JPWO2020059056A1 - ステータ、電動機、圧縮機および空気調和装置 - Google Patents

ステータ、電動機、圧縮機および空気調和装置 Download PDF

Info

Publication number
JPWO2020059056A1
JPWO2020059056A1 JP2020547525A JP2020547525A JPWO2020059056A1 JP WO2020059056 A1 JPWO2020059056 A1 JP WO2020059056A1 JP 2020547525 A JP2020547525 A JP 2020547525A JP 2020547525 A JP2020547525 A JP 2020547525A JP WO2020059056 A1 JPWO2020059056 A1 JP WO2020059056A1
Authority
JP
Japan
Prior art keywords
recess
length
core
stator
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020547525A
Other languages
English (en)
Other versions
JP7026811B2 (ja
Inventor
隆徳 渡邉
隆徳 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020059056A1 publication Critical patent/JPWO2020059056A1/ja
Application granted granted Critical
Publication of JP7026811B2 publication Critical patent/JP7026811B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

ステータは、中心軸を中心とする周方向に複数のコア部を連結したステータコアを有する。複数のコア部は、いずれも、周方向に延在するヨーク部と、ヨーク部から中心軸を中心とする径方向の内側に延在するティースとを有する。ヨーク部は、径方向の両端に位置する外周および内周と、周方向の端部に位置する連結面と、外周に開口を有する凹部とを有する。ティースは、ヨーク部の内周との間にコーナー部を形成する側面を有する。凹部の開口の周方向の長さW0は、凹部の開口よりも径方向の内側での周方向の長さW1よりも短い。コーナー部から凹部までの最短距離T1と、連結面の長さT0とは、0.65≦T1/T0<1を満足する。

Description

本発明は、ステータ、電動機、圧縮機および空気調和装置に関する。
圧縮機に用いられる電動機では、ステータコアの外周が圧縮機の筐体の内側に固定されている。ステータコアの外周には、冷媒流路となる凹部が形成されている。凹部には、冷媒、冷凍機油あるいは空気が流れ、電動機を冷却する(例えば、特許文献1,2参照)。
特許第4483895号公報(図1参照) 特許第3586145号公報(図2参照)
電動機の冷却効率を向上するためには、凹部の断面積は大きい方が望ましいが、凹部の断面積を大きくすると、ステータコアと筐体との接触面積が減少し、両者の結合強度が低下して、振動および騒音が発生する。また、凹部の断面積を大きくすることで、ステータコア内の磁路が狭くなり、磁束の集中が発生して鉄損が増加し、モータ効率が低下する。
本発明は、上記の課題を解決するためになされたものであり、振動および騒音の発生を抑制し、モータ効率の低下を抑制しながら、電動機の冷却効率を向上することを目的とする。
本発明のステータは、中心軸を中心とする周方向に複数のコア部を連結したステータコアを有する。複数のコア部は、いずれも、周方向に延在するヨーク部と、ヨーク部から中心軸を中心とする径方向の内側に延在するティースとを有する。ヨーク部は、径方向の両端に位置する外周および内周と、周方向の端部に位置する連結面と、外周に開口を有する凹部とを有する。ティースは、ヨーク部の内周との間にコーナー部を形成する側面を有する。凹部の開口の周方向の長さW0は、凹部の開口よりも径方向の内側での周方向の長さW1よりも短い。コーナー部から凹部までの最短距離T1と、連結面の長さT0とは、0.65≦T1/T0<1を満足する。
この発明では、凹部の開口の長さW0が径方向内側での長さW1よりも短いため、ステータコアと筐体との接触面積を大きく保ちながら、凹部の断面積を大きくすることができる。そのため、振動および騒音の発生を抑制し、且つ電動機の冷却効率を向上することができる。また、コーナー部から凹部までの最短距離T1と、連結面の長さT0とが、0.65≦T1/T0<1を満足するため、ステータコアにおける磁束の集中を抑制し、鉄損を低減してモータ効率を向上することができる。
実施の形態1の電動機を示す断面図である。 実施の形態1のステータコアのコア部を示す断面図である。 コア部のコーナー部から凹部までの距離T1と連結面の長さT0との比T1/T0に対する鉄損の変化を示すグラフである。 コア部のコーナー部から凹部までの距離T1と連結面の長さT0との比T1/T0に対するモータ効率の変化を示すグラフである。 コア部のコーナー部から凹部までの距離T1と連結面の長さT0との比T1/T0に対するステータ温度の変化を示すグラフである。 実施の形態1のコア部における鉄損密度の分布(A)を、第1の比較例(B)および第2の比較例(C)と比較して示す図である。 実施の形態1の第1の変形例のステータコアのコア部を示す断面図である。 実施の形態1の第2の変形例のステータコアのコア部を示す断面図である。 実施の形態2の電動機を示す断面図である。 実施の形態2のステータコアのコア部を示す断面図である。 実施の形態2のコア部を示す斜視図(A)、コア部にインシュレータを取り付けた状態を示す斜視図(B)、およびコア部にインシュレータと絶縁フィルムを取り付けた状態を示す斜視図(C)である。 実施の形態3の電動機を示す断面図である。 実施の形態3のステータコアのコア部を示す断面図である。 各実施の形態の電動機が適用可能なロータリ圧縮機を示す断面図である。 図14のロータリ圧縮機を備えた空気調和装置を示す図である。
実施の形態1.
<電動機の構成>
実施の形態1の電動機100について説明する。図1は、実施の形態1の電動機100を示す断面図である。電動機100は、ロータ5に永久磁石55が埋め込まれた永久磁石埋込型電動機であり、例えばロータリ圧縮機300(図14)に用いられる。
電動機100は、インナーロータ型と呼ばれる電動機であり、ステータ1と、ステータ1の内側に回転可能に設けられたロータ5とを有する。ステータ1とロータ5との間には、例えば0.3〜1.0mmのエアギャップが形成されている。
以下では、ロータ5の回転軸である中心軸Axの方向を、「軸方向」と称する。また。中心軸Axを中心とする周方向(図1に矢印Mで示す)を、「周方向」と称する。また、中心軸Axを中心とする半径方向を、「径方向」と称する。なお、図1は、中心軸Axに直交する面における断面図である。
<ロータの構成>
ロータ5は、円筒状のロータコア50と、ロータコア50に取り付けられた永久磁石55と、ロータコア50の中心に固定されたシャフト57とを有する。シャフト57は、例えば、圧縮機300(図14)のシャフトである。
ロータコア50は、積層鋼板を軸方向に積層し、カシメ部等で一体化したものである。積層鋼板は、例えば電磁鋼板であり、板厚は、例えば0.1〜0.7mmである。
ロータコア50の外周に沿って、永久磁石55が挿入される複数の磁石挿入孔51が形成されている。磁石挿入孔51は、ロータコア50を軸方向に貫通する貫通孔である。各磁石挿入孔51は1磁極に相当し、磁石挿入孔51の数は極数に相当する。磁石挿入孔51の数は、ここでは6であり、従って磁極数は6である。但し、磁石挿入孔51の数は6に限定されるものではなく、2以上であればよい。
磁石挿入孔51は、ロータコア50の外周に沿って直線状に形成されている。1つの磁石挿入孔51には、永久磁石55が1つずつ配置されている。なお、磁石挿入孔51は、例えば径方向内側に突出するV字状に形成してもよく、1つの磁石挿入孔51に2つ以上の永久磁石55を配置してもよい。
永久磁石55は、平板状の部材であり、ロータコア50の周方向に幅を有し、径方向に厚さを有する。永久磁石55の厚さは、例えば2mmである。永久磁石55は、例えば、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を主成分とする希土類磁石で構成されている。永久磁石55は、厚さ方向に着磁されている。
磁石挿入孔51の周方向両端部には、フラックスバリア(漏れ磁束抑制穴)52が形成されている。フラックスバリア52は、隣り合う磁極間の漏れ磁束を抑制するものである。フラックスバリア52とロータコア50の外周との間のコア部分は、隣り合う磁極間の磁束の短絡を抑制するため、薄肉部となっている。薄肉部の厚さは、ロータコア50の積層鋼板の厚さと同じであることが望ましい。
ロータコア50の径方向中心には、上述したシャフト57が固定される中心孔56が形成されている。また、中心孔56よりも外周側には、圧縮機300の冷媒を通過させる貫通穴53,54が形成されている。ここでは、内径の小さい貫通穴53と、内径の大きい貫通穴54とが、周方向に交互に配置されている。なお、貫通穴の配置および形状は、任意である。
<ステータの構成>
ステータ1は、ステータコア2と、ステータコア2に巻き付けられたコイル3とを有する。ステータコア2は、積層鋼板を軸方向に積層し、カシメ部16により一体化したものである。積層鋼板は、例えば電磁鋼板であり、板厚は、例えば0.1〜0.7mmである。ステータコア2は、圧縮機300(図14)の筐体4の内側に嵌合する。
ステータコア2は、中心軸Axを中心とする環状のヨーク10と、ヨーク10から径方向内側(すなわち中心軸Axに向かう方向)に延在する複数のティース12とを有する。ここでは、9つのティース12が周方向に一定間隔で配置されているが、ティース12の数は2以上であればよい。周方向に隣り合うティース12の間には、コイル3を収容する空間であるスロット13が形成される。
また、ステータコア2は、ティース12毎に複数のコア部9が周方向に連結された構成を有する。ここでは、ティース12と同数の9つのコア部9が周方向に連結されている。コア部9は、連結コアまたは分割コアとも称される。これらのコア部9は、連結面18において、溶接により互いに連結されている。
コイル3は、例えば、マグネットワイヤを、後述するインシュレータ20および絶縁フィルム25(図11(C))を介してティース12に巻き付けたものである。コイル3の線径は、例えば1.0mmである。コイル3は、各ティース12に、集中巻により例えば80ターン巻かれている。
ステータ1の組立時には、個々のコア部9にインシュレータ20および絶縁フィルム25(図11(C))を組み付け、その状態でコア部9のティース12にコイル3を巻き付ける。その後、複数のコア部9を環状に組み合わせ、連結面18で溶接して一体化し、ステータコア2を得る。
図2は、ステータコア2のコア部9を示す断面図である。図2には、筐体4の一部も併せて示す。図1に示した環状のヨーク10のうち、コア部9毎に分割された円弧状の部分を、ヨーク部11と称する。
ヨーク部11は、径方向の両端に位置する内周11aおよび外周11bと、周方向の両端に位置する連結面18とを有する。内周11aは、ティース12の周方向中心を通る径方向の直線Lに直交する平面である。外周11bは、中心軸Ax(図1)を中心とする円筒面である。連結面18は、内周11aと外周11bとの間で径方向に延在している。
ティース12は、ヨーク部11の周方向の中央部から径方向内側に延在している。ティース12は、その径方向内側の端部に、ロータ5(図1)の外周に対向する歯先部12bを有する。ティース12の周方向の幅Wtは、歯先部12bを除き、径方向に亘って一定であり、歯先部12bの幅は幅Wtよりも広い。ティース12は、周方向端部である側面12aを有する。側面12aは、スロット13に面している。
中心軸Axに直交する面内において、ヨーク部11の内周11aと、ティース12の側面12aとは、互いに直角をなしている。ヨーク部11の内周11aとティース12の側面12aとの間には、コーナー部Cが形成される。
上記の通り、ティース12へのコイル3の巻き付けは、コア部9が環状に組み立てられる前に行われるため、コーナー部Cを直角に近付けても、コイル3を高密度に巻き付けることができる。なお、コーナー部Cは、必ずしも直角である必要はなく、必要に応じて曲面部を設けてもよい。
ヨーク部11は、外周11bに開口15aを有する凹部15を有する。凹部15は、開口15aの周方向両端から径方向内側に延在する2つの端縁15bと、各端縁15bの終端P2からさらに径方向内側に延在する2つの端縁15cとを有する。
2つの端縁15bは、径方向内側ほど両者の周方向間隔が広がるように延在している。また、2つの端縁15cは、径方向内側ほど両者の周方向間隔が狭まるようにV字状に延在し、点P1で交わっている。2つの端縁15bおよび2つの端縁15cは、いずれも、ティース12の周方向中心を通る径方向の直線Lに対して対称に延在している。また、点P1は、直線L上に位置している。
凹部15の開口15aは、周方向の長さW0を有する。この長さW0は、開口長さと称する。また、凹部15は、開口15aよりも径方向内側において、周方向の長さW1を有する。この長さW1は、2つの端縁15bの終端P2の周方向の距離である。また、長さW1は、凹部15の最大の周方向長さである。
凹部15は、開口長さW0(すなわち外周11bにおける周方向長さ)よりも、径方向内側での長さW1が長くなる形状を有する。これにより、ヨーク部11の外周11bと筐体4との接触面積を大きく保ちながら、凹部15の断面積を大きくすることが可能になる。すなわち、コア部9と筐体4との結合強度を高め、なお且つ、凹部15内を流れる冷媒とコア部9との接触面積を増加させて冷却効率を向上することができる。
凹部15の径方向の長さD1は、凹部15の開口15aから凹部15の径方向内側の端部(すなわち点P1)までの距離で定義される。凹部15の径方向の長さD1は、凹部15の開口長さW0よりも長い。このように凹部15の径方向の長さDを長くすることにより、凹部15の断面積をさらに大きくし、凹部15内を流れる冷媒とコア部9との接触面積をさらに増加させることができる。
凹部15の周方向両側には、カシメ部16が形成されている。カシメ部16は、コア部9を構成する電磁鋼板の積層体を一体的に固定するものである。ここでは、凹部15の周方向両側にカシメ部16が形成されているが、周方向の一方の側にのみ形成されていてもよい。
上述したコーナー部Cから凹部15までの最短距離は、T1で表される。ここでは、最短距離T1は、コーナー部Cから凹部15の端縁15c上の1点までの距離である。
次に、コア部9内の磁路について説明する。ロータ5の永久磁石55(図1)から出た磁束は、歯先部12bからティース12に流入し、ティース12内を径方向外側に向かって流れる。そして、ティース12からヨーク部11に磁束が流入し、ヨーク部11内を周方向両側に流れる。
ヨーク部11の磁路は、凹部15の周囲を除くと、連結面18で最も狭くなる。そのため、連結面18の長さT0を、ヨーク部11における最小磁路幅と考えることができる。
なお、ヨーク部11にはカシメ部16が形成されているが、磁束はカシメ部16の径方向外側の領域と径方向内側の領域とを流れ、これらの領域の幅B1,B2の合計は、連結面18の長さT0よりも長くなる。そのため、上記の通り、連結面18の長さT0を、ヨーク部11(凹部15の周囲を除く)における最小磁路幅と考えることができる。
また、コーナー部Cと凹部15との間の領域は、コア部9(すなわちヨーク部11およびティース12)において最も幅の狭い磁路となる。すなわち、コーナー部Cから凹部15までの最短距離T1は、コア部9における最小磁路幅に相当する。
連結面18の長さT0(すなわちヨーク部11における最小磁路幅)に対して、コーナー部Cから凹部15までの最短距離T1が短すぎると、コーナー部Cと凹部15との間の領域で磁束が集中し、その結果、鉄損が増加し、モータ効率の低下を招く。
そこで、この実施の形態1では、磁束の集中を抑えて鉄損の増加を抑制できるように、連結面18の長さT0に対する、コーナー部Cから凹部15までの最短距離T1の比(T1/T0)を設定する。
図3は、T1/T0を変化させた場合の鉄損の変化を示すグラフである。横軸はT1/T0を示し、縦軸は鉄損を示す。なお、鉄損は、T1/T0が1の場合の鉄損を基準値とし、この基準値に対する変化率(%)で表している。
図3に示すように、T1/T0の増加と共に、鉄損は低下する。例えば、T1/T0が0.45のときの鉄損は基準値の+200%であるが、T1/T0が0.65のときの鉄損は基準値の+10%まで低下する。そして、T1/T0が0.5を超えると鉄損の変化が緩やかになり、T1/T0が1以上になると鉄損は一定になる。
図4は、T1/T0を変化させた場合のモータ効率の変化を示すグラフである。横軸はT1/T0を示し、縦軸はモータ効率を示す。なお、モータ効率は、T1/T0が1の場合のモータ効率を基準値とし、この基準値に対する変化率(%)で表している。
図4に示すように、T1/T0の増加と共に、モータ効率は上昇する。例えば、T1/T0が0.45のときのモータ効率は基準値の−5.0%であるが、T1/T0が0.65のときのモータ効率は基準値の−0.3%まで上昇する。そして、T1/T0が0.5を超えるとモータ効率の変化が緩やかになり、T1/T0が1以上になるとモータ効率は一定になる。
図3および図4に示した結果から、T1/T0が0.65以上であれば、鉄損が低下し、モータ効率が上昇することが分かる。また、T1/T0が1以上になると、それ以上の鉄損の低下およびモータ効率の上昇は見られないことが分かる。
図5は、T1/T0を変化させた場合のステータ温度の変化を示すグラフである。横軸はT1/T0を示し、縦軸はステータ温度を示す。なお、ステータ温度は、コイル3に規定電流を流した場合のステータ1の温度であり、T1/T0が1の場合のステータ温度を基準値とし、この基準値に対する変化率(%)で表している。
図5に示すように、T1/T0の増加と共に、ステータ温度は直線的に上昇する。例えば、T1/T0が0.65のときのモータ効率は基準値の−5.5%であり、T1/T0が1.0のときのモータ効率は基準値±0%であり、T1/T0が1.2のときのモータ効率は基準値の+3.0%である。
これは、T1/T0が大きくなるほど、凹部15の断面積が小さくなり、凹部15内の冷媒とコア部9との接触面積が減少し、冷却効率が低下することによる。冷却効率が低下すると、電動機100の温度が上昇し、永久磁石55の減磁が生じる可能性がある。
そのため、図3〜5に矢印Eで示すように、鉄損の低減効果およびモータ効率の向上効果が最も顕著に表れ、なお且つT1/T0をできるだけ小さくすることができる、0.65≦T1/T0<1.0の範囲が望ましいことが分かる。
複数のコア部9を環状に連結するステータコア2の場合、コイル3の巻き付けは、複数のコア部9をステータコア2に組み立てる前に行われる。この場合、一体構造のステータコアと比較してコイル3の巻き付けが容易であるため、ヨーク部11の内周11aとティース12の側面12aとの間のコーナー部Cを直角に近付ける場合が多く、コーナー部Cと凹部15との距離が短くなりやすい。そのため、凹部15の断面積を大きくすると、コーナー部Cと凹部15との間で磁束が集中しやすい。
この実施の形態1では、凹部15の開口長さW0を径方向内側での長さW1よりも短くし、コーナー部Cから凹部15までの最短距離T1と連結面18の長さT0とが0.65≦T1/T0<1を満足するように構成している。この構成は、複数のコア部9を連結したステータコア2において、特に効果が大きい。
図2に戻り、ティース12からヨーク部11に流入した磁束は、ヨーク部11で周方向の両側に分かれて流れる。ティース12からヨーク部11に流入する磁束をできるだけ遮らないようにするためには、凹部15の最大幅である幅W1が、ティース12の幅Wtよりも短いことが望ましい。すなわち、W1<Wtを満足することが望ましい。
また、凹部15の断面積を大きくするためには、コーナー部Cから凹部15までの最短距離T1が、ティース12の幅Wtの1/2より短いことが望ましい。すなわち、T1<Wt×1/2を満足することが望ましい。
また、凹部15の2つの端縁15cを含む部分は、コーナー部Cからの距離が最短距離T1となる位置から、径方向内側にV字状に突出している。そのため、コーナー部Cからの凹部15までの最短距離T1をできるだけ短くせずに、凹部15の断面積を大きくすることができる。
図6(A)〜(C)は、コア部9における鉄損密度の解析結果を示す図である。図6(A)は、0.65≦T1/T0<1を満足する実施の形態1のコア部9における鉄損密度分布を示す図である。図6(B)は、T1/T0>1を満足する第1の比較例のコア部における鉄損密度分布を示す図である。図6(C)は、T1/T0<0.65を満足する第2の比較例のコア部における鉄損密度分布を示す図である。図6(A)〜(C)では、鉄損密度の高低を、ドットの粗密で示している。
図6(B)に示すように、T1/T0が1よりも大きい第1の比較例では、ティース12の歯先部12b以外では鉄損密度の増加が見られない。これは、凹部15が小さいため、ティース12の歯先部12b以外に、磁路の狭い箇所がないことによるものである。但し、この第1の比較例では、凹部15の断面積が小さいため、十分な冷却効率を得ることはできない。
一方、図6(C)に示すように、T1/T0が0.65よりも小さい第2の比較例では、コーナー部Cと凹部15との間の領域を中心として、鉄損密度の高い部分が見られる。これは、コーナー部Cと凹部15との間の磁路が狭くなり、磁束が集中したことによるものである。この第2の比較例では、凹部15の断面積が大きいため十分な冷却効率が得られるが、鉄損の増加によりモータ効率が低下する。
これに対し、図6(A)に示すように、0.65≦T1/T0<1.0を満足する実施の形態1のコア部9では、コーナー部Cの周囲に僅かに鉄損密度の高い部分が見られるが、図6(C)と比較して、鉄損密度の高い部分が少ないことが分かる。これは、コーナー部Cと凹部15との間の磁路を狭くし過ぎないことにより、磁束の集中が抑えられたことによるものである。すなわち、この実施の形態1では、凹部15の断面積を大きくして冷却効率を向上し、なお且つ、鉄損の増加を抑えてモータ効率を向上することができる。
<実施の形態の効果>
以上説明したように、実施の形態1では、ステータコア2を構成するコア部9のヨーク部11が、その外周11bに開口する凹部15を有する。凹部15の開口長さW0は、より径方向内側での長さW1よりも短く、コーナー部Cから凹部15までの最短距離T1と、連結面18の長さT0とが、0.65≦T1/T0<1を満足する。そのため、凹部15の断面積を大きくして冷却効率を向上すると共に、ステータコア2と筐体4との接触面積を大きくして両者の結合強度を高め、振動および騒音を低減することができる。また、磁束の集中を抑制して鉄損を低減し、モータ効率を向上することができる。
また、凹部15の径方向の長さD1が開口長さW0よりも長いため、ステータコア2と筐体4との接触面積をより大きくし、且つ、凹部15の断面積を大きくして冷却効率を向上することができる。
また、凹部15の開口15aよりも径方向内側での長さW1が、ティース12の周方向の幅Wtよりも短いため、ティース12からヨーク部11に流入する磁束をできるだけ遮らないようにすることができる。これにより、磁束の集中を抑制して鉄損を低減し、モータ効率を向上することができる。
また、凹部15は、コーナー部Cからの距離が最短距離T1となる位置から径方向内側に突出する突出形状部(すなわち2つの端縁15cを有するV字状の部分)を有するため、コーナー部Cからの凹部15までの最短距離T1をできるだけ短くせずに、凹部15の断面積を大きくすることができる。
また、永久磁石55が希土類磁石で構成されているため、ティース12に流入する磁束量が増加し、ティース12およびヨーク部11の磁路幅の減少を抑えたことの効果が顕著に表れる。また、希土類磁石は高温で減磁しやすいため、凹部15の断面積を大きくしたことによる冷却効率の向上により、減磁の抑制効果が顕著に表れる。
第1の変形例.
図7は、実施の形態1の第1の変形例のコア部9を示す断面図である。第1の変形例のコア部9は、凹部15の形状において、実施の形態1のコア部9と異なる。すなわち、実施の形態1の凹部15は、コーナー部Cからの距離が最短距離T1となる位置から径方向内側に突出する突出形状部(すなわち2つの端縁15cを含む部分)を有していたが、第1の変形例の凹部15は、径方向内側の端縁15cが直線状に延在している。
具体的には、第1の変形例の凹部15は、開口15aと、開口15aの周方向両端から径方向内側に延在する2つの端縁15bと、2つの端縁15bの終端P2を直線状に結ぶ端縁15cとを有する。
この第1の変形例では、コーナー部Cから凹部15の直線状の端縁15cまでの距離が、コーナー部Cから凹部15までの最短距離T1となり、0.65≦T1/T0<1を満足する。その他の構成は、実施の形態1と同様である。
第2の変形例.
図8は、実施の形態1の第2の変形例のコア部9を示す断面図である。第2の変形例のコア部9は、凹部15の形状において、実施の形態1のコア部9と異なる。すなわち、実施の形態1の凹部15は、コーナー部Cからの距離が最短距離T1となる位置から径方向内側に突出する突出形状部(すなわち2つの端縁15cを含む部分)を有していたが、第2の変形例の凹部15は、突出形状部がさらに湾曲形状を有する。
具体的には、第1の変形例の凹部15は、開口15aと、開口15aの周方向両端から径方向内側に延在する2つの端縁15bと、2つの端縁15bの終端P2を直線状に結ぶ端縁15cと、端縁15cから径方向内側に円弧状に延在する端縁15dとを有する。
この第2の変形例では、コーナー部Cから凹部15の湾曲した端縁15dまでの距離が、コーナー部Cから凹部15までの最短距離T1となり、0.65≦T1/T0<1を満足する。その他の構成は、実施の形態1と同様である。
実施の形態2.
次に、実施の形態2について説明する。図9は、実施の形態2の電動機100Aを示す断面図である。実施の形態2の電動機100Aは、ステータコア2の凹部15に隣接して穴部17が形成されている点で、実施の形態1の電動機100と異なる。
図10は、ステータコア2を構成するコア部9Aを示す断面図である。コア部9Aのヨーク部11は、外周11bに開口する凹部15と、凹部15の径方向内側に隣接して形成された穴部17とを有する。
凹部15は、実施の形態1の第1の変形例(図7)で説明したように、開口15aと、開口15aの周方向両端から径方向内側に延在する2つの端縁15bと、2つの端縁15bの終端をつなぐ直線状の端縁15cとを有する。凹部15の開口長さW0は、より径方向内側での長さW1よりも短い。
穴部17は、径方向外側に位置する外側端縁17aと、径方向内側に位置する内側端縁17bと、周方向両側に位置する側端縁17cとを有する。外側端縁17aは、凹部15の端縁15cに対向している。外側端縁17aと内側端縁17bは、いずれも湾曲形状を有するが、これに限定されるものではない。
穴部17の周方向の幅Wsは、凹部15の開口長さW0よりも短い。なお、幅Wsは、穴部17の2つの端縁15cの周方向の距離である。また、ヨーク部11の外周11bから穴部17の径方向内側の端部までの距離D2は、開口長さW0よりも長い。
穴部17は、コア部9Aに取り付けられるインシュレータ20を固定するために用いられる。ここで、インシュレータ20について説明する。
図11(A)〜(C)は、コア部9Aへのインシュレータ20の取り付けを示す斜視図である。図11(A)は、コア部9Aを示す斜視図であり、図11(B)は、コア部9Aにインシュレータ20を取り付けた状態を示す斜視図である。図11(C)は、コア部9Aにインシュレータ20と絶縁フィルム25とを取り付けた状態を示す斜視図である。
図11(A)に示すように、コア部9Aの軸方向両端には、段差部101が形成されている。段差部101は、例えば、ティース12の側面12aおよびヨーク部11の内周11aに沿って形成されている。
図11(B)に示すように、コア部9Aの軸方向両端には、インシュレータ20が取り付けられる。インシュレータ20は、ヨーク部11に取り付けられる壁部21と、ティース12の主部に取り付けられる胴部22と、ティース12の歯先部12bに取り付けられるフランジ部23とを有する。壁部21とフランジ部23とは、胴部22を挟んで径方向に互いに対向している。
壁部21には、コア部9Aの穴部17に嵌合する突起24が形成されている。突起24が穴部17に嵌合することにより、インシュレータ20がコア部9Aに対して位置決めされる。胴部22は、コイル3が巻き付けられる部分である。
図11(C)に示すように、ティース12の側面12aおよびヨーク部11の内周11aを覆うように、絶縁フィルム25が取り付けられる。この状態で、インシュレータ20の胴部22に、コイル3が巻き付けられる。インシュレータ20および絶縁フィルム25は、コア部9Aとコイル3とを絶縁する。壁部21およびフランジ部23は、コイル3を径方向両側からガイドする。
このようにしてコイル3を巻き付けた複数のコア部9Aを環状に組み合わせ、連結面18で溶接することにより、図9に示したステータ1Aが得られる。
図10に戻り、この実施の形態2では、コーナー部Cから穴部17までの最短距離T2は、コーナー部Cから凹部15までの最短距離T1よりも短い。すなわちT1>T2が成立する。従って、コーナー部Cと穴部17との間の領域は、コア部9Aにおいて最も狭い磁路となる。
そのため、実施の形態2では、コーナー部Cから穴部17までの最短距離T2と、ヨーク部11の連結面18の長さT0とは、0.65≦T2/T0<1を満足する。0.65≦T2/T0を満足することにより、実施の形態1で説明したように、磁束の集中を抑制して、鉄損を低減することができる。また、T2/T0<1を満足することにより、穴部17の断面積を大きくし、コア部9Aにインシュレータ20を確実に位置決めすることができる。
また、コーナー部Cと凹部15との間の領域は、コア部9Aにおいて2番目に狭い磁路となるため、コーナー部Cから凹部15までの最短距離T1と、ヨーク部11の連結面18の長さT0とは、0.65≦T1/T0<1を満足することが望ましい。
また、ヨーク部11の外周11bから穴部17の径方向内側の端部までの距離D2は、凹部15の開口長さW0よりも長いことが望ましい。これにより、コア部9Aと筐体4との接触面積を大きくして両者の結合強度を高め、なお且つ、凹部15および穴部17の断面積を大きくすることができる。
また、凹部15の開口15aよりも径方向内側での長さW1は、ティース12の周方向の幅Wtよりも短いことが望ましい。これにより、実施の形態1でも説明したように、ティース12からヨーク部11に流入する磁束をできるだけ遮らないようにすることができ、磁束の集中を抑制して鉄損を低減することができる。
また、凹部15および穴部17の断面積を大きくするためには、コーナー部Cから穴部17までの最短距離T2が、ティース12の幅Wtの1/2より短いことが望ましい。すなわち、T2<Wt×1/2を満足することが望ましい。
実施の形態2の電動機100Aの他の構成は、実施の形態1の電動機100と同様である。また、実施の形態2の電動機100Aは、例えば、圧縮機300(図14)に用いられる。
なお、図9〜11に示した例では、凹部15が、実施の形態1の第1の変形例(図7)で説明した形状を有しているが、実施の形態1(図2)で説明した形状を有していてもよく、また、第2の変形例(図8)で説明した形状を有していてもよい。
以上説明したように、実施の形態2では、ステータコア2を構成するコア部9Aのヨーク部11が、その外周11bに開口する凹部15を有し、凹部15の径方向内側に穴部17を有する。凹部15の開口長さW0は、凹部15の開口15aよりも径方向内側での長さW1よりも短い。また、コーナー部Cから穴部17までの最短距離T2と、連結面18の長さT0とが、0.65≦T2/T0<1を満足する。そのため、凹部15の断面積を大きくして冷却効率を向上し、穴部17の断面積を大きくしてインシュレータ20の位置ずれを防止すると共に、コア部9Aと筐体4との接触面積を確保し、振動および騒音を低減することができる。また、磁束の集中を抑制して鉄損を低減し、モータ効率を向上することができる。
実施の形態3.
次に、実施の形態3について説明する。図12は、実施の形態3の電動機100Bを示す断面図である。実施の形態3の電動機100Bは、ステータコア2の外周に窪み部19が形成されている点で、実施の形態1の電動機100と異なる。
図13は、ステータコア2を構成するコア部9Bを示す断面図である。コア部9Bのヨーク部11は、その外周11bと連結面18との角部に、窪み部19を有する。そのため、ヨーク部11の磁路の幅を規定する連結面18の長さT0は、実施の形態1よりも短くなる。
窪み部19は、複数のコア部9Bの連結面18を溶接によって接合する際に、溶融した金属を収容するために設けられる。窪み部19に溶融した金属が収容されることにより、ヨーク部11の外周11bよりも外側に金属がはみ出すことが防止され、外周11bの真円度の低下を抑制することができる。これにより、ステータコア2と筐体4との結合強度を高めることができる。
実施の形態3の電動機100Bの他の構成は、実施の形態1の電動機100と同様である。また、実施の形態3の電動機100Bは、例えば、圧縮機300(図14)に用いられる。
なお、図12〜13に示した例では、凹部15は、実施の形態1(図2)で説明した形状を有していたが、第1の変形例(図7)または第2の変形例(図8)で説明した形状を有していてもよい。また、実施の形態2で説明したように、凹部15の径方向内側に穴部17(図10)を形成してもよい。
以上説明したように、実施の形態3では、ステータコア2を構成するコア部9Bの外周11bと連結面18の交わる部分に、窪み部19を有する。そのため、実施の形態1で説明した効果に加えて、溶融時にヨーク部11の外周11bの外側に金属がはみ出すことを防止することができ、外周11bの真円度の低下を抑制することができる。これにより、ステータコア2と筐体4との結合強度を高めることができる。
<ロータリ圧縮機>
次に、上述した実施の形態1〜3の電動機100(100A,100B)が適用可能なロータリ圧縮機300について説明する。図14は、ロータリ圧縮機300の構成を示す縦断面図である。ロータリ圧縮機300は、例えば空気調和装置に用いられるものであり、密閉容器307と、密閉容器307内に配設された圧縮機構301と、圧縮機構301を駆動する電動機100とを備えている。図1に示した筐体4は、密閉容器307の一部である。
圧縮機構301は、シリンダ室303を有するシリンダ302と、電動機100のシャフト57と、シャフト57に固定されたローリングピストン304と、シリンダ室303内を吸入側と圧縮側に分けるベーン(図示せず)と、シャフト57が挿入されてシリンダ室303の軸方向端面を閉鎖する上部フレーム305および下部フレーム306とを有する。上部フレーム305および下部フレーム306には、上部吐出マフラ308および下部吐出マフラ309がそれぞれ装着されている。
密閉容器307は、円筒状の容器である。密閉容器307の底部には、圧縮機構301の各摺動部を潤滑する冷凍機油(図示せず)が貯留されている。シャフト57は、軸受部としての上部フレーム305および下部フレーム306によって回転可能に保持されている。
シリンダ302は、内部にシリンダ室303を備えており、ローリングピストン304は、シリンダ室303内で偏心回転する。シャフト57は偏心軸部を有し、その偏心軸部にローリングピストン304が嵌合している。
電動機100のステータ1は、焼き嵌め、圧入または溶接等の方法により、密閉容器307の筐体4の内側に組み込まれている。ステータ1のコイル3には、密閉容器307に固定されたガラス端子311から電力が供給される。シャフト57は、ロータ5のロータコア50(図2)の中央に形成された中心孔に固定されている。
密閉容器307の外部には、冷媒ガスを貯蔵するアキュムレータ310が取り付けられている。密閉容器307には吸入パイプ313が固定され、この吸入パイプ313を介してアキュムレータ310からシリンダ302に冷媒ガスが供給される。また、密閉容器307の上部には、冷媒を外部に吐出する吐出パイプ312が設けられている。
アキュムレータ310から供給された冷媒ガスは、吸入パイプ313を通ってシリンダ302のシリンダ室303内に供給される。インバータの通電によって電動機100が駆動されてロータ5が回転すると、ロータ5と共にシャフト57が回転する。そして、シャフト57に嵌合するローリングピストン304がシリンダ室303内で偏心回転し、シリンダ室303内で冷媒が圧縮される。シリンダ室303で圧縮された冷媒は、吐出マフラ308,309を通り、さらにロータ5の貫通穴53,54およびステータ1の凹部15(図2)を通って密閉容器307内を上昇する。密閉容器307内を上昇した冷媒は、吐出パイプ312から吐出され、冷凍サイクルの高圧側に供給される。
上述した実施の形態1〜3の電動機100(100A,100B)は、永久磁石55の減磁の抑制により、高いモータ効率を有しており、また、ステータコア2と筐体4との結合強度の向上により、振動および騒音を抑制している。そのため、この電動機100をロータリ圧縮機300に適用することにより、ロータリ圧縮機300の運転効率を向上し、静音性を向上することができる。
なお、実施の形態1〜3の電動機100(100A,100B)は、ロータリ圧縮機300に限らず、他の種類の圧縮機にも利用することができる。
<空気調和装置>
次に、上述したロータリ圧縮機300を備えた空気調和装置400(冷凍サイクル装置)について説明する。図15は、空気調和装置400の構成を示す図である。空気調和装置400は、圧縮機401と、凝縮器402と、絞り装置(減圧装置)403と、蒸発器404とを備える。圧縮機401、凝縮器402、絞り装置403および蒸発器404は、冷媒配管407によって連結され、冷凍サイクルを構成している。すなわち、圧縮機401、凝縮器402、絞り装置403および蒸発器404の順に、冷媒が循環する。
圧縮機401、凝縮器402および絞り装置403は、室外機410に設けられている。圧縮機401は、図14に示したロータリ圧縮機300で構成されている。室外機410には、凝縮器402に室外の空気を供給する送風機405が設けられている。蒸発器404は、室内機420に設けられている。この室内機420には、蒸発器404に室内の空気を供給する送風機406が設けられている。
空気調和装置400の動作は、次の通りである。圧縮機401は、吸入した冷媒を圧縮して送り出す。凝縮器402は、圧縮機401から流入した冷媒と室外の空気との熱交換を行い、冷媒を凝縮して液化させて冷媒配管407に送り出す。送風機405は、凝縮器402に室外の空気を供給する。絞り装置403は、開度を変化させることによって、冷媒配管407を流れる冷媒の圧力等を調整する。
蒸発器404は、絞り装置403により低圧状態にされた冷媒と室内の空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発(気化)させて、冷媒配管407に送り出す。送風機406は、蒸発器404に室内の空気を供給する。これにより、蒸発器404で熱が奪われた冷風が、室内に供給される。
空気調和装置400の圧縮機300は、上述した実施の形態1〜3の電動機100(100A,100B)が適用可能であり、これにより高い運転効率と静音性を有している。そのため、空気調和装置400のエネルギー効率を向上し、静音性を向上することができる。
以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。
1 ステータ、 2 インシュレータ、 3 コイル、 4 筐体、 5 ロータ、 9,9A,9B コア部、 10 ステータコア、 11 ヨーク、 11a 内周、 11b 外周、 12 ティース、 12a 側面、 12b 歯先部、 13 スロット、 15 凹部、 15a 開口、 15b,15c,15d 縁部、 16 カシメ部、 17 穴部、 17a 外側端縁、 17b 内側端縁、 17c 側縁部、 18 連結面、 19 窪み部、 24 突起、 50 ロータコア、 51 磁石挿入孔、 55 永久磁石、 57 シャフト、 100,100A,100B 電動機、 110 ヨーク部、 300 ロータリ圧縮機(圧縮機)、 301 フレーム、 310 圧縮機構、 400 空気調和装置、 401 圧縮機、 402 凝縮器、 403 絞り装置、 404 蒸発器、 410 室外機、 420 室内機。
図3に示すように、T1/T0の増加と共に、鉄損は低下する。例えば、T1/T0が0.45のときの鉄損は基準値の+200%であるが、T1/T0が0.65のときの鉄損は基準値の+10%まで低下する。そして、T1/T0が0.5を超えると鉄損の変化が緩やかになり、T1/T0が1以上になると鉄損は一定になる。
図4に示すように、T1/T0の増加と共に、モータ効率は上昇する。例えば、T1/T0が0.45のときのモータ効率は基準値の−5.0%であるが、T1/T0が0.65のときのモータ効率は基準値の−0.3%まで上昇する。そして、T1/T0が0.5を超えるとモータ効率の変化が緩やかになり、T1/T0が1以上になるとモータ効率は一定になる。
穴部17の周方向の幅Wsは、凹部15の開口長さW0よりも短い。なお、幅Wsは、穴部17の2つの端縁1cの周方向の距離である。また、ヨーク部11の外周11bから穴部17の径方向内側の端部までの距離D2は、開口長さW0よりも長い。

Claims (17)

  1. 中心軸を中心とする周方向に複数のコア部を連結したステータコアを有し、
    前記複数のコア部は、いずれも、前記周方向に延在するヨーク部と、前記ヨーク部から前記中心軸を中心とする径方向の内側に延在するティースとを有し、
    前記ヨーク部は、前記径方向の両端に位置する外周および内周と、前記周方向の端部に位置する連結面と、前記外周に開口を有する凹部とを有し、
    前記ティースは、前記ヨーク部の前記内周との間にコーナー部を形成する側面を有し、
    前記凹部の前記開口の前記周方向の長さW0は、前記凹部の前記開口よりも前記径方向の内側での前記周方向の長さW1よりも短く、
    前記コーナー部から前記凹部までの最短距離T1と、前記連結面の長さT0とが、
    0.65≦T1/T0<1
    を満足するステータ。
  2. 前記凹部は、前記径方向の長さD1を有し、
    前記長さD1は、前記長さW0よりも長い
    請求項1に記載のステータ。
  3. 前記長さW1は、前記ティースの前記周方向の幅Wtよりも短い
    請求項1または2に記載のステータ。
  4. 前記最短距離T1は、前記ティースの前記周方向の幅Wtの1/2よりも短い
    請求項1から3までの何れか1項に記載のステータ。
  5. 前記凹部は、前記コーナー部からの距離が前記最短距離T1となる位置よりも、前記径方向の内側に突出する突出形状部を有する
    請求項1から4までの何れか1項に記載のステータ。
  6. 前記突出形状部は、湾曲形状を有する
    請求項5に記載のステータ。
  7. 前記凹部は、前記径方向の内側ほど前記周方向の長さが長くなる形状を有する
    請求項1から4までの何れか1項に記載のステータ。
  8. 前記ヨーク部は、前記外周と前記連結面とが交わる部分に、窪み部を有する
    請求項1から7までの何れか1項に記載のステータ。
  9. 前記ヨーク部は、前記凹部に対して前記径方向の内側に穴部を有し、
    前記コーナー部から前記穴部までの最短距離T2と、前記連結面の長さT0とが、
    0.65≦T2/T0<1
    を満足する請求項1から8までの何れか1項に記載のステータ。
  10. 中心軸を中心とする周方向に複数のコア部を連結したステータコアを有し、
    前記複数のコア部は、いずれも、前記周方向に延在するヨーク部と、前記ヨーク部から前記中心軸を中心とする径方向の内側に延在するティースとを有し、
    前記ヨーク部は、前記径方向の両端に位置する外周および内周と、前記周方向の端部に位置する連結面と、前記外周に開口を有する凹部と、前記凹部に対して前記径方向の内側に位置する穴部とを有し、
    前記ティースは、前記ヨーク部の前記内周との間にコーナー部を形成する側面を有し、
    前記凹部の前記開口の前記周方向の長さW0は、前記凹部の前記開口よりも前記径方向の内側での前記周方向の長さW1よりも短く、
    前記コーナー部から前記穴部までの最短距離T2と、前記連結面の長さT0とが、
    0.65≦T2/T0<1
    を満足するステータ。
  11. 前記凹部の前記開口から、前記穴部の前記径方向の内側端部までの距離D2は、前記長さW0よりも長い
    請求項10に記載のステータ。
  12. 前記長さW1は、前記ティースの前記周方向の幅Wtよりも短い
    請求項10または11に記載のステータ。
  13. 前記最短距離T2は、前記ティースの前記周方向の幅Wtの1/2よりも短い
    請求項10から12までの何れか1項に記載のステータ。
  14. 請求項1から13までの何れか1項に記載のステータと、
    前記ステータに囲まれ、前記中心軸を中心として回転可能なロータと
    を備えた電動機。
  15. 前記ロータは、ロータコアと、前記ロータコアに取り付けられた永久磁石とを有し、
    前記永久磁石は、ネオジウム、鉄およびボロンを含む希土類磁石である
    請求項14に記載の電動機。
  16. 請求項14または15に記載の電動機と、前記電動機によって駆動される圧縮機構とを備えた圧縮機。
  17. 圧縮機、凝縮器、減圧装置および蒸発器を備え、
    前記圧縮機は、請求項14または15に記載の電動機と、前記電動機によって駆動される圧縮機構とを備える
    空気調和装置。
JP2020547525A 2018-09-19 2018-09-19 ステータ、電動機、圧縮機および空気調和装置 Active JP7026811B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034693 WO2020059056A1 (ja) 2018-09-19 2018-09-19 ステータ、電動機、圧縮機および空気調和装置

Publications (2)

Publication Number Publication Date
JPWO2020059056A1 true JPWO2020059056A1 (ja) 2021-02-15
JP7026811B2 JP7026811B2 (ja) 2022-02-28

Family

ID=69887034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020547525A Active JP7026811B2 (ja) 2018-09-19 2018-09-19 ステータ、電動機、圧縮機および空気調和装置

Country Status (2)

Country Link
JP (1) JP7026811B2 (ja)
WO (1) WO2020059056A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553935U (ja) * 1978-10-04 1980-04-11
JPH077875A (ja) * 1993-06-14 1995-01-10 Matsushita Electric Ind Co Ltd 回転電機の固定子
JPH09149605A (ja) * 1995-11-22 1997-06-06 Toshiba Corp 鉄心の製造方法
JP2000350390A (ja) * 1999-06-04 2000-12-15 Daikin Ind Ltd スイッチトリラクタンスモータ
JP2009136101A (ja) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp モータ及びそれを備えた冷媒圧縮機
WO2015063871A1 (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
WO2017077590A1 (ja) * 2015-11-04 2017-05-11 三菱電機株式会社 ステータ、電動機、圧縮機、及び冷凍空調装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553935U (ja) * 1978-10-04 1980-04-11
JPH077875A (ja) * 1993-06-14 1995-01-10 Matsushita Electric Ind Co Ltd 回転電機の固定子
JPH09149605A (ja) * 1995-11-22 1997-06-06 Toshiba Corp 鉄心の製造方法
JP2000350390A (ja) * 1999-06-04 2000-12-15 Daikin Ind Ltd スイッチトリラクタンスモータ
JP2009136101A (ja) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp モータ及びそれを備えた冷媒圧縮機
WO2015063871A1 (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
WO2017077590A1 (ja) * 2015-11-04 2017-05-11 三菱電機株式会社 ステータ、電動機、圧縮機、及び冷凍空調装置

Also Published As

Publication number Publication date
WO2020059056A1 (ja) 2020-03-26
JP7026811B2 (ja) 2022-02-28

Similar Documents

Publication Publication Date Title
US11437877B2 (en) Rotor, motor, compressor, and air conditioner
US11018535B2 (en) Motor, rotor, compressor, and refrigeration and air conditioning apparatus
US20180248426A1 (en) Motor, rotor, compressor, and refrigeration and air conditioning apparatus
US11804739B2 (en) Motor having stator and rotor configured to reduce eddy current loss, and compressor and air conditioner incorporating same
US11831204B2 (en) Rotor, motor, compressor, and air conditioner
JP7038827B2 (ja) ステータ、電動機、圧縮機および空気調和装置
JP7090605B2 (ja) 電動機、圧縮機および空気調和装置
JP2023168510A (ja) 電動機、圧縮機、送風機、及び冷凍空調装置
JP7433420B2 (ja) ロータ、モータ、圧縮機および空気調和装置
JP7026811B2 (ja) ステータ、電動機、圧縮機および空気調和装置
JP7433419B2 (ja) ロータ、モータ、圧縮機、空気調和装置およびロータの製造方法
US11888353B2 (en) Motor, compressor, and air conditioner
JP7450805B2 (ja) モータ、圧縮機および冷凍サイクル装置
JPWO2020245903A1 (ja) 着磁用リング、着磁方法、着磁装置、ロータ、電動機、圧縮機および空気調和装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220215

R150 Certificate of patent or registration of utility model

Ref document number: 7026811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150