JPWO2007046378A1 - High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same - Google Patents

High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same Download PDF

Info

Publication number
JPWO2007046378A1
JPWO2007046378A1 JP2007540986A JP2007540986A JPWO2007046378A1 JP WO2007046378 A1 JPWO2007046378 A1 JP WO2007046378A1 JP 2007540986 A JP2007540986 A JP 2007540986A JP 2007540986 A JP2007540986 A JP 2007540986A JP WO2007046378 A1 JPWO2007046378 A1 JP WO2007046378A1
Authority
JP
Japan
Prior art keywords
alloy
strength
heat treatment
wire
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007540986A
Other languages
Japanese (ja)
Other versions
JP5051647B2 (en
Inventor
坂井 義和
義和 坂井
洋子 堀
洋子 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007540986A priority Critical patent/JP5051647B2/en
Publication of JPWO2007046378A1 publication Critical patent/JPWO2007046378A1/en
Application granted granted Critical
Publication of JP5051647B2 publication Critical patent/JP5051647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Abstract

真空若しくは不活性ガス雰囲気下で再結晶化熱処理を行う前後において、冷間伸線加工を行うにあたり、前行程の加工度に対し後行程の加工度を12倍以上とし、低濃度Ag含有のCu−Ag合金細線においても、高強度、高導電率を実現する。Before and after performing the recrystallization heat treatment in a vacuum or an inert gas atmosphere, when performing cold wire drawing, the degree of processing in the subsequent process is set to 12 times or more of the degree of processing in the previous process, and Cu containing low concentration Ag is contained. -High strength and high electrical conductivity are achieved even for fine Ag alloy wires.

Description

本発明は高強度、高導電率を併せ持つCu−Ag合金細線とその製造方法に関するものであり、さらに詳しくは、電子機器の電線・ケーブル、ロボット駆動用ケーブル、小型モーターコイル、小型マグネットコイル、等の導体材料として、さらにはリードワイヤー、導電性バネ材、超電導線の補強材料等として有用な、高強度であって、しかも高い導電率特性を有している新しいCu−Ag合金の細線とその製造方法に関するものである。   The present invention relates to a Cu-Ag alloy thin wire having both high strength and high conductivity and a method for manufacturing the same, and more specifically, an electric wire / cable for an electronic device, a cable for driving a robot, a small motor coil, a small magnet coil, etc. A new Cu-Ag alloy thin wire that is useful as a lead material, a lead wire, a conductive spring material, a superconducting wire reinforcement material, etc. It relates to a manufacturing method.

従来より、導電材料用銅合金の強度と導電率はトレードオフの関係で、高強度であれば導電率が低下し、逆に高導電率であれば強度が低いことが知られている。たとえば高導電材である純Cuの場合、導電度はほぼ100%IACSであるが引張強さは200−400MPaにすぎない。一方、高強度材であるCu−Be合金の場合には、引張強さは900−1500MPaであるが、導電度は50%IACSまでのレベルにすぎない。そこで、このような強度と導電率バランスの制約を打ち破る材料として繊維強化型Cu−Ag合金が本出願人によって開発されている(特許文献1−2)。この銅合金はCuに4−32at%(6.6wt%−44.4wt%)のAgを添加することにより初晶CuとCu及びAgの共晶相とを均一且つ微細に晶出させた後、冷間で伸線加工、或いは圧延加工を行うことで初晶及び共晶相をフィラメント状に引き延ばして強度を向上させている。更に、加工途中において、真空雰囲気又は不活性ガス中で温度300−550℃、熱処理時間0.5−40時間の条件で多段熱処理を施すことにより初晶及び共晶相中に固溶しているAg及びCuを析出させて、高強度と共に高導電率を実現している。しかしながら、この場合には、4at%((6.6wt%)以下のAg添加では強度向上には効果がないとされており、この点で、より少量のAg添加では特性向上が図られないという限界がある。また、6.6wt%以上という多量のAg添加を必須としていることは加工性やコストパフォーマンスに問題がある。   Conventionally, it is known that the strength and conductivity of a copper alloy for a conductive material are in a trade-off relationship. If the strength is high, the conductivity is lowered, and conversely, if the strength is high, the strength is low. For example, in the case of pure Cu, which is a highly conductive material, the conductivity is almost 100% IACS, but the tensile strength is only 200-400 MPa. On the other hand, in the case of a Cu-Be alloy that is a high-strength material, the tensile strength is 900-1500 MPa, but the conductivity is only a level up to 50% IACS. Therefore, a fiber-reinforced Cu-Ag alloy has been developed by the present applicant as a material that breaks the constraint on the balance between strength and conductivity (Patent Document 1-2). This copper alloy is obtained by uniformly and finely crystallizing the primary crystal Cu and the eutectic phase of Cu and Ag by adding 4-32at% (6.6wt% -44.4wt%) Ag to Cu. Further, by performing cold drawing or rolling, the primary crystal and the eutectic phase are stretched into a filament shape to improve the strength. Furthermore, during the processing, it is dissolved in the primary crystal and the eutectic phase by performing multistage heat treatment in a vacuum atmosphere or in an inert gas at a temperature of 300-550 ° C. and a heat treatment time of 0.5-40 hours. Ag and Cu are deposited to achieve high conductivity as well as high strength. However, in this case, it is said that the addition of 4 at% ((6.6 wt%) or less of Ag is ineffective in improving the strength, and in this respect, the addition of a smaller amount of Ag cannot improve the characteristics. In addition, the necessity of adding a large amount of Ag of 6.6 wt% or more has problems in workability and cost performance.

この問題を解決すべく1〜10wt%のAgを含有する銅合金を冷間加工し、この冷間加工の途中で真空雰囲気又は不活性ガス中で700−950℃の温度で、0.5−5時間熱処理し、さらに冷間加工を行いこの冷間加工の途中で、真空雰囲気又は不活性ガス中で再結晶が生じないような低温度、すなわち250℃以上400℃未満の温度で、0.5−40時間熱処理を施した後、さらに冷間加工することにより高強度と高導電率が実現できるとする製造方法が提案されているが(特許文献3)、強度及び導電率共に改善の効果はほとんど得られていない。
特許第2104108号公報 特許第2714555号公報 特開平6−287729号公報
In order to solve this problem, a copper alloy containing 1 to 10 wt% of Ag is cold-worked, and in the course of this cold work, a vacuum atmosphere or an inert gas is used at a temperature of 700-950 ° C., 0.5- Heat treatment is performed for 5 hours, and further cold working is performed. In the course of this cold working, a low temperature at which recrystallization does not occur in a vacuum atmosphere or an inert gas, that is, a temperature of 250 ° C. or more and less than 400 ° C. A manufacturing method has been proposed in which high strength and high electrical conductivity can be realized by further cold working after 5-40 hours of heat treatment (Patent Document 3), but the effect of improving both strength and electrical conductivity. Is hardly obtained.
Japanese Patent No. 2104108 Japanese Patent No. 2714555 JP-A-6-287729

本発明は、以上のとおりの背景から、従来の問題点を解決し、低濃度のAg添加材においても、簡便な手段により、従来実現できなかった高強度(高引張強さ)で高導電率特性、特に、600MPa以上、さらには900MPa以上の高強度であって、70%IACS以上の高導電率特性を有する極細銅合金線の製造を可能とする、新しいCu−Ag合金細線とその製造方法を提供することを課題としている。
The present invention solves the conventional problems from the background as described above, and even in a low concentration Ag additive, high strength (high tensile strength) and high conductivity that could not be realized by simple means. New Cu-Ag alloy wire capable of producing ultrafine copper alloy wire having characteristics, in particular, high strength of 600 MPa or more, further high strength of 900 MPa or more, and high conductivity property of 70% IACS or more, and its production method It is an issue to provide.

本発明は、上記の課題を解決するものとして以下のことを特徴としている。   The present invention has the following features to solve the above-described problems.

第1:真空若しくは不活性ガス雰囲気下で再結晶化熱処理を行う前後において、冷間伸線加工を行うことにより得られたCu−Ag合金細線において、前記両冷間伸線加工における加工度が、前行程に対し後行程で12倍以上であることを特徴とするCu−Ag合金細線。   First: In a Cu-Ag alloy thin wire obtained by performing cold wire drawing before and after performing recrystallization heat treatment in a vacuum or an inert gas atmosphere, the degree of work in both cold wire drawing operations is A Cu-Ag alloy fine wire characterized by being 12 times or more in the subsequent stroke with respect to the previous stroke.

第2:前記第1のCu−Ag合金細線において、そのAg含有率が1〜10wt%であることを特徴とするCu−Ag合金細線。   Second: The Cu—Ag alloy fine wire, wherein the Ag content in the first Cu—Ag alloy fine wire is 1 to 10 wt%.

第3:前記第1のCu−Ag合金細線において、そのAg含有率が2〜6wt%であることを特徴とするCu−Ag合金細線。   Third: The Cu—Ag alloy fine wire, wherein the Ag content in the first Cu—Ag alloy fine wire is 2 to 6 wt%.

第4:前記第1のCu−Ag合金細線において、そのAg含有率が2〜3wt%であり、前記加工度の倍率が18倍以上であることを特徴とするCu−Ag合金細線。   Fourth: The Cu—Ag alloy fine wire, wherein the Ag content is 2 to 3 wt% and the degree of workability is 18 times or more.

第5:真空若しくは不活性ガス雰囲気下で再結晶化熱処理を行う前後において、冷間伸線加工を行うにあたり、前行程の加工度に対し後行程の加工度を12倍以上にしたことを特徴とするCu−Ag合金細線の製造方法。   Fifth: Before and after performing recrystallization heat treatment in a vacuum or inert gas atmosphere, when performing cold wire drawing, the degree of processing in the subsequent process is 12 times or more of the degree of processing in the previous process. A method for producing a Cu-Ag alloy fine wire.

第6:前記第5のCu−Ag合金細線の製造方法において、そのAg含有率が1〜10wt%であることを特徴とするCu−Ag合金細線の製造方法。   6th: In the manufacturing method of said 5th Cu-Ag alloy fine wire, the Ag content rate is 1-10 wt%, The manufacturing method of Cu-Ag alloy fine wire characterized by the above-mentioned.

第7:前記第5のCu−Ag合金細線の製造方法において、そのAg含有率が2〜6wt%であることを特徴とするCu−Ag合金細線の製造方法。   Seventh: The method for producing a Cu-Ag alloy fine wire according to the fifth method for producing a Cu-Ag alloy fine wire, wherein the Ag content is 2 to 6 wt%.

第8:前記第5のCu−Ag合金細線の製造方法において、そのAg含有率が2〜3wt%であり、前記加工度の倍率が18倍以上であることを特徴とするCu−Ag合金細線の製造方法。   Eighth: In the fifth method for producing a Cu-Ag alloy fine wire, the Ag content is 2 to 3 wt%, and the workability magnification is 18 times or more. Manufacturing method.

以上のとおりの本発明の製造方法は、冷間加工途中で十分再結晶が生じる温度で比較的長時間保持するという、強度を意図した材料を得んとする場合に常識外である熱処理を加えることを特徴の一つとするもので、全加工工程中ただ1回の熱処理によってその後の冷間加工によって強度は加工度の上昇に伴い急激に向上するとともに、加工度η(但し、η=InA0/A:A0:加工前断面積、A:加工後断面積)が12以上の超強加工域まで中間焼鈍処理なしで加工できるという、従来全く予想出来なかった知見とその確認に基づくものである。The manufacturing method of the present invention as described above applies a heat treatment that is not common sense when obtaining a material intended for strength, such as holding for a relatively long time at a temperature at which sufficient recrystallization occurs during cold working. One of the characteristics is that the strength is rapidly improved by the subsequent cold working by a single heat treatment during the whole working process, and the working degree η (where η = InA 0 / A: A 0 : cross-sectional area before processing, A: cross-sectional area after processing) is based on the knowledge and confirmation that could not be expected at all until ultra-strong processing region of 12 or more without intermediate annealing treatment. is there.

このようにAg添加量を大幅に低減でき、さらに熱処理が材料製造の全工程中で1回で、加工度η=12以上の超強加工域まで伸線加工できることはその製造コストを下げることができる。従来材では不可能であった高強度、高導電性、極細線の実現はこの材料を利用した新製品の開発を促し、さらには導電材料を使用する多くの製品のコンパクト化、軽量化を図ることが可能となりその製品の付加価値を高められる。
In this way, the amount of Ag added can be greatly reduced, and furthermore, the heat treatment can be performed once in all the steps of material production, and the wire can be drawn to a super-strong processing region with a processing degree of η = 12 or more. it can. The realization of high strength, high conductivity, and ultrafine wire, which was impossible with conventional materials, encourages the development of new products that use this material, and further reduces the size and weight of many products that use conductive materials. Can add value to the product.

従来法と本発明方法との比較をCu−3wt%Ag合金細線の強度と加工度との関係として示した図である。It is the figure which showed the comparison with the method of this invention and the method of this invention as the relationship between the intensity | strength of a Cu-3 wt% Ag alloy fine wire, and a workability. 従来法と本発明方法との比較をCu−5wt%Ag合金細線の強度と加工度との関係として示した図である。It is the figure which showed the comparison with the method of this invention and the method of this invention as the relationship between the intensity | strength of a Cu-5 wt% Ag alloy fine wire, and a workability. 従来法と本発明方法との比較をCu−3wt%Ag合金細線の強度と導電率との関係として示した図である。It is the figure which showed the comparison of the conventional method and the method of this invention as the relationship between the intensity | strength of Cu-3 wt% Ag alloy fine wire, and electrical conductivity. 従来法と本発明方法との比較をCu−5wt%Ag合金細線の強度と導電率との関係として示した図である。It is the figure which showed the comparison of the conventional method and the method of this invention as the relationship between the intensity | strength of a Cu-5 wt% Ag alloy fine wire, and electrical conductivity. 種々の熱処理条件におけるCu−3wt%Ag合金細線の強度と加工度の関係を示した図である。It is the figure which showed the relationship between the intensity | strength of a Cu-3 wt% Ag alloy fine wire in various heat processing conditions, and a workability. 種々の熱処理条件におけるCu−5wt%Ag合金細線の強度と加工度の関係を示した図である。It is the figure which showed the relationship between the intensity | strength of a Cu-5 wt% Ag alloy fine wire in various heat processing conditions, and a workability. 本発明方法での1wt%−10wt%Ag含有のCu−Ag合金細線の強度と加工度との関係を示した図である。It is the figure which showed the relationship between the intensity | strength of a Cu-Ag alloy fine wire containing 1wt% -10wt% Ag, and a workability by the method of this invention. 本発明における1wt%−10wt%Ag含有のCu−Ag合金細線の強度と導電率との関係を示した図である。It is the figure which showed the relationship between the intensity | strength of a Cu-Ag alloy fine wire containing 1 wt%-10 wt% Ag in this invention, and electrical conductivity. 本発明における2wt%−10wt%Ag含有のCu−Ag合金について、450℃で熱処理した場合のビッカース硬度と熱処理時間(Aging Time)との関係を示した図である。It is the figure which showed the relationship between the Vickers hardness at the time of heat-processing at 450 degreeC about the Cu-Ag alloy containing 2 wt%-10 wt% Ag in this invention, and the heat processing time (Aging Time). Cu−3wt%Ag合金の熱処理の前後の組織を示した写真である。It is the photograph which showed the structure | tissue before and behind heat processing of a Cu-3 wt% Ag alloy. Cu−5wt%Ag合金の熱処理の前後の組織を示した写真である。It is the photograph which showed the structure | tissue before and behind heat processing of a Cu-5 wt% Ag alloy.

本発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The present invention has the features as described above, and an embodiment thereof will be described below.

まず、Cu−Ag合金細線の組成の点では、本発明においてAg添加量は1wt%−10wt%の範囲、より好ましくは、2wt%−6wt%である。1wt%Ag未満では高強度が得られない。10wt%を超える場合、Ag添加量に対する強度の上昇率に対してのコストパフォーマンスが悪い。合金鋳塊のための溶製は各種の手段で行ってよく、たとえば高周波真空溶解炉や、アルゴンあるいは窒素ガス等の不活性ガスを流しながら、大気圧下での溶解等が可能とされる。そして、本発明の製造方法における冷間加工途中での熱処理は再結晶化を可能とする温度において行われる。特に限定的ではなく、Ag組成や加工度によっても相違するが、一般的には、たとえば、400℃以上550℃未満の温度条件が好適に考慮される。400℃未満では再結晶が十分に進まず、Agの析出が生じにくく、その後の冷間加工による強度上昇が低い。550℃以上では、Agの析出量が少なくなり、強度、導電率ともに低下する傾向にある。   First, in terms of the composition of the Cu—Ag alloy fine wire, in the present invention, the Ag addition amount is in the range of 1 wt% -10 wt%, more preferably 2 wt% -6 wt%. If it is less than 1 wt% Ag, high strength cannot be obtained. When it exceeds 10 wt%, the cost performance for the rate of increase in strength with respect to the added amount of Ag is poor. Melting for the alloy ingot may be performed by various means. For example, melting under an atmospheric pressure is possible while flowing an inert gas such as a high-frequency vacuum melting furnace or argon or nitrogen gas. And the heat processing in the middle of cold working in the manufacturing method of the present invention is performed at the temperature which enables recrystallization. Although it is not particularly limited and generally varies depending on the Ag composition and the degree of processing, generally, for example, a temperature condition of 400 ° C. or more and less than 550 ° C. is preferably considered. If it is less than 400 ° C., recrystallization does not proceed sufficiently, Ag precipitation is unlikely to occur, and the subsequent strength increase due to cold working is low. Above 550 ° C., the amount of Ag deposited decreases, and both strength and conductivity tend to decrease.

この熱処理のための時間については、一般的には0.5〜50時間程度が考慮されるが、処理効率、強度ならびに導電率のバランスからは、6時間以上とすることが好ましい。
そして熱処理は、材料表面の酸化を防ぐために、真空もしくは不活性ガス雰囲気下において行う。銅および銀は比較的酸化しにくいので真空度はロータリポンプのみで引ける、1Pa程度でもよい。不活性ガスとしては、たとえばアルゴン(Ar)や、水素ガス50%+窒素ガス50%のような混合ガスで、10cc/min程度の流量があればよい。
The time for this heat treatment is generally about 0.5 to 50 hours, but is preferably 6 hours or more from the balance of processing efficiency, strength and conductivity.
The heat treatment is performed in a vacuum or an inert gas atmosphere in order to prevent oxidation of the material surface. Since copper and silver are relatively difficult to oxidize, the degree of vacuum may be about 1 Pa that can be pulled only by a rotary pump. As the inert gas, for example, argon (Ar) or a mixed gas such as hydrogen gas 50% + nitrogen gas 50% may be used as long as the flow rate is approximately 10 cc / min.

本発明の製造方法では、このような熱処理を、冷間加工の途中において行う。この熱処理は1回のみでよい。   In the manufacturing method of the present invention, such heat treatment is performed during the cold working. This heat treatment may be performed only once.

伸線のための冷間加工では、ドローベンチ、スエージャー、溝ロール等の各種の手段が採用されてよく、細線加工では、連続伸線機が好適に用いられる。冷間加工による加工度(η)については、本発明においては加工度が12以上とする。   In cold working for wire drawing, various means such as a draw bench, a swager, and a groove roll may be adopted, and in thin wire processing, a continuous wire drawing machine is preferably used. Regarding the degree of work (η) by cold working, the degree of work is 12 or more in the present invention.

なお、本発明における「細線」の用語については、線状、あるいは棒状材であることを意味している。その断面直線に特に制約があるわけではない。用途によりこれは定められることになる。通常は直径1mm以下と考えられる。   The term “thin wire” in the present invention means a linear or rod-like material. There are no particular restrictions on the straight section. This is determined by the application. Usually, the diameter is considered to be 1 mm or less.

そして、本発明においては、次の数式の関係で表わされる高強度で、高導電率の細線が提供される。   And in this invention, the high intensity | strength and high electrical conductivity thin line | wire represented by the relationship of the following numerical formula are provided.

すなわち、本発明のCu−Ag合金細線は、その強度:Y(MPa)と導電率:X(%IACS)との関係が、次式(1)で表わされる範囲にあり、さらに好適には次式(2)で表わされる範囲にある。   That is, in the Cu—Ag alloy fine wire of the present invention, the relationship between the strength: Y (MPa) and the conductivity: X (% IACS) is in the range represented by the following formula (1). It exists in the range represented by Formula (2).

[数1]
(1)−40X+3600≦Y≦−40X+4525
(2)−40X+4050≦Y≦−40X+4525
従来、以上のように表わされる強度−導電率の関係を有する1wt%−10wt%Ag含有のCu−Ag合金細線は知られていない。
[Equation 1]
(1) −40X + 3600 ≦ Y ≦ −40X + 4525
(2) −40X + 4050 ≦ Y ≦ −40X + 4525
Conventionally, a 1 wt% -10 wt% Ag-containing Cu-Ag alloy fine wire having the strength-conductivity relationship expressed as described above has not been known.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん、以下の例によって本発明が限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the present invention is not limited by the following examples.

以下の例においては、タンマン炉を用い、グラファイト製るつぼ短冊状(10×10×30)の電気銅を溶解(1080℃)し、粒状の銀を添加して1250℃まで昇温後、グラファイト製鋳型に鋳込むことで合金を溶製して鋳塊としている。   In the following example, a graphite crucible strip (10 × 10 × 30) electrolytic copper is melted (1080 ° C.) using a Tamman furnace, granular silver is added, and the temperature is raised to 1250 ° C. By casting into a mold, the alloy is melted to form an ingot.

また伸線のための冷間加工では、鋳塊の表面を1〜2mm研削した後、スエージャー加工、その後のドローベンチでのダイス伸線加工を行っている。   In the cold working for wire drawing, the surface of the ingot is ground by 1 to 2 mm, followed by swaging and subsequent die drawing with a draw bench.

図1は従来の製造法(特許文献3)と本発明の製造法で加工したCu−3wt%Ag合金の強度と加工度ηの関係を示したものである。従来法では、溶製した鋳塊を、まず加工度η=0.63(50%)まで冷間加工を行い、その後800℃、3hの熱処理を施す(熱処理1:大気中、マッフル炉での溶体化処理)。それに伴い強度は450MPaから250MPaまで低下する。熱処理後、冷間加工をη=1.19(70%)まで行い、再結晶が生じない350℃の低温度で3hの熱処理を施す(熱処理2:真空熱処理炉(1Pa)での時効、析出処理)。熱処理後の強度は441MPaで、熱処理前(428MPa)よりも若干高くなる。2回目の熱処理後加工度η=3.88(97.9%)まで冷間加工を行うことで強度は640MPa程度まで上昇するがその後加工度が増しても、強度は変化しないか或いは低下する。   FIG. 1 shows the relationship between the strength of a Cu-3 wt% Ag alloy processed by the conventional manufacturing method (Patent Document 3) and the manufacturing method of the present invention and the processing degree η. In the conventional method, the molten ingot is first cold worked to a working degree η = 0.63 (50%), and then heat treated at 800 ° C. for 3 hours (heat treatment 1: in the atmosphere in a muffle furnace). Solution treatment). Along with this, the strength decreases from 450 MPa to 250 MPa. After the heat treatment, cold working is performed up to η = 1.19 (70%), and heat treatment is performed for 3 hours at a low temperature of 350 ° C. at which recrystallization does not occur (heat treatment 2: aging and precipitation in a vacuum heat treatment furnace (1 Pa)) processing). The strength after the heat treatment is 441 MPa, which is slightly higher than that before the heat treatment (428 MPa). After the second heat treatment, the strength increases to about 640 MPa by performing cold working to a working degree η = 3.88 (97.9%), but the strength does not change or decreases even if the working degree is increased thereafter. .

一方、本発明法では、溶製した鋳塊を、加工度η=0.37(30%)まで冷間加工を行い、十分再結晶が生じる温度で比較的長時間保持、すなわち450℃の温度で15hの真空熱処理炉(1Pa)での再結晶化熱処理を施す。この熱処理後の強度は450MPaから250MPaまで低下する。強度は再結晶化熱処理後の冷間加工によって緩やかに上昇するが、加工度η=4.45(98.8%)までは従来法よりも低い。加工度η=4.45(98.8%)以上では、従来法では強度上昇は期待できないが、本発明法では強度が加工度の増加に伴って著しく上昇することがわかる。   On the other hand, in the method of the present invention, the molten ingot is cold-worked to a working degree η = 0.37 (30%) and kept at a temperature at which sufficient recrystallization occurs for a relatively long time, that is, a temperature of 450 ° C. And recrystallization heat treatment in a vacuum heat treatment furnace (1 Pa) for 15 hours. The strength after this heat treatment decreases from 450 MPa to 250 MPa. The strength gradually increases by cold working after the recrystallization heat treatment, but is lower than the conventional method up to a working degree η = 4.45 (98.8%). When the degree of work is η = 4.45 (98.8%) or more, it is not expected that the strength is increased by the conventional method, but the strength of the method according to the present invention is remarkably increased as the degree of work is increased.

図2には従来法(特許文献3)と本発明法で加工したCu−5wt%Ag合金の強度と加工度ηの関係を示す。Cu−5wt%Ag合金の場合も、Cu−3wt%Ag合金と同様な挙動を示すことがわかる。   FIG. 2 shows the relationship between the strength and the processing degree η of a Cu-5 wt% Ag alloy processed by the conventional method (Patent Document 3) and the method of the present invention. It can be seen that the Cu-5 wt% Ag alloy also exhibits the same behavior as the Cu-3 wt% Ag alloy.

図3には従来の製造法(特許文献3)と本発明の製造法で加工したCu−3wt%Ag合金の強度と導電率の関係を示す。同じ強度レベルで比較すると、本発明法で製造したCu−3wt%Ag合金の導電率が従来法のそれより5%IACS以上高いことがわかる。   FIG. 3 shows the relationship between the strength and conductivity of a Cu-3 wt% Ag alloy processed by the conventional manufacturing method (Patent Document 3) and the manufacturing method of the present invention. When compared at the same strength level, it can be seen that the conductivity of the Cu-3 wt% Ag alloy produced by the method of the present invention is higher than that of the conventional method by 5% IACS or more.

また、図4には従来法(特許文献3)と本発明法で加工したCu−5wt%Ag合金の強度と導電率の関係を示す。Cu−5wt%Ag合金の場合も同様に、本発明法の導電率のほうが従来法よりも5%IACS以上高いことが分かる。  FIG. 4 shows the relationship between the strength and conductivity of a Cu-5 wt% Ag alloy processed by the conventional method (Patent Document 3) and the method of the present invention. Similarly, in the case of the Cu-5 wt% Ag alloy, it can be seen that the conductivity of the method of the present invention is higher by 5% IACS or more than the conventional method.

図5はCu−3wt%Ag合金を種々の温度、時間で熱処理をした場合の強度と加工度の関係の一例を示す。高温度、長時間熱処理材(450℃,15h材、450℃,20h)の強度は低温度、短時間熱処理材(350℃,10h材、430℃,3h材、450℃,5h材)に比較して低加工度域においては低いが、高加工度域では著しく高くなり、従来実現できなかった特性が低濃度Ag添加材で可能になる。この熱処理で重要なことはCuマトリック中に固溶しているAgを最大限に析出させることにあり、そのためには冷間加工途中において再結晶が生じる温度以上で比較的長時間保持するという、強度を意図した材料を得んとする場合には常識外である熱処理を施すことが肝心である。従って、熱処理後の強度は冷間加工前の強度にまで低下するが、その後の冷間加工によってCuおよびAgが繊維状に引き伸ばされて高強度が得られる。図6にCu−5wt%Ag合金を種々の温度、時間で熱処理をした場合の強度と加工度の関係の一例を示す。Ag濃度が増すにつれて、析出温度が下がるので、Cu−5wt%Ag合金の場合はCu−3wt%Ag合金よりも低い温度、あるいは比較的短時間(410℃,10h材、450℃,5h材)の熱処理で良好な結果が得られる。図7は本発明の製造法で加工したCu−1wt%Ag−10wt%Ag合金の強度と加工度の関係を示す。Cu−1wt%Ag,2wt%Ag,及び3wt%Ag合金は加工度η=0.6でそれぞれ、450℃、20hの熱処理を行った。Cu−4wt%Ag合金は加工度η=0.6で450℃、10hの熱処理を行った。Cu−5wt%Ag及び6wt%Ag合金は加工度η=0.6で410℃、10hの熱処理を行った。Cu−10wt%Ag合金は、加工度η=0.6で、450℃、5hの熱処理を行った。熱処理後、それぞれの合金は加工度η=8まで冷間加工を行った。Cu−2wt%Ag、及び3wt%Ag合金は引き続き加工度η=11まで冷間加工を行った。いずれの合金も加工度の上昇にともなって強度が向上し、Ag濃度の増加に伴って強度の上昇率が高くなることがわかる。   FIG. 5 shows an example of the relationship between strength and workability when Cu-3 wt% Ag alloy is heat-treated at various temperatures and times. High temperature, long time heat treatment material (450 ° C, 15h material, 450 ° C, 20h) is stronger than low temperature, short time heat treatment material (350 ° C, 10h material, 430 ° C, 3h material, 450 ° C, 5h material) Although it is low in the low workability region, it is remarkably high in the high workability region, and characteristics that could not be realized in the past can be made possible with the low concentration Ag additive. What is important in this heat treatment is to precipitate Ag dissolved in the Cu matrix to the maximum extent. For that purpose, it is held for a relatively long time above the temperature at which recrystallization occurs during cold working. When obtaining a material intended for strength, it is important to perform heat treatment that is not common sense. Accordingly, the strength after the heat treatment is reduced to the strength before the cold working, but Cu and Ag are stretched into a fiber shape by the subsequent cold working, thereby obtaining a high strength. FIG. 6 shows an example of the relationship between strength and workability when Cu-5 wt% Ag alloy is heat-treated at various temperatures and times. As the Ag concentration increases, the precipitation temperature decreases. Therefore, in the case of a Cu-5 wt% Ag alloy, the temperature is lower than that of a Cu-3 wt% Ag alloy or relatively short time (410 ° C., 10 h material, 450 ° C., 5 h material). Good results can be obtained by this heat treatment. FIG. 7 shows the relationship between the strength and the degree of processing of a Cu-1 wt% Ag-10 wt% Ag alloy processed by the manufacturing method of the present invention. The Cu-1 wt% Ag, 2 wt% Ag, and 3 wt% Ag alloys were heat-treated at 450 ° C. and 20 h, respectively, at a working degree η = 0.6. The Cu-4 wt% Ag alloy was heat-treated at 450 ° C. for 10 hours at a workability η = 0.6. The Cu-5 wt% Ag and 6 wt% Ag alloys were heat-treated at 410 ° C. for 10 hours at a workability η = 0.6. The Cu-10 wt% Ag alloy was heat-treated at 450 ° C. for 5 hours at a workability η = 0.6. After the heat treatment, each alloy was cold worked to a working degree η = 8. The Cu-2 wt% Ag and 3 wt% Ag alloys were subsequently cold worked to a working degree η = 11. It can be seen that the strength of any alloy increases with increasing workability, and the rate of increase in strength increases with increasing Ag concentration.

図8には、Cu−1wt%−10wt%Ag合金の強度と導電率の関係を示す(熱処理条件は図7と同じ)。冷間加工工程中の1回の熱処理以外に、焼鈍することなく加工度η=11以上の強加工域まで伸線が可能で、Cu−2wt%Ag合金の強度及び導電率は1200MPa、81.7%IACS、Cu−3wt%Ag合金では1400MPa、76.4%IACSという、低濃度材では実現できなかった高強度、高導電率が得られる。この図8中に示した実線A,Bとの間は、本発明の合金細線の強度:Yと導電率:Xとの関係が前記の式(2)によって表わされる範囲を示している。   FIG. 8 shows the relationship between the strength and conductivity of the Cu-1 wt% -10 wt% Ag alloy (the heat treatment conditions are the same as those in FIG. 7). In addition to the single heat treatment in the cold working process, the wire can be drawn to a strong work region with a work degree η = 11 or more without annealing, and the strength and conductivity of the Cu-2 wt% Ag alloy are 1200 MPa, 81. The 7% IACS, Cu-3 wt% Ag alloy provides high strength and high conductivity, which cannot be achieved with a low concentration material, such as 1400 MPa and 76.4% IACS. The solid lines A and B shown in FIG. 8 indicate the range in which the relationship between the strength: Y and the electrical conductivity: X of the fine alloy wire of the present invention is expressed by the above formula (2).

図9は、Cu−2wt%−Cu−10wt%Ag合金を加工度η=0.6まで冷間加工した後450℃で熱処理した場合の硬度と熱処理時間の関係を示している。初期硬度が約70Hvで、それを冷間加工することで、硬度は130〜170程度まで上昇する。その後熱処理することで、硬度は図9のように時効時間とともに低下する。この低下が一定になった時間が再結晶が完了したことになる。   FIG. 9 shows the relationship between hardness and heat treatment time when a Cu-2 wt% -Cu-10 wt% Ag alloy is cold worked to a working degree η = 0.6 and then heat treated at 450 ° C. The initial hardness is about 70 Hv, and the hardness is increased to about 130 to 170 by cold working. By subsequent heat treatment, the hardness decreases with aging time as shown in FIG. The recrystallization has been completed for a time when this decrease has become constant.

2wt%Ag合金では20−30時間、3wt%Ag合金では15−20時間、4wt%Ag合金では5−10時間、5wt%Ag合金では2−3時間、6wt%Ag合金及び10wt%Agでは1−2時間程度である。この結果は熱処理温度が450℃の場合を示しているが、熱処理温度が450℃より低い場合は再結晶完了の時間がさらに長時間側になり、熱処理温度が450℃より高い場合は短時間側になる。   20-30 hours for 2 wt% Ag alloy, 15-20 hours for 3 wt% Ag alloy, 5-10 hours for 4 wt% Ag alloy, 2-3 hours for 5 wt% Ag alloy, 1 for 6 wt% Ag alloy and 10 wt% Ag -2 hours or so. This result shows the case where the heat treatment temperature is 450 ° C., but when the heat treatment temperature is lower than 450 ° C., the recrystallization completion time becomes longer, and when the heat treatment temperature is higher than 450 ° C., the short time side. become.

そして図10および図11は、Cu−3wt%AgおよびCu−5wt%Ag合金の熱処理前と後の組織の状態を示した光学顕微鏡写真である。図10(a)は3wt%Ag合金を溶体化処理後、加工度η=0.53まで冷間加工した材料の組織を表わす。図10(b)は、その冷間加工した材料の350℃×10h熱処理後の組織を表わす。(a)と(b)ではほとんど組織の変化は見られない。図10(c)は図10(a)の状態の材料の450℃×10hの熱処理後の状態を表わす。図10(c)から明らかなように450℃×10h熱処理後においては試料全体が再結晶していることがわかる。Cu−5wt%Ag合金の場合も図11(a)(b)(c)に示すようにCu−3wt%Ag合金の場合と同様である。本発明の特徴がよく示されている。
10 and 11 are optical micrographs showing the state of the structure before and after heat treatment of Cu-3 wt% Ag and Cu-5 wt% Ag alloy. FIG. 10 (a) shows the structure of a material that was cold worked to a working degree η = 0.53 after solution treatment of a 3 wt% Ag alloy. FIG. 10B shows the structure of the cold-worked material after heat treatment at 350 ° C. × 10 h. In (a) and (b), almost no tissue change is observed. FIG. 10C shows a state after the heat treatment of the material in the state of FIG. As is apparent from FIG. 10C, it can be seen that the entire sample is recrystallized after the heat treatment at 450 ° C. × 10 h. The case of the Cu-5 wt% Ag alloy is the same as that of the Cu-3 wt% Ag alloy as shown in FIGS. The features of the present invention are well illustrated.

本発明によれば従来法では不可能であった高強度、高導電率、極細銅合金線材の製造が既存の設備を利用して、単純な工程で実現できる。従来の極細線の製造では数回焼鈍処理を必要とするが、本発明では、熱処理が極細線製造の全工程中1回で済み、且つ加工度η=12以上の超強加工域まで伸線加工できる。しかも本発明によれば、低濃度のAgの添加で、600MPa以上、さらには900MPa以上の高強度であって、70%IACS以上の高導電率特性が得られ、たとえば2wt%Agで1200MPa、80%IACSという高強度、高導電率が得られる。   According to the present invention, high strength, high electrical conductivity, and ultrafine copper alloy wire material, which is impossible with the conventional method, can be realized with a simple process using existing equipment. In the production of conventional fine wires, annealing is required several times, but in the present invention, the heat treatment is performed once in all the steps of producing the fine wires, and the wire is drawn to a super-strong working region with a working degree η = 12 or more. Can be processed. In addition, according to the present invention, with the addition of Ag at a low concentration, a high strength property of 600 MPa or more, further 900 MPa or more and a high conductivity characteristic of 70% IACS or more can be obtained. High strength and high conductivity of% IACS can be obtained.

【0002】
[0003]
この問題を解決すべく1〜10wt%のAgを含有する銅合金を冷間加工し、この冷間加工の途中で真空雰囲気又は不活性ガス中で700−950℃の温度で、0.5−5時間熱処理し、さらに冷間加工を行いこの冷間加工の途中で、真空雰囲気又は不活性ガス中で再結晶が生じないような低温度、すなわち250℃以上400℃未満の温度で、0.5−40時間熱処理を施した後、さらに冷間加工することにより高強度と高導電率が実現できるとする製造方法が提案されているが(特許文献3)、強度及び導電率共に改善の効果はほとんど得られていない。
特許文献1:特許第2104108号公報
特許文献2:特許第2714555号公報
特許文献3:特開平6−287729号公報
発明の開示
発明が解決しようとする課題
[0004]
本発明は、以上のとおりの背景から、従来の問題点を解決し、低濃度のAg添加材においても、簡便な手段により、従来実現できなかった高強度(高引張強さ)で高導電率特性、特に、600MPa以上、さらには900MPa以上の高強度であって、70%IACS以上の高導電率特性を有する極細銅合金線の製造を可能とする、新しいCu−Ag合金細線とその製造方法を提供することを課題としている。
課題を解決するための手段
[0005]
本発明は、上記の課題を解決するものとして以下のことを特徴としている。
[0006]
第1:Ag含有率が1〜10wt%で、残部がCu及び不可避的不純物であるCu−Ag合金細線であって、Cuの固溶体からなる組織の全体が再結晶の集合組織からなることを特徴とするCu−Ag合金細線。
[0007]
第2:第1のCu−Ag合金細線において、Ag含有率が2〜6wt%であることを特徴とするCu−Ag合金細線。
[0008]
第3:第1のCu−Ag合金細線において、Ag含有率が2〜3wt%であることを特徴とするCu−Ag合金細線。
[0009]
第4:Cu−Ag合金線材に真空若しくは不活性ガス雰囲気下で再結晶化熱処理を
[0002]
[0003]
In order to solve this problem, a copper alloy containing 1 to 10 wt% of Ag is cold-worked, and in the course of this cold work, a vacuum atmosphere or an inert gas is used at a temperature of 700-950 ° C., 0.5- Heat treatment is performed for 5 hours, and further cold working is performed. In the course of this cold working, a low temperature at which recrystallization does not occur in a vacuum atmosphere or an inert gas, that is, a temperature of 250 ° C. or more and less than 400 ° C. A manufacturing method has been proposed in which high strength and high electrical conductivity can be realized by further cold working after 5-40 hours of heat treatment (Patent Document 3), but the effect of improving both strength and electrical conductivity. Is hardly obtained.
Patent Document 1: Japanese Patent No. 2104108 Patent Document 2: Japanese Patent No. 2714555 Patent Document 3: Japanese Patent Laid-Open No. Hei 6-287729 The problem to be solved by the invention [0004]
The present invention solves the conventional problems from the background as described above, and even in a low concentration Ag additive, high strength (high tensile strength) and high conductivity that could not be realized by simple means. New Cu-Ag alloy wire capable of producing ultrafine copper alloy wire having characteristics, in particular, high strength of 600 MPa or more, further high strength of 900 MPa or more, and high conductivity property of 70% IACS or more, and its production method It is an issue to provide.
Means for Solving the Problems [0005]
The present invention is characterized by the following in order to solve the above problems.
[0006]
First: Ag content is 1 to 10 wt%, the remainder is Cu and an inevitable impurity Cu-Ag alloy fine wire, and the entire structure made of a solid solution of Cu is made of a recrystallized texture Cu-Ag alloy fine wire.
[0007]
Second: A Cu-Ag alloy fine wire, wherein the Ag content is 2 to 6 wt% in the first Cu-Ag alloy fine wire.
[0008]
Third: A Cu-Ag alloy fine wire, wherein the Ag content is 2 to 3 wt% in the first Cu-Ag alloy fine wire.
[0009]
Fourth: Recrystallization heat treatment of Cu-Ag alloy wire under vacuum or inert gas atmosphere

【0003】
行う前後において、冷間伸線加工を行うにあたり、前行程の加工度に対し後行程の加工度を12倍以上にしたことを特徴とするCu−Ag合金細線の製造方法。
[0010]
第5:第4のCu−Ag合金細線の製造方法において、Ag含有率が1〜10wt%であることを特徴とするCu−Ag合金細線の製造方法。
[0011]
第6:第4のCu−Ag合金細線の製造方法において、Ag含有率が2〜6wt%であることを特徴とするCu−Ag合金細線の製造方法。
[0012]
第7:第4のCu−Ag合金細線の製造方法において、Ag含有率が2〜3wt%であり、加工度の倍率が18倍以上であることを特徴とするCu−Ag合金細線の製造方法。
[0013]
[0014]
以上のとおりの本発明の製造方法は、冷間加工途中で十分再結晶が生じる温度で比較的長時間保持するという、強度を意図した材料を得んとする場合に常識外である熱処理を加えることを特徴の一つとするもので、全加工工程中ただ1回の熱処理によってその後の冷間加工によって強度は加工度の上昇に伴い急激に向上するとともに、加工度η(但し、η=InA/A:A:加工前断面積、A:加工後断面積)が12以上の超強加工域まで中間焼鈍処理なしで加工できるという、従来全く予想出来なかった知見とその確認に基づくものである。
[0015]
このようにAg添加量を大幅に低減でき、さらに熱処理が材料製造の全工程中で1回で、加工度η=12以上の超強加工域まで伸線加工できることはその製造コストを下げることができる。従来材では不可能であった高強度、高導電性、極細線の実現はこの材料を利用した新製品の開発を促し、さらには導電材料を使用する多くの製品のコンパクト化、軽量化を図ることが可能となりその製品の付加価値を高められる。
図面の簡単な説明
[0016]
[図1]従来法と本発明方法との比較をCu−3wt%Ag合金細線の強度と加工度との関係として示した図である。
[図2]従来法と本発明方法との比較をCu−5wt%Ag合金細線の強度と加工度との関係として示した図である。
[0003]
A method for producing a Cu-Ag alloy fine wire, characterized in that, in performing cold wire drawing before and after performing, the degree of work in the subsequent process is 12 times or more of the degree of work in the previous process.
[0010]
5th: In the manufacturing method of the 4th Cu-Ag alloy thin wire, Ag content rate is 1-10 wt%, The manufacturing method of the Cu-Ag alloy thin wire characterized by the above-mentioned.
[0011]
6th: In the 4th manufacturing method of Cu-Ag alloy fine wire, Ag content rate is 2-6 wt%, The manufacturing method of Cu-Ag alloy thin wire characterized by the above-mentioned.
[0012]
7th: In the 4th manufacturing method of Cu-Ag alloy thin wire, Ag content rate is 2-3 wt%, and the magnification of a workability is 18 times or more, The manufacturing method of Cu-Ag alloy thin wire characterized by the above-mentioned .
[0013]
[0014]
The manufacturing method of the present invention as described above applies a heat treatment that is not common sense when obtaining a material intended for strength, such as holding for a relatively long time at a temperature at which sufficient recrystallization occurs during cold working. One of the characteristics is that the strength is rapidly improved with the increase in the workability by the subsequent cold working by only one heat treatment during the whole working process, and the workability η (where η = InA 0 / A: A 0 : cross-sectional area before processing, A: cross-sectional area after processing) is based on the knowledge and confirmation that could not be expected at all to ultra-high working area of 12 or more without intermediate annealing. is there.
[0015]
In this way, the amount of Ag added can be greatly reduced, and furthermore, the heat treatment can be performed once in all the steps of material production, and the wire can be drawn to a super-strong processing region with a processing degree of η = 12 or more. it can. The realization of high strength, high conductivity, and ultrafine wire, which was impossible with conventional materials, encourages the development of new products that use this material, and further reduces the size and weight of many products that use conductive materials. Can add value to the product.
BRIEF DESCRIPTION OF THE DRAWINGS [0016]
FIG. 1 is a diagram showing a comparison between the conventional method and the method of the present invention as the relationship between the strength of a Cu-3 wt% Ag alloy fine wire and the degree of processing.
[FIG. 2] It is the figure which showed the comparison with the method of this invention and the method of this invention as the relationship between the intensity | strength of a Cu-5 wt% Ag alloy fine wire, and a workability.

【0005】
550℃未満の温度条件が好適に考慮される。400℃未満では再結晶が十分に進まず、Agの析出が生じにくく、その後の冷間加工による強度上昇が低い。550℃以上では、Agの析出量が少なくなり、強度、導電率ともに低下する傾向にある。
[0019]
この熱処理のための時間については、一般的には0.5〜50時間程度が考慮されるが、処理効率、強度ならびに導電率のバランスからは、6時間以上とすることが好ましい。
そして熱処理は、材料表面の酸化を防ぐために、真空もしくは不活性ガス雰囲気下において行う。銅および銀は比較的酸化しにくいので真空度はロータリポンプのみで引ける、1Pa程度でもよい。不活性ガスとしては、たとえばアルゴン(Ar)や、水素ガス50%+窒素ガス50%のような混合ガスで、10cc/min程度の流量があればよい。
[0020]
本発明の製造方法では、このような熱処理を、冷間加工の途中において行う。この熱処理は1回のみでよい。
[0021]
伸線のための冷間加工では、ドローベンチ、スエージャー、溝ロール等の各種の手段が採用されてよく、細線加工では、連続伸線機が好適に用いられる。冷間加工による加工度(η)については、本発明においては加工度が12以上とする。
[0022]
なお、本発明における「細線」の用語については、線状、あるいは棒状材であることを意味している。その断面直径に特に制約があるわけではない。用途によりこれは定められることになる。通常は直径1mm以下と考えられる。
[0023]
そして、本発明においては、次の数式の関係で表わされる高強度で、高導電率の細線が提供される。
[0024]
すなわち、本発明のCu−Ag合金細線は、その強度:Y(MPa)と導電率:X(%IACS)との関係が、次式(1)で表わされる範囲にあり、さらに好適には次式(2)で表わされる範囲にある。
[0025]
[数1]
従来、以上のように表わされる強度−導電率の関係を有する1wt%−10wt%Ag含有のCu−Ag合金細線は知られていない。
[0005]
Temperature conditions below 550 ° C. are preferably considered. If it is less than 400 ° C., recrystallization does not proceed sufficiently, Ag precipitation is unlikely to occur, and the subsequent strength increase due to cold working is low. Above 550 ° C., the amount of Ag deposited decreases, and both strength and conductivity tend to decrease.
[0019]
The time for this heat treatment is generally about 0.5 to 50 hours, but is preferably 6 hours or more from the balance of processing efficiency, strength and conductivity.
The heat treatment is performed in a vacuum or an inert gas atmosphere in order to prevent oxidation of the material surface. Since copper and silver are relatively difficult to oxidize, the degree of vacuum may be about 1 Pa that can be pulled only by a rotary pump. As the inert gas, for example, argon (Ar) or a mixed gas such as hydrogen gas 50% + nitrogen gas 50% may be used as long as the flow rate is approximately 10 cc / min.
[0020]
In the manufacturing method of the present invention, such heat treatment is performed during the cold working. This heat treatment may be performed only once.
[0021]
In cold working for wire drawing, various means such as a draw bench, a swager, and a groove roll may be adopted, and in thin wire processing, a continuous wire drawing machine is preferably used. Regarding the degree of work (η) by cold working, the degree of work is 12 or more in the present invention.
[0022]
The term “thin wire” in the present invention means a linear or rod-like material. There are no particular restrictions on the cross-sectional diameter. This is determined by the application. Usually, the diameter is considered to be 1 mm or less.
[0023]
And in this invention, the high intensity | strength and high electrical conductivity thin line | wire represented by the relationship of the following numerical formula are provided.
[0024]
That is, in the Cu—Ag alloy fine wire of the present invention, the relationship between the strength: Y (MPa) and the conductivity: X (% IACS) is in the range represented by the following formula (1). It exists in the range represented by Formula (2).
[0025]
[Equation 1]
Conventionally, a 1 wt% -10 wt% Ag-containing Cu-Ag alloy fine wire having the strength-conductivity relationship expressed as described above has not been known.

【0008】
いずれの合金も加工度の上昇にともなって強度が向上し、Ag濃度の増加に伴って強度の上昇率が高くなることがわかる。
[0035]
図8には、Cu−1wt%−10wt%Ag合金の強度と導電率の関係を示す(熱処理条件は図7と同じ)。冷間加工工程中の1回の熱処理以外に、焼鈍することなく加工度η=11以上の強加工域まで伸線が可能で、Cu−2wt%Ag合金の強度及び導電率は1200MPa、81.7%IACS、Cu−3wt%Ag合金では1400MPa、76.4%IACSという、低濃度材では実現できなかった高強度、高導電率が得られる。この図8中に示した実線A,Bとの間は、本発明の合金細線の強度:Yと導電率:Xとの関係が前記の式(2)によって表わされる範囲を示している。
[0036]
図9は、Cu−2wt%−10wt%Ag合金を加工度η=0.6まで冷間加工した後450℃で熱処理した場合の硬度と熱処理時間の関係を示している。初期硬度が約70Hvで、それを冷間加工することで、硬度は130〜170程度まで上昇する。その後熱処理することで、硬度は図9のように時効時間とともに低下する。この低下が一定になった時間が再結晶が完了したことになる。
[0037]
2wt%Ag合金では20−30時間、3wt%Ag合金では15−20時間、4wt%Ag合金では5−10時間、5wt%Ag合金では2−3時間、6wt%Ag合金及び10wt%Agでは1−2時間程度である。この結果は熱処理温度が450℃の場合を示しているが、熱処理温度が450℃より低い場合は再結晶完了の時間がさらに長時間側になり、熱処理温度が450℃より高い場合は短時間側になる。
[0038]
そして図10および図11は、Cu−3wt%AgおよびCu−5wt%Ag合金の熱処理前と後の組織の状態を示した光学顕微鏡写真である。図10(a)は3wt%Ag合金を溶体化処理後、加工度η=0.53まで冷間加工した材料の組織を表わす。図10(b)は、その冷間加工した材料の350℃×10h熱処理後の組織を表わす。(a)と(b)ではほとんど組織の変化は見られない。図10(c)は図10(a)の状態の材料の450℃×10hの熱処理後の状態を表わす。図10(c)から明らかなように450℃×10h熱処理後においては試料全体が再結晶していることがわかる。Cu−5wt%Ag合金の場合も図11(a)(b)(c)に示すようにCu−3wt%Ag合金の場合と同様である。本発明の特徴がよく示されている。
[0008]
It can be seen that the strength of any alloy increases with increasing workability, and the rate of increase in strength increases with increasing Ag concentration.
[0035]
FIG. 8 shows the relationship between the strength and conductivity of the Cu-1 wt% -10 wt% Ag alloy (the heat treatment conditions are the same as those in FIG. 7). In addition to a single heat treatment during the cold working step, the wire can be drawn to a strong working region with a work degree η = 11 or more without annealing, and the strength and conductivity of the Cu-2 wt% Ag alloy are 1200 MPa, 81. The 7% IACS, Cu-3 wt% Ag alloy provides high strength and high conductivity, which cannot be achieved with a low concentration material, such as 1400 MPa and 76.4% IACS. The solid lines A and B shown in FIG. 8 indicate the range in which the relationship between the strength: Y and the electrical conductivity: X of the fine alloy wire of the present invention is expressed by the above formula (2).
[0036]
FIG. 9 shows the relationship between the hardness and heat treatment time when a Cu-2 wt% -10 wt% Ag alloy is cold worked to a working degree η = 0.6 and then heat treated at 450 ° C. The initial hardness is about 70 Hv, and the hardness is increased to about 130 to 170 by cold working. By subsequent heat treatment, the hardness decreases with aging time as shown in FIG. The recrystallization has been completed for a time when this decrease has become constant.
[0037]
20-30 hours for 2 wt% Ag alloy, 15-20 hours for 3 wt% Ag alloy, 5-10 hours for 4 wt% Ag alloy, 2-3 hours for 5 wt% Ag alloy, 1 for 6 wt% Ag alloy and 10 wt% Ag -2 hours or so. This result shows the case where the heat treatment temperature is 450 ° C., but when the heat treatment temperature is lower than 450 ° C., the recrystallization completion time becomes longer, and when the heat treatment temperature is higher than 450 ° C., the short time side. become.
[0038]
10 and 11 are optical micrographs showing the state of the structure before and after heat treatment of Cu-3 wt% Ag and Cu-5 wt% Ag alloy. FIG. 10 (a) shows the structure of a material that was cold worked to a working degree η = 0.53 after solution treatment of a 3 wt% Ag alloy. FIG. 10B shows the structure of the cold-worked material after heat treatment at 350 ° C. × 10 h. In (a) and (b), almost no tissue change is observed. FIG. 10C shows a state after the heat treatment of the material in the state of FIG. As is apparent from FIG. 10C, it can be seen that the entire sample is recrystallized after the heat treatment at 450 ° C. × 10 h. The case of the Cu-5 wt% Ag alloy is the same as that of the Cu-3 wt% Ag alloy as shown in FIGS. The features of the present invention are well illustrated.

Claims (8)

真空若しくは不活性ガス雰囲気下で再結晶化熱処理を行う前後において、冷間伸線加工を行うことにより得られたCu−Ag合金細線において、前記両冷間伸線加工における加工度が、前行程に対し後行程で12倍以上であることを特徴とするCu−Ag合金細線。   Before and after performing recrystallization heat treatment in a vacuum or an inert gas atmosphere, in the Cu-Ag alloy thin wire obtained by performing cold wire drawing, the degree of work in both cold wire drawing is determined by the previous process. In contrast, a Cu-Ag alloy fine wire characterized by being 12 times or more in the subsequent process. 前記請求項1に記載のCu−Ag合金細線において、そのAg含有率が1〜10wt%であることを特徴とするCu−Ag合金細線。   The Cu-Ag alloy fine wire according to claim 1, wherein the Ag content is 1 to 10 wt%. 前記請求項1に記載のCu−Ag合金細線において、そのAg含有率が2〜6wt%であることを特徴とするCu−Ag合金細線。   The Cu-Ag alloy fine wire according to claim 1, wherein the Ag content is 2 to 6 wt%. 前記請求項1に記載のCu−Ag合金細線において、そのAg含有率が2〜3wt%であり、前記加工度の倍率が18倍以上であることを特徴とするCu−Ag合金細線。   The Cu-Ag alloy thin wire according to claim 1, wherein the Ag content is 2 to 3 wt%, and the magnification of the workability is 18 times or more. 真空若しくは不活性ガス雰囲気下で再結晶化熱処理を行う前後において、冷間伸線加工を行うにあたり、前行程の加工度に対し後行程の加工度を12倍以上にしたことを特徴とするCu−Ag合金細線の製造方法。   Cu before and after performing recrystallization heat treatment in vacuum or in an inert gas atmosphere, when performing cold wire drawing, the degree of work in the subsequent process is 12 times or more of the degree of work in the previous process -Manufacturing method of Ag alloy fine wire. 前記請求項5に記載のCu−Ag合金細線の製造方法において、そのAg含有率が1〜10wt%であることを特徴とするCu−Ag合金細線の製造方法。   The method for producing a Cu-Ag alloy fine wire according to claim 5, wherein the Ag content is 1 to 10 wt%. 前記請求項5に記載のCu−Ag合金細線の製造方法において、そのAg含有率が2〜6wt%であることを特徴とするCu−Ag合金細線の製造方法。   The method for producing a Cu-Ag alloy fine wire according to claim 5, wherein the Ag content is 2 to 6 wt%. 前記請求項5に記載のCu−Ag合金細線の製造方法において、そのAg含有率が2〜3wt%であり、前記加工度の倍率が18倍以上であることを特徴とするCu−Ag合金細線の製造方法。   The Cu-Ag alloy fine wire manufacturing method according to claim 5, wherein the Ag content is 2 to 3 wt%, and the workability ratio is 18 times or more. Manufacturing method.
JP2007540986A 2005-10-17 2006-10-17 High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same Active JP5051647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007540986A JP5051647B2 (en) 2005-10-17 2006-10-17 High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005301412 2005-10-17
JP2005301412 2005-10-17
PCT/JP2006/320659 WO2007046378A1 (en) 2005-10-17 2006-10-17 Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF
JP2007540986A JP5051647B2 (en) 2005-10-17 2006-10-17 High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2007046378A1 true JPWO2007046378A1 (en) 2009-04-23
JP5051647B2 JP5051647B2 (en) 2012-10-17

Family

ID=37962471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007540986A Active JP5051647B2 (en) 2005-10-17 2006-10-17 High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same

Country Status (2)

Country Link
JP (1) JP5051647B2 (en)
WO (1) WO2007046378A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195019B2 (en) * 2008-05-21 2013-05-08 住友電気工業株式会社 Cu-Ag alloy wire, winding, and coil
WO2014007259A1 (en) * 2012-07-02 2014-01-09 古河電気工業株式会社 Copper-alloy wire rod and manufacturing method therefor
PL221274B1 (en) 2013-04-05 2016-03-31 Akademia Górniczo Hutnicza Im Stanisława Staszica W Krakowie Method for producing wires from Cu-Ag alloys
CN103572184B (en) * 2013-10-17 2015-07-22 河南科技大学 Preparation method of high-strength silver-copper alloy material
CN105463237B (en) * 2015-12-05 2017-12-01 烟台一诺电子材料有限公司 A kind of Kufil bonding wire and preparation method thereof
KR102117808B1 (en) * 2016-05-16 2020-06-02 후루카와 덴키 고교 가부시키가이샤 Copper alloy wire
TWI768097B (en) 2017-08-10 2022-06-21 日商田中貴金屬工業股份有限公司 High-strength and high-conductivity copper alloy sheet and method for producing the same
EP3770287A4 (en) * 2018-03-20 2021-11-24 Furukawa Electric Co., Ltd. Copper alloy wire rod and method for producing copper alloy wire rod
WO2022202871A1 (en) * 2021-03-23 2022-09-29 古河電気工業株式会社 Copper alloy wire
EP4317492A1 (en) * 2021-03-23 2024-02-07 Furukawa Electric Co., Ltd. Copper alloy wire rod
KR20230138448A (en) 2021-11-12 2023-10-05 후루카와 덴키 고교 가부시키가이샤 Cu-Ag alloy wire
KR20230138449A (en) 2021-11-12 2023-10-05 후루카와 덴키 고교 가부시키가이샤 Cu-Ag alloy wire
CN114645153B (en) * 2022-03-17 2023-01-24 东北大学 High-strength high-conductivity copper-silver alloy wire and preparation method thereof
KR20230170101A (en) * 2022-06-08 2023-12-18 에스더블유씨씨 가부시키가이샤 Conductor for electrical property inspection and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566877B2 (en) * 1992-09-16 1996-12-25 昭和電線電纜株式会社 Method for producing Cu-Ag alloy conductor
JPH06103809A (en) * 1992-09-16 1994-04-15 Showa Electric Wire & Cable Co Ltd Manufacture of cu-ag alloy wire
JP3325641B2 (en) * 1993-03-31 2002-09-17 株式会社フジクラ Method for producing high-strength high-conductivity copper alloy
JP3325639B2 (en) * 1993-03-31 2002-09-17 株式会社フジクラ Manufacturing method of high strength and high conductivity copper alloy
JP2000199042A (en) * 1998-11-04 2000-07-18 Showa Electric Wire & Cable Co Ltd PRODUCTION OF Cu-Ag ALLOY WIRE ROD AND Cu-Ag ALLOY WIRE ROD

Also Published As

Publication number Publication date
WO2007046378A1 (en) 2007-04-26
JP5051647B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5051647B2 (en) High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same
JP4311277B2 (en) Manufacturing method of extra fine copper alloy wire
JP5840234B2 (en) Copper alloy wire and method for producing the same
JP2008255417A (en) Method for producing copper material, and copper material
US20060011275A1 (en) Copper-titanium alloys excellent in strength, conductivity and bendability, and method for producing same
JP2006274383A (en) Method for manufacturing copper material, and copper material
JP2006283106A (en) Production method of chromium-containing copper alloy, chromium-containing copper alloy and drawn copper article
CN111411256B (en) Copper-zirconium alloy for electronic components and preparation method thereof
CN111809079B (en) High-strength high-conductivity copper alloy wire material and preparation method thereof
JP2009167450A (en) Copper alloy and producing method therefor
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4497164B2 (en) Copper alloy conductor and cable using the same
JP3948451B2 (en) Copper alloy material, method for producing copper alloy conductor using the same, copper alloy conductor obtained by the method, and cable using the same
JP2008255416A (en) Method for manufacturing copper material, and copper material
JP2006097113A (en) Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product
JP3325639B2 (en) Manufacturing method of high strength and high conductivity copper alloy
CN109429497B (en) Copper alloy ultra-fine wire for spring and method for producing same
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts
WO2013014904A2 (en) Conductor for electric wire
JP4143010B2 (en) Method for producing copper alloy conductor
JP3325640B2 (en) Method for producing high-strength high-conductivity copper alloy
JP3381817B2 (en) High strength copper alloy for electric wire conductor and method for producing electric wire conductor
JP2012144789A (en) Cu-Co-Si-Zr ALLOY MATERIAL

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

R150 Certificate of patent or registration of utility model

Ref document number: 5051647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250