JPWO2019181320A1 - Manufacturing method of copper alloy wire and copper alloy wire - Google Patents

Manufacturing method of copper alloy wire and copper alloy wire Download PDF

Info

Publication number
JPWO2019181320A1
JPWO2019181320A1 JP2019529676A JP2019529676A JPWO2019181320A1 JP WO2019181320 A1 JPWO2019181320 A1 JP WO2019181320A1 JP 2019529676 A JP2019529676 A JP 2019529676A JP 2019529676 A JP2019529676 A JP 2019529676A JP WO2019181320 A1 JPWO2019181320 A1 JP WO2019181320A1
Authority
JP
Japan
Prior art keywords
copper alloy
alloy wire
mass
wire rod
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019529676A
Other languages
Japanese (ja)
Inventor
亮佑 松尾
亮佑 松尾
茂樹 関谷
茂樹 関谷
賢悟 水戸瀬
賢悟 水戸瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2019181320A1 publication Critical patent/JPWO2019181320A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

本発明の目的は、優れた導電率を損なうことなく、線材を細径化した場合でも、引張強度に優れた銅合金線材及びその製造方法を提供することである。1.5〜6.0質量%のAg、0〜1.0質量%のMg、0〜1.0質量%のCr及び0〜1.0質量%のZrを含有し、残部がCu及び不可避不純物からなる合金組成を有する銅合金線材であって、前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出している析出物の面積割合(A)が、下記式(I)(0.393×x−0.589)%≦A≦(3.88×x−5.81)% (I)(式(I)中、xはAgの質量%を表す。)の範囲内である銅合金線材。An object of the present invention is to provide a copper alloy wire rod having excellent tensile strength and a method for producing the same, even when the diameter of the wire rod is reduced without impairing the excellent conductivity. It contains 1.5 to 6.0% by mass of Ag, 0 to 1.0% by mass of Mg, 0 to 1.0% by mass of Cr and 0 to 1.0% by mass of Zr, and the balance is Cu and unavoidable. It is a copper alloy wire having an alloy composition composed of impurities, and when a cross section parallel to the longitudinal direction of the copper alloy wire is observed, it matches with Cu of the matrix in a rectangular observation region of 240 nm × 360 nm. The area ratio (A) of the precipitated precipitate is the following formula (I) (0.393 × x −0.589)% ≦ A ≦ (3.88 × x −5.81)% (I) ( In the formula (I), x represents the mass% of Ag).) Copper alloy wire rod.

Description

本発明は、例えば、錦糸線等に用いることができる、高い引張強度を有する銅合金線材及び該銅合金線材の製造方法に関するものである。 The present invention relates to a copper alloy wire having high tensile strength and a method for producing the copper alloy wire, which can be used for, for example, brocade wire.

例えば、スピーカーには、コイルと振動板が搭載されており、コイルに電流が流れることでコイルが振動し、コイルの振動に連動して振動板が振動することで音が出る仕組みとなっている。前記コイルと基材端子間をつなぐ線材には、錦糸線が用いられている。従って、錦糸線には、音による振動に耐久できる高い振動耐久性が求められる。振動耐久性は寸法効果により一般的に線材を細く加工することにより向上する。その一方で、線材を細径化すると引張耐久力が低下するので、線材製造時の取り扱いが難しくなり、断線やもつれ等が起きて、歩留まりが悪くなるという問題があった。 For example, a speaker is equipped with a coil and a diaphragm, and the coil vibrates when a current flows through the coil, and the diaphragm vibrates in conjunction with the vibration of the coil to produce sound. .. A brocade wire is used as the wire connecting the coil and the terminal of the base material. Therefore, the brocade wire is required to have high vibration durability that can withstand vibration caused by sound. Vibration durability is generally improved by thinning the wire due to the dimensional effect. On the other hand, if the diameter of the wire rod is reduced, the tensile durability is lowered, which makes it difficult to handle the wire rod during manufacturing, and there is a problem that the wire breakage or entanglement occurs and the yield is deteriorated.

そこで、例えば、引張強度を向上させた合金材として、Ag:8.0〜20.0重量%、Cr:0.1〜1.0重量%を含有し、残りがCuおよび不可避不純物からなる組成、並びに初晶および共晶が繊維状に配向した素地中にCrの微細な析出物が分散している組織を有する銅合金が提案されている(特許文献1)。 Therefore, for example, as an alloy material having improved tensile strength, Ag: 8.0 to 20.0% by weight and Cr: 0.1 to 1.0% by weight are contained, and the balance is composed of Cu and unavoidable impurities. , And a copper alloy having a structure in which fine precipitates of Cr are dispersed in a substrate in which primary crystals and eutectic crystals are oriented in a fibrous form has been proposed (Patent Document 1).

しかし、特許文献1では、初晶および共晶が繊維状に配向した素地中にCrの微細な析出物が分散しているにすぎず、Crからなる微細な析出物の析出状態が制御された組織ではない。 However, in Patent Document 1, only fine precipitates of Cr are dispersed in the substrate in which the primary crystal and the eutectic are fibrously oriented, and the precipitation state of the fine precipitates composed of Cr is controlled. Not an organization.

従って、特許文献1の銅合金では、線材を細径化した場合に、引張強度に改善の余地があり、ひいては、線材製造時の取り扱い性を向上させ、断線やもつれ等を防止して歩留まりを向上させることに改善の余地があった。 Therefore, in the copper alloy of Patent Document 1, there is room for improvement in tensile strength when the diameter of the wire is reduced, which in turn improves the handleability during wire production, prevents disconnection and entanglement, and reduces the yield. There was room for improvement in improving it.

特願平5−90832号公報Japanese Patent Application No. 5-90832

上記事情に鑑み、本発明の目的は、優れた導電率を損なうことなく、線材を細径化した場合でも、引張強度に優れた銅合金線材及びその製造方法を提供することである。 In view of the above circumstances, an object of the present invention is to provide a copper alloy wire rod having excellent tensile strength and a method for producing the same, even when the diameter of the wire rod is reduced without impairing the excellent conductivity.

[1]1.5〜6.0質量%のAg、0〜1.0質量%のMg、0〜1.0質量%のCr及び0〜1.0質量%のZrを含有し、残部がCu及び不可避不純物からなる合金組成を有する銅合金線材であって、
前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出している析出物の面積割合(A)が、
下記式(I)
(0.393×x−0.589)%≦A≦(3.88×x−5.81)% (I)
(式(I)中、xはAgの質量%を表す。)
の範囲内である銅合金線材。
[2]Mg、Cr及びZrからなる群から選択される少なくとも1成分の含有量の合計が、0.01〜3.0質量%である[1]に記載の銅合金線材。
[3]前記母相のCuに整合して析出している前記析出物が、前記銅合金線材の長手方向に沿って繊維状に存在する[1]または[2]に記載の銅合金線材。
[4]前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、前記母相のCuに整合して析出している前記析出物の平均幅(W)が、
下記式(II)
(8.3×d)nm≦W≦(24.9×d)nm (II)
(式(II)中、dは銅合金線材の線径(mm)を表す。)
の範囲内である[3]に記載の銅合金線材。
[5]前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、前記母相のCuに整合して析出している前記析出物の平均長さ(L)が、
下記式(III)
(11.3/d)nm≦L≦(33.8/d)nm (III)
(式(III)中、dは銅合金線材の線径(mm)を表す。)
の範囲内である[3]または[4]に記載の銅合金線材。
[6]前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、前記母相のCuに整合して析出している前記析出物の平均間隔(S)が、
下記式(IV)
(760×x^−2.25)×dnm≦S≦(2300×x^−2.25)×dnm (IV)
(式(IV)中、dは銅合金線材の線径(mm)、xはAgの質量%を表す。)
の範囲内である[3]乃至[5]のいずれか1つに記載の銅合金線材。
[7]前記母相のCuに対し、前記析出物が同結晶軸方向に整合している[1]乃至[6]のいずれか1つに記載の銅合金線材。
[8]原料を溶解する工程と、溶解した前記原料を鋳造して鋳塊を得る工程と、前記鋳塊から得られた銅合金材を第1熱処理する工程と、さらに第2熱処理する工程と、前記第2熱処理をした銅合金材を最終伸線加工して銅合金線材を得る工程とを含む、[1]乃至[7]のいずれか1つに記載の銅合金線材の製造方法であって、
前記第1熱処理工程が、700℃以上の温度で施され、
前記第2熱処理工程が、350〜600℃の温度で施され、
前記最終伸線加工工程の加工度loge(A0/A1)^2(式中、A0は最終伸線加工直前の銅合金材の長手方向に対し直交方向の断面積、A1は最終伸線加工直後の銅合金材の長手方向に対し直交方向の断面積)が2.5以上で施される銅合金線材の製造方法。
[9]前記鋳塊を得る工程と前記第1熱処理工程との間、及び/または前記第1熱処理工程と前記第2熱処理工程との間に、伸線加工が施される[8]に記載の銅合金線材の製造方法。
[1] Contains 1.5 to 6.0% by mass of Ag, 0 to 1.0% by mass of Mg, 0 to 1.0% by mass of Cr and 0 to 1.0% by mass of Zr, and the balance is A copper alloy wire having an alloy composition consisting of Cu and unavoidable impurities.
When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the area ratio (A) of the precipitates precipitated in accordance with the Cu of the matrix in the rectangular observation area of 240 nm × 360 nm is
The following formula (I)
(0.393 x x-0.589)% ≤ A ≤ (3.88 x x-5.81)% (I)
(In formula (I), x represents the mass% of Ag.)
Copper alloy wire that is within the range of.
[2] The copper alloy wire rod according to [1], wherein the total content of at least one component selected from the group consisting of Mg, Cr and Zr is 0.01 to 3.0% by mass.
[3] The copper alloy wire rod according to [1] or [2], wherein the precipitate that is deposited in accordance with the Cu of the parent phase exists in a fibrous form along the longitudinal direction of the copper alloy wire rod.
[4] When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the average width of the precipitates precipitated in accordance with the Cu of the parent phase in a rectangular observation area of 240 nm × 360 nm. (W) is
The following formula (II)
(8.3 × d) nm ≦ W ≦ (24.9 × d) nm (II)
(In formula (II), d represents the wire diameter (mm) of the copper alloy wire.)
The copper alloy wire rod according to [3], which is within the range of.
[5] When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the average length of the precipitates precipitated in accordance with the Cu of the parent phase in a rectangular observation area of 240 nm × 360 nm. (L) is
The following formula (III)
(11.3 / d) nm ≦ L ≦ (33.8 / d) nm (III)
(In formula (III), d represents the wire diameter (mm) of the copper alloy wire.)
The copper alloy wire rod according to [3] or [4], which is within the range of.
[6] When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the average spacing of the precipitates precipitated in accordance with the Cu of the matrix in a rectangular observation area of 240 nm × 360 nm. (S) is
The following formula (IV)
(760 × x ^ -2.25) × dnm ≦ S ≦ (2300 × x ^ -2.25) × dnm (IV)
(In formula (IV), d represents the wire diameter (mm) of the copper alloy wire, and x represents the mass% of Ag.)
The copper alloy wire rod according to any one of [3] to [5], which is within the range of.
[7] The copper alloy wire rod according to any one of [1] to [6], wherein the precipitate is aligned in the same crystal axis direction with respect to Cu of the parent phase.
[8] A step of melting the raw material, a step of casting the melted raw material to obtain an ingot, a step of first heat-treating the copper alloy material obtained from the ingot, and a step of further performing a second heat treatment. The method for producing a copper alloy wire according to any one of [1] to [7], which comprises a step of finally drawing the copper alloy material subjected to the second heat treatment to obtain a copper alloy wire. hand,
The first heat treatment step is performed at a temperature of 700 ° C. or higher.
The second heat treatment step is performed at a temperature of 350 to 600 ° C.
Process degree log (A0 / A1) ^ 2 (in the formula, A0 is the cross-sectional area in the direction orthogonal to the longitudinal direction of the copper alloy material immediately before the final wire drawing process, and A1 is immediately after the final wire drawing process. A method for manufacturing a copper alloy wire rod having a cross-sectional area of 2.5 or more in the direction orthogonal to the longitudinal direction of the copper alloy material.
[9] The wire drawing process is performed between the step of obtaining the ingot and the first heat treatment step, and / or between the first heat treatment step and the second heat treatment step. Manufacturing method of copper alloy wire rod.

本発明の態様によれば、1.5〜6.0質量%のAg、0〜1.0質量%のMg、0〜1.0質量%のCr及び0〜1.0質量%のZrを含有し、残部がCu及び不可避不純物からなる合金組成を有する銅合金線材について、長手方向に対し平行な断面における240nm×360nmの観察域でのCuに整合して析出している析出物の面積割合(A)が、上記範囲内であることにより、優れた導電率を損なうことなく、線材を細径化した場合でも、引張強度に優れた銅合金線材を得ることができる。 According to the aspect of the present invention, 1.5 to 6.0% by mass of Ag, 0 to 1.0% by mass of Mg, 0 to 1.0% by mass of Cr and 0 to 1.0% by mass of Zr are used. Area ratio of precipitates that are consistently precipitated with Cu in the observation range of 240 nm × 360 nm in a cross section parallel to the longitudinal direction for a copper alloy wire containing an alloy composition in which the balance is Cu and unavoidable impurities. When (A) is within the above range, a copper alloy wire having excellent tensile strength can be obtained even when the diameter of the wire is reduced without impairing the excellent conductivity.

このように、線材を細径化した場合でも、引張強度に優れた銅合金線材を得ることができるので、高い振動耐久性が得られつつ、線材製造時の取り扱い性が向上し、また、線材の断線やもつれ等が防止されて歩留まりが向上する。 In this way, even when the diameter of the wire rod is reduced, a copper alloy wire rod having excellent tensile strength can be obtained, so that high vibration durability can be obtained, the handleability during wire rod manufacturing is improved, and the wire rod can be handled. The yield is improved by preventing disconnection and entanglement.

本発明の態様によれば、Mg、Cr及びZrからなる群から選択される少なくとも1成分の含有量の合計が、0.01〜3.0質量%であることにより、振動耐久性のさらなる向上と、線材を細径化した場合でも引張強度のさらなる向上に寄与する。 According to the aspect of the present invention, the total content of at least one component selected from the group consisting of Mg, Cr and Zr is 0.01 to 3.0% by mass, so that the vibration durability is further improved. This contributes to further improvement of tensile strength even when the diameter of the wire is reduced.

本発明の態様によれば、前記母相のCuに整合して析出している析出物が銅合金線材の長手方向に沿って繊維状に存在し、繊維状に存在する前記析出物の平均幅(W)、前記析出物の平均長さ(L)及び/または前記析出物の平均間隔(S)が、上記範囲内であることにより、振動耐久性のさらなる向上と、線材を細径化した場合でも引張強度のさらなる向上に寄与する。 According to the aspect of the present invention, the precipitates that are precipitated in accordance with the Cu of the parent phase are present in a fibrous form along the longitudinal direction of the copper alloy wire, and the average width of the precipitates that are present in a fibrous form is present. (W), the average length (L) of the precipitate and / or the average interval (S) of the precipitate was within the above range, so that the vibration durability was further improved and the diameter of the wire was reduced. Even in this case, it contributes to further improvement of tensile strength.

Cuの結晶に対して[010]方向に電子線を入射した際に生じる回折スポットの電子顕微鏡写真である。It is an electron micrograph of a diffraction spot generated when an electron beam is incident on a Cu crystal in the [010] direction. 銅合金線材の暗視野像を示す電子顕微鏡写真である。It is an electron micrograph which shows the dark field image of a copper alloy wire. 暗視野像のコントラストを二値化したものについて、行毎の白コントラスト部分のピクセル数を算出した結果を示すグラフである。It is a graph which shows the result of having calculated the number of pixels of the white contrast part for every row about the binary | contrast of the dark field image.

以下に、本発明の銅合金線材の詳細について説明する。本発明の銅合金線材は、1.5〜6.0質量%のAg、0〜1.0質量%のMg、0〜1.0質量%のCr及び0〜1.0質量%のZrを含有し、残部がCu及び不可避不純物からなる合金組成を有する銅合金線材であり、前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出している析出物の面積割合(A)が、下記式(I)
(0.393×x−0.589)%≦A≦(3.88×x−5.81)% (I)
(式(I)中、xはAgの質量%を表す。)の範囲内である。
The details of the copper alloy wire rod of the present invention will be described below. The copper alloy wire rod of the present invention contains 1.5 to 6.0% by mass of Ag, 0 to 1.0% by mass of Mg, 0 to 1.0% by mass of Cr, and 0 to 1.0% by mass of Zr. A copper alloy wire containing an alloy composition in which the balance is Cu and unavoidable impurities, and when a cross section parallel to the longitudinal direction of the copper alloy wire is observed, the mother in a rectangular observation region of 240 nm × 360 nm. The area ratio (A) of the precipitate that is precipitated in accordance with the phase Cu is the following formula (I).
(0.393 x x-0.589)% ≤ A ≤ (3.88 x x-5.81)% (I)
(In formula (I), x represents mass% of Ag.).

[銅合金線材の合金組成]
本発明の銅合金線材では、1.5〜6.0質量%のAg(銀)を含有している。従って、Agは必須の添加成分である。Agは、母相であるCu(銅)中に固溶した状態、または銅合金材の鋳造の際に第二相粒子として晶析出若しくは銅合金材の鋳造後における熱処理にて第二相粒子として析出した状態(本明細書では、これらを総称して、以下「析出物」ということがある。)で存在し、固溶強化または分散強化の効果を発揮する元素である。なお、第二相とは、Cuの母相(第一相)に対し、異なる結晶構造を有する結晶のことを意味する。
[Alloy composition of copper alloy wire]
The copper alloy wire rod of the present invention contains 1.5 to 6.0% by mass of Ag (silver). Therefore, Ag is an essential additive component. Ag is solid-dissolved in Cu (copper), which is the parent phase, or crystallized as second-phase particles during casting of copper alloy material, or as second-phase particles by heat treatment after casting of copper alloy material. It is an element that exists in a precipitated state (in the present specification, these are collectively referred to as "precipitate") and exerts the effect of solid solution strengthening or dispersion strengthening. The second phase means a crystal having a different crystal structure from the parent phase (first phase) of Cu.

Agの含有量が1.5質量%未満になると、固溶強化または分散強化の効果が不十分であり、十分な引張強度及び振動耐久性が得られない。一方で、Agの含有量が6.0質量%超になると、十分な導電率が得られず、また、原料コストも高くなる。上記から、導電率を損なうことなく、線材を細径化した場合でも優れた引張強度を得る点から、Agの含有量は1.5〜6.0質量%とする。銅合金線材の用途に応じて引張強度と導電率の要求が異なるが、Ag含有量を1.5〜6.0質量%の範囲内で調整することにより、引張強度と導電率のバランスを所望に設定することが可能である。広汎な用途において引張強度と導電率のバランスを得ることができる点から、Ag含有量は1.5〜4.5質量%が好ましい。 If the Ag content is less than 1.5% by mass, the effect of solid solution strengthening or dispersion strengthening is insufficient, and sufficient tensile strength and vibration durability cannot be obtained. On the other hand, when the Ag content exceeds 6.0% by mass, sufficient conductivity cannot be obtained and the raw material cost becomes high. From the above, the Ag content is set to 1.5 to 6.0% by mass from the viewpoint of obtaining excellent tensile strength even when the diameter of the wire is reduced without impairing the conductivity. The requirements for tensile strength and conductivity differ depending on the application of the copper alloy wire, but it is desirable to balance the tensile strength and conductivity by adjusting the Ag content within the range of 1.5 to 6.0% by mass. It is possible to set to. The Ag content is preferably 1.5 to 4.5% by mass from the viewpoint that a balance between tensile strength and conductivity can be obtained in a wide range of applications.

本発明の銅合金線材では、必須の添加成分であるAgに加えて、さらに、任意の添加成分として、Mg(マグネシウム)、Cr(クロム)及びZr(ジルコニウム)からなる群から選択される少なくとも1元素を含有させることができる。 In the copper alloy wire rod of the present invention, in addition to Ag, which is an essential additive component, at least one selected from the group consisting of Mg (magnesium), Cr (chromium) and Zr (zirconium) as an optional additive component. It can contain elements.

Mg、Cr及びZrは、いずれも、主に、母相であるCu中に固溶または第二相の状態として存在し、Agの場合と同様に、固溶強化または分散強化の効果を発揮する元素である。また、Agと共に含有することで、例えば、Cu−Ag−Zr系といった三元系以上の第二相として存在し、さらなる固溶強化または分散強化に寄与することができる。 All of Mg, Cr and Zr are mainly present in the parent phase Cu as a solid solution or a second phase state, and exhibit the effect of solid solution strengthening or dispersion strengthening as in the case of Ag. It is an element. Further, when it is contained together with Ag, it exists as a second phase of a ternary system or more such as a Cu-Ag-Zr system, and can contribute to further solid solution strengthening or dispersion strengthening.

上記から、固溶強化または分散強化の効果を十分に発揮させる点から、Mg、Cr及びZrからなる群から選択される少なくとも1成分の含有量の合計は、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。一方で、Mg、Cr及びZrの含有量が、それぞれ、1.0質量%を超えると、用途によっては優れた導電率が得られない場合があるので、Mg、Cr及びZrの含有量は、それぞれ、1.0質量%以下が好ましく、0.7質量%以下がより好ましく、0.5質量%以下が特に好ましい。従って、導電率を損なうことなく、線材を細径化した場合でも優れた引張強度を得る点から、Mg、Cr及びZrからなる群から選択される少なくとも1成分の含有量の合計は、0.01〜3.0質量%が好ましく、0.05〜2.1質量%がより好ましく、0.10〜1.5質量%が特に好ましい。 From the above, the total content of at least one component selected from the group consisting of Mg, Cr and Zr is preferably 0.01% by mass or more from the viewpoint of sufficiently exerting the effect of solid solution strengthening or dispersion strengthening. 0.05% by mass or more is more preferable, and 0.10% by mass or more is particularly preferable. On the other hand, if the contents of Mg, Cr and Zr each exceed 1.0% by mass, excellent conductivity may not be obtained depending on the application. Therefore, the contents of Mg, Cr and Zr are set. Each is preferably 1.0% by mass or less, more preferably 0.7% by mass or less, and particularly preferably 0.5% by mass or less. Therefore, from the viewpoint of obtaining excellent tensile strength even when the diameter of the wire is reduced without impairing the conductivity, the total content of at least one component selected from the group consisting of Mg, Cr and Zr is 0. It is preferably 01 to 3.0% by mass, more preferably 0.05 to 2.1% by mass, and particularly preferably 0.10 to 1.5% by mass.

上記した各成分以外の残部は、Cu及び不可避不純物である。Cuは、本発明の銅合金線材の母相である。母相であるCuに、必須の添加成分であるAgが、固溶した状態または析出物として析出した状態で存在している。また、必要に応じて、母相であるCuに、任意の添加成分であるMg、Cr及びZrからなる群から選択される少なくとも1成分が、固溶した状態または析出物として析出した状態で存在している。 The rest other than the above-mentioned components are Cu and unavoidable impurities. Cu is the parent phase of the copper alloy wire rod of the present invention. Ag, which is an essential additive component, is present in the parent phase Cu in a solid solution state or in a state of being precipitated as a precipitate. Further, if necessary, at least one component selected from the group consisting of optional additive components Mg, Cr and Zr is present in the parent phase Cu in a solid solution state or in a state of being precipitated as a precipitate. doing.

不可避不純物とは、本発明の銅合金線材の製造工程上、不可避的に含まれうる含有量レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうる。従って、導電率の低下を考慮すると、不可避不純物の含有量を抑制することが好ましい。不可避不純物としては、例えば、Ni、Sn、Zn等が挙げられる。 The unavoidable impurities mean impurities at a content level that can be unavoidably contained in the manufacturing process of the copper alloy wire rod of the present invention. Inevitable impurities can also be a factor that lowers the conductivity depending on the content. Therefore, considering the decrease in conductivity, it is preferable to suppress the content of unavoidable impurities. Examples of unavoidable impurities include Ni, Sn, Zn and the like.

[母相のCuに整合して析出している析出物の面積割合(A)]
本発明の銅合金線材では、その長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出している析出物(以下、「整合析出物」ということがある。)の面積割合(A)が、下記式(I)
(0.393×x−0.589)%≦A≦(3.88×x−5.81)% (I)
(式(I)中、xはAgの質量%を表す。)の範囲内である。
[Area ratio of precipitates precipitated in accordance with Cu in the matrix (A)]
In the copper alloy wire rod of the present invention, when observing a cross section parallel to the longitudinal direction thereof, a precipitate (hereinafter, “precipitate” which is deposited in accordance with the Cu of the parent phase in a rectangular observation region of 240 nm × 360 nm. The area ratio (A) of "matched precipitate") is the following formula (I).
(0.393 x x-0.589)% ≤ A ≤ (3.88 x x-5.81)% (I)
(In formula (I), x represents mass% of Ag.).

従って、本発明の銅合金線材では、Agの含有量の変化に応じて整合析出物の面積割合(A)の範囲も変化する。整合析出物の面積割合(A)が、上記範囲内であることにより、優れた導電率を損なうことなく、線材を細径化した場合でも引張強度と振動耐久性に優れた銅合金線材を得ることができる。なお、上記式(I)は、銅合金線材中におけるAg含有量を様々に選択した実験結果から導き出されたものである。 Therefore, in the copper alloy wire rod of the present invention, the range of the area ratio (A) of the matched precipitate changes according to the change in the Ag content. When the area ratio (A) of the matched precipitate is within the above range, a copper alloy wire having excellent tensile strength and vibration durability can be obtained even when the diameter of the wire is reduced without impairing the excellent conductivity. be able to. The above formula (I) is derived from the experimental results in which the Ag content in the copper alloy wire is selected variously.

整合析出物の面積割合(A)が(0.393×x−0.589)%未満では、整合析出物の析出量が少ないので、整合析出物が銅合金線材の変形に対する妨げとならず、結果として、優れた引張強度と振動耐久性が得られない。一方で、整合析出物の面積割合(A)が(3.88×x−5.81)%超では、整合析出物の長さ、幅等の寸法が大きくなるので、やはり、整合析出物が銅合金線材の変形に対する妨げとならず、結果として、優れた引張強度と振動耐久性が得られない。 When the area ratio (A) of the matched precipitate is less than (0.393 × x −0.589)%, the amount of the matched precipitate deposited is small, so that the matched precipitate does not hinder the deformation of the copper alloy wire. As a result, excellent tensile strength and vibration durability cannot be obtained. On the other hand, when the area ratio (A) of the matched precipitate exceeds (3.88 × x-5.81)%, the dimensions such as the length and width of the matched precipitate become large, so that the matched precipitate also becomes It does not hinder the deformation of the copper alloy wire, and as a result, excellent tensile strength and vibration durability cannot be obtained.

整合析出物は、主にAgからなるため、整合析出物の前記面積割合(A)はAgの含有量によって変動する。すなわち、Agの含有量が多くなると、面積割合(A)は高くなっていき、Agの含有量が少なくなると、面積割合(A)は低くなっていくと考えられる。整合析出物の面積割合(A)が高くなれば、整合析出物が銅合金線材の変形に対する妨げとなり、結果として、引張強度と振動耐久性が向上する。一方で、整合析出物の面積割合(A)が過剰でも、整合析出物は銅合金線材の変形に対する妨げとはならず、結果として、優れた引張強度と振動耐久性は得られないことが判明した。従って、本発明の銅合金線材では、Agの含有量の範囲だけでなく、整合析出物の面積割合(A)の範囲も調整することで、導電率を損なうことなく、優れた引張強度と振動耐久性を実現した。 Since the matched precipitate is mainly composed of Ag, the area ratio (A) of the matched precipitate varies depending on the content of Ag. That is, it is considered that the area ratio (A) increases as the Ag content increases, and the area ratio (A) decreases as the Ag content decreases. When the area ratio (A) of the matched precipitate is high, the matched precipitate hinders the deformation of the copper alloy wire, and as a result, the tensile strength and the vibration durability are improved. On the other hand, it was found that even if the area ratio (A) of the matched precipitate is excessive, the matched precipitate does not hinder the deformation of the copper alloy wire, and as a result, excellent tensile strength and vibration durability cannot be obtained. did. Therefore, in the copper alloy wire rod of the present invention, by adjusting not only the range of Ag content but also the range of the area ratio (A) of the matching precipitates, excellent tensile strength and vibration are not impaired without impairing the conductivity. Achieved durability.

[母相のCuに整合して析出]
本明細書中、上記「母相のCuに整合して析出」とは、母相であるCuの結晶に対して、析出物が、ある特定の結晶方位を有して析出していることを意味する。析出物が母相であるCuの結晶に対して、ある特定の結晶方位を有して析出しているか否か、すなわち、析出物が整合析出物であるか否かを判断するための手法として、ディフラクションパターンから読み取る方法がある。
[Precipitation consistent with Cu in the parent phase]
In the present specification, the above-mentioned "precipitation consistent with the Cu of the matrix" means that the precipitate has a certain crystal orientation with respect to the crystal of Cu which is the matrix. means. As a method for determining whether or not the precipitate has a specific crystal orientation with respect to the Cu crystal which is the parent phase, that is, whether or not the precipitate is a matched precipitate. , There is a method of reading from the diffraction pattern.

透過型電子顕微鏡において電子線を試料に照射すると、電子線の回折が生じる。電子線の回折により生じる回折波は、結晶の型、結晶を構成する原子間隔等により強めあったり弱めあったりし、結晶によって特定の回折パターンを作る。例えば、Cuの結晶に対して[010]方向に電子線を入射すると、図1に示すように、正方形の頂点とその中点に回折スポットが生じる。 When a sample is irradiated with an electron beam in a transmission electron microscope, electron diffraction occurs. Diffraction waves generated by the diffraction of electron beams strengthen or weaken each other depending on the crystal type, interatomic distances constituting the crystal, etc., and form a specific diffraction pattern depending on the crystal. For example, when an electron beam is incident on a Cu crystal in the [010] direction, a diffraction spot is generated at the apex of the square and its midpoint, as shown in FIG.

CuとAgは、同じ面心立方格子構造(fcc構造)であるため、回折パターンは同一であるが、格子定数が異なるため、回折スポット間の間隔が異なる。格子定数が大きいほど、回折スポット間の間隔は狭くなるため、Agの回折スポットの方がCuの回折スポットより狭い範囲に現れる。Cu合金中にAg析出物が存在し、Ag析出物の結晶がある特定の向きで整列しているとすると、母相であるCuの回折スポットに対し、やや内側にAg析出物の回折スポットが現れることとなる。Cuの結晶配向とAgの結晶配向が完全に一致している場合、すなわち、Cuの結晶とAgの結晶が共に[100]方向を向いている場合、回折パターンは同一、且つAgの回折パターンがCuの回折パターンのやや内側に現れる。 Since Cu and Ag have the same face-centered cubic lattice structure (fcc structure), the diffraction patterns are the same, but the spacing between the diffraction spots is different because the lattice constants are different. The larger the lattice constant, the narrower the distance between the diffraction spots. Therefore, the Ag diffraction spots appear in a narrower range than the Cu diffraction spots. Assuming that Ag precipitates are present in the Cu alloy and the crystals of Ag precipitates are aligned in a specific direction, the diffraction spots of Ag precipitates are slightly inside the diffraction spots of Cu, which is the parent phase. It will appear. When the crystal orientation of Cu and the crystal orientation of Ag are completely the same, that is, when both the Cu crystal and the Ag crystal are oriented in the [100] direction, the diffraction patterns are the same and the Ag diffraction pattern is the same. Appears slightly inside the diffraction pattern of Cu.

一方で、CuとAgがある特定の向きで整列しているものの、Cuの結晶配向とAgの結晶配向が完全には一致していない場合、例えば、観察軸[100]方向に対して、Cuの結晶は[100]方向を向いているが、Agの結晶は[110]方向を向いている場合、Cuの[100]方向に対応した回折パターンとAgの[110]方向に対応した回折パターンが現れる。 On the other hand, when Cu and Ag are aligned in a specific direction, but the crystal orientation of Cu and the crystal orientation of Ag do not completely match, for example, Cu with respect to the observation axis [100] direction. When the crystals of Ag are oriented in the [100] direction, but the crystals of Ag are oriented in the [110] direction, the diffraction pattern corresponding to the [100] direction of Cu and the diffraction pattern corresponding to the [110] direction of Ag. Appears.

上記から、Cuの回折パターンとAgの回折パターンが同一、且つAgの回折パターンがCuの回折パターンのやや内側に現れる場合、またはCuの結晶が所定方向に対応したことを示すCuの回折パターンとAgの結晶が所定方向に対応したことを示すAgの回折パターンとが現れる場合には、Agは、「母相のCuに整合して析出」、すなわち、Ag析出物が母相であるCuと整合していると判断する。 From the above, when the diffraction pattern of Cu and the diffraction pattern of Ag are the same, and the diffraction pattern of Ag appears slightly inside the diffraction pattern of Cu, or the diffraction pattern of Cu indicating that the crystals of Cu correspond to a predetermined direction. When an Ag diffraction pattern indicating that the Ag crystals correspond to a predetermined direction appears, the Ag is "precipitated in accordance with the Cu of the matrix phase", that is, the Ag precipitate is Cu which is the matrix phase. Judge that they are consistent.

しかし、CuとAgが全く整列していない、すなわち、Cuの結晶配向とAgの結晶配向が全く一致していない場合には、Cuに対してAgが様々な結晶方向で配置されていることとなるため、Cuの回折パターンに対し、Agの回折パターンがランダムに形成される。この場合には、Ag析出物が母相であるCuと整合していないと判断する。 However, when Cu and Ag are not aligned at all, that is, when the crystal orientation of Cu and the crystal orientation of Ag do not match at all, it means that Ag is arranged in various crystal directions with respect to Cu. Therefore, the Ag diffraction pattern is randomly formed with respect to the Cu diffraction pattern. In this case, it is determined that the Ag precipitate is inconsistent with Cu, which is the parent phase.

[母相のCuに整合して析出している析出物の平均幅(W)]
母相のCuに整合して析出している析出物は、銅合金線材の長手方向に沿って繊維状に存在すると、すなわち、銅合金線材の長手方向に対し略平行方向に延在した繊維状物質であると、より効果的である。本発明の銅合金線材では、その長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出した銅合金線材の長手方向に延在した繊維状の整合析出物の平均幅(W)は、特に限定されないが、整合析出物の、銅合金線材の変形に対する妨げ効果がさらに向上する点から、下記式(II)
(8.3×d)nm≦W≦(24.9×d)nm (II)
(式(II)中、dは銅合金線材の線径(mm)を表す。)の範囲内であることが好ましく、(9.0×d)nm≦W≦(24.0×d)nmの範囲内であることが特に好ましい。従って、本発明の銅合金線材の好ましい態様では、線径の変化に応じて整合析出物の好ましい平均幅(W)の範囲も変化する。上記式(II)は、後述する本願実施例における線径と整合析出物の平均幅に基づき特定したものである。
[Mean width (W) of precipitates precipitated in accordance with Cu in the matrix]
The precipitates that are precipitated in accordance with the Cu of the matrix are fibrous along the longitudinal direction of the copper alloy wire, that is, fibrous extending in a direction substantially parallel to the longitudinal direction of the copper alloy wire. It is more effective when it is a substance. In the copper alloy wire rod of the present invention, when a cross section parallel to the longitudinal direction thereof is observed, the copper alloy wire rod extends in the longitudinal direction of the copper alloy wire rod precipitated in accordance with the Cu of the parent phase in a rectangular observation area of 240 nm × 360 nm. The average width (W) of the existing fibrous matching precipitates is not particularly limited, but the following formula (II) is used because the effect of the matching precipitates on the deformation of the copper alloy wire is further improved.
(8.3 × d) nm ≦ W ≦ (24.9 × d) nm (II)
(In the formula (II), d represents the wire diameter (mm) of the copper alloy wire), preferably within the range of (9.0 × d) nm ≦ W ≦ (24.0 × d) nm. It is particularly preferable that it is within the range of. Therefore, in a preferred embodiment of the copper alloy wire rod of the present invention, the range of the preferable average width (W) of the matched precipitate changes according to the change in the wire diameter. The above formula (II) is specified based on the wire diameter and the average width of the matched precipitate in the examples of the present application described later.

整合析出物の平均幅(W)が、(8.3×d)nm未満では、線径に対して整合析出物が細くなり、整合析出物の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。一方で、(24.9×d)nm超では、線径に対して平均幅(W)の寸法が大きくなるので、やはり、整合析出の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。 When the average width (W) of the matched precipitate is less than (8.3 × d) nm, the matched precipitate becomes thinner with respect to the wire diameter, and the effect of the matched precipitate on the deformation of the copper alloy wire is limited. There is a possibility that On the other hand, if it exceeds (24.9 × d) nm, the dimension of the average width (W) becomes larger than the wire diameter, so that the effect of matching precipitation on the deformation of the copper alloy wire can be limited. There is sex.

[母相のCuに整合して析出している析出物の平均幅(W)]
本発明の銅合金線材では、その長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出した銅合金線材の長手方向に延在した繊維状の整合析出物の平均長さ(L)は、特に限定されないが、整合析出物の、銅合金線材の変形に対する妨げ効果がさらに向上する点から、下記式(III)
(11.3/d)nm≦L≦(33.8/d)nm (III)
(式(III)中、dは銅合金線材の線径(mm)を表す。)の範囲内であることが好ましく、(14.0/d)nm≦L≦(30.0/d)nmの範囲内であることが特に好ましい。従って、本発明の銅合金線材の好ましい態様では、線径の変化に応じて整合析出物の好ましい平均長さ(L)の範囲も変化する。上記式(III)は、後述する本願実施例における線径と整合析出物の平均長さに基づき特定したものである。
[Mean width (W) of precipitates precipitated in accordance with Cu in the matrix]
In the copper alloy wire rod of the present invention, when a cross section parallel to the longitudinal direction thereof is observed, the copper alloy wire rod extends in the longitudinal direction of the copper alloy wire rod precipitated in accordance with the Cu of the parent phase in a rectangular observation area of 240 nm × 360 nm. The average length (L) of the existing fibrous matching precipitate is not particularly limited, but the following formula (III) is used because the effect of the matching precipitate on the deformation of the copper alloy wire is further improved.
(11.3 / d) nm ≦ L ≦ (33.8 / d) nm (III)
(In the formula (III), d represents the wire diameter (mm) of the copper alloy wire), preferably within the range of (14.0 / d) nm ≦ L ≦ (30.0 / d) nm. It is particularly preferable that it is within the range of. Therefore, in a preferred embodiment of the copper alloy wire rod of the present invention, the range of the preferable average length (L) of the matched precipitate changes according to the change in the wire diameter. The above formula (III) is specified based on the wire diameter and the average length of the matched precipitate in the examples of the present application described later.

整合析出物の平均長さ(L)が、(11.3/d)nm未満では、線径に対して整合析出物が短くなり、整合析出物の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。一方で、(33.8/d)nm超では、線径に対して平均長さ(L)の寸法が大きくなるので、やはり、整合析出の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。 When the average length (L) of the matched precipitate is less than (11.3 / d) nm, the matched precipitate becomes shorter than the wire diameter, and the effect of the matched precipitate on the deformation of the copper alloy wire is limited. May be done. On the other hand, if it exceeds (33.8 / d) nm, the dimension of the average length (L) becomes larger than the wire diameter, so that the effect of matching precipitation on the deformation of the copper alloy wire is also limited. there is a possibility.

[母相のCuに整合して析出している析出物の平均間隔(S)]
本発明の銅合金線材では、その長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出している整合析出物の平均間隔(S)は、特に限定されないが、下記式(IV)
(760×x^−2.25)×dnm≦S≦(2300×x^−2.25)×dnm (IV)
(式(IV)中、dは銅合金線材の線径(mm)、xはAgの質量%を表す。)の範囲内であることが好ましい。従って、本発明の銅合金線材の好ましい態様では、線径とAg含有量の変化に応じて整合析出物の好ましい平均長さ(L)の範囲も変化する。上記式(IV)は、銅合金線材中におけるAg含有量を様々に選択した実験結果から導き出されたものである。
[Average interval (S) of precipitates precipitated in accordance with Cu in the matrix]
In the copper alloy wire rod of the present invention, when observing a cross section parallel to the longitudinal direction thereof, the average spacing of the matching precipitates that are precipitated in accordance with the Cu of the parent phase in the rectangular observation region of 240 nm × 360 nm. (S) is not particularly limited, but the following formula (IV)
(760 × x ^ -2.25) × dnm ≦ S ≦ (2300 × x ^ -2.25) × dnm (IV)
(In the formula (IV), d represents the wire diameter (mm) of the copper alloy wire, and x represents the mass% of Ag). Therefore, in a preferred embodiment of the copper alloy wire rod of the present invention, the range of the preferable average length (L) of the matched precipitate changes according to the change in the wire diameter and the Ag content. The above formula (IV) is derived from the experimental results in which the Ag content in the copper alloy wire is selected variously.

整合析出物の平均間隔(S)が、(760×x^−2.25)×dnm未満では、線径及びAg含有量に対して、整合析出物の間隔が狭くなり、整合析出物の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。一方で、(2300×x^−2.25)×dnm超では、線径及びAg含有量に対して、整合析出物の間隔が広くなり、やはり、整合析出物の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。 When the average spacing (S) of the matching precipitates is less than (760 × x ^ -2.25) × dnm, the spacing of the matching precipitates becomes narrower with respect to the wire diameter and Ag content, and the matching precipitates, The hindrance to deformation of copper alloy wire may be limited. On the other hand, when it exceeds (2300 × x ^ -2.25) × dnm, the interval of the matching precipitate becomes wider with respect to the wire diameter and the Ag content, and again, the matching precipitate with respect to the deformation of the copper alloy wire. Interfering effects may be limited.

[整合析出物が同結晶軸方向に整合していること]
また、本発明の銅合金線材では、母相のCuに対して、整合析出物が同結晶軸方向に整合していることが好ましい。「同結晶軸方向に整合している」とは、母相であるCuの結晶と主にAgからなる整合析出物の結晶とが同じ結晶軸方向に整列していることを意味する。このような結晶配列を有することにより、母相であるCuの結晶と整合析出物の結晶との間にひずみが生じる。このひずみが、銅合金線材が変形する際の妨げとなるため、銅合金線材にさらに高い引張強度が付与される。
[Matched precipitates are aligned in the same crystal axis direction]
Further, in the copper alloy wire rod of the present invention, it is preferable that the matched precipitates are matched in the same crystal axis direction with respect to Cu as the matrix phase. "Aligned in the same crystal axis direction" means that the crystal of Cu, which is the parent phase, and the crystal of the matched precipitate mainly composed of Ag are aligned in the same crystal axis direction. By having such a crystal arrangement, a strain is generated between the crystal of Cu which is the parent phase and the crystal of the matched precipitate. Since this strain hinders the deformation of the copper alloy wire, a higher tensile strength is imparted to the copper alloy wire.

母相であるCuに対して整合析出物が同結晶軸方向に整合しているか否かは、以下の方法にて判断することができる。まず、サンプルとなる銅合金線材を集束イオンビーム(FIB)法にて薄膜にし、透過型電子顕微鏡(TEM)を用いて、所定の観察域(例えば、240nm×360nmの長方形からなる観察域)を観察する。サンプルは長手方向に対して平行に切り出し、TEM観察の際には長手方向を横に配置して観察する。 Whether or not the matched precipitates are matched in the same crystal axis direction with respect to Cu, which is the matrix, can be determined by the following method. First, a sample copper alloy wire is thinned by a focused ion beam (FIB) method, and a predetermined observation area (for example, an observation area consisting of a rectangle of 240 nm × 360 nm) is set using a transmission electron microscope (TEM). Observe. The sample is cut out parallel to the longitudinal direction, and when TEM observation is performed, the longitudinal direction is arranged horizontally for observation.

次に、析出物が整合に析出していることを確認するため、上記の通り、回折パターンを取得する。この時、回折パターンはどの晶帯軸入射でも構わず、例えば、一般的にパターンが分かりやすい[110]晶帯軸入射にて撮像する。母相であるCuの結晶による回折パターンが最も輝度が高く観察されるが、その他にも回折パターンが観察され、回折パターンの型がCuと同一でスポット間隔がやや狭い回折パターンを確認することで、析出物が整合に析出していることを確認する。 Next, in order to confirm that the precipitates are consistently precipitated, a diffraction pattern is acquired as described above. At this time, the diffraction pattern may be incident on any crystal zone axis, and for example, an image is taken with the [110] crystal zone axis incident, which is generally easy to understand. The diffraction pattern by the crystal of Cu, which is the matrix, is observed with the highest brightness, but other diffraction patterns are also observed, and by confirming the diffraction pattern with the same diffraction pattern type as Cu and a slightly narrower spot spacing. , Confirm that the precipitates are consistently precipitated.

次に、サンプルの角度を変えて母相であるCuに対して[100]または[111]晶帯軸入射にて回折パターンを取得し、同様に回折パターンの型がCuと同一でスポット間隔がやや狭い回折パターンが存在するか否かを確認する。上記2軸における晶帯軸入射において、いずれもCuと同一である回折パターンであることが確認できた場合に、母相であるCuに対して整合析出物が同結晶軸方向に整合していると評価する。 Next, the angle of the sample is changed to obtain a diffraction pattern by incident on the [100] or [111] crystal zone axis with respect to Cu, which is the parent phase. Check if there is a slightly narrow diffraction pattern. When it is confirmed that the diffraction patterns are the same as those of Cu in the crystal zone axis incidents on the above two axes, the matched precipitates are matched with respect to the parent phase Cu in the same crystal axis direction. Evaluate as.

[本発明の銅合金線材の製造方法]
次に、本発明の銅合金線材の製造方法について説明する。本発明の銅合金線材の製造方法は、(a)原料を溶解する工程と、(b)溶解した原料を鋳造して鋳塊を得る工程と、(c)鋳塊から得られた銅合金材を第1熱処理する工程と、(d)第1熱処理する工程後、さらに第2熱処理する工程と、(e)第2熱処理をした銅合金材を、最終伸線加工であって、その加工度loge(A0/A1)^2(式中、A0は最終伸線加工直前の銅合金材の長手方向に対し直交方向の断面積、A1は最終伸線加工直後の銅合金材の長手方向に対し直交方向の断面積)が2.5以上で施される最終伸線加工を行って、銅合金線材を得る工程と、を含む。
[Method for manufacturing copper alloy wire rod of the present invention]
Next, the method for producing the copper alloy wire rod of the present invention will be described. The method for producing a copper alloy wire rod of the present invention includes (a) a step of melting the raw material, (b) a step of casting the melted raw material to obtain an ingot, and (c) a copper alloy material obtained from the ingot. The first heat treatment step, (d) the first heat treatment step, then the second heat treatment step, and (e) the second heat treatment copper alloy material are final wire drawing, and the degree of processing thereof. loge (A0 / A1) ^ 2 (In the formula, A0 is the cross-sectional area perpendicular to the longitudinal direction of the copper alloy material immediately before the final wire drawing process, and A1 is the longitudinal direction of the copper alloy material immediately after the final wire drawing process. It includes a step of obtaining a copper alloy wire rod by performing a final wire drawing process in which the cross-sectional area in the orthogonal direction is 2.5 or more.

(a)原料を溶解する工程と、(b)溶解した原料を鋳造して鋳塊を得る工程は、公知の一般的な方法にて実施することができる。なお、(a)工程にて用いる原料の配合は、Agが1.5〜6.0質量%、Mgが0〜1.0質量%、Crが0〜1.0質量%、Zrが0〜1.0質量%、残部がCuとなるように、各成分を所定割合にて配合する。 The steps of (a) melting the raw material and (b) casting the melted raw material to obtain an ingot can be carried out by a known general method. The composition of the raw materials used in the step (a) is as follows: Ag is 1.5 to 6.0% by mass, Mg is 0 to 1.0% by mass, Cr is 0 to 1.0% by mass, and Zr is 0 to 0. Each component is blended in a predetermined ratio so that 1.0% by mass and the balance is Cu.

(c)銅合金材を第1熱処理する工程の熱処理温度は700℃以上である。第1熱処理工程の温度が700℃未満では、最終伸線加工中において主にAgからなる析出物の繊維状化が難しくなり、優れた引張強度と振動耐久性が得られないことがある。第1熱処理工程の温度の下限値は、より優れた引張強度を得る点から750℃が好ましく、800℃が特に好ましい。一方で、第1熱処理工程の温度の上限値は、特に限定されないが、900℃が好ましい。 (C) The heat treatment temperature in the step of first heat-treating the copper alloy material is 700 ° C. or higher. If the temperature of the first heat treatment step is less than 700 ° C., it becomes difficult to fibrate the precipitate mainly composed of Ag during the final wire drawing process, and excellent tensile strength and vibration durability may not be obtained. The lower limit of the temperature in the first heat treatment step is preferably 750 ° C., particularly preferably 800 ° C. from the viewpoint of obtaining more excellent tensile strength. On the other hand, the upper limit of the temperature in the first heat treatment step is not particularly limited, but is preferably 900 ° C.

また、第1熱処理工程の熱処理時間は、特に限定されないが、後の工程において析出物を多く分散させ、繊維状化させる点から0.1〜10時間が好ましく、0.5〜5時間が特に好ましい。 The heat treatment time in the first heat treatment step is not particularly limited, but is preferably 0.1 to 10 hours, particularly 0.5 to 5 hours, from the viewpoint of dispersing a large amount of precipitates and forming them into fibers in a later step. preferable.

第1熱処理工程後、銅合金材を冷却して、(d)さらに第2熱処理を実施する。第2熱処理する工程の熱処理温度は、350〜600℃である。第2熱処理工程の熱処理温度が350℃未満または600℃超では、主にAgからなる析出物が十分に析出されず、優れた引張強度と振動耐久性が得られないことがある。第2熱処理工程の熱処理時間は、特に限定されないが、0.5〜20時間が好ましく、1.0〜15時間が特に好ましい。 After the first heat treatment step, the copper alloy material is cooled, and (d) further the second heat treatment is performed. The heat treatment temperature in the second heat treatment step is 350 to 600 ° C. If the heat treatment temperature in the second heat treatment step is less than 350 ° C. or higher than 600 ° C., precipitates mainly composed of Ag may not be sufficiently precipitated, and excellent tensile strength and vibration durability may not be obtained. The heat treatment time in the second heat treatment step is not particularly limited, but is preferably 0.5 to 20 hours, and particularly preferably 1.0 to 15 hours.

第2熱処理工程後、銅合金材を冷却して、(e)最終伸線加工を実施する。最終伸線加工では、加工度loge(A0/A1)^2(式中、A0は最終伸線加工直前の銅合金材の長手方向に対し直交方向の断面積、A1は最終伸線加工直後の銅合金材の長手方向に対し直交方向の断面積)が2.5以上で施される。最終伸線加工の上記加工度が、2.5未満では、整合析出物を十分に伸長、繊維化できずに、優れた引張強度と振動耐久性が得られないことがある。 After the second heat treatment step, the copper alloy material is cooled to carry out (e) final wire drawing. In the final wire drawing, the degree of processing log (A0 / A1) ^ 2 (in the formula, A0 is the cross-sectional area in the direction orthogonal to the longitudinal direction of the copper alloy material immediately before the final wire drawing, and A1 is immediately after the final wire drawing. The cross-sectional area in the direction orthogonal to the longitudinal direction of the copper alloy material) is 2.5 or more. If the degree of processing of the final wire drawing is less than 2.5, the matched precipitate cannot be sufficiently stretched and made into fibers, and excellent tensile strength and vibration durability may not be obtained.

最終伸線加工の上記加工度は、整合析出物を十分に伸長、繊維化させる点から2.5以上であればよく、加工度が高いほど引張強度が優れる。従って、最終伸線加工の上記加工度の上限値は、特に限定されない。 The degree of processing of the final wire drawing may be 2.5 or more from the viewpoint of sufficiently stretching and fiberizing the matched precipitate, and the higher the degree of processing, the better the tensile strength. Therefore, the upper limit of the degree of processing of the final wire drawing is not particularly limited.

また、必要に応じて、(b)鋳塊を得る工程と(c)第1熱処理工程との間、及び/または(c)第1熱処理工程と(d)第2熱処理工程との間に、中間伸線加工が施されてもよい。中間伸線加工の加工度は、特に限定されないが、最終伸線加工における加工度を大きくする点から、加工度loge(B0/B1)^2(式中、B0は中間伸線加工直前の銅合金材の長手方向に対し直交方向の断面積、B1は中間伸線加工直後の銅合金材の長手方向に対し直交方向の断面積)は低い方が好ましいが、整合析出物を十分に析出させ、最終伸線加工において整合析出物を十分に伸長、繊維化させるためには、中間伸線加工の上記加工度は高い方が好ましい。上記から、両者のバランスの点から上記加工度は0〜1.0が好ましい。 Further, if necessary, between (b) the step of obtaining the ingot and (c) the first heat treatment step, and / or (c) between the first heat treatment step and (d) the second heat treatment step, Intermediate wire drawing may be applied. The degree of processing of intermediate wire drawing is not particularly limited, but from the viewpoint of increasing the degree of processing in final wire drawing, the degree of processing loge (B0 / B1) ^ 2 (in the formula, B0 is copper immediately before intermediate drawing. It is preferable that the cross-sectional area in the direction orthogonal to the longitudinal direction of the alloy material and B1 is the cross-sectional area in the direction perpendicular to the longitudinal direction of the copper alloy material immediately after the intermediate wire drawing process) are low, but the matching precipitate is sufficiently precipitated. In order to sufficiently extend and fiberize the matched precipitate in the final wire drawing process, it is preferable that the intermediate wire drawing process has a high degree of processing. From the above, the degree of processing is preferably 0 to 1.0 from the viewpoint of the balance between the two.

本発明の銅合金線材は、特に、上記した(c)第1熱処理工程と(d)第2熱処理工程を施すことにより、優れた導電率を損なうことなく、線材を細径化した場合でも、引張強度に優れた銅合金線材を製造することができる。 The copper alloy wire rod of the present invention is particularly subjected to the above-mentioned (c) first heat treatment step and (d) second heat treatment step, even when the diameter of the wire rod is reduced without impairing excellent conductivity. A copper alloy wire having excellent tensile strength can be manufactured.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.

実施例1〜40
下記表1の合金組成となるように原料(無酸素銅、銀、マグネシウム、クロムおよびジルコニウム)を黒鉛坩堝に投入し、坩堝内の炉内温度を1250℃以上に加熱して原料を溶解した。溶解には、抵抗加熱式の加熱炉を用いた。坩堝内の雰囲気は酸素が溶銅中に混入しないよう、窒素雰囲気とした。さらに、1250℃以上に3時間以上保持した後、冷却速度を500〜1000℃/sに設定し、黒鉛製の鋳型で直径(φ)約10mmのサイズの鋳塊を鋳造した。鋳造開始後は、上記原料を適宜投入することにより連続鋳造を行った。なお、原料にクロムを含む場合(実施例23、27、28、31、33及び34)には、坩堝内の温度を1600℃以上に保持して原料を溶解した。
Examples 1-40
Raw materials (oxygen-free copper, silver, magnesium, chromium and zirconium) were put into a graphite crucible so as to have the alloy composition shown in Table 1 below, and the temperature inside the crucible was heated to 1250 ° C. or higher to melt the raw materials. A resistance heating type heating furnace was used for melting. The atmosphere inside the crucible was a nitrogen atmosphere so that oxygen would not be mixed into the molten copper. Further, after keeping the temperature at 1250 ° C. or higher for 3 hours or longer, the cooling rate was set to 500 to 1000 ° C./s, and an ingot having a diameter (φ) of about 10 mm was cast with a graphite mold. After the start of casting, continuous casting was performed by appropriately adding the above raw materials. When chromium was contained in the raw material (Examples 23, 27, 28, 31, 33 and 34), the temperature inside the crucible was maintained at 1600 ° C. or higher to dissolve the raw material.

次に、上記のようにして得られた鋳塊を、下記表1に示す温度及び時間にて、第1熱処理を実施した。第1熱処理工程後、φ8mmまで試験材に中間伸線加工を施し、さらに、下記表1に示す温度及び時間にて、第2熱処理を実施した。第2熱処理工程後、下記表1に示す線径まで所定の加工度にて最終伸線加工を施し、銅合金線材を得た。なお、第1熱処理及び第2熱処理は、窒素雰囲気中のバッチ炉にて行った。 Next, the ingot obtained as described above was subjected to the first heat treatment at the temperature and time shown in Table 1 below. After the first heat treatment step, the test material was subjected to intermediate wire drawing to φ8 mm, and further, the second heat treatment was carried out at the temperature and time shown in Table 1 below. After the second heat treatment step, the final wire drawing process was performed to the wire diameter shown in Table 1 below at a predetermined processing degree to obtain a copper alloy wire rod. The first heat treatment and the second heat treatment were performed in a batch furnace in a nitrogen atmosphere.

比較例1〜7
比較例1、4〜7について、いずれもφ約8mmのサイズの鋳塊を鋳造し、中間伸線加工は行わずに、最終伸線加工にてφ0.1mmまで伸線加工を施したこと以外は、上記実施例と同様の工程にて、且つ下記表1に示す製造条件にて銅合金線材を得た。比較例2は、第1熱処理及び第2熱処理を実施しなかったこと以外は、比較例1、4〜7と同様の工程にて銅合金線材を得た。また、比較例3は、第2熱処理を実施しなかったこと以外は、上記比較例1、4〜7と同様の工程にて銅合金線材を得た。従って、比較例3ではφ8mmにて第1熱処理を施した。
Comparative Examples 1 to 7
In Comparative Examples 1, 4 to 7, ingots having a size of about 8 mm were cast, and the final wire drawing was performed to φ0.1 mm without intermediate wire drawing. Obtained a copper alloy wire in the same process as in the above-mentioned Example and under the production conditions shown in Table 1 below. In Comparative Example 2, a copper alloy wire rod was obtained in the same steps as in Comparative Examples 1 and 4 to 7, except that the first heat treatment and the second heat treatment were not performed. Further, in Comparative Example 3, a copper alloy wire rod was obtained in the same steps as in Comparative Examples 1 and 4 to 7 except that the second heat treatment was not performed. Therefore, in Comparative Example 3, the first heat treatment was performed at φ8 mm.

[母相のCuに整合して析出している析出物の観察方法]
実施例、比較例における銅合金線材をFIB法にて薄膜にし、透過型電子顕微鏡(TEM)を用いて、断面方向(短手方向)の長さ240nm×長手方向の長さ360nmの長方形からなる観察域を観察した。なお、銅合金線材は長手方向に対して平行に切り出し、TEM観察の際には長手方向を横に配置して観察した。次に、析出物が整合に析出していることを確認するため、回折パターンを取得した。この時、回折パターンは、一般的にパターンが分かりやすい[110]晶帯軸入射にて撮像した。母相であるCuの結晶による回折パターンが最も輝度が高く観察されるが、その他にも回折パターンが観察され、回折パターンの型とスポット間隔の計測によりその回折パターンの析出物がAgであることを同定した。
[Method of observing precipitates that are consistent with the Cu of the matrix phase]
The copper alloy wire rods in Examples and Comparative Examples are made into a thin film by the FIB method, and are composed of a rectangle having a cross-sectional direction (short direction) length of 240 nm x a longitudinal direction length of 360 nm using a transmission electron microscope (TEM). The observation area was observed. The copper alloy wire was cut out parallel to the longitudinal direction, and when TEM observation was performed, the longitudinal direction was arranged horizontally for observation. Next, a diffraction pattern was acquired in order to confirm that the precipitates were consistently precipitated. At this time, the diffraction pattern was imaged at the [110] crystal zone axis incident where the pattern is generally easy to understand. The diffraction pattern by the crystal of Cu, which is the matrix, is observed with the highest brightness, but other diffraction patterns are also observed, and the precipitate of the diffraction pattern is Ag by measuring the type of the diffraction pattern and the spot interval. Was identified.

次に、上記にて得られた析出物の回折パターンの回折波のみを選択し観察できるように対物絞りを入れて観察すると、その回折パターンを形成する回折波を生じる部分(すなわち、整合析出物)のみが明るく観察される。これを暗視野像といい、実施例、比較例における銅合金線材について、この暗視野像(図2に示す)を撮像した。上記にて得られた暗視野像から母相であるCuに整合に析出している析出物(整合析出物)の面積割合、平均幅、平均長さ、平均間隔を、下記のようにして求めた。 Next, when only the diffracted wave of the diffraction pattern of the precipitate obtained above is selected and observed with an objective aperture so that it can be observed, a portion (that is, a matched precipitate) that generates a diffracted wave forming the diffraction pattern is observed. ) Is brightly observed. This is called a dark-field image, and this dark-field image (shown in FIG. 2) was imaged for the copper alloy wire rods in Examples and Comparative Examples. From the dark-field image obtained above, the area ratio, average width, average length, and average interval of the precipitates (matched precipitates) that are consistently precipitated in the parent phase Cu are obtained as follows. It was.

まず、暗視野像で得られたコントラストを二値化した。二値化にはp-タイル法を用いた。p-タイル法を用いると、輝度の順位が入れ替わることなく閾値が決定されるため、異なる観察環境で同一範囲を撮影した写真同士はほぼ同様な二値化ができる。ただし、画像上の局所部分において輝度が変わるような環境でないことが前提である。その後、得られた写真の全ピクセル数に対し、白コントラストの部分、すなわち、整合に析出している析出物(整合析出物)のピクセル数を算出し、整合析出物のピクセル数を全ピクセル数で割って面積割合を算出した。 First, the contrast obtained in the dark field image was binarized. The p-tile method was used for binarization. When the p-tile method is used, the threshold value is determined without changing the order of brightness, so that photographs taken in the same range in different observation environments can be binarized in almost the same manner. However, it is premised that the environment does not change the brightness in the local part on the image. After that, the number of pixels of the white contrast portion, that is, the matching precipitate (matched precipitate) is calculated with respect to the total number of pixels of the obtained photograph, and the total number of pixels of the matched precipitate is calculated. The area ratio was calculated by dividing by.

また、暗視野像の断面方向を行番号として、長手方向の整合析出物のピクセル数を算出し、図3のように、行毎のピクセル数をグラフ化した。図3において観察された行番0から275が断面方向の長さ240nmに相当する。ピクセル数が25以上の部分を一つのピークと捉え、それぞれのピークの半値幅を整合析出物の幅と定義し、それぞれのピークから整合析出物の幅を求め、平均値を算出して平均幅とした。上記ピークの最大値を整合析出物の長さと定義し、写真の全ピクセル数に対するそれぞれのピークのピクセル数から整合析出物の長さを求め、平均値を算出して平均長さとした。上記ピークの最大値と隣接したピークの最大値の間隔を測定し、それぞれの間隔を整合析出物の間隔と定義し、それぞれのピーク間隔を求め、平均値を算出して析出物の平均間隔とした。 Further, the number of pixels of the matching precipitate in the longitudinal direction was calculated with the cross-sectional direction of the dark field image as the row number, and the number of pixels for each row was graphed as shown in FIG. Lines 0 to 275 observed in FIG. 3 correspond to a length of 240 nm in the cross-sectional direction. The part where the number of pixels is 25 or more is regarded as one peak, the half width of each peak is defined as the width of the matching precipitate, the width of the matching precipitate is obtained from each peak, the average value is calculated, and the average width is calculated. And said. The maximum value of the peak was defined as the length of the matched precipitate, the length of the matched precipitate was obtained from the number of pixels of each peak with respect to the total number of pixels in the photograph, and the average value was calculated to obtain the average length. The interval between the maximum value of the above peak and the maximum value of the adjacent peak is measured, each interval is defined as the interval of matched precipitates, each peak interval is obtained, the average value is calculated, and the average interval of precipitates is used. did.

なお、整合析出物の上記各態様は、上記薄膜の試料厚さを0.15μmを基準厚さとして算出した。銅合金線材の厚さが基準厚さと異なる場合、銅合金線材の厚さを基準厚さに換算、すなわち、(基準厚さ/銅合金線材厚さ)を撮影された写真を基に算出した分散密度にかけることによって、分散密度を算出できる。実施例及び比較例では、FIB法によりすべての銅合金線材において試料厚さを約0.15μmに設定した。 In each of the above aspects of the matched precipitate, the sample thickness of the thin film was calculated with 0.15 μm as a reference thickness. If the thickness of the copper alloy wire is different from the standard thickness, the thickness of the copper alloy wire is converted to the standard thickness, that is, the dispersion calculated based on the photograph taken (standard thickness / copper alloy wire thickness). The dispersion density can be calculated by multiplying by the density. In Examples and Comparative Examples, the sample thickness was set to about 0.15 μm for all copper alloy wires by the FIB method.

[母相であるCuに対して整合析出物が同結晶軸方向に整合していることの評価方法]
上記したように、析出物が整合に析出していることを確認するために母相であるCuに対して[110]晶帯軸入射にて回折パターンを取得する手法、および母相であるCuに対して整合析出物が同結晶軸方向に整合していることを確認するためにサンプルの角度を変えて母相であるCuに対して[110]または[111]晶帯軸入射にて回折パターンを取得する手法の手順に従い、母相であるCuに対して整合析出物が同結晶軸方向に整合しているか否かを評価し、表1には、母相であるCuに対して整合析出物が同結晶軸方向に整合していれば○、整合していなければ×と表記した。
[Evaluation method for evaluating that the matched precipitates are matched in the same crystal axis direction with respect to the parent phase Cu]
As described above, in order to confirm that the precipitates are consistently precipitated, a method of acquiring a diffraction pattern by incident on the [110] crystal zone axis with respect to Cu as the matrix, and Cu as the matrix. In order to confirm that the matched precipitates are aligned in the same crystal axis direction, the angle of the sample is changed and the Cu as the parent phase is diffracted by [110] or [111] crystal zone axis incident. According to the procedure of the method for acquiring the pattern, it is evaluated whether or not the matched precipitates are matched with respect to the parent phase Cu in the same crystal axis direction. Table 1 shows the matching with respect to the parent phase Cu. If the precipitates are aligned in the same crystal axis direction, they are marked with ◯, and if they are not aligned, they are marked with x.

[引張強度の測定方法]
JIS Z2241に準じて、精密万能試験機(株式会社島津製作所製)を用いて、引張試験を行い、引張強度(MPa)を求めた。なお、上記試験は、各銅合金線材3本ずつ行い、その平均値(N=3)を求め、それぞれの銅合金線材の引張強度とした。
[Measurement method of tensile strength]
A tensile test was performed using a precision universal testing machine (manufactured by Shimadzu Corporation) in accordance with JIS Z2241 to determine the tensile strength (MPa). The above test was carried out for each of the three copper alloy wires, and the average value (N = 3) was obtained and used as the tensile strength of each copper alloy wire.

[導電率の測定方法]
導電率は、20℃(±0.5℃)に保持した恒温漕中で、四端子法を用いて、長さ300mmの試験片3本の比抵抗を測定し、その平均導電率を算出した。端子間距離は200mmとした。
[Measurement method of conductivity]
The conductivity was calculated by measuring the specific resistance of three 300 mm long test pieces in a constant temperature bath maintained at 20 ° C (± 0.5 ° C) using the four-terminal method, and calculating the average conductivity. .. The distance between the terminals was 200 mm.

Figure 2019181320
Figure 2019181320

上記表1に示すように、700℃以上の第1熱処理工程及び350〜600℃の第2熱処理工程を施し、整合析出物の面積割合が(0.393×x−0.589)%≦A≦(3.88×x−5.81)%(式中、xはAgの質量%を表す。)である実施例1〜40では、優れた導電率を損なうことなく、線材を0.02mm〜2.6mmに細径化した場合でも、引張強度に優れた銅合金線材を得ることができた。 As shown in Table 1 above, the first heat treatment step at 700 ° C. or higher and the second heat treatment step at 350 to 600 ° C. were performed, and the area ratio of the matched precipitate was (0.393 × x −0.589)% ≦ A. In Examples 1 to 40 in which ≦ (3.88 × x-5.81)% (x represents mass% of Ag in the formula), the wire rod was 0.02 mm without impairing excellent conductivity. Even when the diameter was reduced to ~ 2.6 mm, a copper alloy wire having excellent tensile strength could be obtained.

一方で、8.0質量%のAgが添加された比較例1では、導電率が著しく低下してしまった。また、第1熱処理工程及び第2熱処理工程を施さなかった比較例2は、第1熱処理工程及び第2熱処理工程を施した以外は比較例2と同じ製造条件及び比較例2と同じ組成である実施例4と比較して、整合析出物が得られず、良好な引張強度が得られなかった。また、第2熱処理工程を施さなかった比較例3、第2熱処理工程の温度が300℃と低い比較例4、6、第2熱処理工程の温度が700℃と高い比較例5、7では、いずれも、整合析出物が得られず、良好な引張強度が得られなかった。 On the other hand, in Comparative Example 1 in which 8.0% by mass of Ag was added, the conductivity was remarkably lowered. Further, Comparative Example 2 in which the first heat treatment step and the second heat treatment step were not performed has the same production conditions as in Comparative Example 2 and the same composition as in Comparative Example 2 except that the first heat treatment step and the second heat treatment step were performed. As compared with Example 4, no matched precipitate was obtained, and good tensile strength could not be obtained. Further, in Comparative Example 3 in which the second heat treatment step was not performed, Comparative Examples 4 and 6 in which the temperature of the second heat treatment step was as low as 300 ° C., and Comparative Examples 5 and 7 in which the temperature of the second heat treatment step was as high as 700 ° C. However, no matched precipitate was obtained, and good tensile strength could not be obtained.

[1]1.5〜6.0質量%のAg、0〜1.0質量%のMg、0〜1.0質量%のCr及び0〜1.0質量%のZrを含有し、残部がCu及び不可避不純物からなる合金組成を有する銅合金線材であって、
前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出している析出物の面積割合(A)が、
下記式(I)
(0.393×x−0.589)%≦A≦(3.88×x−5.81)% (I)
(式(I)中、xはAgの質量%を表す。)
の範囲内である銅合金線材。
[2]Mg、Cr及びZrからなる群から選択される少なくとも1成分の含有量の合計が、0.01〜3.0質量%である[1]に記載の銅合金線材。
[3]前記母相のCuに整合して析出している前記析出物が、前記銅合金線材の長手方向に沿って繊維状に存在する[1]または[2]に記載の銅合金線材。
[4]前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、前記母相のCuに整合して析出している前記析出物の平均幅(W)が、
下記式(II)
(8.3×d)nm≦W≦(24.9×d)nm (II)
(式(II)中、dは銅合金線材の線径(mm)を表す。)
の範囲内である[3]に記載の銅合金線材。
[5]前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、前記母相のCuに整合して析出している前記析出物の平均長さ(L)が、
下記式(III)
(11.3/d)nm≦L≦(33.8/d)nm (III)
(式(III)中、dは銅合金線材の線径(mm)を表す。)
の範囲内である[3]または[4]に記載の銅合金線材。
[6]前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、前記母相のCuに整合して析出している前記析出物の平均間隔(S)が、
下記式(IV)
(760×x^−2.25)×dnm≦S≦(2300×x^−2.25)×dnm (IV)
(式(IV)中、dは銅合金線材の線径(mm)、xはAgの質量%を表す。)
の範囲内である[3]乃至[5]のいずれか1つに記載の銅合金線材。
[7]前記母相のCuに対し、前記析出物が同結晶軸方向に整合している[1]乃至[6]のいずれか1つに記載の銅合金線材。
[8]原料を溶解する工程と、溶解した前記原料を鋳造して鋳塊を得る工程と、前記鋳塊から得られた銅合金材を第1熱処理する工程と、さらに第2熱処理する工程と、前記第2熱処理をした銅合金材を最終伸線加工して銅合金線材を得る工程とを含む、[1]乃至[7]のいずれか1つに記載の銅合金線材の製造方法であって、
前記第1熱処理工程が、700℃以上の温度で施され、
前記第2熱処理工程が、350〜600℃の温度で施され、
前記最終伸線加工工程の加工度loge(A0/A1)(式中、A0は最終伸線加工直前の銅合金材の長手方向に対し直交方向の断面積、A1は最終伸線加工直後の銅合金材の長手方向に対し直交方向の断面積)が2.5以上で施される銅合金線材の製造方法。
[9]前記鋳塊を得る工程と前記第1熱処理工程との間、及び/または前記第1熱処理工程と前記第2熱処理工程との間に、伸線加工が施される[8]に記載の銅合金線材の製造方法。
[1] Contains 1.5 to 6.0% by mass of Ag, 0 to 1.0% by mass of Mg, 0 to 1.0% by mass of Cr and 0 to 1.0% by mass of Zr, and the balance is A copper alloy wire having an alloy composition consisting of Cu and unavoidable impurities.
When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the area ratio (A) of the precipitates precipitated in accordance with the Cu of the matrix in the rectangular observation area of 240 nm × 360 nm is
The following formula (I)
(0.393 x x-0.589)% ≤ A ≤ (3.88 x x-5.81)% (I)
(In formula (I), x represents the mass% of Ag.)
Copper alloy wire that is within the range of.
[2] The copper alloy wire rod according to [1], wherein the total content of at least one component selected from the group consisting of Mg, Cr and Zr is 0.01 to 3.0% by mass.
[3] The copper alloy wire rod according to [1] or [2], wherein the precipitate that is deposited in accordance with the Cu of the parent phase exists in a fibrous form along the longitudinal direction of the copper alloy wire rod.
[4] When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the average width of the precipitates precipitated in accordance with the Cu of the parent phase in a rectangular observation area of 240 nm × 360 nm. (W) is
The following formula (II)
(8.3 × d) nm ≦ W ≦ (24.9 × d) nm (II)
(In formula (II), d represents the wire diameter (mm) of the copper alloy wire.)
The copper alloy wire rod according to [3], which is within the range of.
[5] When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the average length of the precipitates precipitated in accordance with the Cu of the parent phase in a rectangular observation area of 240 nm × 360 nm. (L) is
The following formula (III)
(11.3 / d) nm ≦ L ≦ (33.8 / d) nm (III)
(In formula (III), d represents the wire diameter (mm) of the copper alloy wire.)
The copper alloy wire rod according to [3] or [4], which is within the range of.
[6] When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the average spacing of the precipitates precipitated in accordance with the Cu of the matrix in a rectangular observation area of 240 nm × 360 nm. (S) is
The following formula (IV)
(760 × x ^ -2.25) × dnm ≦ S ≦ (2300 × x ^ -2.25) × dnm (IV)
(In formula (IV), d represents the wire diameter (mm) of the copper alloy wire, and x represents the mass% of Ag.)
The copper alloy wire rod according to any one of [3] to [5], which is within the range of.
[7] The copper alloy wire rod according to any one of [1] to [6], wherein the precipitate is aligned in the same crystal axis direction with respect to Cu of the parent phase.
[8] A step of melting the raw material, a step of casting the melted raw material to obtain an ingot, a step of first heat-treating the copper alloy material obtained from the ingot, and a step of further performing a second heat treatment. The method for producing a copper alloy wire according to any one of [1] to [7], which comprises a step of finally drawing the copper alloy material subjected to the second heat treatment to obtain a copper alloy wire. hand,
The first heat treatment step is performed at a temperature of 700 ° C. or higher.
The second heat treatment step is performed at a temperature of 350 to 600 ° C.
Process degree log (A0 / A1 ) of the final wire drawing process (In the formula, A0 is the cross-sectional area in the direction perpendicular to the longitudinal direction of the copper alloy material immediately before the final wire drawing, and A1 is the copper immediately after the final wire drawing. A method for manufacturing a copper alloy wire having a cross-sectional area of 2.5 or more in the direction orthogonal to the longitudinal direction of the alloy material.
[9] The wire drawing process is performed between the step of obtaining the ingot and the first heat treatment step, and / or between the first heat treatment step and the second heat treatment step. Manufacturing method of copper alloy wire rod.

整合析出物の平均幅(W)が、(8.3×d)nm未満では、線径に対して整合析出物が細くなり、整合析出物の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。一方で、(24.9×d)nm超では、線径に対して平均幅(W)の寸法が大きくなるので、やはり、整合析出の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。 When the average width (W) of the matched precipitate is less than (8.3 × d) nm, the matched precipitate becomes thinner with respect to the wire diameter, and the effect of the matched precipitate on the deformation of the copper alloy wire is limited. There is a possibility that On the other hand, in (24.9 × d) nm greater, since the size of the average width (W) relative to the diameter increases again, hindered effect is limited matched precipitates to deformation of the copper alloy wire there is a possibility.

整合析出物の平均長さ(L)が、(11.3/d)nm未満では、線径に対して整合析出物が短くなり、整合析出物の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。一方で、(33.8/d)nm超では、線径に対して平均長さ(L)の寸法が大きくなるので、やはり、整合析出の、銅合金線材の変形に対する妨げ効果が限定される可能性がある。 When the average length (L) of the matched precipitate is less than (11.3 / d) nm, the matched precipitate becomes shorter than the wire diameter, and the effect of the matched precipitate on the deformation of the copper alloy wire is limited. May be done. On the other hand, in (33.8 / d) nm greater, since the size of the average length with respect to diameter (L) increases, again, hindered effect is limited matched precipitates to deformation of the copper alloy wire There is a possibility that

[母相のCuに整合して析出している析出物の平均間隔(S)]
本発明の銅合金線材では、その長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出している整合析出物の平均間隔(S)は、特に限定されないが、下記式(IV)
(760×x^−2.25)×dnm≦S≦(2300×x^−2.25)×dnm (IV)
(式(IV)中、dは銅合金線材の線径(mm)、xはAgの質量%を表す。)の範囲内であることが好ましい。従って、本発明の銅合金線材の好ましい態様では、線径とAg含有量の変化に応じて整合析出物の好ましい平均間隔(S)の範囲も変化する。上記式(IV)は、銅合金線材中におけるAg含有量を様々に選択した実験結果から導き出されたものである。
[Average interval (S) of precipitates precipitated in accordance with Cu in the matrix]
In the copper alloy wire rod of the present invention, when observing a cross section parallel to the longitudinal direction thereof, the average spacing of the matching precipitates that are precipitated in accordance with the Cu of the parent phase in the rectangular observation region of 240 nm × 360 nm. (S) is not particularly limited, but the following formula (IV)
(760 × x ^ -2.25) × dnm ≦ S ≦ (2300 × x ^ -2.25) × dnm (IV)
(In the formula (IV), d represents the wire diameter (mm) of the copper alloy wire, and x represents the mass% of Ag). Therefore, in a preferred embodiment of the copper alloy wire rod of the present invention, the range of the preferable average interval (S) of the matched precipitates also changes according to the change in the wire diameter and the Ag content. The above formula (IV) is derived from the experimental results in which the Ag content in the copper alloy wire is selected variously.

[本発明の銅合金線材の製造方法]
次に、本発明の銅合金線材の製造方法について説明する。本発明の銅合金線材の製造方法は、(a)原料を溶解する工程と、(b)溶解した原料を鋳造して鋳塊を得る工程と、(c)鋳塊から得られた銅合金材を第1熱処理する工程と、(d)第1熱処理する工程後、さらに第2熱処理する工程と、(e)第2熱処理をした銅合金材を、最終伸線加工であって、その加工度loge(A0/A1)(式中、A0は最終伸線加工直前の銅合金材の長手方向に対し直交方向の断面積、A1は最終伸線加工直後の銅合金材の長手方向に対し直交方向の断面積)が2.5以上で施される最終伸線加工を行って、銅合金線材を得る工程と、を含む。
[Method for manufacturing copper alloy wire rod of the present invention]
Next, the method for producing the copper alloy wire rod of the present invention will be described. The method for producing a copper alloy wire rod of the present invention includes (a) a step of melting the raw material, (b) a step of casting the melted raw material to obtain an ingot, and (c) a copper alloy material obtained from the ingot. The first heat treatment step, (d) the first heat treatment step, then the second heat treatment step, and (e) the second heat treatment copper alloy material are final wire drawing, and the degree of processing thereof. loge (A0 / A1 ) (In the formula, A0 is the cross-sectional area perpendicular to the longitudinal direction of the copper alloy material immediately before the final wire drawing process, and A1 is the direction orthogonal to the longitudinal direction of the copper alloy material immediately after the final wire drawing process. A step of obtaining a copper alloy wire rod by performing a final wire drawing process in which the cross-sectional area) is 2.5 or more is included.

第2熱処理工程後、銅合金材を冷却して、(e)最終伸線加工を実施する。最終伸線加工では、加工度loge(A0/A1)(式中、A0は最終伸線加工直前の銅合金材の長手方向に対し直交方向の断面積、A1は最終伸線加工直後の銅合金材の長手方向に対し直交方向の断面積)が2.5以上で施される。最終伸線加工の上記加工度が、2.5未満では、整合析出物を十分に伸長、繊維化できずに、優れた引張強度と振動耐久性が得られないことがある。 After the second heat treatment step, the copper alloy material is cooled to carry out (e) final wire drawing. In the final wire drawing, the degree of processing log (A0 / A1 ) (in the formula, A0 is the cross-sectional area in the direction orthogonal to the longitudinal direction of the copper alloy material immediately before the final wire drawing, and A1 is the copper alloy immediately after the final wire drawing. The cross-sectional area in the direction orthogonal to the longitudinal direction of the material) is 2.5 or more. If the degree of processing of the final wire drawing is less than 2.5, the matched precipitate cannot be sufficiently stretched and made into fibers, and excellent tensile strength and vibration durability may not be obtained.

また、必要に応じて、(b)鋳塊を得る工程と(c)第1熱処理工程との間、及び/または(c)第1熱処理工程と(d)第2熱処理工程との間に、中間伸線加工が施されてもよい。中間伸線加工の加工度は、特に限定されないが、最終伸線加工における加工度を大きくする点から、加工度loge(B0/B1)(式中、B0は中間伸線加工直前の銅合金材の長手方向に対し直交方向の断面積、B1は中間伸線加工直後の銅合金材の長手方向に対し直交方向の断面積)は低い方が好ましいが、整合析出物を十分に析出させ、最終伸線加工において整合析出物を十分に伸長、繊維化させるためには、中間伸線加工の上記加工度は高い方が好ましい。上記から、両者のバランスの点から上記加工度は0〜1.0が好ましい。 Further, if necessary, between (b) the step of obtaining the ingot and (c) the first heat treatment step, and / or (c) between the first heat treatment step and (d) the second heat treatment step, Intermediate wire drawing may be applied. The degree of processing of intermediate wire drawing is not particularly limited, but from the viewpoint of increasing the degree of processing in final wire drawing, the degree of processing loge (B0 / B1 ) (in the formula, B0 is a copper alloy material immediately before intermediate drawing. It is preferable that the cross-sectional area in the direction orthogonal to the longitudinal direction of the above and B1 is the cross-sectional area in the direction orthogonal to the longitudinal direction of the copper alloy material immediately after the intermediate wire drawing process), but the matching precipitate is sufficiently precipitated and finally. In order to sufficiently extend and fiberize the matched precipitate in the wire drawing process, it is preferable that the intermediate wire drawing process has a high degree of processing. From the above, the degree of processing is preferably 0 to 1.0 from the viewpoint of the balance between the two.

Claims (9)

1.5〜6.0質量%のAg、0〜1.0質量%のMg、0〜1.0質量%のCr及び0〜1.0質量%のZrを含有し、残部がCu及び不可避不純物からなる合金組成を有する銅合金線材であって、
前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、母相のCuに整合して析出している析出物の面積割合(A)が、
下記式(I)
(0.393×x−0.589)%≦A≦(3.88×x−5.81)% (I)
(式(I)中、xはAgの質量%を表す。)
の範囲内である銅合金線材。
It contains 1.5 to 6.0% by mass of Ag, 0 to 1.0% by mass of Mg, 0 to 1.0% by mass of Cr and 0 to 1.0% by mass of Zr, and the balance is Cu and unavoidable. A copper alloy wire having an alloy composition composed of impurities.
When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the area ratio (A) of the precipitates precipitated in accordance with the Cu of the matrix in the rectangular observation area of 240 nm × 360 nm is
The following formula (I)
(0.393 x x-0.589)% ≤ A ≤ (3.88 x x-5.81)% (I)
(In formula (I), x represents the mass% of Ag.)
Copper alloy wire that is within the range of.
Mg、Cr及びZrからなる群から選択される少なくとも1成分の含有量の合計が、0.01〜3.0質量%である請求項1に記載の銅合金線材。 The copper alloy wire rod according to claim 1, wherein the total content of at least one component selected from the group consisting of Mg, Cr and Zr is 0.01 to 3.0% by mass. 前記母相のCuに整合して析出している前記析出物が、前記銅合金線材の長手方向に沿って繊維状に存在する請求項1または2に記載の銅合金線材。 The copper alloy wire rod according to claim 1 or 2, wherein the precipitate that is deposited in accordance with the Cu of the parent phase exists in a fibrous form along the longitudinal direction of the copper alloy wire rod. 前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、前記母相のCuに整合して析出している前記析出物の平均幅(W)が、
下記式(II)
(8.3×d)nm≦W≦(24.9×d)nm (II)
(式(II)中、dは銅合金線材の線径(mm)を表す。)
の範囲内である請求項3に記載の銅合金線材。
When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the average width (W) of the precipitates precipitated in accordance with the Cu of the matrix in a rectangular observation region of 240 nm × 360 nm. But,
The following formula (II)
(8.3 × d) nm ≦ W ≦ (24.9 × d) nm (II)
(In formula (II), d represents the wire diameter (mm) of the copper alloy wire.)
The copper alloy wire rod according to claim 3, which is within the range of.
前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、前記母相のCuに整合して析出している前記析出物の平均長さ(L)が、
下記式(III)
(11.3/d)nm≦L≦(33.8/d)nm (III)
(式(III)中、dは銅合金線材の線径(mm)を表す。)
の範囲内である請求項3または4に記載の銅合金線材。
When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the average length (L) of the precipitate deposited in accordance with the Cu of the matrix in the rectangular observation region of 240 nm × 360 nm. )But,
The following formula (III)
(11.3 / d) nm ≦ L ≦ (33.8 / d) nm (III)
(In formula (III), d represents the wire diameter (mm) of the copper alloy wire.)
The copper alloy wire rod according to claim 3 or 4, which is within the scope of.
前記銅合金線材の長手方向に対し平行な断面を観察した場合に、240nm×360nmの長方形の観察域における、前記母相のCuに整合して析出している前記析出物の平均間隔(S)が、
下記式(IV)
(760×x^−2.25)×dnm≦S≦(2300×x^−2.25)×dnm (IV)
(式(IV)中、dは銅合金線材の線径(mm)、xはAgの質量%を表す。)
の範囲内である請求項3乃至5のいずれか1項に記載の銅合金線材。
When observing a cross section parallel to the longitudinal direction of the copper alloy wire, the average spacing (S) of the precipitates precipitated in a rectangular observation region of 240 nm × 360 nm in accordance with the Cu of the parent phase. But,
The following formula (IV)
(760 × x ^ -2.25) × dnm ≦ S ≦ (2300 × x ^ -2.25) × dnm (IV)
(In formula (IV), d represents the wire diameter (mm) of the copper alloy wire, and x represents the mass% of Ag.)
The copper alloy wire rod according to any one of claims 3 to 5, which is within the range of.
前記母相のCuに対し、前記析出物が同結晶軸方向に整合している請求項1乃至6のいずれか1項に記載の銅合金線材。 The copper alloy wire rod according to any one of claims 1 to 6, wherein the precipitates are aligned in the same crystal axis direction with respect to Cu as the parent phase. 原料を溶解する工程と、溶解した前記原料を鋳造して鋳塊を得る工程と、前記鋳塊から得られた銅合金材を第1熱処理する工程と、さらに第2熱処理する工程と、前記第2熱処理をした銅合金材を最終伸線加工して銅合金線材を得る工程とを含む、請求項1乃至7のいずれか1項に記載の銅合金線材の製造方法であって、
前記第1熱処理工程が、700℃以上の温度で施され、
前記第2熱処理工程が、350〜600℃の温度で施され、
前記最終伸線加工工程の加工度loge(A0/A1)^2(式中、A0は最終伸線加工直前の銅合金材の長手方向に対し直交方向の断面積、A1は最終伸線加工直後の銅合金材の長手方向に対し直交方向の断面積)が2.5以上で施される銅合金線材の製造方法。
A step of melting the raw material, a step of casting the melted raw material to obtain an ingot, a step of first heat-treating the copper alloy material obtained from the ingot, a step of further heat-treating the second, and the first step. (2) The method for producing a copper alloy wire according to any one of claims 1 to 7, further comprising a step of finally drawing a heat-treated copper alloy to obtain a copper alloy wire.
The first heat treatment step is performed at a temperature of 700 ° C. or higher.
The second heat treatment step is performed at a temperature of 350 to 600 ° C.
Process degree log (A0 / A1) ^ 2 (in the formula, A0 is the cross-sectional area in the direction orthogonal to the longitudinal direction of the copper alloy material immediately before the final wire drawing process, and A1 is immediately after the final wire drawing process. A method for manufacturing a copper alloy wire rod having a cross-sectional area of 2.5 or more in the direction orthogonal to the longitudinal direction of the copper alloy material.
前記鋳塊を得る工程と前記第1熱処理工程との間、及び/または前記第1熱処理工程と前記第2熱処理工程との間に、伸線加工が施される請求項8に記載の銅合金線材の製造方法。 The copper alloy according to claim 8, wherein wire drawing is performed between the step of obtaining the ingot and the first heat treatment step, and / or between the first heat treatment step and the second heat treatment step. Method of manufacturing wire rod.
JP2019529676A 2018-03-20 2019-02-18 Manufacturing method of copper alloy wire and copper alloy wire Pending JPWO2019181320A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018052554 2018-03-20
JP2018052554 2018-03-20
PCT/JP2019/005812 WO2019181320A1 (en) 2018-03-20 2019-02-18 Copper alloy wire rod and method for producing copper alloy wire rod

Publications (1)

Publication Number Publication Date
JPWO2019181320A1 true JPWO2019181320A1 (en) 2021-02-04

Family

ID=67987004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019529676A Pending JPWO2019181320A1 (en) 2018-03-20 2019-02-18 Manufacturing method of copper alloy wire and copper alloy wire

Country Status (5)

Country Link
EP (1) EP3770287A4 (en)
JP (1) JPWO2019181320A1 (en)
KR (1) KR20200129027A (en)
CN (1) CN111032892B (en)
WO (1) WO2019181320A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230024243A (en) * 2021-03-23 2023-02-20 후루카와 덴키 고교 가부시키가이샤 copper alloy wire rod
WO2022202871A1 (en) * 2021-03-23 2022-09-29 古河電気工業株式会社 Copper alloy wire
CN113369473B (en) * 2021-06-10 2023-05-12 盘星新型合金材料(常州)有限公司 High-strength high-conductivity copper alloy powder and preparation method thereof
WO2024177092A1 (en) * 2023-02-21 2024-08-29 古河電気工業株式会社 Copper–silver alloy wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046378A1 (en) * 2005-10-17 2007-04-26 National Institute For Materials Science Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF
JP2011246802A (en) * 2010-04-28 2011-12-08 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING Cu-Ag ALLOY WIRE
JP2015021138A (en) * 2013-07-16 2015-02-02 住友電気工業株式会社 Method for manufacturing copper-silver alloy wire and copper-silver alloy wire
JP2017002337A (en) * 2015-06-04 2017-01-05 古河電気工業株式会社 High flexural fatigue resistant copper-based alloy wire
WO2018100919A1 (en) * 2016-12-02 2018-06-07 古河電気工業株式会社 Copper alloy wire rod and method for producing copper alloy wire rod

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770244A (en) * 1980-10-15 1982-04-30 Furukawa Electric Co Ltd:The Heat-resistant and anticorrosive copper alloy for electric conduction
JPS59170230A (en) * 1983-03-14 1984-09-26 Furukawa Electric Co Ltd:The Electrode wire for wire electric spark machining
JPH0243811B2 (en) * 1985-06-15 1990-10-01 Dowa Mining Co RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JPH0590832A (en) 1991-02-28 1993-04-09 Mitsubishi Heavy Ind Ltd Radio wave absorbing device
JP5195019B2 (en) * 2008-05-21 2013-05-08 住友電気工業株式会社 Cu-Ag alloy wire, winding, and coil
EP2868758B1 (en) * 2012-07-02 2018-04-18 Furukawa Electric Co., Ltd. Copper-alloy wire rod and manufacturing method therefor
CN105518165B (en) * 2013-09-06 2017-08-18 古河电气工业株式会社 Copper alloy wire and its manufacture method
KR101932828B1 (en) * 2014-03-31 2018-12-26 후루카와 덴키 고교 가부시키가이샤 Copper alloy wire material and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046378A1 (en) * 2005-10-17 2007-04-26 National Institute For Materials Science Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF
JP2011246802A (en) * 2010-04-28 2011-12-08 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING Cu-Ag ALLOY WIRE
JP2015021138A (en) * 2013-07-16 2015-02-02 住友電気工業株式会社 Method for manufacturing copper-silver alloy wire and copper-silver alloy wire
JP2017002337A (en) * 2015-06-04 2017-01-05 古河電気工業株式会社 High flexural fatigue resistant copper-based alloy wire
WO2018100919A1 (en) * 2016-12-02 2018-06-07 古河電気工業株式会社 Copper alloy wire rod and method for producing copper alloy wire rod

Also Published As

Publication number Publication date
CN111032892B (en) 2021-12-14
EP3770287A4 (en) 2021-11-24
CN111032892A (en) 2020-04-17
EP3770287A1 (en) 2021-01-27
WO2019181320A1 (en) 2019-09-26
KR20200129027A (en) 2020-11-17

Similar Documents

Publication Publication Date Title
JPWO2019181320A1 (en) Manufacturing method of copper alloy wire and copper alloy wire
KR101615830B1 (en) Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP5520533B2 (en) Copper alloy material and method for producing the same
JP5654571B2 (en) Cu-Ni-Si alloy for electronic materials
KR20080106986A (en) Copper alloy having high strength, high electric conductivity and excellent bending workability
JP2006265731A (en) Copper alloy
KR102119552B1 (en) Copper alloy wire and method for manufacturing copper alloy wire
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4459067B2 (en) High strength and high conductivity copper alloy
JP4556841B2 (en) High strength copper alloy material excellent in bending workability and manufacturing method thereof
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP2007119845A (en) High strength copper alloy material having excellent shear workability and its production method
JP2011021225A (en) Copper alloy material for terminal/connector and method for producing the same
JP2013231224A (en) Copper alloy material for electric and electronic components having excellent bending processability
JP5952726B2 (en) Copper alloy
KR101807969B1 (en) Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT
JP2008001937A (en) Copper alloy material for terminal/connector, and its manufacturing method
JP6407484B1 (en) Copper alloy wire
JP2017071812A (en) Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT
JP2008248352A (en) High-strength and high-electric conductivity copper alloy having excellent hot workability
JP6762453B1 (en) Copper alloy plate material and its manufacturing method
JP6464743B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment components, and terminals
JP2019203202A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231010

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20231222