WO2007046378A1 - Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF - Google Patents

Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF Download PDF

Info

Publication number
WO2007046378A1
WO2007046378A1 PCT/JP2006/320659 JP2006320659W WO2007046378A1 WO 2007046378 A1 WO2007046378 A1 WO 2007046378A1 JP 2006320659 W JP2006320659 W JP 2006320659W WO 2007046378 A1 WO2007046378 A1 WO 2007046378A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
strength
heat treatment
wire
fine wire
Prior art date
Application number
PCT/JP2006/320659
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Sakai
Yoko Hori
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to JP2007540986A priority Critical patent/JP5051647B2/en
Publication of WO2007046378A1 publication Critical patent/WO2007046378A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a Cu—Ag alloy fine wire having both high strength and high electrical conductivity and a method for producing the same. More specifically, in detail, an electric wire for an electronic device, a cable for driving a robot, a small motor, and the like. It is useful as a conductor material for coils, small magnet coils, etc., and as a lead wire, conductive panel material, reinforcing material for superconducting wires, etc., having high strength, high strength, and conductivity characteristics. This relates to a thin wire of Cu—Ag alloy and a manufacturing method thereof.
  • the strength and conductivity of copper alloys for conductive materials are in a trade-off relationship, and it is known that the strength decreases when the strength is high, and conversely the strength is low when the conductivity is high. ing.
  • the conductivity is almost 100% IACS, but the tensile strength is only 200-400 MPa.
  • the tensile conductivity is 900-1500 MPa, and the force conductivity is only up to 50% IACS.
  • a fiber reinforced Cu Ag alloy has been developed by the present applicant as a material that overcomes the constraints on the balance between strength and conductivity (Patent Documents 12 and 2).
  • this copper alloy 4 32at% (6.6 wt% -44. 4wt%) of Ag was added to Cu to crystallize the primary crystal Cu and the eutectic phase of Cu and Ag uniformly and finely.
  • the wire is cold drawn or rolled to extend the primary and eutectic phases into a filament shape to improve the strength.
  • it is dissolved in the primary and eutectic phases by performing multi-stage heat treatment in a vacuum atmosphere or in an inert gas at a temperature of 300-550 ° C and a heat treatment time of 0.5-40 hours.
  • Patent Document 1 Japanese Patent No. 2104108
  • Patent Document 2 Japanese Patent No. 2714555
  • Patent Document 3 JP-A-6-287729
  • the present invention solves the conventional problems, and even with a low concentration of Ag additive, it has a high strength (high tensile strength) that can not be realized conventionally by simple means.
  • high conductivity characteristics particularly high strength of 600MPa or higher, and 900MPa or higher, it is possible to manufacture ultra-fine copper alloy wires with high conductivity characteristics of 70% 1 ACS or higher. It is an object to provide an Ag alloy fine wire and a manufacturing method thereof.
  • the present invention is characterized by the following as a solution to the above problems.
  • the Ag content is 1 to 10 wt%.
  • a Cu-Ag alloy fine wire wherein the Ag content in the first Cu-Ag alloy fine wire is 2 to 6 wt%.
  • the Ag content is 2 to 3 wt%
  • a method for producing a Cu—Ag alloy fine wire characterized in that, in the fifth method for producing a Cu—Ag alloy fine wire, the Ag content is 2 to 6 wt%.
  • the Ag content is 2 to 3 wt%, and the magnification of the processing degree is 18 times or more.
  • the production method of the present invention as described above is uncommon when obtaining a material intended for strength to be held for a relatively long time at a temperature at which sufficient recrystallization occurs during cold working.
  • many products that use conductive materials were made compact and lightweight. It is possible to increase the added value of the product.
  • FIG. 1 is a diagram showing a comparison between the conventional method and the method of the present invention as the relationship between the strength of a Cu-3 wt% Ag alloy fine wire and the degree of processing.
  • FIG. 2 is a diagram showing a comparison between the conventional method and the method of the present invention as the relationship between the strength of the Cu-5 wt% Ag alloy fine wire and the workability.
  • FIG. 3 is a diagram showing a comparison between the conventional method and the method of the present invention as the relationship between the strength and conductivity of a Cu-3 wt% Ag alloy fine wire.
  • FIG. 4 is a graph showing a comparison between the conventional method and the method of the present invention as the relationship between the strength and conductivity of a Cu-5 wt% Ag alloy fine wire.
  • FIG. 5 A graph showing the relationship between the strength and workability of Cu-3wt% Ag fine wire under various heat treatment conditions.
  • FIG. 6 A graph showing the relationship between the strength and workability of Cu-5wt% Ag alloy wire under various heat treatment conditions.
  • FIG. 7 is a graph showing the relationship between the strength of a Cu—Ag alloy fine wire containing lwt% —10 wt% Ag and the degree of calorie in the method of the present invention.
  • FIG. 8 is a graph showing the relationship between the strength and electrical conductivity of Cu-Ag alloy fine wires containing lwt% -10wt% Ag in the present invention.
  • FIG. 9 is a graph showing the relationship between Vickers hardness and heat treatment time (Aging Time) when heat-treated at 450 ° C. for a Cu—Ag alloy containing 2 wt% -10 wt% Ag in the present invention.
  • FIG. 10 is a photograph showing the structure of a Cu-3wt% Ag alloy before and after heat treatment.
  • FIG. Ll A photograph showing the structure of a Cu-5wt% Ag alloy before and after heat treatment.
  • the present invention has the characteristics as described above. Embodiments will be described below.
  • the amount of added Ag is in the range of lwt%-1 Owt%, more preferably 2wt%-6wt%. . If it is less than lwt% Ag, high strength cannot be obtained. If it exceeds 10 wt%, the cost performance against the rate of increase in strength with respect to the added amount of Ag is poor.
  • Melting for alloy ingots can be done by various means, such as high-frequency vacuum melting furnaces and melting under atmospheric pressure while flowing an inert gas such as argon or nitrogen gas. .
  • the heat treatment during the cold heating in the production method of the present invention is performed at a temperature that enables recrystallization.
  • the time for this heat treatment is generally considered to be about 0.5 to 50 hours. From the balance of power treatment efficiency, strength, and electrical conductivity, it is preferable that the time is 6 hours or more.
  • the heat treatment is performed in a vacuum or in an inert gas atmosphere in order to prevent oxidation on the material surface.
  • the degree of vacuum may be about lPa, which can be pulled only by a rotary pump.
  • the inert gas for example, argon (Ar) or a mixed gas such as hydrogen gas 50% + nitrogen gas 50%, a flow rate of about lOccZmin is sufficient.
  • the degree of working is set to 12 or more in the present invention.
  • the term "thin wire” in the present invention means a linear or rod-like material. There are no particular restrictions on the straight section. This depends on the application. The diameter is usually considered to be lmm or less.
  • the Cu—Ag alloy fine wire of the present invention has a relationship between strength: Y (MPa) and conductivity: X (% IA CS), which is in a range represented by the following formula (1), and is more preferable. Is in the range expressed by the following equation (2).
  • a graphite crucible strip (10 X 10 X 30) electrolytic copper was melted (1080 ° C) using a Tamman furnace, and granular silver was added to 1250 ° C. After the temperature is increased, the alloy is melted by pouring into a graphite mold to make a lump.
  • the surface of the lump is ground by 1 to 2 mm, followed by a swaging process, and then a die drawing force test on a draw bench.
  • Fig. 1 shows the relationship between the strength of a Cu-3wt% Ag alloy processed by the conventional manufacturing method (Patent Document 3) and the manufacturing method of the present invention and a processing degree of 7 ?.
  • Heat treatment is performed at a low temperature of 350 ° C for 3 hours (heat treatment 2: vacuum heat treatment furnace (1 Pa ), Precipitation treatment).
  • the strength after heat treatment is 441 MPa, which is slightly higher than that before heat treatment (428 MPa).
  • the molten soot lump is cold worked to a working degree of 7? Recrystallization heat treatment is performed in a vacuum heat treatment furnace (lPa) for 15 hours at a temperature of 450 ° C. The strength after this heat treatment decreases from 450 MPa to 250 MPa. The strength is a force that increases slowly by cold working after recrystallization heat treatment.
  • Fig. 2 shows the relationship between the strength of a Cu-5wt% Ag alloy processed by the conventional method (Patent Document 3) and the method of the present invention and the degree of processing of 7 ?. It can be seen that the Cu-5wt% Ag alloy shows the same behavior as the Cu-3wt% Ag alloy.
  • Fig. 3 shows the relationship between the strength and conductivity of a Cu-3wt% Ag alloy processed by the conventional manufacturing method (Patent Document 3) and the manufacturing method of the present invention. When compared at the same strength level, it can be seen that the conductivity of the Cu-3wt% Ag alloy produced by the method of the present invention is more than 5% IACS higher than that of the conventional method.
  • Fig. 4 shows the relationship between the strength and conductivity of the Cu-5wt% Ag alloy processed by the conventional method (Patent Document 3) and the method of the present invention. Similarly, in the case of the Cu-5 wt% Ag alloy, it can be seen that the conductivity of the method of the present invention is 5% IACS higher than the conventional method.
  • Fig. 5 shows an example of the relationship between strength and workability when Cu-3wt% Ag alloy is heat-treated at various temperatures and times.
  • High-temperature, long-time heat treatment material 450 ° C, 15h material, 450 ° C, 20h
  • has low strength, short-time heat treatment material 350 ° C, 10h material, 430 ° C, 3h material, 450 ° C, Compared with 5h material
  • the important thing in this heat treatment is to precipitate the Ag dissolved in the Cu matrix to the maximum extent.
  • FIG. 6 shows an example of the relationship between the strength and the degree of aging when Cu-5wt% Ag alloy is heat-treated at various temperatures and times.
  • FIG. 7 shows the relationship between the strength and the workability of a Cu-lwt% Ag-10 wt% Ag alloy calored by the production method of the present invention.
  • the Cu-4wt% Ag alloy was heat-treated at 450 ° C for 10h at a workability of 7?
  • the strength and conductivity of Cu-2wt% Ag alloy is 1200MPa, 81.7% IACS, Cu—3wt% Ag alloy is 1400MPa, 76.4% IACS, which provides high strength and high conductivity that cannot be achieved with low-concentration materials.
  • the solid lines A and B shown in FIG. 8 indicate the range in which the relationship between the strength: Y and the electrical conductivity: X of the thin alloy wire of the present invention is expressed by the above-described formula (2).
  • Fig. 9 shows the relationship between the hardness and heat treatment time when a Cu-2wt% -Cu-10wt% Ag alloy was cold worked to a strength of 0.6 and then heat treated at 450 ° C. ! / Speak.
  • the initial hardness is about 70Hv, and when it is cold worked, the hardness increases to about 130-170.
  • the hardness decreases with aging time as shown in Fig. 9. The time when this decrease becomes constant is the completion of recrystallization.
  • FIG. 10 and FIG. 11 are optical micrographs showing the state of the structure before and after heat treatment of Cu-3 wt% Ag and Cu-5 wt% Ag alloy.
  • Figure 10 (b) shows the microstructure of the cold-worked material after heat treatment at 350 ° CX 1 Oh. In (a) and (b), there is almost no change in organization.
  • FIG. 10 (c) shows the state of the material in the state of FIG. 10 (&) after heat treatment at 450 for 10 hours. As can be seen in Fig. 10 (c), after 450 ° CX 10h heat treatment, the entire sample recrystallizes.
  • the Cu-5wt% Ag alloy is the same as the Cu-3wt% Ag alloy as shown in Figs. 11 (a), 11 (b), and 11 (c).
  • the features of the present invention are well illustrated. Industrial app
  • the present invention production of a high strength, high conductivity, ultrafine copper alloy wire, which was impossible with the conventional method, can be realized in a simple process using existing equipment.
  • conventional ultrafine wire manufacturing force that requires annealing several times
  • Can draw wire in addition, according to the present invention, the addition of a low concentration of Ag provides a high strength property of 600 MPa or more, further 900 MPa or more, and a high conductivity characteristic of 70% IACS or more, for example, 1200 MPa at 2 wt% Ag. High strength and high conductivity of 80% IACS can be obtained.

Abstract

Disclosed is a Cu-Ag alloy wire having a low Ag content. The wire can be manufactured by performing a cold wire drawing processing prior to and after a thermal treatment for recrystallization in a vacuum or inert gas atmosphere, wherein the processing degree in the latter cold wire drawing processing is 12 times greater than that in the former cold wire drawing processing. The wire has high strength and high conductivity.

Description

高強度 ·高導電率 Cu— Ag合金細線とその製造方法  High strength and high conductivity Cu-Ag alloy wire and its manufacturing method
技術分野  Technical field
[0001] 本発明は高強度、高導電率を併せ持つ Cu— Ag合金細線とその製造方法に関す るものであり、さら〖こ詳しくは、電子機器の電線 'ケーブル、ロボット駆動用ケーブル、 小型モーターコイル、小型マグネットコイル、等の導体材料として、さらにはリードワイ ヤー、導電性パネ材、超電導線の補強材料等として有用な、高強度であって、し力も 高 、導電率特性を有して 、る新し 、Cu— Ag合金の細線とその製造方法に関するも のである。  [0001] The present invention relates to a Cu—Ag alloy fine wire having both high strength and high electrical conductivity and a method for producing the same. More specifically, in detail, an electric wire for an electronic device, a cable for driving a robot, a small motor, and the like. It is useful as a conductor material for coils, small magnet coils, etc., and as a lead wire, conductive panel material, reinforcing material for superconducting wires, etc., having high strength, high strength, and conductivity characteristics. This relates to a thin wire of Cu—Ag alloy and a manufacturing method thereof.
背景技術  Background art
[0002] 従来より、導電材料用銅合金の強度と導電率はトレードオフの関係で、高強度であ れば導電率が低下し、逆に高導電率であれば強度が低いことが知られている。たと えば高導電材である純 Cuの場合、導電度はほぼ 100%IACSであるが引張強さは 2 00— 400MPaにすぎない。一方、高強度材である Cu— Be合金の場合には、引張 強さは 900— 1500MPaである力 導電度は 50%IACSまでのレベルにすぎない。 そこで、このような強度と導電率バランスの制約を打ち破る材料として繊維強化型 Cu Ag合金が本出願人によって開発されている(特許文献 1 2)。この銅合金は Cu に 4 32at% (6. 6wt% -44. 4wt%)の Agを添カ卩することにより初晶 Cuと Cu及び Agの共晶相とを均一且つ微細に晶出させた後、冷間で伸線加工、或いは圧延加工 を行うことで初晶及び共晶相をフィラメント状に引き延ばして強度を向上させている。 更に、加工途中において、真空雰囲気又は不活性ガス中で温度 300— 550°C、熱 処理時間 0. 5— 40時間の条件で多段熱処理を施すことにより初晶及び共晶相中に 固溶している Ag及び Cuを析出させて、高強度と共に高導電率を実現している。しか しながら、この場合には、 4at% ( (6. 6wt%)以下の Ag添加では強度向上には効果 がないとされており、この点で、より少量の Ag添加では特性向上が図られないという 限界がある。また、 6. 6wt%以上という多量の Ag添加を必須としていることは加工性 やコストパフォーマンスに問題がある。 [0003] この問題を解決すべく 1〜: L0wt%の Agを含有する銅合金を冷間加工し、この冷間 加工の途中で真空雰囲気又は不活性ガス中で 700— 950°Cの温度で、 0. 5— 5時 間熱処理し、さらに冷間加工を行いこの冷間加工の途中で、真空雰囲気又は不活性 ガス中で再結晶が生じな 、ような低温度、すなわち 250°C以上 400°C未満の温度で 、 0. 5— 40時間熱処理を施した後、さらに冷間加工することにより高強度と高導電率 が実現できるとする製造方法が提案されて 、るが (特許文献 3)、強度及び導電率共 に改善の効果はほとんど得られて ヽな 、。 Conventionally, the strength and conductivity of copper alloys for conductive materials are in a trade-off relationship, and it is known that the strength decreases when the strength is high, and conversely the strength is low when the conductivity is high. ing. For example, in the case of pure Cu, a highly conductive material, the conductivity is almost 100% IACS, but the tensile strength is only 200-400 MPa. On the other hand, in the case of Cu-Be alloy, which is a high-strength material, the tensile conductivity is 900-1500 MPa, and the force conductivity is only up to 50% IACS. Therefore, a fiber reinforced Cu Ag alloy has been developed by the present applicant as a material that overcomes the constraints on the balance between strength and conductivity (Patent Documents 12 and 2). In this copper alloy, 4 32at% (6.6 wt% -44. 4wt%) of Ag was added to Cu to crystallize the primary crystal Cu and the eutectic phase of Cu and Ag uniformly and finely. Thereafter, the wire is cold drawn or rolled to extend the primary and eutectic phases into a filament shape to improve the strength. Furthermore, during the processing, it is dissolved in the primary and eutectic phases by performing multi-stage heat treatment in a vacuum atmosphere or in an inert gas at a temperature of 300-550 ° C and a heat treatment time of 0.5-40 hours. Ag and Cu are deposited to achieve high conductivity as well as high strength. However, in this case, the addition of 4at% ((6.6 wt%) or less of Ag is said to have no effect on strength improvement. In this respect, the addition of a smaller amount of Ag improves the characteristics. In addition, the necessity of adding a large amount of Ag of 6.6 wt% or more is a problem in workability and cost performance. [0003] In order to solve this problem, 1-: cold-working a copper alloy containing L0wt% Ag, and in the middle of this cold-working in a vacuum atmosphere or inert gas at a temperature of 700-950 ° C 0.5-5 hours heat treatment, followed by cold working, and at such a low temperature that no recrystallization occurs in the vacuum atmosphere or inert gas during the cold working, ie 250 ° C or more 400 A manufacturing method has been proposed in which high strength and high electrical conductivity can be realized by performing cold working for 0.5 to 40 hours at a temperature of less than ° C (Patent Document 3). ), Improvement of both strength and electrical conductivity is almost achieved.
特許文献 1:特許第 2104108号公報  Patent Document 1: Japanese Patent No. 2104108
特許文献 2:特許第 2714555号公報  Patent Document 2: Japanese Patent No. 2714555
特許文献 3:特開平 6 - 287729号公報  Patent Document 3: JP-A-6-287729
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は、以上のとおりの背景から、従来の問題点を解決し、低濃度の Ag添加材 においても、簡便な手段により、従来実現できな力つた高強度 (高引張強さ)で高導 電率特性、特に、 600MPa以上、さらには 900MPa以上の高強度であって、 70%1 ACS以上の高導電率特性を有する極細銅合金線の製造を可能とする、新 ヽ Cu— Ag合金細線とその製造方法を提供することを課題としている。 [0004] From the background as described above, the present invention solves the conventional problems, and even with a low concentration of Ag additive, it has a high strength (high tensile strength) that can not be realized conventionally by simple means. With high conductivity characteristics, particularly high strength of 600MPa or higher, and 900MPa or higher, it is possible to manufacture ultra-fine copper alloy wires with high conductivity characteristics of 70% 1 ACS or higher. It is an object to provide an Ag alloy fine wire and a manufacturing method thereof.
課題を解決するための手段  Means for solving the problem
[0005] 本発明は、上記の課題を解決するものとして以下のことを特徴としている。 [0005] The present invention is characterized by the following as a solution to the above problems.
[0006] 第 1:真空若しくは不活性ガス雰囲気下で再結晶化熱処理を行う前後において、冷 間伸線加工を行うことにより得られた Cu—Ag合金細線において、前記両冷間伸線 加工における加工度力 前行程に対し後行程で 12倍以上であることを特徴とする C u— Ag合金細線。 [0006] First: In Cu-Ag alloy thin wire obtained by performing cold wire drawing before and after performing recrystallization heat treatment in a vacuum or an inert gas atmosphere, Machining strength force Cu-Ag alloy thin wire characterized by being 12 times or more in the subsequent process compared to the previous process.
[0007] 第 2 :前記第 1の Cu— Ag合金細線において、その Ag含有率が l〜10wt%である ことを特徴とする Cu—Ag合金細線。  [0007] Second: In the first Cu-Ag alloy thin wire, the Ag content is 1 to 10 wt%.
[0008] 第 3 :前記第 1の Cu— Ag合金細線において、その Ag含有率が 2〜6wt%であるこ とを特徴とする Cu—Ag合金細線。 [0008] Third: A Cu-Ag alloy fine wire, wherein the Ag content in the first Cu-Ag alloy fine wire is 2 to 6 wt%.
[0009] 第 4 :前記第 1の Cu— Ag合金細線において、その Ag含有率が 2〜3wt%であり、 前記加工度の倍率が 18倍以上であることを特徴とする Cu—Ag合金細線。 [0009] Fourth: In the first Cu-Ag alloy fine wire, the Ag content is 2 to 3 wt%, A Cu—Ag alloy fine wire characterized in that the degree of workability is 18 times or more.
[0010] 第 5 :真空若しくは不活性ガス雰囲気下で再結晶化熱処理を行う前後において、冷 間伸線加工を行うにあたり、前行程の加工度に対し後行程の加工度を 12倍以上にし たことを特徴とする Cu—Ag合金細線の製造方法。 [0010] Fifth: When performing cold wire drawing before and after performing recrystallization heat treatment in a vacuum or an inert gas atmosphere, the degree of work in the subsequent process was increased to 12 times or more of the degree of work in the previous process. A method for producing a Cu—Ag alloy fine wire.
[0011] 第 6 :前記第 5の Cu—Ag合金細線の製造方法において、その Ag含有率力^〜 10 wt%であることを特徴とする Cu—Ag合金細線の製造方法。 [0011] Sixth: In the fifth method for producing a Cu—Ag alloy fine wire, the method for producing a Cu—Ag alloy fine wire, characterized in that the Ag content power is about 10 wt%.
[0012] 第 7:前記第 5の Cu— Ag合金細線の製造方法にぉ 、て、その Ag含有率が 2〜6w t%であることを特徴とする Cu—Ag合金細線の製造方法。 [0012] Seventh: A method for producing a Cu—Ag alloy fine wire, characterized in that, in the fifth method for producing a Cu—Ag alloy fine wire, the Ag content is 2 to 6 wt%.
[0013] 第 8:前記第 5の Cu— Ag合金細線の製造方法にぉ 、て、その Ag含有率が 2〜3w t%であり、前記加工度の倍率が 18倍以上であることを特徴とする Cu—Ag合金細線 の製造方法。 [0013] Eighth: In the fifth method for producing a Cu—Ag alloy fine wire, the Ag content is 2 to 3 wt%, and the magnification of the processing degree is 18 times or more. A method for producing a Cu-Ag alloy fine wire.
[0014] 以上のとおりの本発明の製造方法は、冷間加工途中で十分再結晶が生じる温度で 比較的長時間保持するという、強度を意図した材料を得んとする場合に常識外であ る熱処理を加えることを特徴の一つとするもので、 ^311ェ工程中ただ 1回の熱処理に よってその後の冷間加工によって強度は加工度の上昇に伴い急激に向上するととも に、加工度 7? (但し、 η =ΙηΑ /Α:Α:加工前断面積、 Α:加工後断面積)が 12以  [0014] The production method of the present invention as described above is uncommon when obtaining a material intended for strength to be held for a relatively long time at a temperature at which sufficient recrystallization occurs during cold working. One of the features is that the strength increases rapidly with the increase in the degree of work and the degree of work 7 ? (However, η = ΙηΑ / Α: Α: Cross-sectional area before processing, Α: Cross-sectional area after processing) is 12 or more
0 0  0 0
上の超強加工域まで中間焼鈍処理なしで加工できるという、従来全く予想出来なか つた知見とその確認に基づくものである。  This is based on the knowledge and confirmation that could not be expected in the past that the upper ultra-high machining area could be processed without intermediate annealing.
[0015] このように Ag添加量を大幅に低減でき、さらに熱処理が材料製造の全工程中で 1 回で、加工度 7? = 12以上の超強力卩ェ域まで伸線カ卩ェできることはその製造コストを 下げることができる。従来材では不可能であった高強度、高導電性、極細線の実現 はこの材料を利用した新製品の開発を促し、さらには導電材料を使用する多くの製 品のコンパクト化、軽量ィ匕を図ることが可能となりその製品の付加価値を高められる。 図面の簡単な説明  [0015] In this way, the amount of Ag added can be greatly reduced, and furthermore, the heat treatment can be carried out to a super-strength region with a degree of processing of 7? = 12 or more at one time during the entire material manufacturing process. Its manufacturing cost can be reduced. The realization of high strength, high conductivity, and ultrafine wire, which was not possible with conventional materials, encouraged the development of new products using this material. In addition, many products that use conductive materials were made compact and lightweight. It is possible to increase the added value of the product. Brief Description of Drawings
[0016] [図 1]従来法と本発明方法との比較を Cu— 3wt%Ag合金細線の強度と加工度との 関係として示した図である。  [0016] FIG. 1 is a diagram showing a comparison between the conventional method and the method of the present invention as the relationship between the strength of a Cu-3 wt% Ag alloy fine wire and the degree of processing.
[図 2]従来法と本発明方法との比較を Cu—5wt%Ag合金細線の強度と加工度との 関係として示した図である。 [図 3]従来法と本発明方法との比較を Cu— 3wt%Ag合金細線の強度と導電率との 関係として示した図である。 FIG. 2 is a diagram showing a comparison between the conventional method and the method of the present invention as the relationship between the strength of the Cu-5 wt% Ag alloy fine wire and the workability. FIG. 3 is a diagram showing a comparison between the conventional method and the method of the present invention as the relationship between the strength and conductivity of a Cu-3 wt% Ag alloy fine wire.
[図 4]従来法と本発明方法との比較を Cu— 5wt%Ag合金細線の強度と導電率との 関係として示した図である。  FIG. 4 is a graph showing a comparison between the conventional method and the method of the present invention as the relationship between the strength and conductivity of a Cu-5 wt% Ag alloy fine wire.
[図 5]種々の熱処理条件における Cu— 3wt%Ag合金細線の強度と加工度の関係を 示した図である。  [Fig. 5] A graph showing the relationship between the strength and workability of Cu-3wt% Ag fine wire under various heat treatment conditions.
[図 6]種々の熱処理条件における Cu— 5wt%Ag合金細線の強度と加工度の関係を 示した図である。  [Fig. 6] A graph showing the relationship between the strength and workability of Cu-5wt% Ag alloy wire under various heat treatment conditions.
[図 7]本発明方法での lwt%— 10wt%Ag含有の Cu— Ag合金細線の強度とカロェ 度との関係を示した図である。  FIG. 7 is a graph showing the relationship between the strength of a Cu—Ag alloy fine wire containing lwt% —10 wt% Ag and the degree of calorie in the method of the present invention.
[図 8]本発明における lwt%— 10wt%Ag含有の Cu— Ag合金細線の強度と導電率 との関係を示した図である。  FIG. 8 is a graph showing the relationship between the strength and electrical conductivity of Cu-Ag alloy fine wires containing lwt% -10wt% Ag in the present invention.
[図 9]本発明における 2wt%— 10wt%Ag含有の Cu—Ag合金について、 450°Cで 熱処理した場合のビッカース硬度と熱処理時間 (Aging Time)との関係を示した図 である。  FIG. 9 is a graph showing the relationship between Vickers hardness and heat treatment time (Aging Time) when heat-treated at 450 ° C. for a Cu—Ag alloy containing 2 wt% -10 wt% Ag in the present invention.
[図 10]Cu—3wt%Ag合金の熱処理の前後の組織を示した写真である。  FIG. 10 is a photograph showing the structure of a Cu-3wt% Ag alloy before and after heat treatment.
[図 ll]Cu— 5wt%Ag合金の熱処理の前後の組織を示した写真である。  [Fig. Ll] A photograph showing the structure of a Cu-5wt% Ag alloy before and after heat treatment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明は上記のとおりの特徴をもつものである力 以下にその実施の形態につい て説明する。 [0017] The present invention has the characteristics as described above. Embodiments will be described below.
[0018] まず、 Cu—Ag合金細線の組成の点では、本発明にお!/、て Ag添力卩量は lwt%— 1 Owt%の範囲、より好ましくは、 2wt%— 6wt%である。 lwt%Ag未満では高強度が 得られない。 10wt%を超える場合、 Ag添加量に対する強度の上昇率に対してのコ ストパフォーマンスが悪い。合金铸塊のための溶製は各種の手段で行ってよぐたと えば高周波真空溶解炉や、アルゴンあるいは窒素ガス等の不活性ガスを流しながら 、大気圧下での溶解等が可能とされる。そして、本発明の製造方法における冷間加 ェ途中での熱処理は再結晶化を可能とする温度において行われる。特に限定的で はなぐ Ag組成やカ卩ェ度によっても相違する力 一般的には、たとえば、 400°C以上 550°C未満の温度条件が好適に考慮される。 400°C未満では再結晶が十分に進ま ず、 Agの析出が生じにくぐその後の冷間加工による強度上昇が低い。 550°C以上 では、 Agの析出量が少なくなり、強度、導電率ともに低下する傾向にある。 [0018] First, in terms of the composition of the Cu-Ag alloy fine wire, according to the present invention, the amount of added Ag is in the range of lwt%-1 Owt%, more preferably 2wt%-6wt%. . If it is less than lwt% Ag, high strength cannot be obtained. If it exceeds 10 wt%, the cost performance against the rate of increase in strength with respect to the added amount of Ag is poor. Melting for alloy ingots can be done by various means, such as high-frequency vacuum melting furnaces and melting under atmospheric pressure while flowing an inert gas such as argon or nitrogen gas. . The heat treatment during the cold heating in the production method of the present invention is performed at a temperature that enables recrystallization. Not limited in particular Force that varies depending on Ag composition and degree of covering Generally, for example, 400 ° C or more Temperature conditions below 550 ° C are preferably considered. Below 400 ° C, recrystallization does not proceed sufficiently and Ag precipitation is difficult to occur, and the subsequent increase in strength due to cold working is low. Above 550 ° C, the amount of Ag deposited decreases, and both strength and conductivity tend to decrease.
[0019] この熱処理のための時間については、一般的には 0. 5〜50時間程度が考慮され る力 処理効率、強度ならびに導電率のバランスからは、 6時間以上とすることが好ま しい。 [0019] The time for this heat treatment is generally considered to be about 0.5 to 50 hours. From the balance of power treatment efficiency, strength, and electrical conductivity, it is preferable that the time is 6 hours or more.
そして熱処理は、材料表面の酸ィ匕を防ぐために、真空もしくは不活性ガス雰囲気下 にお 、て行う。銅および銀は比較的酸ィ匕しにく 、ので真空度はロータリポンプのみで 引ける、 lPa程度でもよい。不活性ガスとしては、たとえばアルゴン (Ar)や、水素ガス 50% +窒素ガス 50%のような混合ガスで、 lOccZmin程度の流量があればよい。  The heat treatment is performed in a vacuum or in an inert gas atmosphere in order to prevent oxidation on the material surface. Since copper and silver are relatively difficult to oxidize, the degree of vacuum may be about lPa, which can be pulled only by a rotary pump. As the inert gas, for example, argon (Ar) or a mixed gas such as hydrogen gas 50% + nitrogen gas 50%, a flow rate of about lOccZmin is sufficient.
[0020] 本発明の製造方法では、このような熱処理を、冷間加工の途中において行う。この 熱処理は 1回のみでよい。  [0020] In the manufacturing method of the present invention, such heat treatment is performed during the cold working. This heat treatment only needs to be performed once.
[0021] 伸線のための冷間加工では、ドローベンチ、スエージヤー、溝ロール等の各種の手 段が採用されてよぐ細線加工では、連続伸線機が好適に用いられる。冷間加工に よる加工度( r? )については、本発明においては加工度が 12以上とする。  In cold working for wire drawing, various methods such as draw bench, swager, groove roll and the like are adopted, and in thin wire processing, a continuous wire drawing machine is preferably used. Regarding the degree of processing (r?) By cold working, the degree of working is set to 12 or more in the present invention.
[0022] なお、本発明における「細線」の用語については、線状、あるいは棒状材であること を意味している。その断面直線に特に制約があるわけではない。用途によりこれは定 められること〖こなる。通常は直径 lmm以下と考えられる。  [0022] The term "thin wire" in the present invention means a linear or rod-like material. There are no particular restrictions on the straight section. This depends on the application. The diameter is usually considered to be lmm or less.
[0023] そして、本発明においては、次の数式の関係で表わされる高強度で、高導電率の 細線が提供される。  [0023] In the present invention, a thin wire having high strength and high conductivity expressed by the following mathematical relationship is provided.
[0024] すなわち、本発明の Cu— Ag合金細線は、その強度: Y(MPa)と導電率: X(%IA CS)との関係力 次式(1)で表わされる範囲にあり、さらに好適には次式(2)で表わ される範囲にある。  That is, the Cu—Ag alloy fine wire of the present invention has a relationship between strength: Y (MPa) and conductivity: X (% IA CS), which is in a range represented by the following formula (1), and is more preferable. Is in the range expressed by the following equation (2).
[0025] [数 1]  [0025] [Equation 1]
(1) -40X+ 3600≤Y≤ -40Χ+4525  (1) -40X + 3600≤Y≤ -40Χ + 4525
(2) -40Χ+4050≤Υ≤ -40Χ+4525  (2) -40Χ + 4050≤Υ≤ -40Χ + 4525
従来、以上のように表わされる強度 導電率の関係を有する lwt%— 10wt%Ag 含有の Cu— Ag合金細線は知られて!/、な!/、。 [0026] そこで以下に実施例を示し、さらに詳しく説明する。もちろん、以下の例によって本 発明が限定されることはない。 Conventionally, Cu-Ag alloy thin wires containing lwt% -10wt% Ag having the relationship of strength and conductivity expressed as described above are known! /, N! / ,. [0026] An example will be shown below and will be described in more detail. Of course, the present invention is not limited to the following examples.
実施例  Example
[0027] 以下の例においては、タンマン炉を用い、グラフアイト製るつぼ短冊状(10 X 10 X 3 0)の電気銅を溶解(1080°C)し、粒状の銀を添加して 1250°Cまで昇温後、グラファ イト製铸型に铸込むことで合金を溶製して铸塊として ヽる。  [0027] In the following example, a graphite crucible strip (10 X 10 X 30) electrolytic copper was melted (1080 ° C) using a Tamman furnace, and granular silver was added to 1250 ° C. After the temperature is increased, the alloy is melted by pouring into a graphite mold to make a lump.
[0028] また伸線のための冷間加工では、铸塊の表面を l〜2mm研削した後、スエージャ 一加工、その後のドローベンチでのダイス伸線力卩ェを行って 、る。  [0028] In the cold working for wire drawing, the surface of the lump is ground by 1 to 2 mm, followed by a swaging process, and then a die drawing force test on a draw bench.
[0029] 図 1は従来の製造法 (特許文献 3)と本発明の製造法で加工した Cu— 3wt%Ag合 金の強度と加工度 7?の関係を示したものである。従来法では、溶製した铸塊を、まず 加工度 7? =0. 63 (50%)まで冷間加工を行い、その後 800°C、 3hの熱処理を施す( 熱処理 1 :大気中、マツフル炉での溶体化処理)。それに伴い強度は 450MPaから 2 50MPaまで低下する。熱処理後、冷間加工を 7? = 1. 19 (70%)まで行い、再結晶 が生じな!/、350°Cの低温度で 3hの熱処理を施す (熱処理 2:真空熱処理炉(1 Pa)で の時効、析出処理)。熱処理後の強度は 441MPaで、熱処理前 (428MPa)よりも若 干高くなる。 2回目の熱処理後加工度 7? = 3. 88 (97. 9%)まで冷間加工を行うこと で強度は 640MPa程度まで上昇するがその後加工度が増しても、強度は変化しな いか或いは低下する。  [0029] Fig. 1 shows the relationship between the strength of a Cu-3wt% Ag alloy processed by the conventional manufacturing method (Patent Document 3) and the manufacturing method of the present invention and a processing degree of 7 ?. In the conventional method, the molten lump is first cold-worked to a working degree of 7? = 0.63 (50%), and then heat-treated at 800 ° C for 3 hours (heat treatment 1: in the atmosphere, in a pine furnace Solution treatment). Along with this, the strength decreases from 450 MPa to 250 MPa. After the heat treatment, cold work is performed up to 7? = 1. 19 (70%), and no recrystallization occurs! /, Heat treatment is performed at a low temperature of 350 ° C for 3 hours (heat treatment 2: vacuum heat treatment furnace (1 Pa ), Precipitation treatment). The strength after heat treatment is 441 MPa, which is slightly higher than that before heat treatment (428 MPa). After the second heat treatment, the strength increases to about 640 MPa by cold working to 7? = 3. 88 (97. 9%), but the strength does not change even if the degree of work increases after that. descend.
[0030] 一方、本発明法では、溶製した铸塊を、加工度 7? =0. 37 (30%)まで冷間加工を 行い、十分再結晶が生じる温度で比較的長時間保持、すなわち 450°Cの温度で 15 hの真空熱処理炉(lPa)での再結晶化熱処理を施す。この熱処理後の強度は 450 MPaから 250MPaまで低下する。強度は再結晶化熱処理後の冷間加工によって緩 やかに上昇する力 加工度 7? =4. 45 (98. 8%)までは従来法よりも低い。加工度 7? =4. 45 (98. 8%)以上では、従来法では強度上昇は期待できないが、本発明法で は強度が加工度の増加に伴って著しく上昇することがわ力る。  [0030] On the other hand, in the method of the present invention, the molten soot lump is cold worked to a working degree of 7? Recrystallization heat treatment is performed in a vacuum heat treatment furnace (lPa) for 15 hours at a temperature of 450 ° C. The strength after this heat treatment decreases from 450 MPa to 250 MPa. The strength is a force that increases slowly by cold working after recrystallization heat treatment. The degree of working is 7? = 4. 45 (98.8%), which is lower than the conventional method. If the degree of workability is 7? = 4.45 (98.8%) or more, the conventional method cannot expect an increase in strength, but the method of the present invention shows that the strength increases significantly as the degree of workability increases.
[0031] 図 2には従来法 (特許文献 3)と本発明法で加工した Cu— 5wt%Ag合金の強度と 加工度 7?の関係を示す。 Cu— 5wt%Ag合金の場合も、 Cu— 3wt%Ag合金と同様 な挙動を示すことがわかる。 [0032] 図 3には従来の製造法 (特許文献 3)と本発明の製造法で加工した Cu— 3wt%Ag 合金の強度と導電率の関係を示す。同じ強度レベルで比較すると、本発明法で製造 した Cu—3wt%Ag合金の導電率が従来法のそれより 5%IACS以上高いことがわか る。 [0031] Fig. 2 shows the relationship between the strength of a Cu-5wt% Ag alloy processed by the conventional method (Patent Document 3) and the method of the present invention and the degree of processing of 7 ?. It can be seen that the Cu-5wt% Ag alloy shows the same behavior as the Cu-3wt% Ag alloy. [0032] Fig. 3 shows the relationship between the strength and conductivity of a Cu-3wt% Ag alloy processed by the conventional manufacturing method (Patent Document 3) and the manufacturing method of the present invention. When compared at the same strength level, it can be seen that the conductivity of the Cu-3wt% Ag alloy produced by the method of the present invention is more than 5% IACS higher than that of the conventional method.
[0033] また、図 4には従来法 (特許文献 3)と本発明法で加工した Cu— 5wt%Ag合金の強 度と導電率の関係を示す。 Cu— 5wt%Ag合金の場合も同様に、本発明法の導電 率のほうが従来法よりも 5%IACS以上高いことが分かる。  [0033] Fig. 4 shows the relationship between the strength and conductivity of the Cu-5wt% Ag alloy processed by the conventional method (Patent Document 3) and the method of the present invention. Similarly, in the case of the Cu-5 wt% Ag alloy, it can be seen that the conductivity of the method of the present invention is 5% IACS higher than the conventional method.
[0034] 図 5は Cu— 3wt%Ag合金を種々の温度、時間で熱処理をした場合の強度と加工 度の関係の一例を示す。高温度、長時間熱処理材 (450°C, 15h材、 450°C, 20h) の強度は低温度、短時間熱処理材(350°C, 10h材、 430°C, 3h材、 450°C, 5h材) に比較して低加工度域においては低いが、高加工度域では著しく高くなり、従来実 現できな力つた特性が低濃度 Ag添加材で可能になる。この熱処理で重要なことは C uマトリック中に固溶している Agを最大限に析出させることにあり、そのためには冷間 加工途中において再結晶が生じる温度以上で比較的長時間保持するという、強度を 意図した材料を得んとする場合には常識外である熱処理を施すことが肝心である。 従って、熱処理後の強度は冷間加工前の強度にまで低下する力 その後の冷間加 ェによって Cuおよび Agが繊維状に引き伸ばされて高強度が得られる。図 6に Cu— 5wt%Ag合金を種々の温度、時間で熱処理をした場合の強度とカ卩ェ度の関係の一 例を示す。 Ag濃度が増すにつれて、析出温度が下がるので、 Cu— 5wt%Ag合金 の場合は Cu—3wt%Ag合金よりも低い温度、あるいは比較的短時間(410°C, 10h 材、 450°C, 5h材)の熱処理で良好な結果が得られる。図 7は本発明の製造法でカロ ェした Cu— lwt%Ag— 10wt%Ag合金の強度と加工度の関係を示す。 Cu— lwt %Ag, 2wt%Ag,及び 3wt%Ag合金は加工度 =0. 6でそれぞれ、 450°C、 20h の熱処理を行った。 Cu— 4wt%Ag合金は加工度 7? =0. 6で 450°C、 10hの熱処理 を行った。 Cu—5wt%Ag及び 6wt%Ag合金は加工度 7? =0. 6で 410°C、 10hの 熱処理を行った。 Cu—10wt%Ag合金は、加工度 7? =0. 6で、 450°C、 5hの熱処 理を行った。熱処理後、それぞれの合金は加工度 r? =8まで冷間加工を行った。 Cu — 2wt%Ag、及び 3wt%Ag合金は引き続き加工度 r? = 11まで冷間加工を行った。 いずれの合金も加工度の上昇にともなって強度が向上し、 Ag濃度の増加に伴って 強度の上昇率が高くなることがわかる。 [0034] Fig. 5 shows an example of the relationship between strength and workability when Cu-3wt% Ag alloy is heat-treated at various temperatures and times. High-temperature, long-time heat treatment material (450 ° C, 15h material, 450 ° C, 20h) has low strength, short-time heat treatment material (350 ° C, 10h material, 430 ° C, 3h material, 450 ° C, Compared with 5h material), it is lower in the low workability range, but is significantly higher in the high workability range, and the powerful properties that could not be realized in the past are possible with the low-concentration Ag additive. The important thing in this heat treatment is to precipitate the Ag dissolved in the Cu matrix to the maximum extent. For this purpose, it is necessary to hold it for a relatively long time above the temperature at which recrystallization occurs during cold working. When obtaining a material intended for strength, it is important to perform heat treatment that is not common sense. Therefore, the strength after heat treatment is reduced to the strength before cold working, and Cu and Ag are stretched into fibers by the subsequent cold treatment, and high strength is obtained. Figure 6 shows an example of the relationship between the strength and the degree of aging when Cu-5wt% Ag alloy is heat-treated at various temperatures and times. As the Ag concentration increases, the precipitation temperature decreases, so the Cu-5wt% Ag alloy has a lower temperature than the Cu-3wt% Ag alloy, or a relatively short time (410 ° C, 10h, 450 ° C, 5h Good results are obtained by heat treatment of the material. FIG. 7 shows the relationship between the strength and the workability of a Cu-lwt% Ag-10 wt% Ag alloy calored by the production method of the present invention. The Cu—lwt% Ag, 2wt% Ag, and 3wt% Ag alloys were heat-treated at 450 ° C. for 20 hours at a workability = 0.6, respectively. The Cu-4wt% Ag alloy was heat-treated at 450 ° C for 10h at a workability of 7? Cu-5wt% Ag and 6wt% Ag alloys were heat-treated at 410 ° C for 10h at a workability of 7? = 0.6. The Cu-10wt% Ag alloy was heat-treated at 450 ° C for 5h at a workability of 7? After the heat treatment, each alloy was cold worked to a working degree r? = 8. Cu-2wt% Ag and 3wt% Ag alloys were subsequently cold worked to a working degree r? = 11. It can be seen that the strength of each alloy increases with increasing workability, and the rate of increase in strength increases with increasing Ag concentration.
[0035] 図 8には、 Cu- lwt%— 10wt%Ag合金の強度と導電率の関係を示す (熱処理条 件は図 7と同じ)。冷間加工工程中の 1回の熱処理以外に、焼鈍することなく加工度 r? = 11以上の強力卩工域まで伸線が可能で、 Cu—2wt%Ag合金の強度及び導電 率は 1200MPa、 81. 7%IACS、 Cu— 3wt%Ag合金では 1400MPa、 76. 4%IA CSという、低濃度材では実現できな力つた高強度、高導電率が得られる。この図 8中 に示した実線 A, Bとの間は、本発明の合金細線の強度: Yと導電率: Xとの関係が前 記の式(2)によって表わされる範囲を示している。  [0035] Fig. 8 shows the relationship between the strength and conductivity of a Cu-wtwt-10wt% Ag alloy (heat treatment conditions are the same as in Fig. 7). In addition to a single heat treatment during the cold working process, it can be drawn to a high-strength work area with a workability r? = 11 or more without annealing. The strength and conductivity of Cu-2wt% Ag alloy is 1200MPa, 81.7% IACS, Cu—3wt% Ag alloy is 1400MPa, 76.4% IACS, which provides high strength and high conductivity that cannot be achieved with low-concentration materials. The solid lines A and B shown in FIG. 8 indicate the range in which the relationship between the strength: Y and the electrical conductivity: X of the thin alloy wire of the present invention is expressed by the above-described formula (2).
[0036] 図 9は、 Cu- 2wt% -Cu- 10wt%Ag合金を力卩ェ度 =0. 6まで冷間加工した 後 450°Cで熱処理した場合の硬度と熱処理時間の関係を示して!/ヽる。初期硬度が 約 70Hvで、それを冷間加工することで、硬度は 130〜170程度まで上昇する。その 後熱処理することで、硬度は図 9のように時効時間とともに低下する。この低下が一 定になった時間が再結晶が完了したことになる。  [0036] Fig. 9 shows the relationship between the hardness and heat treatment time when a Cu-2wt% -Cu-10wt% Ag alloy was cold worked to a strength of 0.6 and then heat treated at 450 ° C. ! / Speak. The initial hardness is about 70Hv, and when it is cold worked, the hardness increases to about 130-170. By subsequent heat treatment, the hardness decreases with aging time as shown in Fig. 9. The time when this decrease becomes constant is the completion of recrystallization.
[0037] 2 %八8合金では20— 30時間、 3 %八8合金では15— 20時間、 4wt%Ag合 金では 5— 10時間、 5wt%Ag合金では 2— 3時間、 6wt%Ag合金及び 10wt%Ag では 1—2時間程度である。この結果は熱処理温度力 50°Cの場合を示している力 熱処理温度が 450°Cより低い場合は再結晶完了の時間がさらに長時間側になり、熱 処理温度が 450°Cより高い場合は短時間側になる。 [0037] 2% eight 8 The alloy 20- 30 hours, 3% eight 8 In alloy 15 20 hours, 4 wt% Ag in the alloys 5-10 hours, in 5 wt% Ag alloy 2-3 hours, 6 wt% Ag alloy And 10wt% Ag is about 1-2 hours. This result shows that the heat treatment temperature force is 50 ° C. When the heat treatment temperature is lower than 450 ° C, the recrystallization completion time is longer, and when the heat treatment temperature is higher than 450 ° C, Become a short time side.
[0038] そして図 10および図 11は、 Cu—3wt%Agおよび Cu—5wt%Ag合金の熱処理 前と後の組織の状態を示した光学顕微鏡写真である。図 10 (a)は 3wt%Ag合金を 溶体化処理後、加工度 r? =0. 53まで冷間加工した材料の組織を表わす。図 10 (b) は、その冷間加工した材料の 350°C X 1 Oh熱処理後の組織を表わす。 (a)と (b)で はほとんど組織の変化は見られない。図 10 (c)は図 10 (&)の状態の材料の450で 10hの熱処理後の状態を表わす。図 10 (c)力も明らかなように 450°C X 10h熱処理 後にお ヽては試料全体が再結晶して 、ることがわ力る。 Cu— 5wt%Ag合金の場合 も図 11 (a) (b) (c)に示すように Cu— 3wt%Ag合金の場合と同様である。本発明の 特徴がよく示されている。 産業上の利用可能性 FIG. 10 and FIG. 11 are optical micrographs showing the state of the structure before and after heat treatment of Cu-3 wt% Ag and Cu-5 wt% Ag alloy. Figure 10 (a) shows the structure of a material that was cold worked to a degree of work r? = 0.53 after solution treatment of a 3wt% Ag alloy. Figure 10 (b) shows the microstructure of the cold-worked material after heat treatment at 350 ° CX 1 Oh. In (a) and (b), there is almost no change in organization. FIG. 10 (c) shows the state of the material in the state of FIG. 10 (&) after heat treatment at 450 for 10 hours. As can be seen in Fig. 10 (c), after 450 ° CX 10h heat treatment, the entire sample recrystallizes. The Cu-5wt% Ag alloy is the same as the Cu-3wt% Ag alloy as shown in Figs. 11 (a), 11 (b), and 11 (c). The features of the present invention are well illustrated. Industrial applicability
本発明によれば従来法では不可能であった高強度、高導電率、極細銅合金線材 の製造が既存の設備を利用して、単純な工程で実現できる。従来の極細線の製造で は数回焼鈍処理を必要とする力 本発明では、熱処理が極細線製造の全工程中 1 回で済み、且つ加工度 r? = 12以上の超強力卩工域まで伸線カ卩ェできる。しかも本発 明によれば、低濃度の Agの添加で、 600MPa以上、さらには 900MPa以上の高強 度であって、 70%IACS以上の高導電率特性が得られ、たとえば 2wt%Agで 1200 MPa、 80%IACSという高強度、高導電率が得られる。  According to the present invention, production of a high strength, high conductivity, ultrafine copper alloy wire, which was impossible with the conventional method, can be realized in a simple process using existing equipment. In conventional ultrafine wire manufacturing, force that requires annealing several times In the present invention, heat treatment is required only once in all the processes of ultrafine wire manufacturing, and up to ultra-strong steel work areas with a workability r? = 12 or more. Can draw wire. In addition, according to the present invention, the addition of a low concentration of Ag provides a high strength property of 600 MPa or more, further 900 MPa or more, and a high conductivity characteristic of 70% IACS or more, for example, 1200 MPa at 2 wt% Ag. High strength and high conductivity of 80% IACS can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 真空若しくは不活性ガス雰囲気下で再結晶化熱処理を行う前後にお 、て、冷間伸 線力卩ェを行うことにより得られた Cu—Ag合金細線において、前記両冷間伸線加工 における加工度力 前行程に対し後行程で 12倍以上であることを特徴とする Cu— A g合金細線。  [1] In the Cu-Ag alloy thin wire obtained by performing the cold wire drawing force before and after performing the recrystallization heat treatment in a vacuum or an inert gas atmosphere, Machining power in machining Cu-Ag alloy thin wire characterized by being 12 times or more in the subsequent process compared to the previous process.
[2] 前記請求項 1に記載の Cu— Ag合金細線において、その Ag含有率が l〜10wt% であることを特徴とする Cu—Ag合金細線。  [2] The Cu—Ag alloy thin wire according to claim 1, wherein the Ag content is 1 to 10 wt%.
[3] 前記請求項 1に記載の Cu— Ag合金細線にぉ 、て、その Ag含有率が 2〜6wt%で あることを特徴とする Cu—Ag合金細線。 [3] A Cu—Ag alloy fine wire, wherein the Cu—Ag alloy fine wire according to claim 1 has an Ag content of 2 to 6 wt%.
[4] 前記請求項 1に記載の Cu— Ag合金細線にぉ 、て、その Ag含有率が 2〜3wt%で あり、前記加工度の倍率が 18倍以上であることを特徴とする Cu—Ag合金細線。 [4] The Cu—Ag alloy fine wire according to claim 1, wherein the Ag content is 2 to 3 wt%, and the magnification of the working degree is 18 times or more. Ag alloy thin wire.
[5] 真空若しくは不活性ガス雰囲気下で再結晶化熱処理を行う前後にお 、て、冷間伸 線力卩ェを行うにあたり、前行程の加工度に対し後行程の加工度を 12倍以上にしたこ とを特徴とする Cu— Ag合金細線の製造方法。 [5] Before and after performing recrystallization heat treatment in a vacuum or inert gas atmosphere, the degree of work in the subsequent process is 12 times or more of the degree of work in the previous process. A method for producing Cu-Ag alloy thin wires characterized by
[6] 前記請求項 5に記載の Cu— Ag合金細線の製造方法において、その Ag含有率が[6] In the method for producing a Cu—Ag alloy fine wire according to claim 5, the Ag content is
1〜: LOwt%であることを特徴とする Cu—Ag合金細線の製造方法。 1 to: A method for producing a Cu—Ag alloy fine wire, characterized by being LOwt%.
[7] 前記請求項 5に記載の Cu— Ag合金細線の製造方法において、その Ag含有率が[7] In the method for producing a Cu—Ag alloy fine wire according to claim 5, the Ag content is
2〜6wt%であることを特徴とする Cu—Ag合金細線の製造方法。 A method for producing a Cu—Ag alloy fine wire, characterized in that the content is 2 to 6 wt%.
[8] 前記請求項 5に記載の Cu— Ag合金細線の製造方法において、その Ag含有率が[8] In the method for producing a Cu—Ag alloy fine wire according to claim 5, the Ag content is
2〜3wt%であり、前記カ卩ェ度の倍率が 18倍以上であることを特徴とする Cu—Ag合 金細線の製造方法。 The method for producing a Cu—Ag alloy fine wire, characterized in that it is 2 to 3 wt%, and the magnification of the above-mentioned degree of cache is 18 times or more.
PCT/JP2006/320659 2005-10-17 2006-10-17 Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF WO2007046378A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007540986A JP5051647B2 (en) 2005-10-17 2006-10-17 High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005301412 2005-10-17
JP2005-301412 2005-10-17

Publications (1)

Publication Number Publication Date
WO2007046378A1 true WO2007046378A1 (en) 2007-04-26

Family

ID=37962471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320659 WO2007046378A1 (en) 2005-10-17 2006-10-17 Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF

Country Status (2)

Country Link
JP (1) JP5051647B2 (en)
WO (1) WO2007046378A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280860A (en) * 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME
WO2014007259A1 (en) * 2012-07-02 2014-01-09 古河電気工業株式会社 Copper-alloy wire rod and manufacturing method therefor
CN103572184A (en) * 2013-10-17 2014-02-12 河南科技大学 Preparation method of high-strength silver-copper alloy material
EP2873475A1 (en) 2013-04-05 2015-05-20 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie Method of manufacturing wires of Cu-Ag alloys
CN105463237A (en) * 2015-12-05 2016-04-06 烟台一诺电子材料有限公司 Copper-silver alloy bonding wire and manufacturing method thereof
WO2019181320A1 (en) * 2018-03-20 2019-09-26 古河電気工業株式会社 Copper alloy wire rod and method for producing copper alloy wire rod
WO2022202870A1 (en) * 2021-03-23 2022-09-29 古河電気工業株式会社 Copper alloy wire rod
WO2022202871A1 (en) * 2021-03-23 2022-09-29 古河電気工業株式会社 Copper alloy wire
WO2023238476A1 (en) * 2022-06-08 2023-12-14 Swcc株式会社 Electrical-property-inspection conductor wire and manufacturing method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368565B (en) * 2016-05-16 2020-07-31 古河电气工业株式会社 Copper alloy wire
TWI768097B (en) 2017-08-10 2022-06-21 日商田中貴金屬工業股份有限公司 High-strength and high-conductivity copper alloy sheet and method for producing the same
WO2023085306A1 (en) 2021-11-12 2023-05-19 古河電気工業株式会社 Cu-ag alloy wire
KR20230138448A (en) 2021-11-12 2023-10-05 후루카와 덴키 고교 가부시키가이샤 Cu-Ag alloy wire
CN114645153B (en) * 2022-03-17 2023-01-24 东北大学 High-strength high-conductivity copper-silver alloy wire and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103809A (en) * 1992-09-16 1994-04-15 Showa Electric Wire & Cable Co Ltd Manufacture of cu-ag alloy wire
JP2566877B2 (en) * 1992-09-16 1996-12-25 昭和電線電纜株式会社 Method for producing Cu-Ag alloy conductor
JP2000199042A (en) * 1998-11-04 2000-07-18 Showa Electric Wire & Cable Co Ltd PRODUCTION OF Cu-Ag ALLOY WIRE ROD AND Cu-Ag ALLOY WIRE ROD
JP3325639B2 (en) * 1993-03-31 2002-09-17 株式会社フジクラ Manufacturing method of high strength and high conductivity copper alloy
JP3325641B2 (en) * 1993-03-31 2002-09-17 株式会社フジクラ Method for producing high-strength high-conductivity copper alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103809A (en) * 1992-09-16 1994-04-15 Showa Electric Wire & Cable Co Ltd Manufacture of cu-ag alloy wire
JP2566877B2 (en) * 1992-09-16 1996-12-25 昭和電線電纜株式会社 Method for producing Cu-Ag alloy conductor
JP3325639B2 (en) * 1993-03-31 2002-09-17 株式会社フジクラ Manufacturing method of high strength and high conductivity copper alloy
JP3325641B2 (en) * 1993-03-31 2002-09-17 株式会社フジクラ Method for producing high-strength high-conductivity copper alloy
JP2000199042A (en) * 1998-11-04 2000-07-18 Showa Electric Wire & Cable Co Ltd PRODUCTION OF Cu-Ag ALLOY WIRE ROD AND Cu-Ag ALLOY WIRE ROD

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280860A (en) * 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME
JP5840235B2 (en) * 2012-07-02 2016-01-06 古河電気工業株式会社 Copper alloy wire and method for producing the same
CN104169447A (en) * 2012-07-02 2014-11-26 古河电气工业株式会社 Copper-alloy wire rod and manufacturing method therefor
WO2014007259A1 (en) * 2012-07-02 2014-01-09 古河電気工業株式会社 Copper-alloy wire rod and manufacturing method therefor
JPWO2014007259A1 (en) * 2012-07-02 2016-06-02 古河電気工業株式会社 Copper alloy wire and method for producing the same
EP2873475A1 (en) 2013-04-05 2015-05-20 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie Method of manufacturing wires of Cu-Ag alloys
CN103572184A (en) * 2013-10-17 2014-02-12 河南科技大学 Preparation method of high-strength silver-copper alloy material
CN103572184B (en) * 2013-10-17 2015-07-22 河南科技大学 Preparation method of high-strength silver-copper alloy material
CN105463237A (en) * 2015-12-05 2016-04-06 烟台一诺电子材料有限公司 Copper-silver alloy bonding wire and manufacturing method thereof
WO2019181320A1 (en) * 2018-03-20 2019-09-26 古河電気工業株式会社 Copper alloy wire rod and method for producing copper alloy wire rod
JPWO2019181320A1 (en) * 2018-03-20 2021-02-04 古河電気工業株式会社 Manufacturing method of copper alloy wire and copper alloy wire
WO2022202870A1 (en) * 2021-03-23 2022-09-29 古河電気工業株式会社 Copper alloy wire rod
WO2022202871A1 (en) * 2021-03-23 2022-09-29 古河電気工業株式会社 Copper alloy wire
WO2023238476A1 (en) * 2022-06-08 2023-12-14 Swcc株式会社 Electrical-property-inspection conductor wire and manufacturing method therefor

Also Published As

Publication number Publication date
JP5051647B2 (en) 2012-10-17
JPWO2007046378A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2007046378A1 (en) Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF
JP5050226B2 (en) Manufacturing method of copper alloy material
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP6387755B2 (en) Copper rolled sheets and parts for electronic and electrical equipment
KR101719889B1 (en) Copper-alloy wire rod and manufacturing method therefor
JP5840234B2 (en) Copper alloy wire and method for producing the same
JP2006274383A (en) Method for manufacturing copper material, and copper material
KR101590242B1 (en) Cu-Ni-Si ALLOY WIRE HAVING EXCELLENT BENDABILITY
JP2010090408A (en) Copper-alloy sheet and method for therefor
CN106350698A (en) Softening-resistant copper alloy, method for preparing same and application of softening-resistant copper alloy
CN102610293A (en) Aluminum alloy wire with high electrical conductivity and high strength and manufacturing method thereof
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
CN111411256B (en) Copper-zirconium alloy for electronic components and preparation method thereof
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP2011111634A (en) Copper wire and method for manufacturing the same
JP2008255416A (en) Method for manufacturing copper material, and copper material
CN1733953A (en) High-strength high conduction copper alloy and its preparation method
JP5009849B2 (en) Copper alloy wire for high strength spring and copper alloy spring using the copper alloy wire
JP3856073B2 (en) Method for producing Cu-Ag alloy
JP2006097113A (en) Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP2006188722A (en) Method for producing brass material and brass material
JP2004269962A (en) High strength copper alloy
JP2018197397A (en) Copper rolled sheet and component for electronic and electrical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007540986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811905

Country of ref document: EP

Kind code of ref document: A1