JP5195019B2 - Cu-Ag alloy wire, winding, and coil - Google Patents

Cu-Ag alloy wire, winding, and coil Download PDF

Info

Publication number
JP5195019B2
JP5195019B2 JP2008133601A JP2008133601A JP5195019B2 JP 5195019 B2 JP5195019 B2 JP 5195019B2 JP 2008133601 A JP2008133601 A JP 2008133601A JP 2008133601 A JP2008133601 A JP 2008133601A JP 5195019 B2 JP5195019 B2 JP 5195019B2
Authority
JP
Japan
Prior art keywords
wire
heat treatment
alloy wire
strength
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008133601A
Other languages
Japanese (ja)
Other versions
JP2009280860A (en
Inventor
太一郎 西川
由弘 中井
義喜 岸川
清高 宇都宮
範明 久保
稔 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008133601A priority Critical patent/JP5195019B2/en
Publication of JP2009280860A publication Critical patent/JP2009280860A/en
Application granted granted Critical
Publication of JP5195019B2 publication Critical patent/JP5195019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、極細のCu-Ag合金線及びこの合金線の製造方法に関する。特に、高強度、高靭性、高導電率であるCu-Ag合金線に関するものである。   The present invention relates to an ultrafine Cu-Ag alloy wire and a method for producing the alloy wire. In particular, it relates to a Cu-Ag alloy wire having high strength, high toughness, and high conductivity.

携帯用電気機器などのスピーカーに利用されるコイル、いわゆるボイスコイルは、通常、コイルのターンと、ターンへの給電部分とが一連の巻線から形成されている。この巻線は、ターンの形成が可能な程度の靭性(伸び)を有する必要があるため、従来、靭性に優れる純銅が用いられている。   In a coil used for a speaker such as a portable electric device, a so-called voice coil, a coil turn and a power feeding portion to the turn are usually formed from a series of windings. Since this winding needs to have toughness (elongation) that allows the formation of a turn, conventionally, pure copper having excellent toughness has been used.

純銅は、導電率が高いものの、耐疲労性(疲労強度)が低い。耐疲労性を向上するには、合金化することが効果的である。例えば、特許文献1,2には、Ag(銀)やTl(タリウム)を添加して高強度化したCu-Ag合金が開示されている。   Pure copper has high conductivity but low fatigue resistance (fatigue strength). In order to improve fatigue resistance, alloying is effective. For example, Patent Documents 1 and 2 disclose Cu-Ag alloys that have been strengthened by adding Ag (silver) or Tl (thallium).

特公昭49-041014号公報Japanese Patent Publication No.49-041014 特開2001-040439号公報JP 2001-040439 A

純銅からなる巻線は、上述のように耐疲労性に劣るため、給電部分に過度の振動などが加わることでこの部分で断線が生じることがある。特に、電気機器によっては、線径(直径):φ0.1mm以下の極細の巻線が利用されている。このような極細線は、上記断線が生じ易い。そこで、上述のように合金化により耐疲労性を向上することが考えられる。しかし、添加元素を増加すると、強度が高められる反面、導電率が低下することから、所望の導電率を得るために巻線の断面積を大きくする必要がある。すると、軽量化、小型化などの要求により、極細線が望まれる場合、添加元素の増加による高強度化には限界がある。   Since the winding made of pure copper is inferior in fatigue resistance as described above, disconnection may occur at this portion due to excessive vibration applied to the power feeding portion. In particular, depending on the electrical equipment, an extremely fine winding having a wire diameter (diameter) of φ0.1 mm or less is used. Such an extra fine wire is likely to cause the disconnection. Therefore, it is conceivable to improve fatigue resistance by alloying as described above. However, when the additive element is increased, the strength is increased, but the conductivity is lowered. Therefore, in order to obtain a desired conductivity, it is necessary to increase the cross-sectional area of the winding. Then, when an ultrathin wire is desired due to demands for weight reduction and miniaturization, there is a limit to increasing the strength by increasing the amount of additive elements.

また、従来、極細線に対して高強度化に着目して合金線の開発を行っているものの、合金線の靭性に対して十分な検討がなされていない。   Conventionally, although an alloy wire has been developed focusing on increasing the strength of the ultrafine wire, sufficient examination has not been made on the toughness of the alloy wire.

そこで、本発明の目的の一つは、極細でありながら、高強度、高靭性、高導電率であるCu-Ag合金線を提供することにある。また、本発明の他の目的は、この合金線の製造方法を提供することにある。   Therefore, one of the objects of the present invention is to provide a Cu—Ag alloy wire that is ultrafine but has high strength, high toughness, and high conductivity. Another object of the present invention is to provide a method for producing this alloy wire.

本発明者らは、純銅に比較して高強度であり、かつ高い導電率を維持することができるCu-Ag合金を対象として靭性の向上を検討した。そして、所望の靭性(伸びが10%以上)を得るために、線材に軟化処理を施すことを考えた。しかし、従来の合金線は、軟化により伸びが向上する反面、強度(疲労強度)が低下する。そこで、軟化処理を施す対象を再度検討したところ、軟化処理前の冷間加工を特定の加工度で行うと、軟化による疲労強度の低下を低減でき、その結果、高強度かつ高靭性であり、導電率も高い極細線が得られるとの知見を得た。この知見に基づき、本発明製造方法は、軟化処理前の(最終)冷間加工の加工度を規定する。   The present inventors examined improvement of toughness for a Cu-Ag alloy that has higher strength than pure copper and can maintain high electrical conductivity. In order to obtain the desired toughness (elongation of 10% or more), it was considered to soften the wire. However, the conventional alloy wire is improved in elongation by softening, but the strength (fatigue strength) is lowered. Therefore, when the object to be subjected to the softening treatment was examined again, when the cold working before the softening treatment was performed at a specific degree of processing, a decrease in fatigue strength due to softening could be reduced, and as a result, high strength and high toughness, We have obtained knowledge that ultrafine wires with high electrical conductivity can be obtained. Based on this knowledge, the production method of the present invention defines the degree of (final) cold working before softening treatment.

また、Cu-Ag合金は、鋳造後、伸線といった冷間加工を施すことで二相分離が生じ、Ag相がファイバー状(繊維状)に伸ばされる。このAg相が繊維強化の働きを持つことで、伸線材の強度が大幅に向上する。上記二相分離は、製造途中に中間熱処理を行うことで促進され、熱処理材の強度が更に向上し、最終軟化後でも強度が維持し易くなると考えられる。このように繊維強化された状態で、かつ特定の伸びを有する合金線は、疲労強度も飛躍的に向上すると考えられる。この知見に基づき、本発明製造方法は、中間熱処理工程及び最終熱処理工程を具える。   In addition, the Cu-Ag alloy is subjected to cold working such as wire drawing after casting, thereby causing two-phase separation, and the Ag phase is stretched into a fiber shape (fibrous shape). The strength of the wire drawing material is greatly improved by this Ag phase having a fiber reinforcing function. The two-phase separation is promoted by performing an intermediate heat treatment during the production, and the strength of the heat-treated material is further improved, and it is considered that the strength is easily maintained even after final softening. The alloy wire having a specific elongation in such a fiber reinforced state is considered to significantly improve the fatigue strength. Based on this knowledge, the manufacturing method of the present invention includes an intermediate heat treatment step and a final heat treatment step.

具体的には、本発明Cu-Ag合金線の製造方法は、Agを2.0質量%以上15.0質量%以下含有し、残部がCu及び不可避的不純物からなるCu-Ag合金で構成された極細線の製造方法であり、以下の工程を具える。
(1) 上記組成のCu-Ag合金の鋳造材を冷間加工してなる素材に中間熱処理を施す工程。この熱処理は、当該熱処理後の線材の伸びが10%以上となる条件で行う。
(2) 上記中間熱処理が施された熱処理材に、加工度ln(A/A0):1以上10以下の条件で最終冷間加工を施して、線径が0.1mm以下の細線材を形成する工程。但し、上記Aは、上記細線材の断面積、A0は、上記中間熱処理材の断面積とする。
(3) 上記細線材に最終熱処理を施す工程。この熱処理は、当該熱処理後の線材の伸びが10%以上となる条件で行う。
Specifically, the method for producing a Cu-Ag alloy wire of the present invention comprises an ultrafine wire composed of a Cu-Ag alloy containing 2.0 mass% or more and 15.0 mass% or less of Ag, with the balance being Cu and inevitable impurities. A manufacturing method comprising the following steps.
(1) A step of performing an intermediate heat treatment on a material obtained by cold-working a cast material of the Cu-Ag alloy having the above composition. This heat treatment is performed under the condition that the elongation of the wire after the heat treatment is 10% or more.
(2) The heat treatment material that has been subjected to the above intermediate heat treatment is subjected to final cold working under a condition of workability ln (A / A 0 ): 1 to 10 to form a thin wire material having a wire diameter of 0.1 mm or less Process. Where A is the cross-sectional area of the fine wire material, and A 0 is the cross-sectional area of the intermediate heat treatment material.
(3) A step of subjecting the fine wire to a final heat treatment. This heat treatment is performed under the condition that the elongation of the wire after the heat treatment is 10% or more.

上記本発明製造方法により、極細で高強度、高靭性、高導電率の本発明Cu-Ag合金線が得られる。具体的は、本発明Cu-Ag合金線は、Agを2.0質量%以上15.0質量%以下含有し、残部がCu及び不可避的不純物からなり、線径:0.1mm以下、引張強さ:290MPa以上、伸び:10%以上、導電率:80%IACS以上を満たす。   According to the production method of the present invention, the Cu-Ag alloy wire of the present invention having ultrafine, high strength, high toughness and high conductivity can be obtained. Specifically, the Cu-Ag alloy wire of the present invention contains 2.0% by mass or more and 15.0% by mass or less of Ag, the balance is made of Cu and inevitable impurities, the wire diameter: 0.1 mm or less, the tensile strength: 290 MPa or more, Elongation: 10% or more, conductivity: 80% IACS or more.

本発明Cu-Ag合金線は、上述のように靭性及び導電率がいずれも高いことから、コイルの巻線といった高靭性及び高導電率が望まれるものに好適に利用することができる。特に、本発明Cu-Ag合金線は、高強度かつ高靭性であることから、過度の振動が加わるような場合にも断線し難く、疲労特性にも優れる。本発明製造方法は、このような高強度、高靭性、高導電率の本発明Cu-Ag合金線を生産性よく製造することができる。以下、本発明をより詳細に説明する。   Since the Cu-Ag alloy wire of the present invention has both high toughness and electrical conductivity as described above, it can be suitably used for those that require high toughness and high electrical conductivity such as coil winding. In particular, since the Cu-Ag alloy wire of the present invention has high strength and high toughness, it is difficult to break even when excessive vibration is applied, and has excellent fatigue characteristics. The production method of the present invention can produce the Cu-Ag alloy wire of the present invention having such high strength, high toughness and high conductivity with high productivity. Hereinafter, the present invention will be described in more detail.

[Cu-Ag合金線]
《組成》
本発明Cu-Ag合金線は、Agを2.0〜15.0質量%含有するCu-Ag合金から構成される。Agが2.0質量%未満では、導電率が高い反面、強度の向上が十分でない。Ag量の増加に伴い強度が向上するもののその効果は15.0質量%程度で飽和し、それ以上のAgの含有はコストの増加を招く。また、15.0質量%超では、導電率が低下する。Agのより好ましい含有量は、3質量%以上6質量%以下である。本発明合金線は、Ag以外の元素を特に含有せず、残部はCu及び不可避的不純物からなる。本発明合金線は、冷間加工や熱処理によって、加工硬化及び繊維状組織化による高強度化を実現し、Tlといった元素を含有する必要がない。
[Cu-Ag alloy wire]
"composition"
The Cu-Ag alloy wire of the present invention is composed of a Cu-Ag alloy containing 2.0 to 15.0 mass% of Ag. If Ag is less than 2.0% by mass, the electrical conductivity is high, but the strength is not sufficiently improved. Although the strength is improved as the amount of Ag increases, the effect is saturated at about 15.0% by mass, and the inclusion of more Ag causes an increase in cost. On the other hand, if it exceeds 15.0% by mass, the electrical conductivity decreases. A more preferable content of Ag is 3% by mass or more and 6% by mass or less. The alloy wire of the present invention does not contain any element other than Ag, and the balance consists of Cu and inevitable impurities. The alloy wire of the present invention realizes high strength by work hardening and fibrous organization by cold working or heat treatment, and does not need to contain an element such as Tl.

《形状》
本発明Cu-Ag合金線は、線径(直径)を0.1mm以下とする。0.1mm超では、軟化処理を施しても、所望の伸び(10%以上)が得られ難い。線径は、例えば、加工度を調整することで変化させられる。本発明製造方法により得られた合金線は、0.05mm以下といった非常に極細であっても、強度、靭性、導電率に優れる。
"shape"
The Cu-Ag alloy wire of the present invention has a wire diameter (diameter) of 0.1 mm or less. If it exceeds 0.1 mm, it is difficult to obtain a desired elongation (10% or more) even if softening is performed. For example, the wire diameter can be changed by adjusting the degree of processing. The alloy wire obtained by the production method of the present invention is excellent in strength, toughness and electrical conductivity even if it is very fine, such as 0.05 mm or less.

《引張強さ》
本発明Cu-Ag合金線は、引張強さが290MPa以上と高強度である。また、本発明合金線は、細径であっても耐疲労性に優れており、使用時の振動などによる断線を抑制することができる。引張強さは、例えば、Ag量や加工度を調整することで変化させられる。本発明製造方法により得られた合金線は、更に340MPa以上といった高強度線が得られる。
"Tensile strength"
The Cu-Ag alloy wire of the present invention has a high tensile strength of 290 MPa or more. Further, the alloy wire of the present invention is excellent in fatigue resistance even if it has a small diameter, and can prevent disconnection due to vibration during use. The tensile strength can be changed, for example, by adjusting the Ag amount and the processing degree. The alloy wire obtained by the production method of the present invention further provides a high-strength wire of 340 MPa or more.

《伸び》
本発明Cu-Ag合金線は、10%以上という高い伸びを有する点で従来のCu-Ag合金線と大きく異なる。このように靭性に優れることで、本発明合金線は、コイルの巻線に利用する場合、コイルの成形性に優れる。伸びは、例えば、加工度や熱処理条件を調整することで変化させられる。伸びの向上に伴い、引張強さや導電率が低下する傾向にあるため、伸びの上限は30%が好ましい。伸びの上限は、線径によって異なり、例えば、線径:φ20μmの合金線で20%程度であると考えられる。より好ましい伸びの範囲は、15%以上20%以下、更に好ましい範囲は、15%以上18%以下である。
《Elongation》
The Cu-Ag alloy wire of the present invention is greatly different from the conventional Cu-Ag alloy wire in that it has a high elongation of 10% or more. Thus, when it uses for the coil | winding of a coil, this invention alloy wire is excellent in the moldability of a coil by being excellent in toughness. The elongation can be changed, for example, by adjusting the degree of processing and heat treatment conditions. As the elongation increases, the tensile strength and conductivity tend to decrease, so the upper limit of elongation is preferably 30%. The upper limit of elongation varies depending on the wire diameter, and is considered to be about 20% for an alloy wire having a wire diameter of φ20 μm, for example. A more preferable range of elongation is 15% or more and 20% or less, and a further preferable range is 15% or more and 18% or less.

《導電率》
本発明Cu-Ag合金線は、80%IACS以上という高い導電率を有する。導電率は、例えば、組成(Ag量)を調整することで変化させられる。好ましくは、90%IACS以上である。
"conductivity"
The Cu—Ag alloy wire of the present invention has a high conductivity of 80% IACS or more. The conductivity can be changed, for example, by adjusting the composition (Ag amount). Preferably, it is 90% IACS or more.

《用途》
本発明Cu-Ag合金線は、細径であり、高強度で高靭性、高導電率であることから、このような特性が望まれる用途、例えば、電気機器のコイルの巻線、より具体的にはボイスコイルに好適に利用することができる。上記巻線に利用する場合、本発明合金線の外周にエナメル被覆といった絶縁被覆層を施すことが好ましい。
<Application>
The Cu-Ag alloy wire of the present invention has a small diameter, high strength, high toughness, and high electrical conductivity. Therefore, for applications where such characteristics are desired, such as windings of coils in electrical equipment, more specifically, Can be suitably used for voice coils. When used for the winding, it is preferable to provide an insulating coating layer such as enamel coating on the outer periphery of the alloy wire of the present invention.

[製造方法]
《素材の準備》
本発明製造方法では、まず、上記組成のCu-Ag合金からなる素材を準備する。この素材は、上記組成のCu-Ag合金からなる鋳造材(ロッド)に、冷間加工(以下、第一冷間加工と呼ぶ)を施して形成する。特に、第一冷間加工は、減面率が70%以上であることが好ましい。70%未満では、後述する最終冷間加工を所定の加工度で行うことが難しく、強度の向上を十分に行えない。より好ましい減面率は、線径が半分以下となる値、つまり75%以上である。第一冷間加工、及び後述する第二冷間加工、最終冷間加工は、代表的には、伸線ダイスを用いた伸線加工が挙げられる。また、上記鋳造材(ロッド)は、その断面積が750mm2以下であることが好ましい。750mm2超と大き過ぎると、第一冷間加工の減面率を極めて高くする必要があり、加工硬化により強度が高まる反面、靭性が低下し易い。より好ましい断面積は、50mm2以上500mm2以下であり、直径φ8〜25mmの鋳造材が好適に利用できる。
[Production method]
《Preparing the material》
In the production method of the present invention, first, a material made of a Cu—Ag alloy having the above composition is prepared. This material is formed by subjecting a cast material (rod) made of a Cu—Ag alloy having the above composition to cold working (hereinafter referred to as first cold working). In particular, the first cold working preferably has a reduction in area of 70% or more. If it is less than 70%, it is difficult to perform the final cold working described later at a predetermined working degree, and the strength cannot be sufficiently improved. A more preferable area reduction ratio is a value at which the wire diameter becomes half or less, that is, 75% or more. Typical examples of the first cold working and the second cold working and final cold working described below include wire drawing using a wire drawing die. The cast material (rod) preferably has a cross-sectional area of 750 mm 2 or less. If it is too large, more than 750 mm 2, it is necessary to increase the area reduction ratio of the first cold working and the strength increases due to work hardening, but the toughness tends to decrease. A more preferable cross-sectional area is 50 mm 2 or more and 500 mm 2 or less, and a cast material having a diameter of 8 to 25 mm can be suitably used.

《第一中間熱処理》
上記素材に中間熱処理(以下、第一中間熱処理と呼ぶ)を施す。この熱処理は、この熱処理前の冷間加工による歪みを除去すると共に靭性を高めて、この熱処理後に行う、特定の加工度の最終冷間加工を可能にする。本発明製造方法は、最終冷間加工により、線径:0.1mm以下の極細の細線材を形成するため、この中間熱処理を施さないと、最終冷間加工の途中で断線が多発し易い。中間熱処理は、この中間熱処理後の線材の伸びが10%以上となるように行う。具体的な処理方法は、後述する。この中間熱処理、及び後述する最終熱処理には、後述する連続処理及びバッチ処理のいずれも利用できる。
《First intermediate heat treatment》
The material is subjected to an intermediate heat treatment (hereinafter referred to as a first intermediate heat treatment). This heat treatment removes distortion caused by cold working before the heat treatment and enhances toughness, and enables final cold working of a specific degree of work performed after the heat treatment. In the manufacturing method of the present invention, an ultrathin wire material having a wire diameter of 0.1 mm or less is formed by the final cold working. Therefore, if this intermediate heat treatment is not performed, disconnections are likely to occur frequently during the final cold working. The intermediate heat treatment is performed so that the elongation of the wire after the intermediate heat treatment is 10% or more. A specific processing method will be described later. For the intermediate heat treatment and the final heat treatment described later, any of continuous processing and batch processing described later can be used.

《第二冷間加工及び第二中間熱処理》
上記(第一)中間熱処理が施された熱処理材に更に、上記第一冷間加工及び第一中間熱処理と同様の条件で、第二冷間加工及び第二中間熱処理を順に施してもよい。第二冷間加工及び第二中間熱処理を更に施すことで、強度、靭性、導電率といった特性に更に優れる合金線が得られる。
《Second cold working and second intermediate heat treatment》
The heat treatment material subjected to the (first) intermediate heat treatment may be further subjected to a second cold work and a second intermediate heat treatment in order under the same conditions as the first cold work and the first intermediate heat treatment. By further performing the second cold working and the second intermediate heat treatment, an alloy wire that is further excellent in properties such as strength, toughness, and electrical conductivity can be obtained.

《最終冷間加工》
上記中間熱処理が施された熱処理材に最終冷間加工を施して、線径:0.1mm以下の細線材を形成する。この冷間加工の条件は、加工度ln(A/A0)が1以上10以下とする。加工度ln(A/A0)が1未満でも10超でも、引張強さが小さく、十分な疲労強度が得られない。このような冷間加工により、合金組織を極めて微細な繊維状とし、線材の導電率を損なうことなく、強度を高められる。また、加工硬化により、線材の強度を高められる。
《Final cold working》
The heat treatment material that has been subjected to the intermediate heat treatment is subjected to final cold working to form a fine wire material having a wire diameter of 0.1 mm or less. The condition for this cold working is that the working degree ln (A / A 0 ) is 1 or more and 10 or less. If the degree of work ln (A / A 0 ) is less than 1 or more than 10, the tensile strength is small and sufficient fatigue strength cannot be obtained. By such cold working, the alloy structure is made into a very fine fiber shape, and the strength can be increased without impairing the electrical conductivity of the wire. Further, the strength of the wire can be increased by work hardening.

《最終熱処理(軟化処理)》
上記最終冷間加工が施された細線材に最終熱処理を施す。最終熱処理は、当該熱処理後の線材の伸びが10%以上となる条件で行う。この最終熱処理は、組織の微細な繊維状化及び加工硬化によって高めた線材の強度を極端に低下させることなく軟化して、線材の靭性を高める。
《Final heat treatment (softening treatment)》
A final heat treatment is applied to the fine wire that has undergone the final cold working. The final heat treatment is performed under the condition that the elongation of the wire after the heat treatment is 10% or more. This final heat treatment softens the wire, which has been increased by making the structure finer fibers and work hardened, without significantly reducing the strength, thereby increasing the toughness of the wire.

<バッチ処理>
バッチ処理とは、加熱用容器(雰囲気炉、例えば、箱型炉)内に予め加熱対象を入れた状態で加熱する処理方法であり、一度の処理量が限られるものの、加熱対象全体の加熱状態を管理し易いため、伸びの高い線材を得易い処理方法である。中間熱処理や最終熱処理をバッチ処理により行う場合、熱処理後の線材の伸びが10%以上となる条件は、加熱温度(容器内の雰囲気温度)を350℃以上600℃以下とすることが挙げられる。保持時間は、30分以上が好ましい。加熱温度が350℃未満又は保持時間が30分未満では、中間熱処理の場合、歪み除去が十分に行えず、断線が生じ易く、最終熱処理の場合、十分な靭性の向上効果が得られない。600℃超では、中間熱処理の場合、軟化し過ぎて最終冷間加工ができなくなり、最終熱処理の場合、強度だけでなく、導電率も低下する。より好ましい条件は、加熱温度:400℃以上500℃以下、保持時間:1時間以上30時間以下である。
<Batch processing>
Batch processing is a processing method of heating in a heating container (atmosphere furnace, for example, a box-type furnace) with a heating target in advance, although the amount of processing at one time is limited, the heating state of the entire heating target This is a processing method that makes it easy to obtain a highly elongated wire. In the case where the intermediate heat treatment or the final heat treatment is performed by batch processing, the condition that the elongation of the wire after the heat treatment is 10% or more is that the heating temperature (atmosphere temperature in the container) is 350 ° C. or more and 600 ° C. or less. The holding time is preferably 30 minutes or longer. When the heating temperature is less than 350 ° C. or the holding time is less than 30 minutes, distortion cannot be sufficiently removed in the case of intermediate heat treatment, disconnection is likely to occur, and in the case of final heat treatment, a sufficient toughness improving effect cannot be obtained. Above 600 ° C., the intermediate heat treatment is too soft and the final cold working cannot be performed. In the case of the final heat treatment, not only the strength but also the conductivity is lowered. More preferable conditions are heating temperature: 400 ° C. or higher and 500 ° C. or lower, holding time: 1 hour or longer and 30 hours or shorter.

<連続処理>
連続処理とは、加熱用容器内に連続的に加熱対象を供給して、加熱対象を連続的に加熱する処理方法であり、連続的に加熱できる点で作業性に優れる処理方法である。連続処理には、加熱対象に直接通電して加熱する直接通電方式(通電連続軟化処理、以下、通電連軟と呼ぶ)、電磁誘導などを利用して加熱対象に間接的に通電して加熱する間接通電方式(誘導加熱連続軟化処理)、加熱雰囲気とした加熱用容器(パイプ軟化炉)内に加熱対象を導入して熱伝導により加熱する炉式(以下、パイプ連軟と呼ぶ)が挙げられる。連続処理の場合、所望の特性(ここでは、伸び)に関与し得る制御パラメータを適宜変化させ、そのときの特性(伸び)を測定し、このような測定データを予め作成しておく。そして、このデータに基づいて、所望の特性値(伸び:10%以上)が得られるようにパラメータを調整するとよい。通電方式の場合、制御パラメータは、容器内への供給速度(線速)、加熱対象の大きさ(線径)、電流値などが挙げられる。炉式の場合、制御パラメータは、容器内への供給速度(線速)、加熱対象の大きさ(線径)、炉の大きさ(パイプ型炉の直径)、加熱雰囲気の温度(400〜600℃が好ましい)などが挙げられる。伸線機の伸線材の排出側に例えば、通電方式の軟化装置を配置させている場合、線速は数百m/min以上、特に400m/min以上とすることで、加熱温度が350〜600℃のバッチ処理に相当する熱処理とすることができ、この連続処理後において伸びが10%以上の線材が得られる。
<Continuous processing>
The continuous treatment is a treatment method in which a heating object is continuously supplied into a heating container and the heating object is continuously heated, and is a treatment method that is excellent in workability in that it can be continuously heated. For continuous treatment, direct energization is performed by directly energizing the object to be heated (continuous energization softening treatment, hereinafter referred to as continuous energization), electromagnetic induction is used to indirectly energize and heat the object to be heated. Indirect energization method (induction heating continuous softening treatment), furnace type (hereinafter referred to as pipe continuous softening) in which a heating object is introduced into a heating container (pipe softening furnace) that is heated and heated by heat conduction. . In the case of continuous processing, control parameters that can be related to desired characteristics (here, elongation) are changed as appropriate, the characteristics (elongation) at that time are measured, and such measurement data is created in advance. Then, based on this data, the parameters may be adjusted so that a desired characteristic value (elongation: 10% or more) is obtained. In the case of the energization method, the control parameters include the supply speed (linear speed) into the container, the size of the heating target (wire diameter), the current value, and the like. In the case of the furnace type, the control parameters are the feed rate (wire speed) into the vessel, the size of the object to be heated (wire diameter), the size of the furnace (diameter of the pipe type furnace), the temperature of the heating atmosphere (400 to 600) ° C is preferred). When, for example, an energization type softening device is arranged on the wire drawing material discharge side of the wire drawing machine, the heating temperature is 350 to 600 by setting the wire speed to several hundred m / min or more, particularly 400 m / min or more. A heat treatment corresponding to a batch treatment at 0 ° C. can be performed, and a wire having an elongation of 10% or more can be obtained after this continuous treatment.

《合金線の特性》
上記本発明製造方法により得られた合金線は、微細な繊維状組織を有する。このような組織を有するCu-Ag合金線は、引張強さが高い状態を維持したまま、高い伸びを有し、疲労強度を向上することができる。一般に、銅や銅合金に軟化処理を施すと、強度が急激に低下する。これに対し、本発明製造方法では、上述のように軟化処理直前の冷間加工の加工度を特定の範囲とすることで、強度の低下を低減し、かつ靭性に優れる合金線が得られる。この理由は定かではないが、上記特定の加工度の冷間加工によって繊維組織が維持されると共に、0.1mm以下の細径にすることによる加工硬化が要因の一つであると考えられる。
<Characteristics of alloy wire>
The alloy wire obtained by the production method of the present invention has a fine fibrous structure. A Cu—Ag alloy wire having such a structure has high elongation while maintaining a high tensile strength, and can improve fatigue strength. In general, when a softening treatment is applied to copper or a copper alloy, the strength rapidly decreases. On the other hand, in the manufacturing method of the present invention, as described above, by setting the degree of cold working immediately before the softening treatment within a specific range, an alloy wire with reduced strength reduction and excellent toughness can be obtained. The reason for this is not clear, but it is considered that the fiber structure is maintained by the cold working of the above specific working degree and that work hardening by making the diameter 0.1 mm or less is one of the factors.

本発明Cu-Ag合金線は、極細でありながら高強度かつ高靭性であり、耐疲労性に優れ、導電率も高い。本発明製造方法は、このような本発明合金線を生産性よく製造できる。   The Cu-Ag alloy wire of the present invention is extremely thin but has high strength and high toughness, excellent fatigue resistance, and high electrical conductivity. The production method of the present invention can produce such an alloy wire of the present invention with high productivity.

[試験例1]
表1に示す種々の加工条件でCu-Ag合金線を作製し、引張強さ、伸び、導電率を測定した。試料は、鋳造材の作製→第1冷間加工→第1中間熱処理→(第2冷間加工→第2中間熱処理)→最終冷間加工→最終熱処理という手順で作製した。
[Test Example 1]
Cu-Ag alloy wires were prepared under various processing conditions shown in Table 1, and the tensile strength, elongation, and conductivity were measured. The sample was prepared in the order of production of cast material → first cold work → first intermediate heat treatment → (second cold work → second intermediate heat treatment) → final cold work → final heat treatment.

鋳造材は、Agを2〜5質量%含有し、残部がCu及び不可避的不純物からなるCu-Ag合金で作製した(線径φ8mm又は22mm、断面積:50mm2又は380mm2≦750mm2)。この鋳造材に、表1に示す冷間加工(冷間伸線加工)及び熱処理を施し、最終線径φ0.05〜0.1mmの伸線材を作製した。また、比較として、純銅(公知の組成のタフピッチ銅)の鋳造材に冷間伸線加工及び最終熱処理を施した伸線材を作製した。なお、表1において、冷間加工の数値は、冷間加工後の線径(mm)を示す。また、表1において、最終冷間加工度は、最終線径を有する伸線材(細線材)の断面積をA、第1中間熱処理が施された熱処理材の断面積、第2中間熱処理が施された試料は、第2中間熱処理が施された熱処理材の断面積をA0とするとき、ln(A/A0)とする。更に、表1において特に断りが無い場合、熱処理は雰囲気炉を用いたバッチ処理を示す。加工条件の欄に記載される「(伸び)」は、試料No.2を除く各試料は、第1中間熱処理後最終熱処理前の伸びを示し、試料No.2は、第1中間熱処理後第2冷間加工前の伸び、及び第2中間熱処理後最終熱処理前の伸びを示す。 The cast material was made of a Cu—Ag alloy containing 2 to 5 mass% of Ag and the balance being Cu and inevitable impurities (wire diameter φ8 mm or 22 mm, cross-sectional area: 50 mm 2 or 380 mm 2 ≦ 750 mm 2 ). The cast material was subjected to cold working (cold drawing) and heat treatment shown in Table 1 to produce a drawn material having a final wire diameter of φ0.05 to 0.1 mm. For comparison, a drawn wire was prepared by subjecting a cast material of pure copper (tough pitch copper having a known composition) to cold drawing and final heat treatment. In Table 1, the numerical value of cold working indicates the wire diameter (mm) after cold working. Also, in Table 1, the final cold work degree indicates the cross-sectional area of the drawn wire (fine wire) having the final wire diameter A, the cross-sectional area of the heat-treated material subjected to the first intermediate heat treatment, and the second intermediate heat-treated. The obtained sample is assumed to be ln (A / A 0 ), where A 0 is the cross-sectional area of the heat-treated material subjected to the second intermediate heat treatment. Further, unless otherwise specified in Table 1, the heat treatment indicates batch processing using an atmospheric furnace. `` (Elongation) '' described in the column of processing conditions indicates the elongation after the first intermediate heat treatment before the final heat treatment for each sample except for the sample No. 2, and the sample No. 2 indicates the elongation after the first intermediate heat treatment. 2 shows the elongation before cold working and the elongation after the second intermediate heat treatment and before the final heat treatment.

Figure 0005195019
Figure 0005195019

最終熱処理を施して得られたCu-Ag合金線又は銅線について、引張強さ(MPa)、伸び(%)、導電率(%IACS)を測定した。その結果を表2に示す。   The tensile strength (MPa), elongation (%), and conductivity (% IACS) of the Cu-Ag alloy wire or copper wire obtained by the final heat treatment were measured. The results are shown in Table 2.

Figure 0005195019
Figure 0005195019

表2に示すように、中間熱処理を行うと共に、特定の加工度(ln(A/A0)=1〜10)で冷間加工を行った後、最終熱処理を行うことで、線径φが0.1mm以下の極細でありながら、高強度(引張強さ:290MPa以上)、高靭性(伸び:10%以上)、高導電率(80%IACS以上)の合金線が得られることが分かる。また、得られた合金線は、高強度かつ高靭性であることから、耐疲労性にも優れると考えられる。 As shown in Table 2, by performing intermediate heat treatment and performing cold working at a specific degree of processing (ln (A / A 0 ) = 1 to 10) and then performing the final heat treatment, the wire diameter φ is reduced. It can be seen that an alloy wire having a high strength (tensile strength: 290 MPa or more), high toughness (elongation: 10% or more), and high conductivity (80% IACS or more) can be obtained even though it is extremely fine of 0.1 mm or less. Moreover, since the obtained alloy wire is high strength and high toughness, it is thought that it is excellent also in fatigue resistance.

更に、上記試験結果から、第2冷間加工及び第2中間熱処理を施すことで、特性をより向上できることが分かる。但し、熱処理回数が増えることから、経済性を考慮した場合、第1冷間加工及び第1中間熱処理のみでもよいと考えられる。所望の特性に応じて、第2冷間加工及び第2中間熱処理を施すとよい。また、線径が0.1mm以下の範囲において線径が大きいと伸びが高くなる傾向にある。   Furthermore, it can be seen from the above test results that the characteristics can be further improved by performing the second cold working and the second intermediate heat treatment. However, since the number of heat treatments is increased, it is considered that only the first cold working and the first intermediate heat treatment may be required in consideration of economy. The second cold working and the second intermediate heat treatment may be performed according to desired characteristics. Further, when the wire diameter is large in the range of 0.1 mm or less, the elongation tends to increase.

[試験例2]
試験例1で作製した試料No.5,7,13の細線材について、疲労寿命を調べた。ここでは、図1に示すような屈曲試験装置を用いた屈曲試験により、疲労寿命を評価した。
[Test Example 2]
The fatigue life of the thin wires of Sample Nos. 5, 7, and 13 produced in Test Example 1 was examined. Here, the fatigue life was evaluated by a bending test using a bending test apparatus as shown in FIG.

屈曲試験は、図1に示すように、対向配置させた一対のマンドレルm間に試料S(直径:φ0.1mm,長さ:600mm)を配置し、試料Sの一端に錘w(負荷加重:25g)を取り付け、他端を試験機のレバーlで把持してマンドレルmの外周に沿って試料Sに曲げ半径R(=100mm)の曲げを加えることで行う。疲労寿命の評価は、試料が破断するまでの曲げ回数で行う。曲げ回数は、90°往復を1回と数える。例えば、図1に示す矢印のように曲げた場合、曲げ回数は2回となる。屈曲試験の結果を表3に示す。   In the bending test, as shown in FIG. 1, a sample S (diameter: φ0.1 mm, length: 600 mm) is placed between a pair of mandrels m arranged opposite to each other, and a weight w (load load: 25g) is attached, and the other end is held by the lever 1 of the testing machine, and the sample S is bent along the outer periphery of the mandrel m with a bending radius R (= 100 mm). The fatigue life is evaluated by the number of bendings until the specimen breaks. The number of bends is counted as one 90 ° reciprocation. For example, when it is bent as shown by the arrow in FIG. 1, the number of bendings is two. The results of the bending test are shown in Table 3.

Figure 0005195019
Figure 0005195019

表3に示すように試料No.5,7は、引張強さ、伸び、導電率のいずれも高く、かつ、一般に高導電率で伸びが高いタフピッチ銅と比較して、疲労寿命が長いことが分かる。   As shown in Table 3, Samples Nos. 5 and 7 have a high fatigue strength compared to tough pitch copper, which has high tensile strength, elongation, and electrical conductivity, and generally has high electrical conductivity and high elongation. I understand.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、Agの含有量を変化させてもよい。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the content of Ag may be changed.

本発明Cu-Ag合金線は、細径で、高強度、高靭性、高導電率が望まれる用途、例えば、携帯用電気機器のスピーカー用コイルの巻線に好適に利用することができる。本発明製造方法は、上記本発明合金線の製造に好適に利用することができる。   The Cu-Ag alloy wire of the present invention can be suitably used for applications where a small diameter, high strength, high toughness, and high conductivity are desired, for example, a winding for a speaker coil of a portable electric device. The production method of the present invention can be suitably used for the production of the alloy wire of the present invention.

曲げ試験の状態を示す説明図である。It is explanatory drawing which shows the state of a bending test.

符号の説明Explanation of symbols

l レバー S 試料 w 錘 m マンドレル R 曲げ半径   l Lever S Specimen w Weight m Mandrel R Bending radius

Claims (3)

Agを2.0質量%以上15.0質量%以下含有し、残部がCu及び不可避的不純物からなり、
線径が0.1mm以下であり、
引張強さが290MPa以上、伸びが10%以上、導電率が80%IACS以上であるCu-Ag合金線。
Containing 2.0% by mass or more and 15.0% by mass or less of Ag, the balance being made of Cu and inevitable impurities,
The wire diameter is 0.1mm or less,
A tensile strength of more than 290 MPa, elongation of 10% or more, C u-Ag alloy wire conductivity of Ru der 80% IACS or more guide.
請求項1に記載のCu-Ag合金線と、このCu-Ag合金線の外周に施された絶縁被覆層とを具える巻線。  2. A winding comprising the Cu—Ag alloy wire according to claim 1 and an insulating coating layer provided on an outer periphery of the Cu—Ag alloy wire. 請求項2に記載の巻線からなるコイル。  A coil comprising the winding according to claim 2.
JP2008133601A 2008-05-21 2008-05-21 Cu-Ag alloy wire, winding, and coil Active JP5195019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133601A JP5195019B2 (en) 2008-05-21 2008-05-21 Cu-Ag alloy wire, winding, and coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133601A JP5195019B2 (en) 2008-05-21 2008-05-21 Cu-Ag alloy wire, winding, and coil

Publications (2)

Publication Number Publication Date
JP2009280860A JP2009280860A (en) 2009-12-03
JP5195019B2 true JP5195019B2 (en) 2013-05-08

Family

ID=41451618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133601A Active JP5195019B2 (en) 2008-05-21 2008-05-21 Cu-Ag alloy wire, winding, and coil

Country Status (1)

Country Link
JP (1) JP5195019B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368565A (en) * 2016-05-16 2018-08-03 古河电气工业株式会社 Copper series alloy wire rod
CN111032892A (en) * 2018-03-20 2020-04-17 古河电气工业株式会社 Copper alloy wire rod and method for producing copper alloy wire rod

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344150B2 (en) * 2009-01-29 2013-11-20 住友電気工業株式会社 Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
JP5344151B2 (en) * 2009-01-29 2013-11-20 住友電気工業株式会社 Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
KR101719888B1 (en) 2012-07-02 2017-03-24 후루카와 덴키 고교 가부시키가이샤 Copper-alloy wire rod and manufacturing method therefor
KR101719889B1 (en) 2012-07-02 2017-03-24 후루카와 덴키 고교 가부시키가이샤 Copper-alloy wire rod and manufacturing method therefor
WO2015034071A1 (en) 2013-09-06 2015-03-12 古河電気工業株式会社 Copper alloy wire material and method for producing same
WO2015152166A1 (en) 2014-03-31 2015-10-08 古河電気工業株式会社 Copper alloy wire material and manufacturing method thereof
CN108463568B (en) * 2016-12-02 2020-11-10 古河电气工业株式会社 Copper alloy wire rod and method for manufacturing copper alloy wire rod
CN115427595A (en) * 2021-03-23 2022-12-02 古河电气工业株式会社 Copper alloy wire
JPWO2022202870A1 (en) * 2021-03-23 2022-09-29
CN114645153B (en) * 2022-03-17 2023-01-24 东北大学 High-strength high-conductivity copper-silver alloy wire and preparation method thereof
KR20240042565A (en) * 2022-06-08 2024-04-02 에스더블유씨씨 가부시키가이샤 Electrical-property-inspection conductor wire and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293365A (en) * 1998-04-09 1999-10-26 Furukawa Electric Co Ltd:The Super-fine conductor for winding, and its manufacture
JPH11293431A (en) * 1998-04-13 1999-10-26 Furukawa Electric Co Ltd:The Production of copper alloy extra fine wire
JP3856073B2 (en) * 1999-07-28 2006-12-13 住友電気工業株式会社 Method for producing Cu-Ag alloy
JP2001234309A (en) * 2000-02-16 2001-08-31 Hitachi Cable Ltd Method for producing extra-fine copper alloy stranded wire
JP4143010B2 (en) * 2003-09-16 2008-09-03 日立電線株式会社 Method for producing copper alloy conductor
WO2007046378A1 (en) * 2005-10-17 2007-04-26 National Institute For Materials Science Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368565A (en) * 2016-05-16 2018-08-03 古河电气工业株式会社 Copper series alloy wire rod
US10626483B2 (en) 2016-05-16 2020-04-21 Furukawa Electric Co., Ltd. Copper alloy wire rod
CN108368565B (en) * 2016-05-16 2020-07-31 古河电气工业株式会社 Copper alloy wire
CN111032892A (en) * 2018-03-20 2020-04-17 古河电气工业株式会社 Copper alloy wire rod and method for producing copper alloy wire rod
CN111032892B (en) * 2018-03-20 2021-12-14 古河电气工业株式会社 Copper alloy wire rod and method for producing copper alloy wire rod

Also Published As

Publication number Publication date
JP2009280860A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5195019B2 (en) Cu-Ag alloy wire, winding, and coil
JP6943940B2 (en) Copper alloy wire and its manufacturing method
CN106164306B (en) Copper alloy wire and method for producing same
KR101813772B1 (en) Aluminum alloy conductor, alum1inum alloy stranded wire, sheathed wire, wire harness, and method for manufacturing aluminum alloy conductor
KR101719889B1 (en) Copper-alloy wire rod and manufacturing method therefor
JPWO2016088889A1 (en) Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire, wire harness, and method for producing aluminum alloy wire
CN107429334A (en) Aluminium alloy wires, aluminium alloy stranded conductor and its manufacture method, electric wire for automobiles and wire harness
JP2011146352A (en) Cu-Ag ALLOY WIRE
JP6686293B2 (en) Copper alloy wire, copper alloy stranded wire, coated wire and wire harness
JP2007023305A (en) Conductor element wire for electric wire for automobile, and its manufacturing method
JP6199569B2 (en) Manufacturing method of high strength steel wire
JP5652741B2 (en) Copper wire and method for producing the same
JP2007029965A (en) High carbon steel wire, method for producing the same, and high strength pc steel twisted wire
JP5009849B2 (en) Copper alloy wire for high strength spring and copper alloy spring using the copper alloy wire
JP2006291271A (en) High-strength copper alloy material having excellent settling resistance, and method for producing the same
JP6389414B2 (en) Method for producing copper alloy sheet
JP5696972B2 (en) Aluminum alloy wire, coil, and manufacturing method of aluminum alloy wire
JP6038447B2 (en) Aluminum alloy wire, method for producing aluminum alloy wire, and magnet coil
JP2018032596A (en) Insulated wire and method for manufacturing the same
JP2019119929A (en) Copper alloy wire
JP2018141209A (en) Method for manufacturing aluminum alloy wire
JP2013052434A (en) Method for manufacturing copper stock for wire rod
JP2010205623A (en) Conductor for winding
JP4525653B2 (en) Method for producing copper alloy conductor for train line and copper alloy conductor for train line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5195019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250