動源の異常を判定できなかったり、異常判定に時間がかかったりすることから、制御装置が車両の動作を制御しきれず、十分な危険回避を行えない可能性があった。ここで、危険回避とは、駆動源のトルク異常を抑えるために行われる制御である。危険回避には、例えば、運転者が危険と判断してブレーキを踏む等の動作だけでなく、運転者に危険と感じさせることなく、制御装置が駆動源の出力を抑える等の制御も含まれる。
また、特許文献1に開示されたように、各センサの検出値から算出した運転者側の要求トルクと、駆動源側の推定発生トルクとを単に大小比較するだけでは、閾値の設定が困難であった。また、上述したようにセンサ性能のばらつき等により、運転者が適切に危険回避できるような異常判定を行うことができなかった。例えば、推定発生トルクの算出精度が悪ければ、運転者の意図しない加速が発生していない正常時であっても、異常と判定される可能性が高くなってしまう。
本発明はこのような状況に鑑みて成されたものであり、運転者が適切に危険回避できる異常判定を行えるようにすることを目的とする。
本発明に係る制御装置は、車両の運転状態に基づいて要求トルクを算出する要求トルク算出部と、要求トルクの単位時間当たりの変化量を要求トルク変化量として算出する要求トルク変化量算出部と、車両の駆動源で発生していると推定される推定発生トルクを算出する推定発生トルク算出部と、推定発生トルクの単位時間当たりの変化量を推定発生トルク変化量として算出する推定発生トルク変化量算出部と、要求トルク変化量と推定発生トルク変化量との差分の積算値に基づいて駆動源の異常を検出し、駆動源の異常判定を出力する異常検出部と、を備える。
また、本発明に係る制御装置は、車両の運転状態に基づいて要求馬力を算出する要求馬力算出部と、要求馬力の単位時間当たりの変化量を要求馬力変化量として算出する要求馬力変化量算出部と、車両の駆動源で発生していると推定される推定発生馬力を算出する推定発生馬力算出部と、推定発生馬力の単位時間当たりの変化量を推定発生馬力変化量として算出する推定発生馬力変化量算出部と、要求馬力変化量と推定発生馬力変化量との差分の積算値に基づいて駆動源の異常を検出し、駆動源の異常判定を出力する異常検出部と、を備える。
本発明によれば、車両の運転操作量、作動状態のばらつきの影響が抑えられた状態で、駆動源の異常が検出されると異常判定が出力されて、駆動源の制御が行われるため、運転者が適切に危険回避することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
本発明の第1の実施の形態に係る車載制御装置の内部構成例を示す制御ブロック図である。 本発明の第1の実施の形態に係るエンジンの周辺部に設けられた補器の構成例を示す概略図である。 本発明の第1の実施の形態に係る車載制御装置のハードウェア構成例を示すブロック図である。 本発明の第1の実施の形態に係るエンジンの異常を検出する部位に着目した車載制御装置の内部構成例を示すブロック図である。 本発明の第1の実施の形態に係る許容発生トルク算出部の概要構成例を示すブロック図である。 本発明の第1の実施の形態に係る推定発生トルク算出部の概要構成例を示すブロック図である。 本発明の第1の実施の形態に係る異常検出部の概要構成例を示すブロック図である。 本発明の第1の実施の形態の変形例に係る異常検出部の概要構成例を示すブロック図である。 本発明の第1の実施の形態の変形例に係る異常検出部の概要構成例を示すブロック図である。 本発明の第1の実施の形態に係る時間間隔又はエンジン回転数の違いによるΔトルクの差分と車両の加速Gの関係、及び車両速度と許可判定閾値との関係の一例を表すグラフである。 本発明の第1の実施の形態に係るエンジン回転数の違いによるΔトルクの差分の積算値と車両の加速Gの関係、及び車両速度と異常判定時間閾値との関係の一例を表すグラフである。 本発明の第1の実施の形態に係るギア段の違いによる異常判定時間と、異常発生時の車両速度との関係の一例を表すグラフである。 本発明の第1の実施の形態に係る車載制御装置の異常検出の挙動の一例を表すチャートである。 本発明の第1の実施の形態に係る車載制御装置の各部で行われる一連の処理の例を示すフローチャートである。 図14のステップS17における許容発生トルクを算出する処理、ステップS18における推定発生トルクを算出する処理の詳細な例を示すフローチャートである。 本発明の第1の実施の形態に係る異常検出部により行われる異常検出許可の判定処理の例を表すフローチャートである。 本発明の第1の実施の形態に係る異常検出部により行われる異常判定の処理の例を表すフローチャートである。 本発明の第2の実施の形態に係る車載制御装置の内部構成例を示す制御ブロック図である。 本発明の第2の実施の形態に係る許容発生馬力算出部の概要構成例を示すブロック図である。 本発明の第2の実施の形態に係る推定発生馬力算出部の概要構成例を示すブロック図である。
以下、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。
始めに、車両に搭載される車載制御装置の内部構成例について説明する。
図1は、車載制御装置217の内部構成例を示す制御ブロック図である。図1を参照して、車載制御装置217を構成する各制御ブロックの内部で行われる処理の概要を説明する。車載制御装置217は、車両に搭載され、車両の駆動源の推進力を制御することが可能な制御装置の一例である。特に、本実施の形態に係る車載制御装置217は、車両の運転者が意図する推進力以上の推進力が駆動源から発生していないか監視する機能を備える。
車載制御装置217は、図1に示すブロック101〜115を備える。車載制御装置217は、駆動源(エンジン201:内燃機関の一例)の動作を制御する制御装置の一例として用いられる。以下、順に各ブロック101〜115について説明する。なお、後に説明する1気筒燃料噴射部116〜4気筒燃料噴射部119、1気筒点火部120〜4気筒点火部123は、エンジン201(図2を参照)に取付けられる。
運転操作量検出部101は、運転者のアクセル開度を算出することで、運転操作量を検出する。
エンジン回転数算出部102は、エンジン201の所定のクランク角度位置に設定されたクランク角度センサ219(図2を参照)からの電気的な信号、主にパルス信号変化の単位時間当たりの入力数をカウントし、演算処理することで、エンジン201の単位時間当りの回転数(エンジン回転数)を算出する。
シリンダ流入空気量算出部103は、エンジン201のシリンダに流入する空気量(シリンダ流入空気量)を算出する。シリンダ流入空気量の算出は、エンジン201の吸気系上流に設定された吸入空気量センサ202(図2を参照)が検出した吸入空気量を表す吸入空気量センサ信号と、吸気管205(図2を参照)に設定された吸気管圧力センサ206が検出した吸気管圧力を表す吸気管圧力センサ信号とに基づいて行われる。また、シリンダ流入空気量算出部103は、算出したシリンダ流入空気量と、エンジン回転数算出部102で算出されたエンジン回転数とに基づいてエンジン201の負荷を算出する。
基本燃料量算出部104は、エンジン回転数算出部102で算出されたエンジン回転数、及びシリンダ流入空気量算出部103で算出されたエンジン負荷に基づいて、各領域におけるエンジン201が要求する基本燃料量を算出する。
基本点火時期算出部105は、エンジン回転数算出部102で算出されたエンジン回転数、及びシリンダ流入空気量算出部103で算出されたエンジン負荷に基づいてエンジン201の各領域における最適な基本点火時期を算出する。
ISC(Idol Speed Control)制御部106は、エンジン201のアイドリング回転数を一定に保つために、アイドリング時の目標回転数を算出し、目標流量を算出する。
空燃比補正係数算出部107は、エンジン201の排気管に設定された空燃比センサ211(後述する図2)の出力と、後述する目標空燃比の差分、及び前述したエンジン回転数とエンジン負荷に基づいて、空燃比フィードバック補正係数を算出する。
目標空燃比算出部108は、エンジン回転数算出部102で算出されたエンジン回転数と、シリンダ流入空気量算出部103で算出されたエンジン負荷に基づいてエンジン201の目標空燃比を決定する。
目標スロットル開度算出部109は、運転操作量検出部101で算出された運転者のアクセル開度、及びエンジン回転数算出部102で算出されたエンジン回転数に基づいて運転者が要求している目標トルクを算出し、目標トルクから目標スロットル開度を算出する。
許容発生トルク算出部(許容発生トルク算出部110)は、駆動源(エンジン201)が発生可能な許容発生トルクを算出する。このため、許容発生トルク算出部110は、運転操作量検出部101で算出された運転者のアクセル開度、及びエンジン回転数算出部102で算出されたエンジン回転数に基づいて、許容発生トルクを算出する。また、許容発生トルク算出部110は、後述する異常検出のために用いられる許容発生トルクの変化量についても算出する。
推定発生トルク算出部(推定発生トルク算出部111)は、車両の駆動源(エンジン201)で発生していると推定される推定発生トルクを算出する。このため、推定発生トルク算出部111は、エンジン回転数算出部102で算出されたエンジン回転数、及びシリンダ流入空気量算出部103で算出されたエンジン負荷に基づいて推定発生トルクを算出する。また、推定発生トルク算出部111は、後述する異常検出のために用いられる推定発生トルクの変化量を算出する。
異常検出部112は、前述した許容発生トルクの変化量と推定発生トルクの変化量から異常検出を行う。異常検出部112の構成例及び動作例については図4以降で後述する。
燃料補正部113は、基本燃料量算出部104で算出された基本燃料量に対して、エンジン201の気筒毎に、エンジン水温による補正、空燃比補正係数算出部107の空燃比フィードバック係数の補正を施す。
1気筒燃料噴射部116〜4気筒燃料噴射部119は、燃料補正部113で補正された基本燃料量に基づいてエンジン201の各気筒に燃料を噴射する。
点火時期補正部114は、基本点火時期算出部105で決定された基本点火時期に対して、エンジン201の気筒毎にエンジン水温による補正等を施し、アドバンス又はリタードによる制御を行う。
1気筒点火部120〜4気筒点火部123は、点火時期補正部114で補正されたエンジン201の基本点火時期に応じて、シリンダに流入した燃料混合気を点火する。
電制スロットル制御部115は、前述したアイドリング時の目標流量を確保するためのスロットル開度、及び目標スロットル開度算出部109で算出された目標スロットル開度となるように電制スロットルを制御する。また、電制スロットル制御部115は、異常検出部112がエンジン201のトルク増大異常を検出した場合に、この異常を解消するような電制スロットルの制御を行う。
次に、エンジン201の周辺部に設けられた補器の構成例について説明する。
図2は、エンジン201の周辺部に設けられた補器の構成例を示す概略図である。
エンジン201は、エンジン201が吸入する空気量を計測する吸入空気量センサ(熱式空気流量計)202、エンジン201が吸入する空気流量を調整するスロットル絞り弁203を備える。また、エンジン201はスロットル絞り弁203を動作させる電制スロットルモータ204、スロットル絞り弁203の開度を検出するスロットル開度センサ215、吸気管205に設置された吸気管内の圧力を検出する吸気管圧力センサ206を備える。また、エンジン201は、エンジン201が要求する燃料を供給する燃料噴射弁207(図1に示した1気筒燃料噴射部116〜4気筒燃料噴射部119)を備える。
また、エンジン201は、エンジン201の回転数を算出するため所定のクランク角度位置に設定された突起を認識するクランク角度センサ219を備える。また、エンジン201は、エンジン201の工程を認識するためにクランク角度センサ219とは別に、所定のカム角度位置に設定された突起を認識するためのカム角度センサ208を備える。また、エンジン201は、シリンダ内に供給された燃料の混合気に点火する点火栓に、車載制御装置217の点火信号に基づいて点火エネルギを供給する点火モジュール209(図1に示した1気筒点火部120〜4気筒点火部123)を備える。
また、エンジン201は、エンジン201のシリンダブロックに設置されエンジン201の冷却水温を検出する水温センサ210、エンジン201の排気管の触媒前に設置され排気ガス中の酸素濃度に対してリニアな電気的信号を出力する空燃比センサ211を備える。
車両には、燃料タンク212から蒸発する燃料ガスをチャコール等で吸着保持するキャニスタパージタンク213、キャニスタパージタンク213に吸着保持した燃料ガスを開度を調整することで吸気管へ流入させるキャニスタパージバルブ214が設けられる。また、車両には、エンジン201の運転、停止のメインスイッチであるイグニッションキイスイッチ216、運転者のアクセル開度を検出するアクセル開度センサ218が設けられる。
図2に示す各補器は、エンジン201の各補器を制御する車載制御装置217に接続される。車載制御装置217は、各補器から送信された信号を受信して、各種の演算、処理を行い、必要な補器に駆動信号を送信して、補記の動作を制御する。
図3は、車載制御装置217のハードウェア構成例を示すブロック図である。
車載制御装置217に設けられたCPU301の内部には、エンジン201に設置された各センサの電気的信号をデジタル演算処理用の信号に変換し、及びデジタル演算用の制御信号を実際のアクチュエータの駆動信号に変換するI/O部302が設定されている。
I/O部302には、水温センサ210、カム角度センサ208、空燃比センサ211、吸入空気量センサ(熱式空気流量計)202、スロットル開度センサ215、車両の車速を計測する車速センサ309、イグニッションキイスイッチ216、吸気管圧力センサ206、大気圧センサ312、吸気温センサ313、負荷SW314(例えば、エア・コンディショナスイッチ)、アクセル開度センサ218、及びクランク角度センサ219から各信号が入力される。
CPU301には、出力信号ドライバ303が接続される。このため、CPU301は、I/O部302から入力した各信号に基づいて、所定の演算、処理を行った後、駆動信号を出力信号ドライバ303に入力する。出力信号ドライバ303は、1気筒燃料噴射弁317〜4気筒燃料噴射弁320、1気筒点火コイル321〜4気筒点火コイル324、及び電制スロットルモータ204に対して出力信号を送信する。
図4は、エンジン201のトルク増大異常を検出する部位に着目した車載制御装置217の内部構成例を示すブロック図である。図4に示す各部の処理は、図3に示したCPU301が実行するプログラムによって実現される。
図1に示したアクセル開度センサ218に第1アクセル開度センサ401及び第2アクセル開度センサ402が含まれる。第1アクセル開度センサ401及び第2アクセル開度センサ402は、共にアクセルペダルに設けられ、それぞれ運転者の意図により操作されたアクセルのアクセル操作量をセンシングする。第1アクセル開度センサ401及び第2アクセル開度センサ402からの出力はほぼ同じ値となる。
第1アクセル開度センサ401がセンシングした値は、第1アクセル開度算出部403に出力され、第2アクセル開度センサ402がセンシングした値は、第2アクセル開度算出部404に出力される。なお、第1アクセル開度算出部403及び第2アクセル開度算出部404は、図1の運転操作量検出部101に含まれる。
第1アクセル開度算出部403は、第1アクセル開度センサ401でセンシングされた出力に基づいて第1アクセル開度を算出する。第1アクセル開度は、目標トルク算出部405が運転者の目標とする目標トルクを算出するために用いられる。
そこで、目標トルク算出部(目標トルク算出部405)は、アクセル開度(第1アクセル開度)及び駆動源(エンジン201)の回転数に基づいて目標トルクを算出する。
目標スロットル開度算出部(目標スロットル開度算出部406)は、目標トルクに基づいて目標スロットル開度を算出する。目標スロットル開度は、スロットル絞り弁203(図2を参照)の開度を制御するために用いられる。
モータ駆動出力信号算出部(モータ駆動出力信号算出部407)は、スロットル絞り弁(スロットル絞り弁203)を目標スロットル開度で開かせるスロットルモータ(電制スロットルモータ204)を駆動するためのモータ駆動出力信号を算出する。
電制スロットルモータ204は、モータ駆動出力信号算出部407が出力したモータ駆動出力信号に基づいて、エンジン201の吸気系に取り付けられたスロットル絞り弁203の開閉動作を行わせる。
スロットル開度センサ215は、スロットル絞り弁203の動作量をセンシングし、センサ信号をスロットル開度算出部408に出力する。
スロットル開度算出部(スロットル開度算出部408)は、スロットル絞り弁(スロットル絞り弁203)のスロットル開度を検出するスロットル開度センサ(スロットル開度センサ215)から入力されるセンサ信号に基づいてスロットル開度を算出する。このとき、スロットル絞り弁203の動作量が実スロットル開度として算出される。
そして、モータ駆動出力信号算出部(モータ駆動出力信号算出部407)は、目標スロットル開度、異常判定、及びスロットル開度に基づいて、目標スロットル開度にスロットル開度が一致するようにモータ駆動出力信号のフィードバック制御を行う。このとき、モータ駆動出力信号算出部407は、スロットル開度算出部408から入力した実スロットル開度と、目標スロットル開度算出部406から入力した目標スロットル開度とを比較する。そして、モータ駆動出力信号算出部407は、目標スロットル開度に実スロットル開度が一致するようにモータ駆動出力信号をフィードバック制御する。これにより、目標スロットル開度に実スロットル開度が一致するように電制スロットルモータ204がスロットル絞り弁203のスロットル開度を制御する。
なお、モータ駆動出力信号算出部(モータ駆動出力信号算出部407)は、異常判定が入力された場合に、駆動源(エンジン201)が発生するトルクを低下させるフェールセーフ処理を行う。これにより、異常判定されたエンジン201の出力が低下し、エンジン201のトルク異常を抑えることができる。
なお、上述した目標トルク算出部405、目標スロットル開度算出部406、モータ駆動出力信号算出部407及びスロットル開度算出部408は、図1の目標スロットル開度算出部109に含まれるものとする。
一方、第2アクセル開度算出部404は、第2アクセル開度センサ402でセンシングされた出力に基づいて第2アクセル開度を算出する。
要求トルクを処理に用いる場合、要求トルク算出部(要求トルク算出部100)が、車両の運転状態に基づいて要求トルクを算出する。なお、要求トルクとは、例えば、目標トルクと許容発生トルクをまとめて表したものである。車両の運転状態には、例えば、第2アクセル開度、エンジン回転数が含まれるが、その他のパラメータが含まれてもよい。このため、要求トルク算出部100は、第2アクセル開度、エンジン回転数以外のパラメータを用いて要求トルクを算出することができる。
一方、許容発生トルクを処理に用いる場合、要求トルク算出部(要求トルク算出部100)は、駆動源(エンジン201)が発生可能な許容発生トルクを算出する許容発生トルク算出部(許容発生トルク算出部110)である。許容発生トルク算出部110は、第2アクセル開度算出部404から入力した第2アクセル開度と、エンジン回転数とに基づいて許容発生トルクを算出し、併せて所定時間の許容発生トルクの変化量も算出する。
推定発生トルク算出部111は、エンジン201の状態を示す吸入空気量、吸気管圧力、エンジン回転数とに基づいて、エンジン201が発生しているトルクを推定し、併せて所定時間の推定発生トルクの変化量も算出する。
最後に、異常検出部112は、駆動源(エンジン201)の異常(例えば、トルク増大異常)を検出する。
要求トルクを処理に用いる場合、異常検出部(異常検出部112)は、要求トルク変化量と推定発生トルク変化量との差分の積算値に基づいて駆動源(エンジン201)の異常を検出し、駆動源(エンジン201)の異常判定を出力する。
また、許容発生トルクを処理に用いる場合、異常検出部(異常検出部112)は、許容発生トルク変化量と推定発生トルク変化量との差分の積算値と、駆動源(エンジン201)の作動状態から決定される閾値とを比較した結果に基づいて、駆動源(エンジン201)の異常を検出する。このとき、異常検出部112は、許容発生トルク算出部110で算出された許容発生トルク、若しくは許容発生トルクの所定時間の変化量と、推定発生トルク算出部111で算出された推定発生トルク、若しくは推定発生トルクの所定時間の変化量に基づいて、運転者の意図している目標トルク以上のトルクがエンジン201で発生していないか監視する。
異常検出部112によりエンジン201のトルク増大異常が検出され、異常判定が出力されると、モータ駆動出力信号算出部407は、エンジン201の出力を抑えるようにスロットル絞り弁203を動作させる。例えば、モータ駆動出力信号算出部407は、エンジン201の出力を抑える方向へスロットル絞り弁203が動くように電制スロットルモータ204を駆動するか、又は電制スロットルモータ204を停止することで機械的にスロットル絞り弁203を動作させる。
図5は、図4に示した許容発生トルク算出部110の概要構成例を示すブロック図である。
許容発生トルクベース値算出部501は、入力したエンジン回転数と第2アクセル開度に基づいて許容発生トルクのベース値を算出する。
選択部502は、許容発生トルクベース値算出部501により算出された許容発生トルクのベース値と、クルーズ要求のトルクのうち、大きい方の値を選択することで、クルーズ中の許容発生トルクの算出に対応している。
選択部503は、外部から入力されるトルクガード要求と、選択部502で算出された許容発生トルクのうち、小さい方の値を選択することで、外部からのトルクガード要求を考慮した許容発生トルクを算出する。
燃料性状に対応した補正係数算出部507は、燃料性状によるエンジン201の発生トルクの変化分を考慮するための補正係数を算出する。
積算部504は、補正係数算出部507で算出された補正係数を、選択部503で算出された許容発生トルクに積算することで、燃料性状による発生トルクの変化に対応した許容発生トルクを算出する。
空気密度に対応した補正係数算出部508は、空気密度によるエンジン201の発生トルクの変化分を考慮するための補正係数を算出する。
積算部505は、補正係数算出部508で算出された補正係数を、積算部504で算出された許容発生トルクに積算することで、空気密度による発生トルクの変化に対応した許容発生トルクを算出する。
オフセット量算出部509は、許容発生トルクのオフセット量を算出する。
オフセット量加算部506は、オフセット量算出部509で算出されたオフセット量を、積算部505で算出された許容発生トルクに加算することで、後述する推定発生トルクの算出誤差を考慮し、正常時に推定発生トルクが許容発生トルクより大きくならないようにする。
最後に、許容発生トルク変化量算出部(許容発生トルク変化量算出部510)は、許容発生トルクの単位時間当たりの変化量を許容発生トルク変化量(Δ許容発生トルク)として算出する。オフセット量加算部506で算出された許容発生トルク、許容発生トルク変化量算出部510で算出された許容発生トルクの所定時間の変化量(Δ許容発生トルク)は、異常検出部112で行われる異常検出処理で使用される。
ここで、要求トルクを処理に用いる場合には、要求トルク変化量算出部(要求トルク変化量算出部511)が、要求トルクの単位時間当たりの変化量を要求トルク変化量(Δ要求トルク)として算出する。
図6は、図4に示した推定発生トルク算出部111の概要構成例を示すブロック図である。
推定発生トルク算出部(ハイオク)601は、エンジン回転数と、エンジン負荷とに基づいて、燃料がハイオクガソリンである時の推定発生トルクのベース値を算出する。
推定発生トルク算出部(レギュラ)602は、エンジン回転数と、エンジン負荷とに基づいて、燃料がレギュラガソリンである時の推定発生トルクのベース値を算出する。
推定発生トルクベース値選択部603は、車両が使用しているガソリンの性状判定の結果、つまりガソリンの性状が、ハイオク又はレギュラのいずれであるかを示す判定結果に基づいて、該当する推定発生トルクのベース値を選択する。
積算部604は、推定発生トルクベース値選択部603で選択された推定発生トルクのベース値の計測時の点火時期の影響を考慮し、推定発生トルクのベース値に点火効率を積算する。例えば、推定発生トルクのベース値を計測した時の点火時期を基準とすると、この基準の点火時期に対して遅角側の点火時期であった場合、点火効率が1.0より小さくなる。その結果、積算部604により推定発生トルクが小さく算出されることになる。
積算部605は、積算部604により算出された推定発生トルクに対して燃料噴射量補正値を積算する。例えば、積算部605は、燃料カット中に補正値を0として推定発生トルクに積算することで、燃料カット中の推定発生トルクが0になるように燃料噴射量補正値を0にする。このように燃料噴射量補正値を0にするのは、燃料噴射がされていないときは、エンジン201の発生トルクが0になる現象に一致させるためである。
負荷トルク算出部607は、エンジン回転数と、吸気管圧力とに基づいて、負荷トルクを算出する。
減算部606は、積算部605で算出された推定発生トルクから負荷トルクを減算することで、エンジン201の軸トルクとして推定発生トルクを算出する。
最後に、推定発生トルク変化量算出部(推定発生トルク変化量算出部608)は、推定発生トルクの単位時間当たりの変化量を推定発生トルク変化量(Δ推定発生トルク)として算出する。このとき、推定発生トルク変化量算出部608は、減算部606で算出された推定発生トルクの所定時間の変化量を算出する。減算部606で算出された推定発生トルク、推定発生トルク変化量算出部608で算出された推定発生トルクの所定時間の変化量(Δ推定発生トルク)は、異常検出部112で行われる異常検出処理で使用される。
図7は、図4に示した異常検出部112の概要構成例を示すブロック図である。
異常検出部(異常検出部112)は、許容発生トルク変化量(Δ許容発生トルク)と推定発生トルク変化量(Δ推定発生トルク)との差分が許可判定閾値より大きくなった場合に異常検出許可と判定し、異常検出許可と判定されている時間を異常検出時間として算出し、異常検出時間が、異常判定時間閾値に達するまで、異常検出時間の算出を継続する。
ここで、許可判定閾値は、異常検出部(異常検出部112)が駆動源(エンジン201)の異常検出の許可を判定するために用いられ、車両の車速、及び所定時間に応じて異なる値をとる。Δ推定発生トルクとΔ許容発生トルクの算出に際して、Δ(所定時間)ごとに異なる閾値が使用されるため、許可判定閾値は、Δ推定発生トルクとΔ許容発生トルクが算出されるときに用いられる所定時間に応じて異なる値をとる。なお、許可判定閾値は、駆動源(エンジン201)の回転数、及び及び所定時間に応じて異なる値をとるようにしてもよい。
また、異常判定時間閾値は、要求トルク変化量と推定発生トルク変化量との差分が積算される時間を制限するために用いられる。
以下、異常検出部112の各部で行われる具体的な処理の内容について説明する。
始めに、差分算出部701は、許容発生トルク変化量算出部510(図5を参照)により算出された推定発生トルクの所定時間の変化量(Δ推定発生トルク)と、推定発生トルク変化量算出部608(図6を参照)により算出された許容発生トルクの所定時間の変化量(Δ許容発生トルク)の差分を算出する。そして、差分算出部701は、Δ推定発生トルクとΔ許容発生トルクの差分を、比較部703及び積算処理部705に出力する。
許可判定閾値算出部702は、異常検出許可判定処理部704がエンジン201のトルク異常の検出を許可する判定を行うために用いられる閾値(許可判定閾値)を算出する。
比較部703は、差分算出部701で算出されたΔ推定発生トルクとΔ許容発生トルクの差分と、許可判定閾値算出部702で算出された許可判定閾値とを比較する。そして、Δ推定発生トルクとΔ許容発生トルクの差分が許可判定閾値より大きくなった場合に、判定結果を出力する。
異常検出許可判定処理部704は、比較部703から入力されるΔ推定発生トルクとΔ許容発生トルクの差分が、許可判定閾値より大きくなったとの判定結果に基づいて、異常検出許可と判定する。異常検出許可判定処理部704が異常検出許可と判定するのは、比較部708から入力される、異常検出許可がクリアされるまでの期間である。異常検出許可判定処理部704は、判定した異常検出許可を積算処理部705及び異常検出時間算出部706に出力する。
積算処理部705は、異常検出許可が入力する間、差分算出部701から入力されるΔ推定発生トルクとΔ許容発生トルクの差分を積算する。そして、積算処理部705は、Δ推定発生トルクとΔ許容発生トルクの差分の積算値を比較部710に出力する。
異常検出時間算出部706は、異常検出許可判定処理部704により異常検出許可と判定されている時間(以下、「異常検出時間」と呼ぶ)を算出する。異常検出時間は、例えば、異常検出時間算出部706が有する不図示のタイマーにより計測される時間に相当する。
異常判定時間閾値算出部707は、比較部708で用いられる異常検出時間の長さを判定するための閾値(異常判定時間閾値)を算出する。
比較部708は、異常検出時間算出部706から入力される異常検出時間と、異常判定時間閾値算出部707から入力される異常判定時間閾値とを比較する。そして、比較部708は、異常検出時間が異常判定時間閾値よりも大きくなると、異常検出許可判定処理部704において異常検出許可とした判定をクリアする。併せて、比較部708は、積算処理部705で積算されるΔ推定発生トルクとΔ許容発生トルクの差分の積算値もクリアする。例えば、比較部708が異常検出許可とした判定をクリアしたことが異常検出許可判定処理部704に出力され、異常検出許可判定処理部704から積算処理部705に異常検出許可とした判定がクリアされたことが伝わると、積算処理部705が積算値をクリアする。
異常判定閾値算出部709は、異常判定閾値を算出する。異常判定閾値は、異常検出部(異常検出部112)が積算値(Δ推定発生トルクとΔ許容発生トルクの差分の積算値)に基づいて駆動源(エンジン201)の異常を検出するために用いられ、車速に応じて異なる値をとる。なお、異常判定閾値は、駆動源(エンジン201)の回転数に応じて異なる値をとるようにしてもよい。
比較部710は、積算処理部705で積算されるΔ推定発生トルクとΔ許容発生トルクの差分の積算値と、異常判定閾値算出部709から入力される異常判定閾値とを比較する。ここで、積算値(Δ推定発生トルクとΔ許容発生トルクの差分の積算値)は、駆動源(エンジン201)が正常であるときにゼロ近傍の値をとり、駆動源(エンジン201)が異常であるときに異常判定閾値よりも大きくなる。
このため、比較部710は、Δ推定発生トルクとΔ許容発生トルクの差分の積算値が、異常判定閾値よりも大きくなると、異常判定とした結果をモータ駆動出力信号算出部407(図4を参照)に出力する。比較部710が異常判定を出力することは、異常検出部112が異常を検出することと等価である。このように異常検出部(異常検出部112)は、異常検出許可と判定される間、積算値(Δ推定発生トルクとΔ許容発生トルクの差分の積算値)の算出を行い、積算値が、駆動源(エンジン201)の作動状態に基づいて決定される異常判定閾値より大きくなった場合に、駆動源(エンジン201)の異常を検出し、異常判定を出力する。
異常検出部112がモータ駆動出力信号算出部407に異常判定を出力すると、モータ駆動出力信号算出部407は、スロットル絞り弁203が閉じるようにモータ駆動出力信号を算出する。そして、モータ駆動出力信号が電制スロットルモータ204に出力され、スロットル絞り弁203の開度が制御され、スロットル絞り弁203が閉じられる。
なお、エンジン201のトルク増大異常を検出する方法は、図7に示す異常検出部112が行う方法以外にも考えられる。そこで、図8と図9を参照して、エンジン201のトルク増大異常を検出する他の方法を実行可能な異常検出部112A、410Bの構成例及び動作例について説明する。
(異常検出部の第1の変形例)
図8は、異常検出部112Aの概要構成例を示すブロック図である。図8に示す異常検出部112Aは、既に図7を参照して説明した、比較部710から出力される異常判定を併用しつつ、推定発生トルクと許容発生トルクの差分の状態を監視する異常検出方法を実行する。本方法は、図7を参照して説明した異常検出部112が行う方法だけではエンジン201の異常を検出できない状態に対処するために行われる。このため、図7の異常検出部112と、図8の異常検出部112Aとは並行して動作してよい。
ここで、第1の変形例に係る異常検出部(異常検出部112A)は、異常検出許可と判定される間、推定発生トルクと許容発生トルクとの差分が差分異常判定閾値よりも大きくなった場合に算出した差分異常検出時間と、差分異常判定時間閾値とを比較し、差分異常検出時間が差分異常判定時間閾値よりも大きくなった場合に判定した差分異常と判定する。これにより、異常検出部112Aは、推定発生トルクと許容発生トルクとの異常な乖離を異常として検出することができる。
そして、異常検出部(異常検出部112A)は、判定した差分異常と、積算値(Δ推定発生トルクとΔ許容発生トルクの差分の積算値)に基づいて出力された異常判定とに基づいて、推定発生トルクと許容発生トルクの差分の状態を考慮した異常判定を出力する。このように積算値が異常判定されたことに加えて、差分の異常も発生していると判断できるので、確実に駆動源(エンジン201)の異常を判断することができる。このため、異常検出部(異常検出部112A)は、正常な駆動源(エンジン201)を、異常と誤判断することを避けられる。以下に異常検出部112Aの各部における具体的な処理の例について説明する。
異常検出部112Aが備える差分算出部701、許可判定閾値算出部702、比較部703及び異常検出許可判定処理部704の動作は、図7に示した異常検出部112の対応する各部の動作と同様である。そして、異常検出許可判定処理部704が判定した異常検出許可が差分異常検出時間算出部804に出力される。
差分算出部801は、推定発生トルク算出部111で算出された推定発生トルクと、許容発生トルク算出部110で算出された許容発生トルクとの差分を算出する。
差分異常判定閾値算出部802は、比較部803が推定発生トルクと許容発生トルクの差分異常を判定するために用いられる閾値(差分異常判定閾値)を算出する。
比較部803は、差分算出部801で算出された推定発生トルクと許容発生トルクの差分と、差分異常判定閾値算出部802で算出された差分異常判定閾値とを比較する。比較部803は、推定発生トルクと許容発生トルクの差分が、差分異常判定閾値よりも大きい場合に、差分異常の発生と判定し、差分異常の発生を差分異常検出時間算出部804に出力する。
差分異常検出時間算出部804は、異常検出許可判定処理部704で判定された異常検出許可と、比較部803で算出された比較結果とに基づいて、異常検出許可と判定されている間に、推定発生トルクが許容発生トルクより大きくなっている時間(差分異常検出時間)を算出する。
差分異常判定時間閾値算出部805は、差分異常判定時間閾値を算出する。差分異常判定時間閾値は、差分異常検出時間がこの閾値より大きくなった場合に、比較部806が差分異常と判定するために用いられる。
比較部806は、差分異常検出時間算出部804で算出された差分異常検出時間と、差分異常判定時間閾値算出部805で算出された差分異常判定時間閾値とを比較し、比較結果を異常判定処理部807に出力する。ここで比較結果には、推定発生トルクが許容発生トルクより大きくなっている時間が差分異常判定時間閾値より大きくなった場合に、比較部806が差分異常と判定した結果(差分異常判定)が含まれる。
異常判定処理部807は、図7の比較部710から出力される、Δ推定発生トルクとΔ許容発生トルクの差分の積算値から求めた異常判定の結果と、比較部806から出力される、推定発生トルクと許容発生トルクの差分異常の判定結果とに基づいて、最終的な異常判定を行う。これにより、異常判定処理部807は、推定発生トルクと許容発生トルクの差分の状態を考慮した異常判定を行うことができる。そして、異常判定処理部807は、最終的な異常判定の結果をモータ駆動出力信号算出部407(図4を参照)に出力する。
(異常検出部の第2の変形例)
図9は、異常検出部112Bの概要構成例を示すブロック図である。
第2の変形例に係る異常検出部(異常検出部112B)は、積算値(Δ推定発生トルクとΔ許容発生トルクの差分の積算値)が仮異常判定閾値より大きくなった場合に仮異常と判定される期間である仮異常判定時間が、仮異常判定時間閾値よりも大きくなり、かつ、積算値が異常判定積算値閾値よりも大きくなった場合に異常判定を出力する。これにより、異常検出部112Bは、始めに算出した積算値に対して仮異常の有無を判定した後、この積算値が、エンジン201のトルク増大異常を原因として算出された値であると判定できる。以下に異常検出部112Bの各部における具体的な処理の例について説明する。
異常検出部112Bが備える差分算出部701の動作は、図7に示した異常検出部112が備える差分算出部701の動作と同様である。そして、差分算出部701は、算出したΔ推定発生トルクとΔ許容発生トルクの差分を積算処理部901に出力する。
積算処理部901は、差分算出部701で算出されたΔ推定発生トルクとΔ許容発生トルクの差分を積算し、この積算値を比較部903及び異常判定処理部909に出力する。
積算処理部901が、Δ推定発生トルクとΔ許容発生トルクの差分を積算する期間は、後述する比較部907から、仮異常判定時間が仮異常判定時間閾値よりも大きいとの比較結果が出力されるまでの間である。
仮異常判定閾値算出部902は、比較部903で用いられる仮異常判定用の閾値(仮異常判定閾値)を算出する。
比較部903は、積算処理部901で算出されたΔ推定発生トルクとΔ許容発生トルクの差分の積算値と、仮異常判定閾値算出部902で算出された仮異常判定閾値とを比較し、比較結果を出力する。
仮異常判定部904は、比較部903から入力した比較結果に基づいて、Δ推定発生トルクとΔ許容発生トルクの差分の積算値が仮異常判定閾値より大きくなった場合、仮異常と判定する。そして、仮異常判定部904は、仮異常の判定結果を仮異常判定時間算出部905及び異常判定処理部909に出力する。
仮異常判定時間算出部905は、仮異常判定部904から入力される仮異常の判定結果に基づいて、仮異常判定部904が仮異常と判定する時間(仮異常判定時間)を算出する。仮異常判定時間は、例えば、仮異常判定時間算出部905が有する不図示のタイマーにより計測される時間に相当する。
仮異常判定時間閾値算出部906は、比較部907で用いられる仮異常判定時間閾値を算出する。
比較部907は、仮異常判定時間算出部905で算出された仮異常判定時間と、仮異常判定時間閾値算出部906で算出された仮異常判定時間閾値とを比較し、比較結果を積算処理部901及び異常判定処理部909に出力する。
異常判定積算値閾値算出部908は、異常判定処理部909で用いられる異常判定用の積算値閾値(異常判定積算値閾値)を算出し、異常判定処理部909に出力する。
異常判定処理部909には、積算処理部901からΔ推定発生トルクとΔ許容発生トルクの差分の積算値が入力され、仮異常判定部904から仮異常の判定結果が入力される。
また、異常判定処理部909には、比較部907から仮異常判定時間の比較結果が入力され、異常判定積算値閾値算出部908から異常判定積算値閾値が入力される。
異常判定処理部909は、仮異常判定時間の比較結果に基づいて、仮異常判定時間が異常判定積算値閾値より大きくなったと判定したタイミングで、仮異常判定部904により仮異常と判定された時から積算されたΔ推定発生トルクとΔ許容発生トルクの差分の積算値の増加分積算値と、異常判定積算値閾値とを比較する。そして、異常判定処理部909は、Δ推定発生トルクとΔ許容発生トルクの差分の積算値の増加分積算値が、異常判定積算値閾値よりも大きくなった場合に、最終的な異常判定を行う。異常判定処理部909は、最終的な異常判定の結果をモータ駆動出力信号算出部407(図4を参照)に出力する。
図10は、時間間隔又はエンジン回転数の違いによるΔトルクの差分と車両の加速Gの関係、及び車両速度と許可判定閾値との関係の一例を表すグラフである。図中に記載したΔトルクの差分とは、推定発生トルクの所定時間の変化量(Δ推定発生トルク)と許容発生トルクの所定時間の変化量(Δ許容発生トルク)との差分を表す。
図10のグラフ(a)は、トランスミッションのギアを固定し、所定のエンジン回転数状態を保持した状態でスロットル絞り弁203をステップ的に開けた場合における、時間間隔Δtの違いによるΔトルクの差分と加速Gの関係の一例を表す。ここで、変化量(Δ推定発生トルクとΔ許容発生トルク)が算出される時間間隔をt1、t2とする。そして、t1の間隔(Δt1)は、t2の間隔(Δt2)より大きくする。なお、グラフ中に、「危険な加速G領域」として表す加速Gは、例えば0.2G以上とする。
スロットル絞り弁203の開度が大きい方が、加速Gが大きくなる。このため、所定の加速Gが発生する時のΔトルクの差分は、時間間隔が大きいΔt1の場合(図中に黒丸マークで表す)の方が、時間間隔が小さいΔt2の場合(図中に×マークで表す)よりも大きくなる。このため、車両が所定の加速G以上発生した時を、車両が危険な状態であると仮定すると、Δt1、Δt2毎に車両の危険な状態、すなわちエンジン201の異常状態の検出を許可する閾値(許可判定閾値)を複数設定する必要がある。例えば、図中に表されるように、Δt1用の閾値と、Δt2用の閾値が設定される。
図10のグラフ(b)は、図10のグラフ(a)に対して、時間間隔を一つの状態とし、保持するエンジン回転数の状態を2種類(Ne1、Ne2)として確認した、エンジン回転数Neの違いによるΔトルクの差分と加速Gの関係の一例を表すグラフである。ここで、変化量(Δ推定発生トルクとΔ許容発生トルク)が算出されるエンジン回転数を、Ne1、Ne2とする。そして、エンジン回転数Ne1の方がNe2より高い。
ギア固定とした上で、エンジン回転数Ne1、Ne2での車両速度をそれぞれ車両速度VSP1、VSP2と表すと、車両速度VSP1の方が車両速度VSP2より大きい。例えば、車両速度VSP1を50[km/h]、車両速度VSP2を10[km/h]とする。
車両が所定の加速G以上発生した時のΔトルクの差分は、エンジン回転数が高いNe1(車両速度が大きいVSP1)の場合(図中に四角マークで表す)の方が、エンジン回転数が低いNe2(車両速度が小さいVSP2)の場合(図中に三角マークで表す)よりも大きくなる。このため、車両が所定の加速G以上発生した時を、車両が危険な状態であると仮定すると、エンジン回転数Ne1(VSP1)、Ne2(VSP2)毎に車両の危険な状態(異常状態)の検出を許可する閾値(許可判定閾値)を複数設定する必要がある。例えば、図中に表される閾値は、Ne1(VSP1)の方が、Ne2(VSP2)よりも大きいことが表される。
図10のグラフ(c)は、車両速度VSP(エンジン回転数Ne)に対するΔトルクの差分閾値(ΔNm)の関係の一例を表すグラフである。Δトルクの差分閾値(ΔNm)は、図7に示した許可判定閾値算出部702が算出する許可判定閾値に相当する。そして、図10のグラフ(a),(b)を参照して説明したように、許可判定閾値は、時間間隔毎(Δt1、Δt2毎)に、エンジン回転数(Ne)又は車両速度(VSP)で可変な複数の閾値が設定されることが分かる。
図11は、エンジン回転数の違いによるΔトルクの差分の積算値と車両の加速Gの関係、及び車両速度と異常判定時間閾値との関係の一例を表すグラフである。
図11のグラフ(a)は、トランスミッションのギアを固定し、所定のエンジン回転数状態を保持した状態でスロットル絞り弁203をステップ的に開けた場合におけるΔトルクの差分の積算値と加速Gの関係の一例を表す。このグラフ(a)は、エンジン回転数の状態を2種類(Ne1、Ne2)で確認した結果として表される。上述したようにエンジン回転数Ne1の方がNe2より高い。そして、ギア固定のためエンジン回転数Ne1、Ne2での車両速度をそれぞれ車両速度VSP1、VSP2と表すと、車両速度VSP1の方が車両速度VSP2より大きい状態となる。
車両が所定の加速G以上発生した時のΔトルクの差分の積算値は、エンジン回転数の状態が高いNe1(車両速度が大きいVSP1)の場合(図中に斜め四角マークで表す)の方が、エンジン回転数の状態が低いNe2(車両速度が小さいVSP2)の場合(図中に六角形マークで表す)よりも大きくなる。このため、車両が所定の加速G以上発生した時を、車両が危険な状態であると仮定すると、Ne1(VSP1)、Ne2(VSP2)毎に車両の危険な状態(異常状態)を検出するための閾値(異常判定閾値)を複数設定する必要がある。例えば、図中に示す閾値は、Ne1(VSP1)の方が、Ne2(VSP2)よりも大きいことが表される。
図11のグラフ(b)は、車両速度VSP(エンジン回転数Ne)に対するΔトルクの差分積算値の閾値(ΣΔNm)の関係の一例を表すグラフである。Δトルクの差分積算値の閾値(ΣΔNm)は、図7に示した異常判定閾値算出部709が算出する異常判定閾値に相当する。そして、図11のグラフ(a)を参照して説明したように、異常判定閾値は、エンジン回転数(Ne)又は車両速度(VSP)で可変な閾値にする必要があることが分かる。
図12は、ギア段の違いによる異常判定時間と、異常発生時の車両速度との関係の一例を表すグラフである。
図12のグラフ(a)は、図11に示した、異常状態を検出するための積算値を算出するのに必要な異常判定時間[ms](積算値が閾値に達するまでの時間)と、各ギアでの異常発生時の車両速度(VSP)[km/h]との関係の一例を表したものである。このため、グラフ(a)では、トランスミッションのギアを変え、所定の車両速度状態(エンジン回転数状態)を保持した状態でスロットル絞り弁203をステップ的に開いた時に計測された異常判定時間がプロットされる。
例えば、車両速度が20km/hから40km/hまでの領域において、同じ車両速度であれば、Highギア側(エンジン回転数が低い側)は、異常状態を検出するための積算値を算出するのに必要な時間(異常判定時間)が長い。図中には、車両速度(VSP)が10[km/h]毎に、1速を三角形マーク、2速を斜め四角形マーク、3速を五角形マークで異常判定時間をプロットした様子が示される。
この結果は、本実施の形態に係る車両がターボ車である場合に得られる。このため、Highギア側(エンジン回転数が低い側)では、ターボによる過給の遅れ(ターボラグ)が発生することから、異常状態を検出するための積算値を算出するのに必要な時間(異常判定時間)が長くなる。
図12のグラフ(b)は、車両速度[km/h]と、異常判定時間閾値[ms]との関係の一例を表したものである。図中に、1速用、2速用、3速用の車両速度と、異常判定時間閾値との関係を表すグラフを示している。グラフ(b)に示すように、図7に示した異常判定時間閾値算出部707算出する異常判定時間閾値は、トランスミッションのギア段毎に、車両速度(VSP)で可変な閾値として設定する必要がある。
また、異常判定時間閾値は、他の方法で設定することも可能である。
図12のグラフ(c)は、車両速度[km/h]と、異常判定時間閾値[ms]との関係の別の一例を表したものである。グラフ(c)に示すように、図7に示した異常判定時間閾値算出部707が算出する異常判定時間閾値は、全ギア段をカバーできるように最大時間を設定する必要がある。
次に、車載制御装置217の挙動の例について説明する。
図13は、車載制御装置217の異常検出の挙動の一例を表すチャートである。このチャートでは、ライン1301〜1313により、車載制御装置217の各部で算出される値が表される。
ライン1301は、運転者のアクセル踏込み量を示すアクセル開度を表す。アクセル開度は、運転操作量検出部101で算出される値である。ライン1301では、車両が加速走行、一定速走行、減速走行を行った場合にアクセル開度が変化する様子が表される。
ライン1302は、許容発生トルク算出部110で算出される許容発生トルクを表す。アクセル開度が大きくなる(加速状態)に従い許容発生トルクが大きくなり、アクセル開度が小さくなる(減速状態)に従い小さくなることが示される。このため、ライン1302では、アクセル開度の変化に追従して、許容発生トルクが変化する様子が表される。
ライン1303は、推定発生トルク算出部111で算出される推定発生トルクを表す。ライン1303では、アクセル開度の動作に対して、吸入空気の応答遅れ等の影響により加速、減速時の挙動に遅れが生じることが示される。なお、本実施の形態ではA時点から異常が発生したことにより、推定発生トルクが上昇する状況が示されている。
そして、許容発生トルクにおいては推定発生トルクとの差分から異常検出が行われる。このため、検出精度向上及び誤検出防止のために、推定発生トルクに許容発生トルクの位相を合わせるフィルタ処理が行われる。許容発生トルクにフィルタ処理が行われたことは、ライン1303に「フィルタ処理後」と図示して表される。
ライン1304は、許容発生トルク変化量算出部510により算出される許容発生トルクの単位時間当たりの変化量(Δ許容発生トルク)を表す。
ライン1305は、推定発生トルク変化量算出部608で算出される推定発生トルクの単位時間当たりの変化量(Δ推定発生トルク)を表す。
ライン1306は、差分算出部701により算出されるΔ推定発生トルクとΔ許容発生トルクの差分を表す。
ライン1307は、異常検出許可判定処理部704が異常検出許可を判定するための許可判定閾値を表す。
ライン1308は、ライン1306で表されるΔ推定発生トルクとΔ許容発生トルクの差分が許可判定閾値より大きくなった場合に、異常検出時間算出部706のタイマーがカウントを開始して計測する異常検出時間を表す。
ライン1309は、異常判定時間閾値算出部707により算出される、異常検出時間の計測を制限するための異常判定時間閾値を表す。ライン1308で表される異常検出時間は、ライン1309で表される異常判定時間閾値に達するまでカウントされることが分かる。
ライン1310は、異常検出許可判定処理部704が有する許可フラグの設定状態を表す。ライン1310がHighのときに許可フラグがオンされることで異常検出許可が表される。ライン1310がLowのときには許可フラグがオフされる。
ライン1306で示すように、Δ推定発生トルクからΔ許容発生トルクが減じられるため、加速状態における差分は負の値をとる。そして、一定速走行しているときには、差分が許可判定閾値より大きくなる。このように差分が許可判定閾値より大きくなったタイミングで、ライン1308に示すように、異常検出時間の計測用タイマーが起動し、さらにライン1310に示す許可フラグがオンされ、異常検出許可が判定される。
その後、ライン1308で示される異常検出時間が、ライン1309で示される異常判定時間閾値に達すると、タイマーがクリアされ、異常検出時間が0に戻る。また、許可フラグがオフされ、ライン1310がLowに戻る。
このように異常判定時間閾値を設けたのは、正常時であっても、フィルタ処理後の許容発生トルクと推定発生トルクの位相を完全に合わせ、ライン1306の値を常時0にすることが困難なためである。常時積算することは異常状態の誤検出につながるので、異常状態の検出精度を向上するために異常判定時間閾値が設けられる。
ライン1311は、ライン1310に示される許可フラグがオンの間に、ライン1306に示されるΔ推定発生トルクとΔ許容発生トルクの差分が積算される様子を表す。
ライン1312は、比較部710にて異常判定に用いられる異常判定閾値を表す。
ライン1313は、比較部710が有する異常判定フラグの設定状態を表す。比較部710は、ライン1313がHighのときに異常判定フラグをオンし、異常判定を出力する。一方、比較部710は、ライン1313がLowのときに異常判定フラグをオフするので、異常判定を出力しない。
ライン1311に示すように、Δ推定発生トルクとΔ許容発生トルクの差分が積算された積算値が、ライン1312に示す異常判定閾値より大きくなった場合に、図7に示した比較部710は異常判定を出力する。そして、比較部710は、ライン1313に示す異常判定フラグを異常判定とする。このように異常検出部(異常検出部112)は、異常検出許可と判定される間、積算値(Δ推定発生トルクとΔ許容発生トルクの差分の積算値)が異常判定閾値より大きくなった場合に異常判定を出力する。これにより、例えば、推定発生トルクと許容発生トルクの位相がずれて、Δ推定発生トルクとΔ許容発生トルクの差分積算が開始されたとしても、異常状態でなければこの積算値は異常判定閾値を超えない。このため、エンジン201が正常状態であるのに、異常検出部112が誤って異常状態と判定する可能性をなくすことができる。
次に、車載制御装置217の各部で行われる処理の例について、図14〜図17を参照して説明する。
図14は、車載制御装置217の各部で行われる一連の処理の例を示すフローチャートである。ここでは、図1に示した車載制御装置217を構成する各制御ブロックを参照しながら各ステップを説明する。
始めに、運転操作量検出部101は、アクセル開度センサ218からの出力電圧をアクセル開度割合へ換算し、読み込む(S1)。例えば、アクセル全開であれば、アクセル開度割合が100%に換算される。
次に、エンジン回転数算出部102は、クランク角度センサ219からの電気的な信号、主にパルス信号変化の単位時間当たりの入力数をカウントし、演算処理によりエンジン回転数を算出する(S2)。
次に、目標スロットル開度算出部406は、目標トルク算出部405により算出された目標トルクに基づいて目標スロットル開度を算出し、読込む(S3)。併せて、スロットル開度算出部408は、スロットル開度センサ215からのスロットル開度センサ出力電圧をスロットル開度へ換算し、読み込む。
次に、シリンダ流入空気量算出部103は、吸入空気量センサ(熱式空気流量計)202の出力電圧に基づいて換算されたシリンダ流入空気量(エンジン負荷)を読み込む(S4)。次に、基本燃料量算出部104は、エンジン回転数とシリンダ流入空気量(エンジン負荷)に基づいて基本燃料量を算出する(S5)。
次に、燃料補正部113は、エンジン回転数とエンジン負荷から基本燃料補正係数をマップ検索し、基本燃料補正係数を算出する(S6)。次に、空燃比補正係数算出部107は、空燃比センサ211の出力電圧から空燃比変換した実空燃比を読み込む(S7)。次に、目標空燃比算出部108は、エンジン回転数とエンジン負荷とに基づいて目標空燃比をマップ検索し、目標空燃比を検索する(S8)。次に、空燃比補正係数算出部107は、目標空燃比と実空燃比で目標空燃比へのフィードバック制御を実施し、空燃比補正係数を算出する(S9)。
次に、燃料補正部113は、基本燃料補正係数、フィードバック制御による空燃比補正係数により基本燃料量を補正し、燃料噴射量を算出する(S10)。次に、ISC制御部106は、アイドル回転数の目標値(ISC目標回転数)を算出し(S11)、アイドル回転数の目標値を実現できるISC目標流量を算出する(S12)。そして、ISC制御部106は、ISC目標流量に基づいて要求開度を算出する(S13)。
次に、基本点火時期算出部105は、エンジン回転数及びエンジン負荷に基づいて、エンジン201の基本点火時期を算出する(S14)。次に、点火時期補正部114は、水温補正量により基本点火時期に水温補正等を実施し(S15)、1気筒燃料噴射部116〜4気筒燃料噴射部119に補正した点火時期をセットする(S16)。
次に、許容発生トルク算出部110は、許容発生トルクを算出する(S17)。次に、推定発生トルク算出部111は、推定発生トルクを算出する(S18)。次に、異常検出部112は、許容発生トルクと推定発生トルクとに基づいて、エンジン201の異常を検出する(S19)。
次に、電制スロットル制御部115は、目標スロットル開度算出部109がアクセル開度とエンジン回転数から算出した目標トルクからの要求開度と、ISC制御部106がISC目標流量から算出した要求開度とに基づいて、スロットル絞り弁203を最終的なスロットル開度へ制御する(S20)。なお、ステップS19でエンジン201の異常が検出された場合においても、電制スロットル制御部115は、スロットル絞り弁203のスロットル開度を制御する(S20)。
次に、本実施の形態に係る異常検出処理の例について、図15〜図17を参照して説明する。この異常検出処理は、一定時間毎に行われる割込み処理である。
図15は、図14のステップS17における許容発生トルクを算出する処理、ステップS18における推定発生トルクを算出する処理の詳細な例を示すフローチャートである。
始めに、許容発生トルク算出部110は、許容発生トルクを算出する(S21)。次に、許容発生トルク変化量算出部(許容発生トルク算出部110)は、起点を同じとした複数の異なる単位時間当たりの許容発生トルク変化量を算出する。例えば、許容発生トルク算出部110は、起点を同じとした10ms間、40ms間、80ms間、120ms間、160ms間の許容発生トルクの変化量(Δ10LT、Δ40LT、Δ80LT、Δ120LT、Δ160LT)を順に算出する(S22〜S26)。許容発生トルクの変化量を算出する起点は同じタイミングである。例えば、ステップS22における10ms、ステップS23における40ms等は、いずれも同じ起点0からの経過時間を表す。
次に、推定発生トルク算出部111は、推定発生トルクを算出する(S27)。次に、推定発生トルク変化量算出部(推定発生トルク算出部111)は、起点を同じとした複数の異なる単位時間当たりの推定発生トルク変化量を算出する。例えば、推定発生トルク算出部111は、起点を同じとした10mS間、40ms間、80ms間、120ms間、160ms間の推定発生トルクの変化量(Δ10ET、Δ40ET、Δ80ET、Δ120ET、Δ160ET)を順に算出する(S28〜S32)。この場合においても、推定発生トルクの変化量を算出する起点は同じタイミングである。ステップS32の後、接続子Aで接続される図16のステップS41に移行する。
図16、図17は、図14のステップS19にて行われる異常検出の処理の詳細な例を示すフローチャートである。ここでは、異常検出部112により各ステップの処理が行われる。
図16は、異常検出部112により行われる異常検出許可の判定処理の例を表すフローチャートである。
ここで、異常検出部(異常検出部112)は、同じ単位時間毎に算出された推定発生トルク変化量と許容発生トルク変化量との差分が許可判定閾値よりも大きくなった場合に異常検出許可と判定する。
始めに、異常検出部112は、40ms間の推定発生トルクの変化量(Δ40ET)と許容発生トルクの変化量(Δ40LT)の差分が許可判定閾値(KD40H)より大きいかチェックする(S41)。ステップS41のチェック結果がYesの場合、異常検出部112は、異常検出許可の判定(FLDPMT=1)とする(S45)。
ステップS41のチェック結果がNoの場合、異常検出部112は、80ms間の推定発生トルクの変化量(Δ80ET)と許容発生トルクの変化量(Δ80LT)の差分が許可判定閾値(KD80H)より大きいかチェックする(S42)。
ステップS42のチェック結果がYesの場合、異常検出部112は、異常検出許可の判定(FLDPMT=1)とする(S45)。ステップS42のチェック結果がNoの場合、異常検出部112は、120ms間の推定発生トルクの変化量(Δ120ET)と許容発生トルクの変化量(Δ120LT)の差分が許可判定閾値(KD120H)より大きいかチェックする(S43)。
ステップS43のチェック結果がYesの場合、異常検出部112は、異常検出許可の判定(FLDPMT=1)とする(S45)。ステップS43のチェック結果がNoの場合、異常検出部112は、160ms間の推定発生トルクの変化量(Δ160ET)と許容発生トルクの変化量(Δ160LT)の差分が許可判定閾値(KD160H)より大きいかチェックする(S44)。
ステップS44のチェック結果がYesの場合、異常検出部112は、異常検出許可の判定(FLDPMT=1)とする(S45)。ステップS44のチェック結果がNoの場合、又はステップS45の処理後、異常検出部112は、異常検出許可の判定、すなわちFLDPMT=1となっているかチェックを行う(S46)。
ステップS46のチェック結果がYesの場合、異常検出部112は、異常検出時間の計測用タイマー(DPCN)をカウントアップし(S47)、接続子Bで接続される図17のステップS51に移行する。ステップS46のチェック結果がNoの場合、異常検出部112は、フロー終了とする。
図17は、異常検出部112により行われる異常判定の処理の詳細な例を表すフローチャートである。
始めに、異常検出部112は、異常検出時間の計測用タイマー(DPCN)が計測した異常検出時間が、異常判定時間閾値(KDPCN)より大きいかチェックする(S51)。つまり、異常検出許可となってからの経過時間が異常判定時間閾値を超えたかチェックする。ステップS51のチェック結果がNoの場合、異常検出部112は、10ms間の推定発生トルクの変化量(Δ10ET)と許容発生トルクの変化量(Δ10LT)の差分(変化量差分:SMD)を算出する(S52)。
その後、異常検出部112は、変化量差分(SMD)の積算値(TSMD)を算出する(S53)。次に、積算値(TSMD)が異常判定閾値(KTSMD)より大きいかチェックする(S54)。ステップS54のチェック結果がYesの場合、異常検出部112は、エンジン201のトルク異常を判定(FLTQNG=1)し(S58)、異常判定を出力する。ステップS54のチェック結果がNoの場合、異常検出部112は、本フローを終了する。
一方、ステップS51のチェック結果がYesの場合、異常検出部112は、異常検出許可の判定をクリア(FLDPMT=0)する(S55)。その後、異常検出部112は、異常検出時間の計測用タイマー(DPCN)をクリアし(S56)、変化量差分の積算値(TSMD)をクリアし(S57)、本フローを終了する。
以上説明した第1の実施の形態に係る車載制御装置217では、許容発生トルクの変化量と、推定発生トルクの変化量との差分の積算値に基づいて、エンジン201が過大なトルクを発生するようなエンジン201のトルク異常の発生を判定することができる。また、車載制御装置217では、要求トルクの変化量と、推定発生トルクの変化量との差分の積算値に基づいて、エンジン201が過大なトルクを発生するようなエンジン201のトルク異常の発生を判定することもできる。このため、異常検出部112は、例えば、スロットル絞り弁203に異常が発生したことにより、エンジン201が発生するトルクが運転者の意図より大きくなるトルク異常を判定できる。
このように運転操作変化量と、エンジン201の作動状態変化量とに基づいてエンジン201のトルク増大異常を判定するため、運転操作量(操作量検出のためのセンサ等)のばらつき、及び作動状態(作動状態検出のためのセンサ等)のばらつきの影響が抑えられる。また、所定時間(例えば、40ms〜160ms間)の変化量でエンジン201のトルク増大異常を判定するため、運転者の意図しない加速が抑えられるようになり、運転者の危険回避も十分可能になる。
[第2の実施の形態]
上述した第1の実施の形態に係る車載制御装置では、運転者のアクセル開度から算出した許容発生トルクと、エンジン回転数及びエンジン負荷に基づいて算出した推定発生トルクから異常を検出したようにトルクの次元で異常検出が行われていた。しかし、車載制御装置は、他の次元、例えば馬力の次元での異常検出を行うように構成してもよい。そこで、第2の実施の形態に係る車載制御装置では、トルクの代わりに馬力を求めることで、許容発生馬力の変化量と、推定発生馬力の変化量との差分の積算値に基づいてエンジン201の馬力増大異常を判定することを可能とする。ここで、許容発生馬力の変化量と、推定発生馬力の変化量とを求める機能ブロックの構成例について、図18〜図20を参照して説明する。
図18は、第2の実施の形態に係る車載制御装置217Aの内部構成例を示す制御ブロック図である。
車載制御装置217Aは、図4に示した車載制御装置217のうち、要求トルク算出部100、許容発生トルク算出部110、推定発生トルク算出部111及び異常検出部112を、それぞれ要求馬力算出部100A、許容発生馬力算出部110A、推定発生馬力算出部111A及び異常検出部112Aに置換えた構成としている。
要求馬力を処理に用いる場合、要求馬力算出部(要求馬力算出部100A)は、車両の運転状態に基づいて要求馬力を算出する。
また、許容発生馬力を処理に用いる場合、要求馬力算出部(要求馬力算出部100A)は、駆動源(エンジン201)が発生可能な許容発生馬力を算出する許容発生馬力算出部(許容発生馬力算出部110A)である。
推定発生馬力算出部(推定発生馬力算出部111A)は、車両の駆動源(エンジン201)で発生していると推定される推定発生馬力を算出する。
そして、異常検出部112Aは、駆動源(エンジン201)の異常を検出する。第2の実施の形態に係る異常検出部112Aでは、第1の実施の形態においてトルクを用いて算出した各種の処理を、馬力を用いて算出するように用いられる。
ここで、要求馬力を処理に用いる場合、異常検出部(異常検出部112A)は、要求馬力変化量と推定発生馬力変化量との差分の積算値に基づいて駆動源(エンジン201)の異常を検出し、駆動源(エンジン201)の異常判定を出力する。
また、許容発生馬力を処理に用いる場合、異常検出部(異常検出部112A)は、許容発生馬力変化量と推定発生馬力変化量との差分の積算値と、駆動源(エンジン201)の作動状態から決定される閾値とを比較した結果に基づいて、駆動源(エンジン201)の異常を検出する。
図19は、許容発生馬力算出部110Aの概要構成例を示すブロック図である。
許容発生馬力算出部110Aは、図5に示した許容発生トルク算出部110のうち、オフセット量加算部506及び許容発生トルク変化量算出部510を、それぞれオフセット量加算部506A及び許容発生馬力変化量算出部510Aに置換えた構成としている。
オフセット量加算部506Aは、オフセット量算出部509で算出されたオフセット量を、積算部505で算出された許容発生トルクを換算した許容発生馬力に加算する。許容発生馬力にオフセット量を加算することで、推定発生馬力の算出誤差を考慮し、正常時に推定発生馬力が許容発生馬力より大きくならないようにする。
許容発生馬力変化量算出部510Aは、許容発生馬力の所定時間の変化量を算出する。許容発生馬力変化量算出部510Aで算出された許容発生馬力、及び許容発生馬力の所定時間の変化量(Δ許容発生馬力)は、異常検出部112Aで使用される。
ここで、許容発生馬力を処理に用いる場合、要求馬力変化量算出部(要求馬力変化量算出部511A)は、許容発生馬力の単位時間当たりの変化量を許容発生馬力変化量として算出する許容発生馬力変化量算出部(許容発生馬力変化量算出部510A)である。なお、要求馬力を処理に用いる場合、要求馬力変化量算出部(要求馬力変化量算出部511A)は、要求馬力の単位時間当たりの変化量を要求馬力変化量として算出する。
図20は、推定発生馬力算出部111Aの概要構成例を示すブロック図である。
推定発生馬力算出部111Aは、図6に示した推定発生トルク算出部111のうち、減算部606及び推定発生トルク変化量算出部608を、それぞれ減算部606A及び推定発生馬力変化量算出部608Aに置換えた構成としている。
減算部606Aは、積算部605で算出された推定発生トルクから負荷トルクを減算して得られる推定発生トルクを推定発生馬力に換算することで、エンジン201の軸馬力として推定発生馬力を算出する。
推定発生馬力変化量算出部(推定発生馬力変化量算出部608A)は、推定発生馬力の単位時間当たりの変化量を推定発生馬力変化量として算出する。このため、推定発生馬力変化量算出部608Aは、減算部606Aで算出された推定発生馬力の所定時間の変化量を算出する。推定発生馬力変化量算出部608Aで算出された推定発生馬力、及び推定発生馬力の所定時間の変化量(Δ推定発生馬力)は、異常検出部112Aで行われる異常検出処理で使用される。
以上説明した第2の実施の形態に係る車載制御装置217Aでは、許容発生馬力、許容発生馬力の所定時間の変化量、推定発生馬力及び推定発生馬力の所定時間の変化量を適宜用いて、異常検出部112Aがエンジン201の異常を検出すると、異常判定を出力する。このため、車載制御装置217Aは、許容発生馬力の変化量と、推定発生馬力の変化量との差分の積算値に基づいて、エンジン201が過大な馬力を発生するようなエンジン201の馬力異常の発生を判定することができる。また、車載制御装置217では、要求馬力の変化量と、推定発生馬力の変化量との差分の積算値に基づいて、エンジン201が過大な馬力を発生するようなエンジン201の馬力異常の発生を判定することもできる。
[変形例]
なお、上述した各実施の形態では、車両がターボ車である場合について説明した。しかし、ターボ車でない車両であっても、本実施の形態に係る制御を適用することが可能である。
また、駆動源としては、内燃機関の一例であるエンジン201に限らず、電動機であってもよい。このため、電動機を備える電動車両、又は電動機と内燃機関の両方を備えるハイブリッド車両に本実施の形態に係る異常検出の制御を適用してもよい。
本発明は上述した実施の形態に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
例えば、上述した実施の形態は本発明を分かりやすく説明するためにシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、本実施の形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
100…要求トルク算出部、101…運転操作量検出部、102…エンジン回転数算出部、103…シリンダ流入空気量算出部、109…目標スロットル開度算出部、110…許容発生トルク算出部、111…推定発生トルク算出部、112…異常検出部、115…電制スロットル制御部、201…エンジン、203…スロットル絞り弁、217…車載制御装置

Claims (14)

  1. 車両の運転状態に基づいて要求トルクを算出する要求トルク算出部と、
    前記要求トルクの単位時間当たりの変化量を要求トルク変化量として算出する要求トルク変化量算出部と、
    前記車両の駆動源で発生していると推定される推定発生トルクを算出する推定発生トルク算出部と、
    前記推定発生トルクの前記単位時間当たりの変化量を推定発生トルク変化量として算出する推定発生トルク変化量算出部と、
    前記要求トルク変化量と前記推定発生トルク変化量との差分の積算値に基づいて前記駆動源の異常を検出し、前記駆動源の異常判定を出力する異常検出部と、を備える
    制御装置。
  2. 前記要求トルク算出部は、前記駆動源が発生可能な許容発生トルクを算出する許容発生トルク算出部であり、
    前記要求トルク変化量算出部は、前記許容発生トルクの前記単位時間当たりの変化量を許容発生トルク変化量として算出する許容発生トルク変化量算出部であり、
    前記異常検出部は、前記許容発生トルク変化量と前記推定発生トルク変化量との差分の積算値と、前記駆動源の作動状態から決定される閾値とを比較した結果に基づいて、前記駆動源の異常を検出する
    請求項1に記載の制御装置。
  3. 前記異常検出部は、前記許容発生トルク変化量と前記推定発生トルク変化量との差分が許可判定閾値より大きくなった場合に異常検出許可と判定し、前記異常検出許可と判定されている時間を異常検出時間として算出し、前記異常検出時間が、異常判定時間閾値に達するまで、前記異常検出時間の算出を継続する
    請求項2に記載の制御装置。
  4. 前記異常検出部は、前記異常検出許可と判定される間、前記積算値の算出を行い、前記積算値が、前記駆動源の作動状態に基づいて決定される異常判定閾値より大きくなった場合に、前記駆動源の異常を検出し、前記異常判定を出力する
    請求項3に記載の制御装置。
  5. 前記許容発生トルク変化量算出部は、起点を同じとした複数の異なる前記単位時間当たりの前記許容発生トルク変化量を算出し、
    前記推定発生トルク変化量算出部は、前記起点を同じとした複数の異なる前記単位時間当たりの前記推定発生トルク変化量を算出し、
    前記異常検出部は、同じ前記単位時間毎に算出された前記許容発生トルク変化量と前記推定発生トルク変化量との差分が前記許可判定閾値よりも大きくなった場合に異常検出許可と判定する
    請求項4に記載の制御装置。
  6. 前記許可判定閾値は、前記異常検出部が前記駆動源の異常検出の許可を判定するために用いられ、前記車両の車速、及び所定時間に応じて異なる値をとり、
    前記異常判定時間閾値は、前記許容発生トルク変化量と前記推定発生トルク変化量との差分が積算される時間を制限するために用いられ、
    前記異常判定閾値は、前記異常検出部が前記積算値に基づいて前記駆動源の異常を検出するために用いられ、前記車速に応じて異なる値をとる
    請求項5に記載の制御装置。
  7. 前記積算値は、前記駆動源が正常であるときにゼロ近傍の値をとり、前記駆動源が異常であるときに前記異常判定閾値よりも大きくなる
    請求項4に記載の制御装置。
  8. 前記異常検出部は、前記異常検出許可と判定される間、前記推定発生トルクと前記許容発生トルクとの差分が差分異常判定閾値よりも大きくなった場合に算出した差分異常検出時間と、差分異常判定時間閾値とを比較し、前記差分異常検出時間が前記差分異常判定時間閾値よりも大きくなった場合に差分異常と判定する
    請求項3に記載の制御装置。
  9. 前記異常検出部は、判定した差分異常と、前記積算値に基づいて出力された前記異常判定とに基づいて、前記推定発生トルクと前記許容発生トルクの差分の状態を考慮した前記異常判定を出力する
    請求項8に記載の制御装置。
  10. 前記異常検出部は、前記積算値が仮異常判定閾値より大きくなった場合に仮異常と判定される期間である仮異常判定時間が、仮異常判定時間閾値よりも大きくなり、かつ、前記積算値が異常判定積算値閾値よりも大きくなった場合に前記異常判定を出力する
    請求項3に記載の制御装置。
  11. さらに、アクセル開度、及び前記駆動源の回転数に基づいて目標トルクを算出する目標トルク算出部と、
    前記目標トルクに基づいて目標スロットル開度を算出する目標スロットル開度算出部と、
    スロットル絞り弁を前記目標スロットル開度で開かせるスロットルモータを駆動するためのモータ駆動出力信号を算出するモータ駆動出力信号算出部と、
    前記スロットル絞り弁のスロットル開度を検出するスロットル開度センサから入力されるセンサ信号に基づいて前記スロットル開度を算出するスロットル開度算出部と、を備え、
    前記モータ駆動出力信号算出部は、前記目標スロットル開度、前記異常判定、及び前記スロットル開度に基づいて、前記目標スロットル開度に前記スロットル開度が一致するように前記モータ駆動出力信号のフィードバック制御を行う
    請求項1〜10のいずれか一項に記載の制御装置。
  12. 前記モータ駆動出力信号算出部は、前記異常判定が入力された場合に、前記駆動源が発生するトルクを低下させるフェールセーフ処理を行う
    請求項11に記載の制御装置。
  13. 車両の運転状態に基づいて要求馬力を算出する要求馬力算出部と、
    前記要求馬力の単位時間当たりの変化量を要求馬力変化量として算出する要求馬力変化量算出部と、
    前記車両の駆動源で発生していると推定される推定発生馬力を算出する推定発生馬力算出部と、
    前記推定発生馬力の前記単位時間当たりの変化量を推定発生馬力変化量として算出する推定発生馬力変化量算出部と、
    前記要求馬力変化量と前記推定発生馬力変化量との差分の積算値に基づいて前記駆動源の異常を検出し、前記駆動源の異常判定を出力する異常検出部と、を備える
    制御装置。
  14. 前記要求馬力算出部は、前記駆動源が発生可能な許容発生馬力を算出する許容発生馬力算出部であり、
    前記要求馬力変化量算出部は、前記許容発生馬力の前記単位時間当たりの変化量を許容発生馬力変化量として算出する許容発生馬力変化量算出部であり、
    前記異常検出部は、前記許容発生馬力変化量と前記推定発生馬力変化量との差分の積算値と、前記駆動源の作動状態から決定される閾値とを比較した結果に基づいて、前記駆動源の異常を検出する
    請求項13に記載の制御装置。
JP2020559092A 2018-12-14 2019-11-27 制御装置 Active JP7185704B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018234660 2018-12-14
JP2018234660 2018-12-14
PCT/JP2019/046274 WO2020121807A1 (ja) 2018-12-14 2019-11-27 制御装置

Publications (2)

Publication Number Publication Date
JPWO2020121807A1 true JPWO2020121807A1 (ja) 2021-09-27
JP7185704B2 JP7185704B2 (ja) 2022-12-07

Family

ID=71076416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020559092A Active JP7185704B2 (ja) 2018-12-14 2019-11-27 制御装置

Country Status (5)

Country Link
US (1) US11945446B2 (ja)
JP (1) JP7185704B2 (ja)
CN (1) CN112955640B (ja)
DE (1) DE112019005136T5 (ja)
WO (1) WO2020121807A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307274A (ja) * 1993-04-21 1994-11-01 Fujitsu Ten Ltd 異常監視装置
JPH1144246A (ja) * 1997-07-25 1999-02-16 Nissan Motor Co Ltd エンジンの異常診断装置
JP2000073835A (ja) * 1998-08-31 2000-03-07 Hitachi Ltd 自動車のスロットル制御装置および燃料制御装置
JP4924905B2 (ja) * 2008-08-08 2012-04-25 株式会社デンソー 車両の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924905B1 (ja) * 1970-12-24 1974-06-26
US6185996B1 (en) * 1997-11-14 2001-02-13 Cummins Engine Company, Inc. System and method for diagnosing output power of an internal combustion engine
JP5949583B2 (ja) * 2013-01-29 2016-07-06 トヨタ自動車株式会社 異常検出装置
US9863334B2 (en) * 2013-11-13 2018-01-09 Honda Motor Co., Ltd. Drive control apparatus for prime mover
US10174700B2 (en) * 2014-02-04 2019-01-08 Hitachi Automotive Systems, Ltd. Onboard control device
JP6288431B2 (ja) * 2014-02-21 2018-03-07 三菱自動車工業株式会社 車両の出力制御装置
JP6614351B2 (ja) * 2016-07-13 2019-12-04 日産自動車株式会社 エンジンの制御方法および制御装置
JP6809408B2 (ja) * 2017-08-01 2021-01-06 株式会社デンソー トルク監視装置および内燃機関制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307274A (ja) * 1993-04-21 1994-11-01 Fujitsu Ten Ltd 異常監視装置
JPH1144246A (ja) * 1997-07-25 1999-02-16 Nissan Motor Co Ltd エンジンの異常診断装置
JP2000073835A (ja) * 1998-08-31 2000-03-07 Hitachi Ltd 自動車のスロットル制御装置および燃料制御装置
JP4924905B2 (ja) * 2008-08-08 2012-04-25 株式会社デンソー 車両の制御装置

Also Published As

Publication number Publication date
CN112955640A (zh) 2021-06-11
DE112019005136T5 (de) 2021-07-01
WO2020121807A1 (ja) 2020-06-18
US20220024456A1 (en) 2022-01-27
CN112955640B (zh) 2023-05-09
JP7185704B2 (ja) 2022-12-07
US11945446B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP6548759B2 (ja) 車載制御装置
JP6077656B2 (ja) 原動機の駆動制御装置及び方法
JP3915335B2 (ja) ハイブリッド車両の制御装置
US8744724B2 (en) Engine controlling apparatus
JP2007120334A (ja) 車両駆動システムの異常診断装置
JP2011094561A (ja) エンジンの制御装置
JP5985499B2 (ja) ノックセンサの故障診断装置及び故障診断方法
CN110469414B (zh) 混合动力车辆的控制系统
JP2007092723A (ja) 内燃機関の燃料噴射量制御装置
JP5305043B2 (ja) エンジンの燃焼状態検出装置
JP6423759B2 (ja) 車載制御装置
JP7185704B2 (ja) 制御装置
JP5615328B2 (ja) 車両駆動装置の制御装置
JP2009036036A (ja) 内燃機関の点火時期制御装置
JP4412177B2 (ja) 内燃機関の制御装置
JP5561218B2 (ja) エンジン制御装置
JP2018009512A (ja) 車載制御装置
JP2007056778A (ja) 点火プラグのくすぶり解消制御装置
JP4949491B2 (ja) 内燃機関の失火検出装置
JP5790594B2 (ja) 内燃機関のラフアイドル検出装置
JP5573745B2 (ja) エンジン制御装置
JP2008190500A (ja) 内燃機関の制御装置
JP2007231780A (ja) エンジンブレーキ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221125

R150 Certificate of patent or registration of utility model

Ref document number: 7185704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150