JPWO2019225606A1 - Seed germination method, plant cultivation method, seed and seed production method, and rice - Google Patents

Seed germination method, plant cultivation method, seed and seed production method, and rice Download PDF

Info

Publication number
JPWO2019225606A1
JPWO2019225606A1 JP2020521254A JP2020521254A JPWO2019225606A1 JP WO2019225606 A1 JPWO2019225606 A1 JP WO2019225606A1 JP 2020521254 A JP2020521254 A JP 2020521254A JP 2020521254 A JP2020521254 A JP 2020521254A JP WO2019225606 A1 JPWO2019225606 A1 JP WO2019225606A1
Authority
JP
Japan
Prior art keywords
water
seed
seeds
plant
germination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020521254A
Other languages
Japanese (ja)
Inventor
薫 寺澤
薫 寺澤
宏樹 池田
宏樹 池田
達観 下野
達観 下野
英樹 柴
英樹 柴
榊原 巨規
巨規 榊原
谷崎 美江
美江 谷崎
泰教 助清
泰教 助清
祐子 宇野
祐子 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Agri Dream Co Ltd
Original Assignee
Mitsubishi Chemical Agri Dream Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Agri Dream Co Ltd filed Critical Mitsubishi Chemical Agri Dream Co Ltd
Publication of JPWO2019225606A1 publication Critical patent/JPWO2019225606A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice

Abstract

生育を向上させることができる種子の発芽方法、植物の栽培方法及び種子を提供することを目的とする。本発明の一態様に係る種子の発芽方法は、種子を電気伝導率50μS/cm以下の水に接触させる工程を含む。また、本発明の種子の発芽方法により発芽した種子を用いて植物を栽培する、植物の栽培方法。本発明の種子の発芽方法及び植物の栽培方法は、種子がイネ科の種子である場合に有効であり、種子が水稲の種籾である場合により有効である。It is an object of the present invention to provide a seed germination method, a plant cultivation method and a seed capable of improving the growth. The seed germination method according to one aspect of the present invention includes a step of bringing the seed into contact with water having an electrical conductivity of 50 μS / cm or less. Further, a plant cultivation method in which a plant is cultivated using seeds germinated by the seed germination method of the present invention. The seed germination method and the plant cultivation method of the present invention are effective when the seeds are grass seeds, and more effective when the seeds are paddy rice seeds.

Description

本発明は、種子の発芽方法、植物の栽培方法、種子及び種子の製造方法、並びに米に関する。 The present invention relates to a method for germination of seeds, a method for cultivating plants, a method for producing seeds and seeds, and rice.

稲等の様々な植物の栽培において、品質や収量を改善するための様々な工夫が行われている。例えば、一般に米どころは軟水地域が多く、稲の育成には軟水が有効であるとされている。しかし、軟水地域以外では、水稲栽培において軟水を供給し続けることは困難である。米作りには、種籾の準備、育苗、土壌作り、田植え、稲の育成、刈取りの各段階があり、よりおいしく、強く、収量の多い米作りのため、各々の段階において様々な工夫が行われている。 In the cultivation of various plants such as rice, various measures have been taken to improve quality and yield. For example, in general, there are many soft water areas in rice fields, and it is said that soft water is effective for growing rice. However, it is difficult to continue to supply soft water in paddy rice cultivation except in soft water areas. Rice cultivation involves each stage of rice preparation, seedling raising, soil preparation, rice planting, rice cultivation, and harvesting, and various measures are taken at each stage to produce more delicious, strong, and high-yielding rice. ing.

水稲の収量は「穂数」、「一穂籾数」、「登熟歩合」、「千粒重」の4つの収量構成要素から成り立ち、「収量」=「穂数」×「一穂籾数」×「登熟歩合」×「千粒重」の関係がある。計算式上は4つの収量構成要素のいずれかが向上すれば収量が増える。しかし、実際には「一穂籾数」を多くすれば「登熟歩合」や「千粒重」が減少する、といったようにそれぞれの収量構成要素が関係し合っている。また、いずれかの収量構成要素が増えても、稲自身が倒伏すると逆に収量が減少するおそれがある。 The yield of paddy rice consists of four yield components: "number of ears", "number of ears", "ripening rate", and "thousand-kernel weight". "Yield" = "number of ears" x "number of ears" x "climbing" There is a relationship of "maturity rate" x "thousand grain weight". In the calculation formula, if any of the four yield components is improved, the yield will increase. However, in reality, each yield component is related to each other, such as increasing the "number of one ear of paddy" reduces the "ripening rate" and "thousand grain weight". Moreover, even if any of the yield components increases, the yield may decrease if the rice itself falls down.

例えば、海水の希釈液を利用し、マグネシウムイオン濃度と塩化物イオン濃度を特定の範囲に制御した水を用いて水稲栽培を行うことで、稲の倒伏を抑制する方法が提案されている(特許文献1)。しかし、水稲栽培の期間は長く、栽培中の水質を長期間にわたって制御し続けるにはコストがかかり、作業負担も大きい。 For example, a method of suppressing the lodging of rice has been proposed by cultivating paddy rice using a diluted solution of seawater and using water in which the magnesium ion concentration and the chloride ion concentration are controlled within a specific range (patented). Document 1). However, the period of paddy rice cultivation is long, and it is costly and labor-intensive to keep controlling the water quality during cultivation for a long period of time.

育苗前の種籾の準備期においては、塩水選により良質な種籾を選別し、消毒により種籾についている病原菌を取り除いた後、浸種により発芽に必要な水分を種籾に吸わせ、催芽により発芽状態を揃えつつ発芽させる。浸種においては、河川水や池水ではなく、水道水や井戸水等のきれいな水を使用することが推奨されている(非特許文献1、2)。しかし、浸種に水道水や井戸水を用いるだけでは、生育を良くし、品質や収量を向上させる効果は不十分である。 In the preparatory period of seed paddy before raising seedlings, high-quality seed paddy is selected by salt water selection, pathogens attached to the seed paddy are removed by disinfection, and then the seed paddy is made to absorb the water necessary for germination by soaking, and the germination state is adjusted by germination. Germinate while sprouting. For infiltration, it is recommended to use clean water such as tap water or well water instead of river water or pond water (Non-Patent Documents 1 and 2). However, the effect of improving the growth, quality and yield is insufficient only by using tap water or well water for soaking.

日本国公開特許公報「特開2015−192599号公報」Japanese Patent Publication "Japanese Patent Application Laid-Open No. 2015-192599"

“おいしい米づくり情報No.1”、[online]、平成23年3月24日発行、南魚沼市NOSAI魚沼JA魚沼みなみ、[平成29年5月1日検索]、インターネット<URL=http://ja-uonuma.sakura.ne.jp/shidou/kome23_04.pdf>"Delicious Rice Making Information No. 1", [online], published on March 24, 2011, Minami Uonuma City NOSAI Uonuma JA Uonuma Minami, [Search on May 1, 2017], Internet <URL = http: // ja-uonuma.sakura.ne.jp/shidou/kome23_04.pdf > “農林分野 安全で豊かな食と農を支える調査研究育苗期その2”、[online]、地方独立行政法人大阪府立環境農林水産総合研究所、[平成29年5月1日検索]、インターネット<URL:http://www.kannousuiken-osaka.or.jp/nourin/gijutsu/techinfo/tebiki/basic/02.html>"Survey and research seedling raising period 2 that supports safe and abundant food and agriculture in the field of agriculture and forestry", [online], Osaka Prefectural Institute for Environmental Agriculture, Forestry and Fisheries, [Search on May 1, 2017], Internet < URL: http://www.kannousuiken-osaka.or.jp/nourin/gijutsu/techinfo/tebiki/basic/02.html >

本発明は、栽培中の植物の生育を向上させることができる種子の発芽方法、植物の栽培方法及び種子を提供することを目的とする。 An object of the present invention is to provide a seed germination method, a plant cultivation method, and a seed capable of improving the growth of a plant during cultivation.

本発明は、以下の構成を有する。
[1]種子を電気伝導率50μS/cm以下の水に接触させる工程を含むことを特徴とする種子の発芽方法。
[2][1]記載の種子の発芽方法により発芽した種子を用いて植物を栽培する、植物の栽培方法。
[3]前記発芽した種子を、電気伝導率が50μS/cmより大きい水を用いて育苗する、[2]に記載の植物の栽培方法。
[4]前記種子がイネ科の種子である、[3]記載の植物の栽培方法。
[5]前記種子が水稲の種籾である、[4]記載の植物の栽培方法。
[6]電気伝導率50μS/cm以下の水に接触させた種子。
[7]発芽している[6]記載の種子。
[8]イネ科の種子である、[6]又は[7]に記載の種子。
[9]水稲の種籾である、[6]〜[8]のいずれかに記載の種子。
[10]麦の種子である、[6]〜[8]のいずれかに記載の種子。前記麦は、二条大麦、六条大麦、はだか麦等の大麦、小麦、えん麦、ライ麦である。
[11]種子を電気伝導率50μS/cm以下の水に接触させる工程を含むことを特徴とする種子の製造方法。
[12]前記植物が定植用の苗である、[2]記載の植物の栽培方法。
[13]前記定植用の苗を定植する、[12]記載の植物の栽培方法。
[14][2]記載の植物の栽培方法により栽培された植物を収穫する植物の収穫方法。
[15][13]記載の植物の栽培方法により定植された定植用の苗を生育し、生育した植物を収穫する植物の収穫方法。
[16][6]又は[7]記載の種子を播種し、植物を栽培する植物の栽培方法。
[17][6]又は[7]記載の種子を播種し、栽培された植物を収穫する植物の収穫方法。
[18]平均整粒全長5.3mm以上、且つ平均心白率88%以上の米。
[19][2]記載の植物の栽培方法により栽培された植物を台木として接ぎ木苗を作製する、接ぎ木苗の作製方法。
The present invention has the following configurations.
[1] A method for germination of seeds, which comprises a step of bringing the seeds into contact with water having an electrical conductivity of 50 μS / cm or less.
[2] A method for cultivating a plant, wherein the plant is cultivated using the seed germinated by the seed germination method according to [1].
[3] The method for cultivating a plant according to [2], wherein the germinated seeds are raised using water having an electrical conductivity of more than 50 μS / cm.
[4] The method for cultivating a plant according to [3], wherein the seed is a grass seed.
[5] The method for cultivating a plant according to [4], wherein the seed is a seed paddy of paddy rice.
[6] Seeds that have been brought into contact with water having an electrical conductivity of 50 μS / cm or less.
[7] Seeds according to [6] that are germinated.
[8] The seed according to [6] or [7], which is a seed of the Gramineae family.
[9] The seed according to any one of [6] to [8], which is a seed paddy of paddy rice.
[10] The seed according to any one of [6] to [8], which is a wheat seed. The barley is barley such as two-row barley, six-row barley, and hadaka barley, wheat, wheat, and rye.
[11] A method for producing seeds, which comprises a step of bringing seeds into contact with water having an electrical conductivity of 50 μS / cm or less.
[12] The method for cultivating a plant according to [2], wherein the plant is a seedling for planting.
[13] The method for cultivating a plant according to [12], wherein the seedlings for planting are planted.
[14] A method for harvesting a plant for harvesting a plant cultivated by the method for cultivating a plant according to [2].
[15] A method for harvesting a plant in which seedlings for planting planted by the method for cultivating a plant according to [13] are grown and the grown plant is harvested.
[16] A method for cultivating a plant in which the seed according to [6] or [7] is sown and the plant is cultivated.
[17] A method for harvesting a plant in which the seed according to [6] or [7] is sown and the cultivated plant is harvested.
[18] Rice having an average grain size of 5.3 mm or more and an average heart whiteness of 88% or more.
[19] A method for producing a grafted seedling, wherein a grafted seedling is produced using a plant cultivated by the plant cultivation method described in [2] as a rootstock.

本発明の種子の発芽方法、植物の栽培方法及び種子によれば、栽培中の植物の生育を向上させることができる。 According to the seed germination method, the plant cultivation method and the seed of the present invention, the growth of the plant during cultivation can be improved.

実施例及び比較例における苗の平均分げつ数を示したグラフである。It is a graph which showed the average tiller number of seedlings in an Example and a comparative example. 実施例及び比較例における種籾の子葉鞘の平均長さを示したグラフである。It is a graph which showed the average length of the coleoptile of the seed paddy in an Example and a comparative example. 実施例及び比較例における種籾の子葉鞘の平均長さを示したグラフである。It is a graph which showed the average length of the coleoptile of the seed paddy in an Example and a comparative example. 実施例及び比較例における苗の根を観察した結果を示す図である。It is a figure which shows the result of observing the root of a seedling in an Example and a comparative example. 実施例及び比較例における苗の根の長さを示したグラフである。It is a graph which showed the root length of a seedling in an Example and a comparative example.

[実施形態1]
[種子の発芽方法]
本発明の種子の発芽方法に用いる種子は、特に限定されず、例えば、イネ科、ナス科、ウリ科、キク科、アブラナ科、セリ科、バラ科、アオイ科、マメ科、アカザ科、ユリ科、サトイモ科、ヒルガオ科、ショウガ科、シソ科、ヒユ科、ヤシ科、ナデシコ科、リンドウ科、アヤメ科、ムラサキ科、ラン科、ツリフネソウ科等の植物の種子が挙げられる。本発明の種子の発芽方法は、イネ科の特に水稲の種籾や麦の発芽に有効である。麦としては、二条大麦、六条大麦、はだか麦等の大麦、小麦、えん麦、ライ麦が挙げられる。
[Embodiment 1]
[Seed germination method]
The seeds used in the seed sprouting method of the present invention are not particularly limited, and are, for example, rice family, eggplant family, sardine family, kiku family, abrana family, seri family, rose family, blue-green family, legume family, red-spotted family, lily. Seeds of plants such as family, Satoimo family, Hirugao family, Ginger family, Shiso family, Hiyu family, Palm family, Nadeshiko family, Lindou family, Ayame family, Murasaki family, Orchid family, Turifunesou family and the like can be mentioned. The seed germination method of the present invention is effective for germination of rice seeds and wheat in the Gramineae family. Examples of barley include barley such as Nijo barley, Rojo barley, and Hadaka barley, wheat, wheat, and rye.

また、本発明の種子の発芽方法に用いる種子は、ナス科、ウリ科、キク科、アブラナ科、セリ科、バラ科、アオイ科、マメ科、アカザ科、ユリ科、ヒルガオ科、ショウガ科、シソ科、ヒユ科、ヤシ科、ナデシコ科、リンドウ科、アヤメ科、ムラサキ科、ラン科、ツリフネソウ科等の種子も挙げられる。これらの植物は植物工場での栽培に向いている。本発明は植物工場での栽培に適用してもよい。本発明を植物工場での栽培に適用する場合、栽培期間が短い、ヒユ科、アブラナ科、セリ科、シソ科、キク科などの発芽に有効である。これらの品種の植物としては、例えば、ホウレンソウ、レタス、コマツナ、サラダナ、ミズナ、ルッコラ、コリアンダー、ビート、シュンギク、ハクサイ、チンゲンサイなどがある。また、本発明による根の生育効果を享受する観点からは、根菜類に適用することが好ましい。 The seeds used in the seed sprouting method of the present invention include Nathae, Uri, Kiku, Abrana, Seri, Rose, Aoi, Mame, Akaza, Yuri, Hirugao, Ginkgo, Seeds of Shiso, Hiyu, Palm, Nadeshiko, Lindou, Ayame, Murasaki, Orchid, and Turifunesou are also included. These plants are suitable for cultivation in a plant factory. The present invention may be applied to cultivation in a plant factory. When the present invention is applied to cultivation in a plant factory, it is effective for germination of Amaranthaceae, Brassicaceae, Umbelliferae, Labiatae, Asteraceae, etc., which have a short cultivation period. Plants of these varieties include, for example, spinach, lettuce, Japanese mustard spinach, salad mizuna, mizuna, arugula, coriander, beet, shungiku, Chinese cabbage, bok choy and the like. Further, from the viewpoint of enjoying the root growth effect of the present invention, it is preferably applied to root vegetables.

また、本発明に用いられる種子は、葉菜、果菜、花卉などが好ましい。特に、栽培期間の短い葉菜類が、本発明の効果を享受しやすいため、好ましい。葉菜類の植物としては、例えば、ホウレンソウ、レタス、コマツナ、サラダナ、ミズナ、ルッコラ、コリアンダー、ビート、シュンギク、ハクサイ、チンゲンサイなどがある。 The seeds used in the present invention are preferably leafy vegetables, fruit vegetables, flowers and the like. In particular, leafy vegetables having a short cultivation period are preferable because they can easily enjoy the effects of the present invention. Examples of leafy vegetables include spinach, lettuce, Japanese mustard spinach, salad na, arugula, arugula, coriander, beet, shungiku, Chinese cabbage, and bok choy.

本発明の種子の発芽方法では、種子に電気伝導率50μS/cm以下の水を接触させて発芽させる。発芽させる際に種子に接触させる水の電気伝導率を50μS/cm以下にすることで、発芽後の植物の生長がより良好となる。また、発芽も促される。例えば、発芽後の苗の草丈、茎径が大きくなるなど、苗を大きく成長させることができる。また、苗の根量、根長を増やすことができるので、根がしっかり張った苗を作製することができる。また、発芽をより早期に行わせることができるので、育苗期間を短縮させることができる。このように、本発明によれば植物の生育を向上させ、植物栽培の生産性を向上させることができる。 In the seed germination method of the present invention, the seeds are brought into contact with water having an electrical conductivity of 50 μS / cm or less to germinate. By setting the electrical conductivity of the water that comes into contact with the seeds during germination to 50 μS / cm or less, the growth of the plant after germination becomes better. It also promotes germination. For example, the seedlings can be grown large by increasing the plant height and stem diameter of the seedlings after germination. Moreover, since the root amount and root length of the seedling can be increased, it is possible to produce a seedling with a firm root. In addition, since germination can be performed earlier, the seedling raising period can be shortened. As described above, according to the present invention, the growth of plants can be improved and the productivity of plant cultivation can be improved.

種子に電気伝導率50μS/cm以下の水を接触させることにより、種子が電気伝導率50μS/cm以下の水を吸収し、種子に電気伝導率50μS/cm以下の水を含ませることができる。電気伝導率50μS/cm以下の接触方法としては、特に限定されず、種子を電気伝導率50μS/cm以下の水に浸す方法、種子に電気伝導率50μS/cm以下の水をかける方法、種子を電気伝導率50μS/cm以下の水を含む含水媒体と接触させる方法等が挙げられる。 By contacting the seed with water having an electric conductivity of 50 μS / cm or less, the seed can absorb water having an electric conductivity of 50 μS / cm or less, and the seed can contain water having an electric conductivity of 50 μS / cm or less. The contact method having an electric conductivity of 50 μS / cm or less is not particularly limited, and the seeds are immersed in water having an electric conductivity of 50 μS / cm or less, the seeds are sprinkled with water having an electric conductivity of 50 μS / cm or less, and the seeds are treated. Examples thereof include a method of contacting with a water-containing medium containing water having an electric conductivity of 50 μS / cm or less.

種子に接触させる水の電気伝導率は50μS/cm以下であればよく、20μS/cm以下であることがより好ましく、15μS/cm以下であることがさらに好ましく、10μS/cm以下であることが特に好ましく、1μS/cm以下であることが最も好ましい。また、水の電気伝導率の測定方法としては、電極方式および電磁誘導方式が挙げられる。 The electrical conductivity of the water in contact with the seeds may be 50 μS / cm or less, more preferably 20 μS / cm or less, further preferably 15 μS / cm or less, and particularly preferably 10 μS / cm or less. It is preferably 1 μS / cm or less, and most preferably 1 μS / cm or less. Further, as a method for measuring the electric conductivity of water, an electrode method and an electromagnetic induction method can be mentioned.

電気伝導率50μS/cm以下の水としては、特に限定されず、例えば、逆浸透膜(RO膜)、電気透析膜、NF膜(ナノろ過膜)、ゼオライト膜等の濾過膜を用いた濾過水、イオン交換樹脂処理水、蒸留水、また、これらの組合せによる処理水等が挙げられる。なかでも、RO膜による濾過水、イオン交換樹脂処理水が好適である。 The water having an electric conductivity of 50 μS / cm or less is not particularly limited, and for example, filtered water using a filtration membrane such as a reverse osmosis membrane (RO membrane), an electrodialysis membrane, an NF membrane (nanofiltration membrane), or a zeolite membrane. , Ion exchange resin treated water, distilled water, treated water by a combination of these, and the like. Of these, filtered water using an RO membrane and ion-exchange resin-treated water are preferable.

電気伝導率50μS/cm以下の水を製造する際に用いる原水としては、特に限定されず、水道水、井戸水等の地下水、湧水、河川水、農業用水等の表流水等が挙げられる。これらの原水をそのまま、浄水器等に供して電気伝導度率を50μS/cm以下にしたものを用いればよい。 The raw water used for producing water having an electric conductivity of 50 μS / cm or less is not particularly limited, and examples thereof include groundwater such as tap water and well water, spring water, river water, and surface water such as agricultural water. These raw waters may be used as they are by subjecting them to a water purifier or the like to have an electric conductivity of 50 μS / cm or less.

本発明の種子の発芽方法においては、種子を電気伝導率50μS/cm以下の水に接触させた後、発芽するまで該種子を電気伝導率50μS/cm以下の水と接触させておくことが好ましく、発芽するまで種子を電気伝導率50μS/cm以下の水に浸しておくことがより好ましい。これにより、本発明の効果がより効果的に得られる。 In the seed germination method of the present invention, it is preferable that the seeds are brought into contact with water having an electric conductivity of 50 μS / cm or less and then the seeds are brought into contact with water having an electric conductivity of 50 μS / cm or less until germination. It is more preferable to soak the seeds in water having an electrical conductivity of 50 μS / cm or less until germination. Thereby, the effect of the present invention can be obtained more effectively.

種子の発芽過程は、吸水の観点から一般的に(1)第1期(A相:吸水期)、(2)第2期(B相:発芽準備期)、及び(3)第3期(C相:生長期)に分けられ得る。(1)第1期(吸水期)は、主として物理的に種子が吸水をする時期である。(2)第2期(B相:発芽準備期)は、吸水増加は停滞するが、発芽のための実質的な物質代謝が進行する発芽準備期である。第2期はさらに前半(B1相)及び後半(B2相)の2相に分けられ得る。前半(B1相)は、胚の生長を規制する代謝系が関与する時期である。後半(B2相)は炭水化物代謝がもっぱら行なわれる時期であり、当該相が完了すると発芽が起こる。(3)第3期(C相:生長期)は、発芽後、幼芽と幼根が活発に生長する時期である。(参照文献:”図説:東北の稲作と冷害”、[online]、国立研究開発法人農業・食品産業技術総合研究機構、[令和1年5月21日検索]、インターネット<URL:http://www.reigai.affrc.go.jp/zusetu/saiga.html>) The seed germination process is generally (1) 1st stage (A phase: water absorption stage), (2) 2nd stage (B phase: germination preparation stage), and (3) 3rd stage (3) from the viewpoint of water absorption. It can be divided into C phase (growth period). (1) The first stage (water absorption period) is a period in which seeds mainly physically absorb water. (2) The second phase (Phase B: preparatory stage for germination) is the preparatory stage for germination in which the increase in water absorption is stagnant, but the substantial metabolism of substances for germination proceeds. The second phase can be further divided into two phases, the first half (B1 phase) and the second half (B2 phase). The first half (Phase B1) is the time when the metabolic system that regulates embryo growth is involved. The latter half (B2 phase) is the time when carbohydrate metabolism is exclusively performed, and germination occurs when the phase is completed. (3) The third stage (Phase C: growing period) is a period in which shoots and roots grow actively after germination. (Reference: "Illustration: Rice cultivation and cold damage in Tohoku", [online], National Research and Development Corporation, National Agriculture and Food Research Organization, [Search on May 21, 1991], Internet <URL: http: / /www.reigai.affrc.go.jp/zusetu/saiga.html>)

本明細書中において、「種子を電気伝導率50μS/cm以下の水に接触させる工程」(本明細書における接触工程)とは、発芽過程の第1期(A相:吸水期)が始まってから、発芽過程の第2期(B相:発芽準備期)が完了する直前(発芽の起こる直前)までに、種子に電気伝導率50μS/cm以下の水を接触させる工程である。なお、第2期(B相:発芽準備期)に到達する前に、種子の中に電気伝導率50μS/cmを超える水分が存在していても、その後、第2期(B相:発芽準備期)に到達する前に、種子に電気伝導率50μS/cm以下の水を接触させれば、本発明の効果を奏する。或いは、第2期(B相:発芽準備期)に到達する前に、種子に電気伝導率50μS/cm以下の水を接触させた後に種子を乾かしても、その後、第2期(B相:発芽準備期)に到達する前に、種子に電気伝導率50μS/cm以下の水を接触させれば、本発明の効果を奏する。また、接触後、種子表面の付着物質の溶出等により、接触させている水が電気伝導率50μS/cmを超えることもあるが、接触開始時に用いる水が電気伝導率50μS/cm以下であれば良く、接触後は、電気伝導率50μS/cmを超えても本発明の効果を奏する。電気伝導率50μS/cm以下の水を接触させた後は、電気伝導率50μS/cmを超える水を接触させてもよい。 In the present specification, the "step of contacting seeds with water having an electrical conductivity of 50 μS / cm or less" (contact step in the present specification) means that the first stage (phase A: water absorption stage) of the germination process has started. This is a step of bringing water having an electrical conductivity of 50 μS / cm or less into contact with the seeds by the time immediately before the completion of the second stage (Phase B: preparatory stage for germination) of the germination process (immediately before germination occurs). Even if water having an electrical conductivity of more than 50 μS / cm is present in the seeds before reaching the second stage (Phase B: preparation for germination), the second stage (Phase B: preparation for germination) is thereafter. If the seeds are brought into contact with water having an electrical conductivity of 50 μS / cm or less before reaching the period), the effect of the present invention can be obtained. Alternatively, even if the seeds are dried after contacting the seeds with water having an electrical conductivity of 50 μS / cm or less before reaching the second stage (Phase B: preparation for germination), the seeds are then dried in the second stage (Phase B: phase B:). If the seeds are brought into contact with water having an electrical conductivity of 50 μS / cm or less before reaching the germination preparation period), the effect of the present invention can be obtained. In addition, after contact, the water in contact may exceed 50 μS / cm in electrical conductivity due to elution of substances adhering to the seed surface, but if the water used at the start of contact has an electrical conductivity of 50 μS / cm or less. Well, after contact, the effect of the present invention is exhibited even if the electrical conductivity exceeds 50 μS / cm. After contacting water having an electric conductivity of 50 μS / cm or less, water having an electric conductivity of more than 50 μS / cm may be brought into contact.

なお、上記接触工程は、好ましくは、発芽過程の第1期(A相:吸水期)が始まってから、B1相の期間が終わるまでに、種子に電気伝導率50μS/cm以下の水を接触させる工程をいう。より好ましくは、発芽過程の第1期(A相:吸水期)が始まってから、第1期(A相:吸水期)の終わるまでに、種子に電気伝導率50μS/cm以下の水を接触させる工程をいう。さらに好ましくは、第1期(吸水期)の初めから種子に電気伝導率50μS/cm以下の水を接触させる工程をいう。 In the above contact step, preferably, water having an electrical conductivity of 50 μS / cm or less is brought into contact with the seeds from the start of the first phase (A phase: water absorption phase) of the germination process to the end of the B1 phase. The process of making it. More preferably, the seeds are brought into contact with water having an electrical conductivity of 50 μS / cm or less from the start of the first stage (Phase A: water absorption stage) of the germination process to the end of the first stage (Phase A: water absorption stage). The process of making it. More preferably, it refers to a step of contacting seeds with water having an electrical conductivity of 50 μS / cm or less from the beginning of the first stage (water absorption period).

種子は通常、病原菌による発病リスク低減のため、発芽工程以前に種子消毒を行う。本発明においても発芽工程以前に種子消毒工程を行なってもよい。種子を消毒する方法としては、特に限定されず、薬液に浸漬する方法、薬剤を粉衣又は吹き付ける方法、温湯消毒法、冷水温湯浸法、風呂湯浸法、乾熱法等、公知の方法を採用することができる。薬剤としては植物種に応じて公知の種子消毒用の薬剤を用いることができる。種子消毒を行うことにより、種子伝染性の病害等が発生することを抑制することができる。一方、前年度の罹病種子のリスクが低い等、病原菌による発病リスクが低いと判断できる場合は種子消毒を行わない方が良い。種子消毒を行わないことにより省力化を達成でき、また、特に薬液・薬剤を使用する場合は消毒後の廃棄処理が問題となるが、その問題もクリアすることができる。種子消毒の方法として、温湯消毒法、冷水温湯浸法、風呂湯浸法や、薬液浸漬において水を使用するが、温湯消毒法、冷水温湯浸法、風呂湯浸法に使用する水や、薬剤の希釈水として、電気伝導率50μS/cm以下の水を使用すると、より良い。消毒水の使用、温湯消毒、冷水温湯浸法、風呂湯浸法等、種子を消毒水や湯に浸漬した場合、消毒工程からそのまま連続して発芽工程の浸漬へ移行しても良い。 Seeds are usually disinfected prior to the germination process to reduce the risk of disease development by pathogens. Also in the present invention, a seed disinfection step may be performed before the germination step. The method for disinfecting seeds is not particularly limited, and known methods such as a method of immersing in a chemical solution, a method of powdering or spraying a chemical, a hot water disinfection method, a cold water hot water immersion method, a bath water immersion method, and a dry heat method can be used. Can be adopted. As the agent, a known agent for disinfecting seeds can be used depending on the plant species. By disinfecting seeds, it is possible to suppress the occurrence of seed-borne diseases and the like. On the other hand, if it can be judged that the risk of disease onset by pathogens is low, such as the risk of diseased seeds in the previous year is low, it is better not to disinfect the seeds. Labor saving can be achieved by not disinfecting seeds, and disposal after disinfection becomes a problem, especially when chemicals / chemicals are used, but this problem can also be solved. As a method of seed disinfection, water is used in hot water disinfection method, cold water hot water immersion method, bath water immersion method, and chemical solution immersion, but water and chemicals used in hot water disinfection method, cold water hot water immersion method, bath water immersion method. It is better to use water having an electric conductivity of 50 μS / cm or less as the diluted water. When seeds are soaked in disinfectant water or hot water such as the use of disinfectant water, hot water disinfection, cold water hot water soaking method, bath water soaking method, etc., the disinfection step may be continuously shifted to the germination step soaking.

以下、本発明の種子の発芽方法の一例を、水稲の種籾を発芽させる場合を例に説明する。種籾を発芽させる場合、電気伝導率50μS/cm以下の水を種籾に充分に含ませた状態で発芽させやすい点から、電気伝導率50μS/cm以下の水を用いて浸種を行うことが好ましい。なお、種籾を床土に播き、該床土に電気伝導率50μS/cm以下の水をかけることにより、種子に電気伝導率50μS/cm以下の水を接触させてもよい。また、木材パルプ系、ロックウール系、もみがら系等の土以外の媒体に電気伝導率50μS/cm以下の水を含ませ、その含水媒体と種籾とを接触させてもよい。 Hereinafter, an example of the seed germination method of the present invention will be described by germinating the seed paddy of paddy rice. When the seed paddy is germinated, it is preferable to perform the seeding using water having an electric conductivity of 50 μS / cm or less because it is easy to germinate the seed paddy with water having an electric conductivity of 50 μS / cm or less sufficiently contained in the seed paddy. The seeds may be brought into contact with water having an electric conductivity of 50 μS / cm or less by sowing the seed paddy on the bed soil and sprinkling water on the bed soil with an electric conductivity of 50 μS / cm or less. Further, a medium other than soil such as wood pulp type, rock wool type, and rice husk type may be impregnated with water having an electric conductivity of 50 μS / cm or less, and the water-containing medium may be brought into contact with the seed paddy.

この例の種籾の発芽方法は、下記の工程(a)〜(d)を有する。
(a)塩水選により種籾を選別する。
(b)選別された種籾を消毒する。
(c)消毒後の種籾に対して電気伝導率50μS/cm以下の水により浸種を行う。
(d)浸種を行った種籾に対して催芽を行って発芽させる。
The method of germination of seed paddy in this example has the following steps (a) to (d).
(A) Seed paddy is selected by salt water selection.
(B) Disinfect the selected seed paddy.
(C) The seed paddy after disinfection is soaked with water having an electrical conductivity of 50 μS / cm or less.
(D) The seed paddy that has been soaked is germinated to germinate.

(工程(a))
塩水選により、比重を利用して中身の充実した種籾を選別する。具体的には、塩水に種籾を入れ、塩水中に浮かんだ種籾を捨て、塩水中に沈んだ種籾を採取する。塩水選においては、種籾が抱き込んだ気泡を取り除きやすい点から、種籾を入れた塩水を攪拌することが好ましい。塩水選により採取した種籾は、水でよく洗うことが好ましい。
(Step (a))
By salt water selection, seed paddy with rich contents is selected by using the specific gravity. Specifically, the seed paddy is put into salt water, the seed paddy floating in the salt water is discarded, and the seed paddy submerged in the salt water is collected. In the salt water selection, it is preferable to stir the salt water containing the seed paddy from the viewpoint that it is easy to remove the air bubbles embraced by the seed paddy. The seed paddy collected by salt water selection is preferably washed well with water.

(工程(b))
塩水選により選別された種籾を種子消毒する。これにより、種子伝染性の病害が発生することを抑制することができる。種籾を消毒する方法としては、特に限定されず、公知の方法を採用することができる。消毒後、種籾は風乾することが好ましい。これにより、種籾の消毒効果が高まる。
(Step (b))
Seed disinfection of seeds selected by salt water selection. As a result, it is possible to suppress the occurrence of seed-borne diseases. The method for disinfecting the seed paddy is not particularly limited, and a known method can be adopted. After disinfection, the seed paddy is preferably air-dried. This enhances the disinfecting effect of the seed paddy.

(工程(c))
消毒後の種籾を電気伝導率50μS/cm以下の水に浸漬し、浸種を行う。浸種は、電気伝導率50μS/cm以下の水を用いる以外は公知の態様を採用することができる。
(Step (c))
The seed paddy after disinfection is immersed in water having an electric conductivity of 50 μS / cm or less to perform seeding. For the soaking, a known embodiment can be adopted except that water having an electric conductivity of 50 μS / cm or less is used.

浸種は、水の温度をT(℃)、浸種の積算時間をD(日)としたとき、T×D≧100の条件を満たすように行うことが好ましい。これにより、種籾をより安定して発芽させることができる。 The soaking is preferably carried out so as to satisfy the condition of T × D ≧ 100 when the temperature of water is T (° C.) and the integrated time of soaking is D (days). As a result, the seed paddy can be germinated more stably.

浸種中の水の温度Tは、10〜15℃が好ましい。浸種中の水の温度Tが前記範囲の下限値以上であれば、種籾をより安定して発芽させることができる。浸種中の水の温度Tが前記範囲の上限値以下であれば、細菌性病害が発生したり、種籾が死んでしまったりすることを抑制しやすい。 The temperature T of the water during soaking is preferably 10 to 15 ° C. When the temperature T of the water during soaking is equal to or higher than the lower limit of the above range, the seed paddy can be germinated more stably. When the temperature T of the water during soaking is not more than the upper limit of the above range, it is easy to suppress the occurrence of bacterial diseases and the death of seed paddy.

浸種において水を取り換える場合、取り換える前後の水の電気伝導率は50μS/cm以下であれば、同じであってもよく、異なっていてもよい。 When water is replaced in seeding, the electrical conductivity of the water before and after the replacement may be the same or different as long as it is 50 μS / cm or less.

(工程(d))
浸種を行った後、催芽により、発芽状態を揃えつつ種籾を発芽させる。催芽は公知の方法を利用することができる。一斉に発芽を促す観点から、例えば、温度20℃〜35℃、好ましくは30℃で1日〜2日かけて発芽させることが好ましい。種籾の発芽状態は、ハトムネ状とすることが好ましい。
(Step (d))
After soaking, the seed paddy is germinated while keeping the germination state uniform by germination. A known method can be used for germination. From the viewpoint of promoting germination all at once, for example, it is preferable to germinate at a temperature of 20 ° C. to 35 ° C., preferably 30 ° C. for 1 to 2 days. The germination state of the seed paddy is preferably in the shape of a pigeon.

催芽には、電気伝導率50μS/cm以下の水を使用してもよく、電気伝導率が50μS/cmより大きい水を使用してもよい。つまり、種子に電気伝導率50μS/cm以下の水を接触後、種子表面の付着物質の溶出等により、接触させている水が電気伝導率50μS/cmを超えることもあるが、その水をそのまま催芽に用いてもよい。 For germination, water having an electric conductivity of 50 μS / cm or less may be used, or water having an electric conductivity of more than 50 μS / cm may be used. That is, after contacting the seed with water having an electric conductivity of 50 μS / cm or less, the contacted water may exceed the electric conductivity of 50 μS / cm due to elution of adhering substances on the seed surface, but the water is used as it is. It may be used for germination.

作業性に優れる点から、浸種に用いた電気伝導率50μS/cm以下の水をそのまま使用して催芽を行うことが好ましい。 From the viewpoint of excellent workability, it is preferable to perform germination using water having an electrical conductivity of 50 μS / cm or less used for seeding as it is.

催芽における水の温度は、28〜34℃が好ましく、30〜32℃がより好ましい。催芽における水の温度が前記範囲の下限値以上であれば、種籾の発芽効率が高くなる。催芽における水の温度が前記範囲の上限値以下であれば、細菌性病害が発生したり、種籾が死んでしまったりすることを抑制しやすい。 The temperature of water in germination is preferably 28 to 34 ° C, more preferably 30 to 32 ° C. When the temperature of water in germination is equal to or higher than the lower limit of the above range, the germination efficiency of seed paddy is high. When the temperature of water in germination is not more than the upper limit of the above range, it is easy to suppress the occurrence of bacterial diseases and the death of seed paddy.

以上説明したように、本発明の種子の発芽方法においては、種子に電気伝導率50μS/cm以下の水を接触させて発芽させる。これにより、発芽後の植物の生長が向上する。 As described above, in the seed germination method of the present invention, the seeds are brought into contact with water having an electrical conductivity of 50 μS / cm or less to germinate. This improves the growth of the plant after germination.

例えば本発明により種籾を発芽させて水稲を栽培した場合、1粒あたりの籾が大きくなり、1穂あたりの籾数が増加する。また、稲穂の稈径が太くなるため、籾のサイズ及び籾数が向上しても稲穂の倒伏が抑制される。これらのことから、籾の収量が向上する。 For example, when paddy rice is cultivated by germinating seed paddy according to the present invention, the paddy per grain increases and the number of paddy per ear increases. In addition, since the culm diameter of the rice ears is increased, the lodging of the rice ears is suppressed even if the size and the number of rice ears are improved. From these things, the yield of paddy is improved.

また、種子に電気伝導率50μS/cm以下の水を接触させて発芽させることにより、種子の発芽が促される。 In addition, germination of seeds is promoted by bringing the seeds into contact with water having an electrical conductivity of 50 μS / cm or less to germinate.

[植物の栽培方法]
本発明の植物の栽培方法は、本発明の種子の発芽方法により発芽させた種子を用いて植物を栽培する方法である。本発明の植物の栽培方法は、本発明の種子の発芽方法により発芽させた種子を用いる以外は、植物の種類に応じて公知の栽培方法を採用することができる。本発明の植物の栽培方法は、水田、畑、果樹園等の圃場での水稲栽培や野菜、果物等の栽培の他、工場等の施設内での水耕栽培等にも適用することができる。本発明の栽培方法は、本発明の発芽方法により発芽させたイネ科の種子、特に水稲の種籾や麦を用いた栽培に有効である。
[Plant cultivation method]
The method for cultivating a plant of the present invention is a method for cultivating a plant using seeds germinated by the method for germinating seeds of the present invention. As a method for cultivating a plant of the present invention, a known cultivation method can be adopted depending on the type of plant, except that seeds germinated by the method for germinating seeds of the present invention are used. The plant cultivation method of the present invention can be applied not only to paddy rice cultivation in fields such as paddy fields, fields and orchards, cultivation of vegetables and fruits, but also to hydroponic cultivation in facilities such as factories. .. The cultivation method of the present invention is effective for cultivation using grass seeds germinated by the germination method of the present invention, particularly paddy rice seeds and wheat.

例えば、稲の栽培の場合の一例としては、以下の方法が挙げられる。育苗箱に床土を収容して潅水した後、本発明の発芽方法により発芽させた種籾を均一に播種し、播かれた種籾が充分に隠れるように覆土を行う。充分に苗が生長するまで育苗し、生長した苗を水田に植えて稲を栽培する。定植(田植え)できる状態まで充分に苗が生長するまで育苗することが好ましい。その後、育苗した苗を田んぼ(圃場)に定植して栽培することが好ましい。 For example, the following method can be mentioned as an example in the case of rice cultivation. After the bed soil is placed in the nursery box and irrigated, the seeds germinated by the germination method of the present invention are uniformly sown, and the seeds are covered so that the seeds sown are sufficiently hidden. Raise seedlings until they grow sufficiently, and then plant the grown seedlings in paddy fields to cultivate rice. It is preferable to raise the seedlings until they grow sufficiently until they can be planted (rice planted). After that, it is preferable to plant the raised seedlings in a rice field (field) and cultivate them.

例えば、発芽後の育苗等、発芽後の植物の栽培に用いる水としては、電気伝導率50μS/cm以下の水を用いてもよく、電気伝導率が50μS/cmより大きい水を用いてもよい。例えば、前記発芽した種子を、電気伝導率が50μS/cmより大きい水を用いて育苗してもよい。栽培に用いる水の入手が容易な点から、電気伝導率が50μS/cmより大きい水を用いることが好ましい。また、このとき用いる水は上述した原水をそのまま用いてもよく、苗以降の生育を向上させるための養分を含有させた養液を用いてもよい。 For example, as water used for cultivation of plants after germination such as raising seedlings after germination, water having an electric conductivity of 50 μS / cm or less may be used, or water having an electric conductivity of more than 50 μS / cm may be used. .. For example, the germinated seeds may be raised using water having an electrical conductivity of more than 50 μS / cm. From the viewpoint that water used for cultivation is easily available, it is preferable to use water having an electric conductivity of more than 50 μS / cm. Further, as the water used at this time, the above-mentioned raw water may be used as it is, or a nutrient solution containing nutrients for improving the growth after seedlings may be used.

以上説明した本発明の植物の栽培方法によれば、本発明の種子の発芽方法により発芽させた種子を用いるため、発芽後の植物の生長が向上する。また、種子を発芽させる際に用いる水の電気伝導率50μS/cm以下に制御するだけで、それ以降の水の電気伝導率は50μS/cmより大きくてもよいため、作業負担が小さく、コスト面でも有利である。従って、発芽させるときには電気伝導率が50μS/cm以下の水を用いることで、生育を向上させて、その後の育苗、さらには育苗以降の行程を電気伝導率が50μS/cmより大きい水を用いることで、作業効率よく、有利なコストで、好適に植物を栽培することができる。 According to the plant cultivation method of the present invention described above, since the seeds germinated by the seed germination method of the present invention are used, the growth of the plant after germination is improved. In addition, the electrical conductivity of water used for germination of seeds is controlled to 50 μS / cm or less, and the electrical conductivity of water thereafter may be larger than 50 μS / cm, so that the work load is small and the cost is increased. But it is advantageous. Therefore, when sprouting, use water having an electric conductivity of 50 μS / cm or less to improve the growth, and then use water having an electric conductivity of more than 50 μS / cm for the subsequent raising of seedlings and the subsequent process after raising seedlings. Therefore, the plant can be suitably cultivated with high work efficiency and a favorable cost.

種子の発芽方法の他の例としては、種籾の籾殻を取り除いた玄米、さらには玄米の表層部をさらに取り除いてから水を接触させた後、催芽を行って発芽させる方法などが挙げられる。籾殻を取り除いてから、又は玄米の表層部を取り除いてから水を接触させることで、種子に水が接触し易くなるため、発芽が促される。 Other examples of the seed germination method include brown rice from which rice husks have been removed, and a method in which the surface layer of brown rice is further removed, contacted with water, and then germinated to germinate. By contacting the seeds with water after removing the rice husks or the surface layer of brown rice, the seeds are easily brought into contact with water, so that germination is promoted.

なお、玄米の表層部を取り除くとは、表層部全体を取り除くことに加えて、表層部の一部に穴を空ける、一部を傷付ける、一部を削る等、表層部の一部に加工を施すことも含むものとする。 To remove the surface layer of brown rice, in addition to removing the entire surface layer, process a part of the surface layer such as making a hole in a part of the surface layer, damaging a part, or scraping a part. It shall also include giving.

種籾の籾殻を取り除く際は、外エイ部と内エイ部のいずれかを取り除いてもよく、また外エイ部と内エイ部の両方を取り除いてもよい。籾殻を取り除いた種籾に接触させる水は、電気伝導率50μS/cm以下の水が好ましい。なお、電気伝導率が50μS/cmより大きい水を、籾殻を取り除いた種籾に接触させてもよい。 When removing the rice husks of the seed paddy, either the outer ray portion or the inner ray portion may be removed, or both the outer ray portion and the inner ray portion may be removed. The water to be brought into contact with the seed rice from which the rice husks have been removed is preferably water having an electrical conductivity of 50 μS / cm or less. Water having an electric conductivity of more than 50 μS / cm may be brought into contact with the seed rice from which the rice husks have been removed.

玄米の表層部を取り除く際は、外側の果皮部のみを取り除いてもよく、果皮部とその内側の種皮部の両方を取り除いてもよい。 When removing the surface layer portion of brown rice, only the outer pericarp portion may be removed, or both the pericarp portion and the seed coat portion inside the pericarp portion may be removed.

表層部を取り除いた玄米に接触させる水は、電気伝導率50μS/cm以下の水が好ましい。なお、電気伝導率が50μS/cmより大きい水を、表層部を取り除いた玄米に接触させてもよい。 The water to be brought into contact with the brown rice from which the surface layer portion has been removed is preferably water having an electrical conductivity of 50 μS / cm or less. Water having an electric conductivity of more than 50 μS / cm may be brought into contact with brown rice from which the surface layer portion has been removed.

籾殻を取り除いた種籾を用いる方法は、籾殻を取り除いた種籾を用いること、及び、接触させる水が電気伝導率50μS/cm以下の水でも電気伝導率が50μS/cmより大きい水でもよいこと以外は、上記した本発明の発芽方法と同様の態様とすることができる。 The method of using the seed rice with the rice husks removed is that the seed rice with the rice husks removed is used, and the water to be contacted may be water having an electric conductivity of 50 μS / cm or less or water having an electric conductivity of more than 50 μS / cm. , The same embodiment as the germination method of the present invention described above can be used.

表層部を取り除いた玄米を用いる方法は、表層部を取り除いた玄米を用いること、及び、接触させる水が電気伝導率50μS/cm以下の水でも電気伝導率が50μS/cmより大きい水でもよいこと以外は、上記した本発明の発芽方法と同様の態様とすることができる。 The method of using brown rice from which the surface layer has been removed is to use brown rice from which the surface layer has been removed, and the water to be contacted may be water having an electrical conductivity of 50 μS / cm or less or water having an electrical conductivity of more than 50 μS / cm. Other than the above, the same embodiment as the germination method of the present invention can be used.

種籾の籾殻を取り除いた玄米を例としたが、米以外の穀物、例えば、大麦の外皮や、小麦の表皮を取り除いた種子を用いてもよい。 Although brown rice from which rice husks have been removed from seed rice husks has been taken as an example, grains other than rice, for example, barley exodermis and wheat epidermis-removed seeds may be used.

種子の発芽方法の他の例としては、種子及び水に圧力をかけながら浸種し、催芽を行って発芽させる方法も挙げられる。浸種の際に全体に圧力をかけることにより、種子に対する水の接触度合が高められ、種子内部に水が浸透しやすくなるため、発芽が促される。 Another example of the seed germination method includes a method in which seeds and water are soaked under pressure and germinated to germinate. By applying pressure to the whole during soaking, the degree of contact of water with the seeds is increased, and water easily penetrates into the seeds, so that germination is promoted.

浸種の際にかける圧力は、適宜設定することができる。圧力をかけながら種子に接触させる水は、電気伝導率50μS/cm以下の水が好ましい。なお、電気伝導率が50μS/cmより大きい水を種子に接触させてもよい。 The pressure applied during soaking can be set as appropriate. The water to be brought into contact with the seeds while applying pressure is preferably water having an electrical conductivity of 50 μS / cm or less. In addition, water having an electric conductivity of more than 50 μS / cm may be brought into contact with the seeds.

圧力をかけながら浸種する方法は、浸種の際に圧力をかけること、及び、接触させる水が電気伝導率50μS/cm以下の水でも電気伝導率が50μS/cmより大きい水でもよいこと以外は、上記した本発明の発芽方法と同様の態様とすることができる。 The method of soaking while applying pressure is that pressure is applied at the time of seeding, and the water to be contacted may be water having an electric conductivity of 50 μS / cm or less or water having an electric conductivity of more than 50 μS / cm. The same embodiment as the germination method of the present invention described above can be used.

さらに、籾殻や表層部を取り除いた玄米を浸種させる際に、種子及び水に圧力をかけながら浸種してもよい。 Further, when the brown rice from which the rice husks and the surface layer have been removed is soaked, the seeds and water may be soaked while applying pressure.

以上のように、本発明は、電気伝導率50μS/cm以下の水に種子を接触させる工程を含む発芽工程を含む栽培を経て、植物を成育させて、収穫する方法を包含する。本発明によれば植物の生育を向上させ、例えば、葉もの、結実する植物などの植物の生産性を向上させることができる。 As described above, the present invention includes a method of growing and harvesting a plant through cultivation including a germination step including a step of bringing seeds into contact with water having an electric conductivity of 50 μS / cm or less. According to the present invention, the growth of plants can be improved, and the productivity of plants such as leaves and fruit-bearing plants can be improved.

[種子の製造方法]
種子を電気伝導率50μS/cm以下の水に接触させる工程を含む種子の製造方法も本発明の範疇である。種子を電気伝導率50μS/cm以下の水に接触させる工程については、本発明に係る種子の発芽方法の説明に準じ、説明を繰り返さない。本発明の製造方法で得られた種子は、電気伝導率が50μS/cmより大きい水、例えば、上述した原水をそのまま用いて生育させても、発芽させる際に電気伝導率50μS/cmより大きい水で発芽させた種子を用いるより生育が良好である。つまり、本発明の製造方法により、生育用に適した種子を得ることができる。
[Seed manufacturing method]
A method for producing seeds, which comprises a step of bringing seeds into contact with water having an electrical conductivity of 50 μS / cm or less, is also within the scope of the present invention. The step of bringing the seed into contact with water having an electrical conductivity of 50 μS / cm or less is based on the description of the seed germination method according to the present invention, and the description is not repeated. The seeds obtained by the production method of the present invention are water having an electric conductivity of more than 50 μS / cm, for example, water having an electric conductivity of more than 50 μS / cm at the time of germination even if the seeds are grown using the above-mentioned raw water as they are. It grows better than using seeds germinated in. That is, according to the production method of the present invention, seeds suitable for growth can be obtained.

[実施形態2]
本発明の他の実施形態について、以下に説明する。なお、本実施形態では実施形態1と異なる点について主に説明し、実施形態1にて説明した内容については、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present invention will be described below. In this embodiment, the points different from those in the first embodiment will be mainly described, and the description of the contents described in the first embodiment will not be repeated.

[種子の発芽方法]
本実施形態では、耕作地に直播きする種子に対して、直播きする前に、電気伝導率50μS/cm以下の水を接触させる。その後、直播きして耕作地において当該種子は発芽する。電気伝導率50μS/cm以下の水に接触させた種子で発芽前のものを直播きしてもよく、発芽した種子を直播きしてもよい。種子が電気伝導率50μS/cm以下の水に接触しているので、生育が良好である。よって、本実施形態によれば、耕作地に直播きする種子を用いる場合において、良好な生育を実現できる。
[Seed germination method]
In the present embodiment, the seeds to be sown directly on the cultivated land are brought into contact with water having an electrical conductivity of 50 μS / cm or less before being sown directly. Then, the seeds are sown directly and germinated in the cultivated land. Seeds that have been brought into contact with water with an electrical conductivity of 50 μS / cm or less and have not been germinated may be directly sown, or germinated seeds may be directly sown. Since the seeds are in contact with water having an electrical conductivity of 50 μS / cm or less, the seeds grow well. Therefore, according to this embodiment, good growth can be realized when seeds directly sown in cultivated land are used.

電気伝導率50μS/cm以下の水を接触させる前に種子を消毒してもよい。種子を消毒する方法としては、例えば、薬液に浸漬する方法、薬剤を粉衣又は吹き付ける方法、温湯消毒法、冷水温湯浸法、風呂湯浸法、乾熱法等、公知の方法を採用することができる。 Seeds may be disinfected prior to contact with water having an electrical conductivity of 50 μS / cm or less. As a method for disinfecting seeds, for example, a known method such as a method of immersing in a chemical solution, a method of powdering or spraying a chemical, a hot water disinfection method, a cold water hot water immersion method, a bath water immersion method, a dry heat method, etc. shall be adopted. Can be done.

[植物の栽培方法]
本実施形態において、種子は、畑(路地耕作地)等の耕作地に直接播種(直播き)することが好ましい。植物としては、例えば小麦、野菜等が挙げられる。
[Plant cultivation method]
In the present embodiment, it is preferable that the seeds are directly sown (directly sown) in a cultivated land such as a field (alley cultivated land). Examples of plants include wheat and vegetables.

[植物の収穫方法]
本実施形態に係る植物の収穫方法は、本発明の種子の発芽方法により発芽させた種子を用いて栽培された植物を収穫する方法である。植物を収穫する方法としては、特に限定されず、公知の方法を採用することができる。
[Plant harvesting method]
The method for harvesting a plant according to the present embodiment is a method for harvesting a plant cultivated using seeds germinated by the seed germination method of the present invention. The method for harvesting the plant is not particularly limited, and a known method can be adopted.

[実施形態3]
本発明の他の実施形態について、以下に説明する。なお、上述した各実施形態にて説明した内容については、その説明を繰り返さない。
[Embodiment 3]
Other embodiments of the present invention will be described below. The description of the contents described in each of the above-described embodiments will not be repeated.

[植物の栽培方法]
本実施形態に係る植物の栽培方法は、本発明の種子の発芽方法により発芽させた種子を用いて定植用の苗を栽培する方法である。種子が電気伝導率50μS/cm以下の水に接触しているので、定植用の苗の生育が良好である。種子は、苗ポッド等の苗床に播種して育苗することが好ましい。
[Plant cultivation method]
The method for cultivating a plant according to the present embodiment is a method for cultivating seedlings for planting using seeds germinated by the seed germination method of the present invention. Since the seeds are in contact with water having an electrical conductivity of 50 μS / cm or less, the seedlings for planting grow well. The seeds are preferably sown in a nursery such as a seedling pod to raise seedlings.

本実施形態に係る植物の栽培方法では、定植用の苗を定植することが好ましい。定植用の苗は、培地に移植して栽培することが好ましい。培地としては、例えば畑等の耕作地、植物工場等の栽培用培地等が挙げられる。植物としては、例えば野菜等が挙げられる。 In the plant cultivation method according to the present embodiment, it is preferable to plant seedlings for planting. The seedlings for planting are preferably transplanted to a medium and cultivated. Examples of the medium include cultivated land such as fields, cultivation media such as plant factories, and the like. Examples of plants include vegetables and the like.

[植物の収穫方法]
本実施形態に係る植物の収穫方法は、定植した定植用の苗を生育し、生育した植物を収穫する方法である。植物を収穫する方法としては、特に限定されず、公知の方法を採用することができる。
[Plant harvesting method]
The method of harvesting a plant according to the present embodiment is a method of growing planted seedlings for planting and harvesting the grown plant. The method for harvesting the plant is not particularly limited, and a known method can be adopted.

[作物]
本発明の各方法によって得られる作物も本発明の範疇である。例えば、種子が水稲の種籾である形態においては、得られる米も本発明の範疇である。本発明の各方法によれば、種子が水稲の種籾である形態において、例えば、平均整粒全長5.3mm以上、且つ平均心白率88%以上の米を好適に得ることができる。
[produce]
Crops obtained by each method of the present invention are also within the scope of the present invention. For example, in the form in which the seeds are paddy rice seeds, the obtained rice is also within the scope of the present invention. According to each method of the present invention, in the form in which the seeds are paddy rice seeds, for example, rice having an average grain size of 5.3 mm or more and an average heart whiteness ratio of 88% or more can be preferably obtained.

[接ぎ木苗]
本発明は、上述した各方法により栽培された植物を台木として接ぎ木苗を作製する、接ぎ木苗の作製方法、及び当該接ぎ木苗の作製方法により作製された接ぎ木苗を包含する。当該接ぎ木苗の作製方法は、接ぎ木苗を利用する果菜類に好適に用いることができる。果菜類としては、例えば、メロン、スイカ、キュウリ等のウリ類、トマト、ナス、ピーマン等が挙げられる。例えば、病虫害に強い品種の台木に、美味しい実を多く付ける品種の穂木を繋ぎ合わせることにより、病虫害に強い上に、美味しい実を多く付ける接ぎ木苗を作製することができる。上述した各方法により栽培された植物は、根量が多いため、当該植物を台木とすることにより、より強い接ぎ木苗を作製することができる。
[Grafted seedlings]
The present invention includes a method for producing a grafted seedling, in which a grafted seedling is produced using a plant cultivated by each of the above-mentioned methods as a rootstock, and a grafted seedling produced by the method for producing the grafted seedling. The method for producing grafted seedlings can be suitably used for fruits and vegetables that utilize grafted seedlings. Examples of fruit vegetables include melons such as melons, watermelons and cucumbers, tomatoes, eggplants and green peppers. For example, by connecting a rootstock of a variety that is resistant to pests and a scion of a variety that produces many delicious fruits, it is possible to produce grafted seedlings that are resistant to pests and produce many delicious fruits. Since the plants cultivated by each of the above-mentioned methods have a large amount of roots, stronger grafted seedlings can be produced by using the plant as a rootstock.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description.

[電気伝導率の測定方法]
水の電気伝導率は、電極方式の卓上型水質計(東亜ディーケーケー株式会社製)により測定した。
[Measurement method of electrical conductivity]
The electrical conductivity of water was measured with an electrode-type tabletop water quality meter (manufactured by DKK-TOA CORPORATION).

[実施例1]
種籾としては、コシヒカリ米の種籾を使用した。種籾を種子消毒した後に風乾し、電気伝導率2μS/cm以下(25℃)の水を用いて浸種を行った。浸種においては、48Lの水に28kgの種籾を浸した。浸種における水温は10℃〜15℃に保ち、水を入れ替える際も全て電気伝導率2μS/cm以下を使用した。浸種期間は10日間とした。浸種後、水温を30℃まで上昇させて催芽を行い発芽させた。発芽した種籾を育苗箱内の床土に播種し、覆土して育苗し、充分に生長した苗を屋外の水田に植えて栽培し、成熟した稲を刈り取った。栽培時は、農業用水から引いた電気伝導率77μS/cmの水を利用した。
[Example 1]
As the seed paddy, Koshihikari rice seed paddy was used. The seed paddy was disinfected with seeds, air-dried, and soaked with water having an electrical conductivity of 2 μS / cm or less (25 ° C.). In soaking, 28 kg of paddy was soaked in 48 L of water. The water temperature in the soaking was kept at 10 ° C. to 15 ° C., and the electric conductivity of 2 μS / cm or less was used even when the water was replaced. The soaking period was 10 days. After soaking, the water temperature was raised to 30 ° C. to germinate and germinate. The germinated rice seeds were sown on the floor soil in the nursery box, covered with soil to raise seedlings, and fully grown seedlings were planted and cultivated in outdoor paddy fields, and mature rice was harvested. At the time of cultivation, water having an electric conductivity of 77 μS / cm drawn from agricultural water was used.

収穫した稲穂の平均稈長、平均稈径、1穂あたりの平均籾数、及び籾の平均長さを表1に示す。なお、平均稈長、平均稈径、1穂あたりの平均籾数については、無作為に選択した10本の稲穂について計測した値の平均とした。また、無作為に選択した10粒の籾の最長径の平均値を籾の平均長さとした。また、表1には、一般的なコシヒカリ米における稲穂の平均稈長、平均稈径、1穂あたりの平均籾数、及び籾の平均長さも示した。 Table 1 shows the average culm length, average culm diameter, average number of paddy per ear, and average paddy length of the harvested rice ears. The average culm length, average culm diameter, and average number of paddy per ear were averaged from the values measured for 10 randomly selected rice ears. In addition, the average value of the longest diameters of 10 randomly selected paddy grains was defined as the average length of the paddy. Table 1 also shows the average culm length, average culm diameter, and average number of paddy per ear in general Koshihikari rice, and the average length of paddy.

また、稲穂が直立している状態を0、完全倒伏している状態を4とし、傾斜角度を均等に区分することにより稲穂の倒伏程度を評価した。

Figure 2019225606
Further, the state in which the ear of rice was upright was set to 0, the state in which the ear was completely collapsed was set to 4, and the degree of lodging of the ear was evaluated by evenly dividing the inclination angle.
Figure 2019225606

表1に示すように、電気伝導率50μS/cm以下の水を用いて種籾を発芽させた実施例1では、一般的なコシヒカリ米に比べて、生育が良く、収穫された籾が大きく、平均籾数が多く収量も向上した。また、稲穂の平均稈長が長く籾数が多いものの、稲穂の平均稈径が太く、倒伏程度3以上はほとんど見られなかった。 As shown in Table 1, in Example 1 in which seed paddy was germinated using water having an electrical conductivity of 50 μS / cm or less, the growth was better, the harvested paddy was larger, and the average was higher than that of general Koshihikari rice. The number of paddy was large and the yield was improved. In addition, although the average culm length of the rice ears was long and the number of paddy was large, the average culm diameter of the rice ears was large, and the degree of lodging of 3 or more was hardly observed.

[実施例2]
種籾としてコシヒカリ米の種籾を使用し、浸種前に種籾の種子消毒は行わず、電気伝導率2μS/cm以下の水を用いて浸種を行なった。浸種においては、48Lの水に28kgの種籾を浸した。浸種における水温は10℃〜15℃に保ち、水を入れ替える際も全て電気伝導率2μS/cm以下の水を使用した。浸種期間は10日間とした。浸種後、水温を30℃まで上昇させて催芽を行い発芽させた。発芽した種籾を育苗箱内の床土に播種し、覆土して育苗した。充分に生長させた田植え前の苗を無作為に10本採取し、草丈、茎径(最長径、最短径)を測定して平均値を求めた。結果を表2に示す。
[Example 2]
Koshihikari rice seeds were used as seeds, and the seeds were not disinfected before soaking, but were soaked with water having an electrical conductivity of 2 μS / cm or less. In soaking, 28 kg of paddy was soaked in 48 L of water. The water temperature in the soaking was maintained at 10 ° C. to 15 ° C., and water having an electrical conductivity of 2 μS / cm or less was used when replacing the water. The soaking period was 10 days. After soaking, the water temperature was raised to 30 ° C. to germinate and germinate. The germinated seed paddy was sown on the floor soil in the nursery box, covered with soil, and raised. Ten fully grown seedlings before rice planting were randomly collected, and the plant height and stem diameter (longest diameter, shortest diameter) were measured to obtain the average value. The results are shown in Table 2.

[比較例1]
浸種及び催芽に井戸水(電気伝導率184μS/cm)を用いた以外は実施例2と同じ条件で、浸種、催芽及び育苗を行い、田植え前の苗を無作為に10本採取し、草丈、茎径(最長径、最短径)を測定して平均値を求めた。結果を表2に示す。

Figure 2019225606
[Comparative Example 1]
Under the same conditions as in Example 2 except that well water (electrical conductivity 184 μS / cm) was used for soaking and germination, soaking, germination and raising seedlings were carried out, and 10 seedlings before rice planting were randomly collected, and the plant height and stems were collected. The diameter (longest diameter, shortest diameter) was measured and the average value was calculated. The results are shown in Table 2.
Figure 2019225606

表2に示すように、電気伝導率50μS/cm以下の水を用いて発芽させた実施例2の苗は、電気伝導率が50μS/cmを超える井戸水を用いて発芽させた比較例1の苗に比べて、草丈が高く、茎径も太く、生長がより良好であった。 As shown in Table 2, the seedlings of Example 2 germinated with water having an electrical conductivity of 50 μS / cm or less are the seedlings of Comparative Example 1 germinated with well water having an electrical conductivity of more than 50 μS / cm. The plant height was higher, the stem diameter was larger, and the growth was better.

[実施例3]
試験培土として赤玉土/腐葉土を2/1の割合(体積比)で混ぜた養土を用意した。プラスチック製のバケツ内に試験培土を入れ、培土の表面上まで水が溜まるように水道の水(電気伝導率71μS/cm)を入れて試験用の簡易水田を作製した。実施例2で育苗した苗を前記簡易水田に1本植えて栽培し、20日後、風速13m/秒の状況下で該苗の倒伏角度を測定した。苗の倒伏角度は15度であった。
[Example 3]
As a test soil, a soil containing Akadama soil / humus soil at a ratio of 2/1 (volume ratio) was prepared. The test hilling was placed in a plastic bucket, and tap water (electrical conductivity 71 μS / cm) was added so that water could collect on the surface of the hilling to prepare a simple paddy field for testing. One seedling raised in Example 2 was planted in the simple paddy field and cultivated, and 20 days later, the lodging angle of the seedling was measured under the condition of a wind speed of 13 m / sec. The lodging angle of the seedlings was 15 degrees.

[比較例2]
実施例2で育苗した苗の代わりに比較例1で育苗した苗を用いた以外は実施例3と同様にして、苗を植えてから20日後に風速13m/秒の状況下で該苗の倒伏角度を測定した。苗の倒伏角度は33度であった。
[Comparative Example 2]
20 days after planting the seedlings, the seedlings fell under the condition of a wind speed of 13 m / sec, except that the seedlings raised in Comparative Example 1 were used instead of the seedlings raised in Example 2. The angle was measured. The lodging angle of the seedlings was 33 degrees.

実施例3と比較例2を比較すると、電気伝導率50μS/cm以下の水を用いて発芽させた実施例3の苗は、電気伝導度が50を超える井戸水を用いて発芽させた比較例2の苗よりも倒伏角度が小さく、苗の生長がより良好であった。 Comparing Example 3 and Comparative Example 2, the seedlings of Example 3 germinated with water having an electrical conductivity of 50 μS / cm or less were germinated with well water having an electrical conductivity of more than 50 in Comparative Example 2. The lodging angle was smaller than that of the seedlings, and the seedlings grew better.

[実施例4]
実施例2で育苗した苗3本を1株として水田に植えて栽培した。栽培時は、農業用水から引いた電気伝導率184μS/cmの水を利用した。田植えから36日後に、それぞれ連続して植えた10株について、各株におけるそれぞれの苗の分げつ数を計測し、平均値を算出した。結果を図1に示す。なお、苗の分げつとは、根に近い茎の関節から発生した側枝のことである。
[Example 4]
Three seedlings raised in Example 2 were planted and cultivated in paddy fields as one strain. At the time of cultivation, water having an electric conductivity of 184 μS / cm drawn from agricultural water was used. Thirty-six days after rice planting, the number of tillers of each seedling in each of the 10 strains planted consecutively was measured, and the average value was calculated. The results are shown in FIG. The seedling branch is a side branch generated from the joint of the stem near the root.

[比較例3]
実施例2で育苗した苗の代わりに比較例1で育苗した苗を用いた以外は、実施例4と同様にして、水田に苗を植えてから36日後の該苗の分げつ数の平均値を求めた。結果を図1に示す。
[Comparative Example 3]
The average number of tillers of the seedlings 36 days after planting the seedlings in the paddy field was the same as in Example 4 except that the seedlings raised in Comparative Example 1 were used instead of the seedlings raised in Example 2. The value was calculated. The results are shown in FIG.

図1に示すように、電気伝導率50μS/cm以下の水を用いて発芽させた実施例4の苗は、電気伝導率が50μS/cmを超える井戸水を用いて発芽させた比較例3の苗に比べて平均分げつ数が多く、苗の生長がより良好であった。 As shown in FIG. 1, the seedlings of Example 4 germinated with water having an electrical conductivity of 50 μS / cm or less are the seedlings of Comparative Example 3 germinated with well water having an electrical conductivity of more than 50 μS / cm. The average number of tillers was higher and the seedlings grew better.

[実施例5]
直径40mm、高さ80mmの円筒状の容器内を電気伝導率2μS/cm以下の水で満たし、日本晴米の種籾を入れ、水温28℃にて暗部で5日間静置した。静置後における発芽した種籾の子葉鞘の長さを測定した。同条件で静置した後の10個の種籾の子葉鞘の平均長さを図2に示す。
[Example 5]
The inside of a cylindrical container having a diameter of 40 mm and a height of 80 mm was filled with water having an electrical conductivity of 2 μS / cm or less, seeds of Japanese fine rice were put in the container, and the container was allowed to stand in a dark place at a water temperature of 28 ° C. for 5 days. The length of the coleoptile of the germinated seed paddy after standing was measured. FIG. 2 shows the average length of the coleoptiles of 10 seed paddies after being allowed to stand under the same conditions.

[比較例4]
電気伝導率595μS/cmの水を用いた以外は、実施例5と同様にして、静置後の種籾の子葉鞘の平均長さを求めた。結果を図2に示す。
[Comparative Example 4]
The average length of the coleoptiles of the seed paddy after standing was determined in the same manner as in Example 5 except that water having an electric conductivity of 595 μS / cm was used. The results are shown in FIG.

図2に示すように、電気伝導率50μS/cm以下の水を用いて発芽させた実施例5の種籾の子葉鞘は、電気伝導率50μS/cmより大きい水を用いて発芽させた比較例4の種籾の子葉鞘に比べて長く、生長がより良好であった。 As shown in FIG. 2, the coleoptiles of the seed paddy of Example 5 germinated with water having an electric conductivity of 50 μS / cm or less were germinated with water having an electric conductivity of more than 50 μS / cm. It was longer and grew better than the coleoptiles of the seed paddy.

[実施例6〜9、比較例5、6]
種籾として、29年度日本晴れを用いた。種籾10粒と実施例6〜9、比較例5、6の各サンプル水100mLをガラスボトルに入れたものを各測定日毎に4本となるように準備した。遮光のためプラスチックケース内に1測定日分ずつ、各サンプル水がランダムな状態になるように配置して、15℃の恒温槽に格納した。13日で各サンプル水から種籾を取り出し、子葉鞘の長さを測定した。結果を図3に示す。なお、恒温槽に格納している時、3〜4日毎にプラスチックケースの位置を適宜変更した。また、実施例6〜9、比較例5、6の各サンプル水の電気伝導率を表3に示す。また、実施例6〜9の各サンプル水を、それぞれ純水器(三菱ケミカル・アクアソリューション社製C−10P、濾材:ダイヤイオンMIX品)を用いて、原水(豊橋市水道水)を処理することで作製した。また、比較例5の水は豊橋市内で入手した水道水であり、比較例6の水は京丹後市内で入手した井戸水である。
[Examples 6 to 9, Comparative Examples 5 and 6]
As the seed paddy, 2017 Japan Sunny was used. 10 seeds and 100 mL of each sample water of Examples 6 to 9 and Comparative Examples 5 and 6 were put in a glass bottle and prepared so as to be 4 bottles for each measurement day. For shading, each sample water was arranged in a plastic case for one measurement day in a random state, and stored in a constant temperature bath at 15 ° C. Seed paddy was removed from each sample water on the 13th, and the length of the coleoptile was measured. The results are shown in FIG. When stored in the constant temperature bath, the position of the plastic case was changed every 3 to 4 days. Table 3 shows the electrical conductivity of each sample water of Examples 6 to 9 and Comparative Examples 5 and 6. In addition, each sample water of Examples 6 to 9 is treated with raw water (Toyohashi City tap water) using a water purifier (C-10P manufactured by Mitsubishi Chemical Aqua Solution Co., Ltd., filter medium: Diaion MIX product). I made it. The water of Comparative Example 5 is tap water obtained in Toyohashi City, and the water of Comparative Example 6 is well water obtained in Kyotango City.

Figure 2019225606
Figure 2019225606

図3に示すように、電気伝導率50μS/cm以下の水を用いて発芽させた実施例6〜9の種籾の子葉鞘は、電気伝導率50μS/cmより大きい水を用いて発芽させた比較例5、6の種籾の子葉鞘に比べて長く、生長がより良好であった。 As shown in FIG. 3, the coleoptiles of the seed paddy of Examples 6 to 9 germinated with water having an electric conductivity of 50 μS / cm or less were germinated with water having an electric conductivity of more than 50 μS / cm. It was longer and had better growth than the coleoptiles of the seed paddy of Examples 5 and 6.

[実施例10、比較例7]
五百万石米の種籾を種子消毒した後に風乾し、電気伝導率2μS/cm以下(25℃)の水を用いて浸種を行なった。実施例6と純水器を用いて、井戸水(電気伝導率73μS/cm)を用いて処理することで得た。種における水温は10℃〜15℃に保ち、水を入れ替える際も全て電気伝導率2μS/cm以下の水を使用した。浸種期間は10日間とした。浸種後、水温を30℃まで上昇させて催芽を行い発芽させた。発芽した種籾を育苗箱内の床土に播種し、覆土して井戸水(電気伝導率73μS/cm)で育苗し、充分に生長した苗を屋外の水田に植えて栽培し、成熟した稲を刈り取った。栽培時は、農業用水から引いた水を利用した。水田へ供給した農業用水は50μS/cmより大きい水であった。
[Example 10, Comparative Example 7]
After disinfecting the seeds of Gohyakumangoku rice, the seeds were air-dried and soaked in water having an electrical conductivity of 2 μS / cm or less (25 ° C.). It was obtained by treating with well water (electrical conductivity 73 μS / cm) using Example 6 and a pure water device. The water temperature in the seeds was kept at 10 ° C. to 15 ° C., and water having an electrical conductivity of 2 μS / cm or less was used when replacing the water. The soaking period was 10 days. After soaking, the water temperature was raised to 30 ° C. to germinate and germinate. The germinated rice seeds are sown on the floor soil in the nursery box, covered with soil and raised in well water (electrical conductivity 73 μS / cm), and fully grown seedlings are planted and cultivated in outdoor paddy fields, and mature rice is harvested. It was. During cultivation, water drawn from agricultural water was used. The agricultural water supplied to the paddy fields was larger than 50 μS / cm.

比較例7として、浸種及び催芽に井戸水(電気伝導率73μS/cm)を用いた以外は実施例10と同じ条件で、浸種、催芽、育苗、定植、圃場での栽培を行った。 As Comparative Example 7, soaking, germination, raising seedlings, planting, and cultivation in the field were carried out under the same conditions as in Example 10 except that well water (electrical conductivity 73 μS / cm) was used for soaking and germination.

評価用として、実施例10の条件で栽培したものから1株、比較例7の条件で栽培したものから1株の、各1株を圃場に定植(田植え)して、収穫した稲穂の収量を比較した。比較した項目は、籾数、整粒の数、重さ、全長、幅、厚み、心白率、玄米の千粒重である。実施例10の1株には17の穂が生った。比較例7の1株には13の穂が生った。結果を表4に示す。なお、表4に示す「平均」は、全粒計測の平均値である。整粒全長はデジタルノギスを使用して計測した。心白率は米粒透視器により計測した。

Figure 2019225606
For evaluation, one strain from the one cultivated under the conditions of Example 10 and one strain from the one cultivated under the conditions of Comparative Example 7 were planted (rice planted) in the field, and the yield of the harvested rice ears was measured. Compared. The items compared were the number of paddy, the number of sized grains, the weight, the total length, the width, the thickness, the whitening ratio, and the 1000-grain weight of brown rice. 17 ears were grown in one strain of Example 10. Thirteen ears were grown in one strain of Comparative Example 7. The results are shown in Table 4. The "average" shown in Table 4 is an average value of whole grain measurement. The total length of sizing was measured using a digital caliper. The whitening rate was measured with a rice grain fluoroscope.
Figure 2019225606

表4に示すように実施例10の方が、穂数が多く、一粒当たりの大きさも大きかった。また、実施例10の米は、平均整粒全長5.3mm以上、且つ平均心白率88%以上であった。 As shown in Table 4, Example 10 had a larger number of ears and a larger size per grain. In addition, the rice of Example 10 had an average sizing total length of 5.3 mm or more and an average whitening rate of 88% or more.

[実施例11、比較例8]
種籾(山田錦)を、薬剤を水道水にて希釈した消毒液に24時間浸漬して種子消毒を行ない、その後、種子を浸漬させる水を電気伝導率3μS/cm以下(25℃)の水に入れ替えて浸種を行なった。実施例6と純水器を用いて水道水(電気伝導率142μS/cm)を用いて処理することで得た。種における水温は10℃〜15℃に保ち、水を入れ替える際も全て電気伝導率2μS/cm以下の水を使用した。浸種期間は10日間とした。浸種後、水温を30℃まで上昇させて催芽を行い発芽させた。
[Example 11, Comparative Example 8]
Seed paddy (Yamada Nishiki) is soaked in a disinfectant solution diluted with tap water for 24 hours to disinfect the seeds, and then the water in which the seeds are soaked is made into water with an electrical conductivity of 3 μS / cm or less (25 ° C). The seeds were replaced and soaked. It was obtained by treating with tap water (electrical conductivity 142 μS / cm) using Example 6 and a pure water device. The water temperature in the seeds was kept at 10 ° C. to 15 ° C., and water having an electrical conductivity of 2 μS / cm or less was used when replacing the water. The soaking period was 10 days. After soaking, the water temperature was raised to 30 ° C. to germinate and germinate.

比較例8として、浸種及び催芽に水道水(電気伝導率142μS/cm)を用いた以外は実施例11と同じ条件で、浸種、催芽を行った。 As Comparative Example 8, soaking and germination were carried out under the same conditions as in Example 11 except that tap water (electrical conductivity 142 μS / cm) was used for soaking and germination.

実施例11、比較例8で得られた20株の根について観察及び根の長さの測定を行った。結果を図4及び図5に示す。図4は苗の根を観察した結果を示す図である。実施例11及び比較例8の苗をそれぞれ20本束ねて撮影した結果を示す。図5は苗の根の長さを示したグラフである。図4に示すように、実施例11の方が比較例8より根量が多くなった。具体的には、実施例11の方が比較例8より1.2倍以上の根量であった。また、図5に示すように、実施例11の方が比較例8より根の長さが長くなった。 The roots of the 20 strains obtained in Example 11 and Comparative Example 8 were observed and the root length was measured. The results are shown in FIGS. 4 and 5. FIG. 4 is a diagram showing the results of observing the roots of seedlings. The results of photographing 20 seedlings of Example 11 and Comparative Example 8 in a bundle are shown. FIG. 5 is a graph showing the root length of seedlings. As shown in FIG. 4, the amount of roots in Example 11 was larger than that in Comparative Example 8. Specifically, Example 11 had a root amount 1.2 times or more that of Comparative Example 8. Further, as shown in FIG. 5, the root length of Example 11 was longer than that of Comparative Example 8.

[実施例12、比較例9]
<種子>
葉菜類の種子として、ホウレンソウの種子(品種名:NPL8号(三菱ケミカルアグリドリーム株式会社))を用いた。
<培地>
種子の播種用培地は、微粒綿ロックウール(三菱ケミカルアグリドリーム株式会社製「バイドン」(登録商標))を使用した。
[Example 12, Comparative Example 9]
<Seeds>
Spinach seeds (variety name: NPL8 (Mitsubishi Chemical Agridream Co., Ltd.)) were used as leafy vegetable seeds.
<Medium>
As the seed sowing medium, fine cotton rock wool (“Bydon” (registered trademark) manufactured by Mitsubishi Chemical Agridream Co., Ltd.) was used.

<播種〜発芽工程>
288穴のセルトレイのそれぞれに、播種用培地を適量充填し、上記ホウレンソウの種子を5粒以上/1穴となるよう播種し、覆土した。実施例12、比較例9のそれぞれにおいて、セルトレイ2枚ずつの計4枚となるよう、これを行った。次いで、表5に示す水を用い、ジョウロで1セルトレイあたり、1000mlとなるよう上から灌水した。
<Sowing-germination process>
Each of the 288-hole cell trays was filled with an appropriate amount of a seeding medium, and the spinach seeds were sown so as to have 5 or more seeds / 1 hole, and covered with soil. In each of Example 12 and Comparative Example 9, this was done so that there were a total of four cell trays, two each. Then, using the water shown in Table 5, the watering can was irrigated from above so as to be 1000 ml per cell tray.

灌水後、重ねたセルトレイに防水シートを被せ、湿度100%、気温22℃、暗環境下で、表5に示す各発芽工程期間(日数)静置された。なお、この発芽モジュール(重ねたセルトレイに防水シートを被せたもの)は、苗の実用生産施設内の空き空間に静置した。 After irrigation, the stacked cell trays were covered with a waterproof sheet and allowed to stand for each germination process period (days) shown in Table 5 under a humidity of 100%, a temperature of 22 ° C., and a dark environment. This germination module (a stack of cell trays covered with a tarpaulin) was placed in an empty space in a practical production facility for seedlings.

<育苗工程>
発芽工程期間経過後、セルトレイを苗の実用生産施設である閉鎖型育苗施設(三菱ケミカルアグリドリーム株式会社製「苗テラス」(登録商標))内の多段棚式育苗装置に移し、8日間育苗工程を行った。すなわち、育苗工程は、遮光性構造物内で人工光を用いて行った。
<Seedling process>
After the germination process period has passed, the cell tray is moved to a multi-stage shelf type seedling raising device in a closed type seedling raising facility (“Sapling Terrace” (registered trademark) manufactured by Mitsubishi Chemical Agridream Co., Ltd.), which is a practical production facility for seedlings, and the seedling raising process is performed for 8 days. Was done. That is, the seedling raising step was carried out using artificial light in the light-shielding structure.

この育苗工程では、1日のうち、明環境を12時間、暗環境を12時間とした。遮光性構造物内の温度は、明環境時では22℃、暗環境時では19℃に設定した。また、遮光性構造物内のCO濃度は、明環境、暗環境いずれにおいても1000ppmとした。育苗工程では、600秒/1日で、電気伝導率1500μS/cm(1.5mS/cm)に調製された養液を与えて灌水を行った。In this seedling raising process, the bright environment was set to 12 hours and the dark environment was set to 12 hours in a day. The temperature inside the light-shielding structure was set to 22 ° C. in a bright environment and 19 ° C. in a dark environment. The CO 2 concentration in the light-shielding structure was 1000 ppm in both a bright environment and a dark environment. In the seedling raising step, irrigation was carried out by giving a nutrient solution prepared at an electric conductivity of 1500 μS / cm (1.5 mS / cm) in 600 seconds / day.

Figure 2019225606
Figure 2019225606

<定植〜栽培工程>
育苗工程で得られた実施例12及び比較例9の各苗を同一の日時に、太陽光を利用する圃場に定植した。ここで、定植するときの最大葉長(10個体平均)を測定し、表6に記載する。
<Planting-cultivation process>
The seedlings of Example 12 and Comparative Example 9 obtained in the seedling raising step were planted at the same date and time in a field using sunlight. Here, the maximum leaf length (average of 10 individuals) at the time of planting is measured and shown in Table 6.

当該圃場は、水耕栽培システム(三菱ケミカルアグリドリーム株式会社製「ナッパーランド」(登録商標))6を有する温室である。 The field is a greenhouse having a hydroponic cultivation system (“Napperland” (registered trademark) manufactured by Mitsubishi Chemical Agridream Co., Ltd.) 6.

この水耕栽培システムでは、栽培ベッドが、長手方向の一端部から他端部に向けて流水勾配を有するように約1/100の勾配で設置されている。これにより、該栽培ベッド列の長手方向における上流から下流にかけて流水路を有する薄膜水耕機構を有するものとなる。 In this hydroponic cultivation system, the cultivation bed is installed with a gradient of about 1/100 so as to have a running water gradient from one end to the other end in the longitudinal direction. As a result, it has a thin film hydroponic mechanism having a running channel from the upstream to the downstream in the longitudinal direction of the cultivation bed row.

この工程では、電気伝導率3000μS/cm(EC3.0dS/m)(温度:20℃、硝酸態窒素;14me/L、リン酸:4me/L、カリウム:10me/L)に調製された養液を用いた。この養液は毎分10リットルの流量で、植物が定植された栽培ベッドに供給した。 In this step, a nutrient solution prepared to have an electrical conductivity of 3000 μS / cm (EC3.0 dS / m) (temperature: 20 ° C., nitrate nitrogen; 14 me / L, phosphoric acid: 4 me / L, potassium: 10 me / L). Was used. This nutrient solution was supplied to the cultivation bed in which the plants were planted at a flow rate of 10 liters per minute.

定植後15日間を養液(電気伝導率3000μS/cm)(EC3.0dS/m)で栽培し、定植後16日目に、養液を水に替えて供給して栽培し、定植後18日目に収穫し、収穫時の最大葉長(3株平均、1株に5個体あるうちの大きい1個体を3株分みて、平均値)及び葉数(3株平均)を測定した。結果を表6に示す。 Cultivated in a nutrient solution (electrical conductivity 3000 μS / cm) (EC3.0 dS / m) for 15 days after planting, and on the 16th day after planting, the nutrient solution was replaced with water for cultivation, and 18 days after planting. The eyes were harvested, and the maximum leaf length at the time of harvest (average of 3 strains, average value of 3 large ones out of 5 individuals per strain) and the number of leaves (average of 3 strains) were measured. The results are shown in Table 6.

Figure 2019225606
Figure 2019225606

表6の通り、発芽時の水を電気伝導率5μS/cmとした実施例1によると、発芽工程期間を短縮しても、収穫される葉菜類の最大葉長や葉数が十分であることが分かった。すなわち、植物栽培、あるいは育苗における、発芽期間を短縮できることが示された。 As shown in Table 6, according to Example 1 in which the water at the time of germination was 5 μS / cm in electrical conductivity, the maximum leaf length and the number of leaves of the leafy vegetables to be harvested were sufficient even if the germination process period was shortened. Do you get it. That is, it was shown that the germination period can be shortened in plant cultivation or seedling raising.

[実施例13]
発芽工程日数及び育苗工程日数を表7に示す通りとしたこと以外は実施例12と同一条件で実施例13の栽培を行った。結果を表7に示す。
[Example 13]
Example 13 was cultivated under the same conditions as in Example 12 except that the number of days for germination and the number of days for raising seedlings were as shown in Table 7. The results are shown in Table 7.

Figure 2019225606
Figure 2019225606

表7より、本発明方法によると、育苗工程期間を短縮しても、収穫される葉菜類の最大葉長や葉数が十分であることが分かった。すなわち、育苗期間を短縮できることが示された。 From Table 7, according to the method of the present invention, it was found that the maximum leaf length and the number of leaves of the leafy vegetables to be harvested were sufficient even if the seedling raising process period was shortened. That is, it was shown that the seedling raising period can be shortened.

本発明方法によって育苗された苗は、軸が太く、根張りが良く、葉がひょろっと伸びておらず、地上部がぎゅっとしており、根がどっしりしたものであることが認められた。 It was found that the seedlings raised by the method of the present invention had thick shafts, good rooting, loose leaves, tight above-ground parts, and solid roots.

Claims (19)

種子を電気伝導率50μS/cm以下の水に接触させる工程を含むことを特徴とする種子の発芽方法。 A method for germination of seeds, which comprises a step of bringing the seeds into contact with water having an electrical conductivity of 50 μS / cm or less. 請求項1記載の種子の発芽方法により発芽した種子を用いて植物を栽培する、植物の栽培方法。 A method for cultivating a plant, wherein the plant is cultivated using the seed germinated by the seed germination method according to claim 1. 前記発芽した種子を、電気伝導率が50μS/cmより大きい水を用いて育苗する、請求項2に記載の植物の栽培方法。 The method for cultivating a plant according to claim 2, wherein the germinated seeds are raised using water having an electrical conductivity of more than 50 μS / cm. 前記種子がイネ科の種子である、請求項2又は3記載の植物の栽培方法。 The method for cultivating a plant according to claim 2 or 3, wherein the seed is a seed of the Gramineae family. 前記種子が水稲の種籾である、請求項4記載の植物の栽培方法。 The method for cultivating a plant according to claim 4, wherein the seed is a seed paddy of paddy rice. 電気伝導率50μS/cm以下の水に接触させた種子。 Seeds exposed to water with an electrical conductivity of 50 μS / cm or less. 発芽している請求項6記載の種子。 The seed according to claim 6, which is germinating. イネ科の種子である、請求項6又は7に記載の種子。 The seed according to claim 6 or 7, which is a seed of the Gramineae family. 水稲の種籾である、請求項6〜8のいずれか一項に記載の種子。 The seed according to any one of claims 6 to 8, which is a seed paddy of paddy rice. 麦の種子である、請求項6〜8のいずれか一項に記載の種子。 The seed according to any one of claims 6 to 8, which is a wheat seed. 種子を電気伝導率50μS/cm以下の水に接触させる工程を含むことを特徴とする種子の製造方法。 A method for producing seeds, which comprises a step of bringing seeds into contact with water having an electrical conductivity of 50 μS / cm or less. 前記植物が定植用の苗である、請求項2記載の植物の栽培方法。 The method for cultivating a plant according to claim 2, wherein the plant is a seedling for planting. 前記定植用の苗を定植する、請求項12記載の植物の栽培方法。 The method for cultivating a plant according to claim 12, wherein the seedlings for planting are planted. 請求項2記載の植物の栽培方法により栽培された植物を収穫する植物の収穫方法。 A method for harvesting a plant for harvesting a plant cultivated by the method for cultivating a plant according to claim 2. 請求項13記載の植物の栽培方法により定植された定植用の苗を生育し、生育した植物を収穫する植物の収穫方法。 A method for harvesting a plant in which seedlings for planting planted by the method for cultivating a plant according to claim 13 are grown and the grown plant is harvested. 請求項6又は7記載の種子を播種し、植物を栽培する植物の栽培方法。 A method for cultivating a plant in which the seed according to claim 6 or 7 is sown and the plant is cultivated. 請求項6又は7記載の種子を播種し、栽培された植物を収穫する植物の収穫方法。 A method for harvesting a plant in which the seed according to claim 6 or 7 is sown and the cultivated plant is harvested. 平均整粒全長5.3mm以上、且つ平均心白率88%以上の米。 Rice with an average grain size of 5.3 mm or more and an average whitening rate of 88% or more. 請求項2記載の植物の栽培方法により栽培された植物を台木として接ぎ木苗を作製する、接ぎ木苗の作製方法。 A method for producing grafted seedlings, wherein grafted seedlings are produced using the plant cultivated by the plant cultivation method according to claim 2 as a rootstock.
JP2020521254A 2018-05-21 2019-05-21 Seed germination method, plant cultivation method, seed and seed production method, and rice Pending JPWO2019225606A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018097441 2018-05-21
JP2018097441 2018-05-21
JP2019014822 2019-01-30
JP2019014822 2019-01-30
PCT/JP2019/020117 WO2019225606A1 (en) 2018-05-21 2019-05-21 Seed germination method, plant cultivation method, seed and seed production method, and rice

Publications (1)

Publication Number Publication Date
JPWO2019225606A1 true JPWO2019225606A1 (en) 2021-07-08

Family

ID=68615817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020521254A Pending JPWO2019225606A1 (en) 2018-05-21 2019-05-21 Seed germination method, plant cultivation method, seed and seed production method, and rice

Country Status (2)

Country Link
JP (1) JPWO2019225606A1 (en)
WO (1) WO2019225606A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113142005A (en) * 2021-04-27 2021-07-23 云南立达尔生物科技有限公司 Production and planting method of marigold seeds
CN113016270B (en) * 2021-05-07 2022-03-15 上海农科种子种苗有限公司 Seed germination method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010644A (en) * 2009-07-03 2011-01-20 My Farm:Kk Plant cultivation kit using recycled corrugated cardboard umezumi (plum charcoal) kneaded with charcoal of plum seed
WO2016056581A1 (en) * 2014-10-08 2016-04-14 国立研究開発法人理化学研究所 Plant growth-promoting agent and method for promoting plant growth
CN107182355A (en) * 2017-07-12 2017-09-22 东北林业大学 A kind of Malus sieversii seed accelerating germination method
JP2017175978A (en) * 2016-03-29 2017-10-05 京都府公立大学法人 Production method of sprout, and sprout obtained by the method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289231A (en) * 1994-04-21 1995-11-07 Satake Eng Co Ltd Method for treating sake rice raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010644A (en) * 2009-07-03 2011-01-20 My Farm:Kk Plant cultivation kit using recycled corrugated cardboard umezumi (plum charcoal) kneaded with charcoal of plum seed
WO2016056581A1 (en) * 2014-10-08 2016-04-14 国立研究開発法人理化学研究所 Plant growth-promoting agent and method for promoting plant growth
JP2017175978A (en) * 2016-03-29 2017-10-05 京都府公立大学法人 Production method of sprout, and sprout obtained by the method
CN107182355A (en) * 2017-07-12 2017-09-22 东北林业大学 A kind of Malus sieversii seed accelerating germination method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"植物とストレス", 恵那高等学校スーパーサイエンスハイスクール<第III期>平成25年度恵那高等学校課題研究, JPN6019029621, 2014, pages 1 - 45, ISSN: 0004867895 *

Also Published As

Publication number Publication date
WO2019225606A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP3023675B1 (en) Cultivation method of salamander tree
Mateus-Rodríguez et al. Response of three potato cultivars grown in a novel aeroponics system for mini-tuber seed production
WO2021248642A1 (en) Method for controlling plant growth
CN105594551A (en) Soilless culture method of grapes
CN106900346A (en) Food sweet potato gently simplifies potato root rattan method for culturing seedlings
CN104285771B (en) Semen Juglandis container seedling water planting breeding method
CN103975752A (en) Fruit cucumber planting method
JPWO2019225606A1 (en) Seed germination method, plant cultivation method, seed and seed production method, and rice
CN106034876A (en) High-yield plantation method for paddy rice
JP2019024388A (en) Cultivation method of vegetables containing lactic acid bacteria
Uno et al. The evaluation of salt tolerance during germination and vegetative growth of asparagus, table beet and sea aster
JP2007014295A (en) Method for growing seedling
CN110393120A (en) It is a kind of suitable kind in the cherry sapling multiplication breeding method of Guangxi high and cold mountain area
CN109220456A (en) A kind of implantation methods of oil tea
Madakadze et al. Effect of plant spacing and harvesting frequency on Corchorus olitorious leaf and seed yields.
Suvo et al. Identification of suitable media based on hydroponic culture for production of zucchini squash.
CN105850418A (en) Pruning plantation method for pepper
Parameshwarareddy et al. Influence of Drip Irrigation Levels and Soilless Media on the Growth, Productivity and Economics of Greenhouse Grown Tomato'
Madusanka et al. Comparative assessment of intensive tomato production in innovative non-circulating aquaponics vs. conventional hydroponics.
JP2014050361A (en) Cultivation method of hedyotis diffusa
CN104542001A (en) Propagating method for grafted roots and buds of camellia oleifera tree seedlings
Unal et al. Effects of mycorrhiza and irrigation programs on strawberry production in substrate culture
JP7153344B2 (en) Cultivation method, package, and cultivation kit for non-heading Brussels sprouts
WO2022102327A1 (en) Method for cultivating fruit-vegetable plants and tomato fruit
Kaur et al. Comparison of substrate hydroponic systems for soilless tomato production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221220