JP2011146352A - Cu-Ag ALLOY WIRE - Google Patents

Cu-Ag ALLOY WIRE Download PDF

Info

Publication number
JP2011146352A
JP2011146352A JP2010008459A JP2010008459A JP2011146352A JP 2011146352 A JP2011146352 A JP 2011146352A JP 2010008459 A JP2010008459 A JP 2010008459A JP 2010008459 A JP2010008459 A JP 2010008459A JP 2011146352 A JP2011146352 A JP 2011146352A
Authority
JP
Japan
Prior art keywords
wire
heat treatment
alloy
intermediate heat
alloy wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010008459A
Other languages
Japanese (ja)
Inventor
Tetsuya Kuwabara
鉄也 桑原
Taichiro Nishikawa
太一郎 西川
Misato Kusakari
美里 草刈
Akira Tanji
亮 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010008459A priority Critical patent/JP2011146352A/en
Publication of JP2011146352A publication Critical patent/JP2011146352A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrafine Cu-Ag alloy wire suitable for a shield conductor of a coaxial cable and method for manufacturing the same, and also to provide a coaxial cable. <P>SOLUTION: The Cu-Ag alloy wire is used for a shield conductor of a coaxial cable, and contains 1-20 mass% of Ag, with the rest being Cu and an impurity, and has a conductivity of 82%IACS or above, a tensile strength of 800 MPa or above, and a wire diameter of 0.05 mm or below. By using the Cu-Ag alloy wire for the shield conductor, a coaxial cable having a superior shield property can be obtained. In manufacturing the Cu-Ag alloy wire, an intermediate heat treatment is applied at a heating temperature of 350-550°C to a rolling material in the middle of a rolling process. For the intermediate heat treatment, a relationship between the wire diameter of the rolling material to be applied with the intermediate heat treatment and the conductivity and tensile strength of a final wire obtained by applying a rolling process to the heat-treated material applied with the intermediate heat treatment is preliminarily found. The intermediate heat treatment is conducted when the wire has a predetermined diameter inversely calculated from the final wire diameter based on the relationship so that the Cu-Ag alloy wire having the final wire diameter may have a conductivity of 82%IACS or above and a tensile strength of 800 MPa or above. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、極細のCu-Ag合金線、この極細線からなるシールド導体を具える同軸ケーブル、及び上記Cu-Ag合金線の製造方法に関するものである。特に、同軸ケーブルのシールド導体に適した極細のCu-Ag合金線に関するものである。   The present invention relates to an ultrafine Cu-Ag alloy wire, a coaxial cable including a shield conductor made of the ultrafine wire, and a method for producing the Cu-Ag alloy wire. In particular, the present invention relates to an ultrafine Cu—Ag alloy wire suitable for a shield conductor of a coaxial cable.

電子機器や医療機器などの各種の機器に利用される電線として、中心導体(内部導体)の外周に絶縁層を介して設けられたシールド導体(外部導体)を具える同軸ケーブルがある。上記シールド導体は、例えば、上記絶縁層の外周に複数の素線を巻回することにより構成される。上記素線には、従来、銅線が利用されている。   As an electric wire used in various devices such as an electronic device and a medical device, there is a coaxial cable including a shield conductor (outer conductor) provided on an outer periphery of a central conductor (inner conductor) via an insulating layer. The shield conductor is configured by, for example, winding a plurality of strands around the outer periphery of the insulating layer. Conventionally, a copper wire is used as the element wire.

近年、上記機器の小型化、軽量化の要望に伴い、上記同軸ケーブルにも更なる細経化が望まれている。しかし、銅線は、強度が低く、0.1mm以下といった極細線とすると、繰り返しの屈曲や捻回による応力が加えられた場合に断線し易い。特に、上述のように絶縁層の外周に素線を巻回してシールド導体を形成する場合、使用時の屈曲だけでなく、シールド導体の形成時にも捻回(例えば、螺旋状に横巻きすることによる捻りなど)や屈曲による応力が上記素線に加えられるため、シールド導体に利用される素線には、破断強度や疲労強度が高いことが望まれる。そこで、特許文献1では、銅線よりも高強度であるCu-Ag合金線をシールド導体に利用することを提案している。   In recent years, further downsizing of the coaxial cable has been demanded with the demand for downsizing and weight reduction of the equipment. However, if the copper wire has a low strength and is a very fine wire of 0.1 mm or less, it is easy to break when stress due to repeated bending or twisting is applied. In particular, when a shield conductor is formed by winding a wire around the outer periphery of an insulating layer as described above, not only bending during use but also twisting (for example, lateral winding in a spiral shape) when forming a shield conductor For example, it is desirable that the wire used for the shield conductor has high breaking strength and fatigue strength. Therefore, Patent Document 1 proposes to use a Cu—Ag alloy wire having higher strength than a copper wire as a shield conductor.

特開2003-132745号公報JP2003-132745A

従来、0.05mm以下といった極細の線材であって、同軸ケーブルのシールド導体に適した特性を有する線材について十分に検討されていない。上述のようにシールド導体には、破断強度や疲労特性(耐屈曲性・耐捻回性)に優れることが望まれる。   Conventionally, wire rods that are ultrafine wires of 0.05 mm or less and that have characteristics suitable for shield conductors of coaxial cables have not been sufficiently studied. As described above, the shield conductor is desired to be excellent in breaking strength and fatigue characteristics (flexibility / twist resistance).

更に、同軸ケーブルのシールド導体には、外部からのノイズの影響を受け難いように、シールド特性に優れることが望まれる。シールド特性は導電率に影響を受け、導電率が低下すると、シールド特性の低下を招く。そのため、シールド導体は、導電率が高いことが望まれる。しかし、上述のような極細の線材であって、高強度と高導電率とを兼備するシールド導体用線材は得られていない。   Furthermore, it is desired that the shield conductor of the coaxial cable has excellent shielding characteristics so that it is not easily affected by external noise. The shield characteristics are affected by the conductivity, and when the conductivity is lowered, the shield characteristics are lowered. Therefore, it is desirable that the shield conductor has high conductivity. However, a wire for a shield conductor that is an extremely fine wire as described above and has both high strength and high conductivity has not been obtained.

ここで、従来、同軸ケーブルの特性を改善する場合、主として中心導体が検討されており、シールド導体については十分に検討されていなかった。一般に、同軸ケーブルの中心導体に求められる導電率は、65%IACS以上、概ね70%IACS〜80%IACS程度で十分であり、このような素線をシールド導体にも利用していた。しかし、シールド導体の導電率を更に高めることで、シールド特性に優れた同軸ケーブルとすることができる。   Here, conventionally, when improving the characteristics of the coaxial cable, the center conductor has been mainly studied, and the shield conductor has not been sufficiently studied. In general, the electrical conductivity required for the central conductor of the coaxial cable is sufficient to be 65% IACS or more, and approximately 70% IACS to 80% IACS, and such a strand is also used as a shield conductor. However, by further increasing the conductivity of the shield conductor, a coaxial cable having excellent shielding characteristics can be obtained.

一方、特許文献1には、耐屈曲性に優れるCu-Ag合金線が開示されている。一般に、銅合金は、添加元素の増加により強度を高められる反面、導電率が低下する。従って、特許文献1に記載されるCu-Ag合金線では、導電率の更なる向上が難しいと考えられる。   On the other hand, Patent Document 1 discloses a Cu—Ag alloy wire having excellent bending resistance. In general, a copper alloy can be increased in strength by an increase in additive elements, but its conductivity is lowered. Therefore, it is considered difficult to further improve the electrical conductivity of the Cu—Ag alloy wire described in Patent Document 1.

そこで、本発明の目的の一つは、導電率及び強度の双方に優れ、シールド導体に適した極細のCu-Ag合金線を提供することにある。また、本発明の他の目的は、導電率及び強度の双方が高く、極細のCu-Ag合金線を製造することができるCu-Ag合金線の製造方法を提供することにある。更に、本発明の他の目的は、上記Cu-Ag合金線により構成されたシールド導体を具える同軸ケーブルを提供することにある。   Accordingly, one of the objects of the present invention is to provide an ultrafine Cu—Ag alloy wire that is excellent in both conductivity and strength and suitable for a shield conductor. Another object of the present invention is to provide a method for producing a Cu-Ag alloy wire that can produce an ultrafine Cu-Ag alloy wire having both high conductivity and strength. Furthermore, the other object of this invention is to provide the coaxial cable which provides the shield conductor comprised with the said Cu-Ag alloy wire.

(Cu-Ag合金線)
[全体構成]
本発明のCu-Ag合金線は、Agを1質量%以上20質量%以下含有し、残部がCu及び不純物から構成されている。このCu-Ag合金線は、導電率が82%IACS以上であり、引張強さが800MPa以上であり、線径が0.05mm以下(但し、0mmを除く)である。そして、このCu-Ag合金線は、同軸ケーブルのシールド導体に用いられる。
(Cu-Ag alloy wire)
[overall structure]
The Cu—Ag alloy wire of the present invention contains 1% by mass or more and 20% by mass or less of Ag, and the balance is composed of Cu and impurities. This Cu-Ag alloy wire has a conductivity of 82% IACS or more, a tensile strength of 800 MPa or more, and a wire diameter of 0.05 mm or less (excluding 0 mm). And this Cu-Ag alloy wire is used for the shield conductor of a coaxial cable.

本発明Cu-Ag合金線は、Agを特定の範囲で含有することで、線径が0.05mm以下といった極細であっても、強度が高く、破断強度や疲労特性に優れる。かつ、本発明Cu-Ag合金線は、導電率が高い。このような本発明Cu-Ag合金線を同軸ケーブルのシールド導体の構成素線に利用する場合、(1)シールド導体の形成にあたり絶縁層の外周に巻回した際などで断線し難い、(2)同軸ケーブルの使用時に繰り返し曲げや捻りが加わっても断線し難い、(3)優れたシールド特性を有することができる、という効果を奏し得る。   The Cu-Ag alloy wire of the present invention contains Ag in a specific range, so that even if the wire diameter is as fine as 0.05 mm or less, the strength is high and the fracture strength and fatigue characteristics are excellent. And the Cu-Ag alloy wire of the present invention has high electrical conductivity. When such a Cu-Ag alloy wire of the present invention is used as a constituent wire of a shield conductor of a coaxial cable, (1) it is difficult to break when wound around the outer periphery of an insulating layer in forming a shield conductor, (2 ) Even when repeated bending or twisting is applied during use of the coaxial cable, it is difficult to break, and (3) it has excellent shielding properties.

[組成]
本発明Cu-Ag合金線を構成するCu-Ag合金は、Agの含有量が1質量%〜20質量%の二元合金である。Agの含有量が1質量%未満の場合、Agが固溶することによる強度の向上効果が得られ難く、後述する中間熱処理の条件や伸線加工時の加工度(減面率)などの製造条件を調整しても、引張強さが800MPa以上を満たすことが難しい。20質量%超の場合、Agが過剰に固溶することで導電率が低下し、導電率が82%IACS以上を満たすことが難しい。Agの含有量が1質量%以上15質量%以下であると、高強度と高導電率とをバランスよく具えることができてより好ましい。所定の組成となるように、原料を用意する。
[composition]
The Cu-Ag alloy constituting the Cu-Ag alloy wire of the present invention is a binary alloy having an Ag content of 1% by mass to 20% by mass. When the Ag content is less than 1% by mass, it is difficult to obtain the effect of improving the strength due to the solid solution of Ag. Even if the conditions are adjusted, it is difficult to satisfy a tensile strength of 800 MPa or more. If it exceeds 20% by mass, the electric conductivity decreases due to excessive dissolution of Ag, and it is difficult to satisfy the electric conductivity of 82% IACS or more. It is more preferable that the Ag content is 1% by mass or more and 15% by mass or less because high strength and high electrical conductivity can be provided in a balanced manner. A raw material is prepared so that it may become a predetermined composition.

[形状及び大きさ]
本発明Cu-Ag合金線は、代表的には断面円形状の丸線が挙げられ、線径が0.05mm(50μm)以下である。伸線加工時の加工度を適宜変更することで、線径が0.01mm(10μm)〜0.03mm(30μm)のCu-Ag合金線とすることもできる。
[Shape and size]
The Cu-Ag alloy wire of the present invention typically includes a round wire having a circular cross section, and the wire diameter is 0.05 mm (50 μm) or less. A Cu—Ag alloy wire having a wire diameter of 0.01 mm (10 μm) to 0.03 mm (30 μm) can also be obtained by appropriately changing the degree of processing during wire drawing.

[引張強さ]
本発明Cu-Ag合金線は、強度が高く、引張強さが800MPa以上を満たす。引張強さは、組成(Agの含有量)や伸線加工時の加工度、後述する中間熱処理条件などを適宜変更することで、更に大きくすることができる。特に、引張強さは、800MPa以上1600MPa以下が好ましい。引張強さが上記範囲を満たすことで、例えば、本発明Cu-Ag合金線を巻回してシールド導体を形成したり、このシールド導体を具える同軸ケーブルを繰り返し曲げたり捻ったりなどしても本発明Cu-Ag合金線は破断し難い。
[Tensile strength]
The Cu-Ag alloy wire of the present invention has high strength and a tensile strength of 800 MPa or more. The tensile strength can be further increased by appropriately changing the composition (Ag content), the processing degree during wire drawing, the intermediate heat treatment conditions described later, and the like. In particular, the tensile strength is preferably 800 MPa or more and 1600 MPa or less. When the tensile strength satisfies the above range, for example, even if the Cu-Ag alloy wire of the present invention is wound to form a shield conductor, or a coaxial cable including the shield conductor is repeatedly bent or twisted, The inventive Cu-Ag alloy wire is difficult to break.

[導電率]
本発明Cu-Ag合金線は、導電率が高く、82%IACS以上を満たす。製造条件や組成にもよるが、導電率が85%IACS以上を満たすCu-Ag合金線とすることができる。導電率が高いほどシールド特性に優れるシールド導体が得られるため、導電率の上限は特に設けない。
[conductivity]
The Cu-Ag alloy wire of the present invention has high conductivity and satisfies 82% IACS or more. Although it depends on manufacturing conditions and composition, a Cu—Ag alloy wire satisfying an electrical conductivity of 85% IACS or more can be obtained. Since the shield conductor which is excellent in a shield characteristic is obtained, so that electrical conductivity is high, the upper limit of electrical conductivity is not provided in particular.

[メッキ層]
本発明Cu-Ag合金線は、その表面にメッキ層を具えた形態とすることが好ましい。ここで、同軸ケーブルの端部にコネクタや端子を取り付ける際、ハンダを用いる。Cu-Ag合金は、ハンダとの濡れ性がよくない。これに対し、メッキ層を具える本発明Cu-Ag合金線を同軸ケーブルのシールド導体に利用する場合、上記ハンダとの濡れ性を高めることができる。また、上記コネクタなどの取り付けにあたり、同軸ケーブルの中心導体の端部を露出させるために、レーザーによりシールド導体を除去することがある。中心導体を構成する素線とシールド導体を構成する素線とが同様の組成である場合、レーザーによってシールド導体だけでなく、中心導体をも切断する恐れがある。これに対して、シールド導体を構成する素線がメッキ層を具えることで、中心導体のレーザーの吸収特性と、シールド導体のレーザーの吸収特性とを異ならせて、中心導体を適切に露出させることができる。また、メッキ層を有することで、Cu-Ag合金線の耐食性を向上できる。
[Plating layer]
The Cu—Ag alloy wire of the present invention preferably has a form in which a plating layer is provided on the surface thereof. Here, when attaching a connector or a terminal to the end of the coaxial cable, solder is used. Cu-Ag alloy has poor wettability with solder. On the other hand, when the Cu-Ag alloy wire of the present invention having a plating layer is used as a shield conductor of a coaxial cable, wettability with the solder can be improved. Further, when attaching the connector or the like, the shield conductor may be removed by a laser in order to expose the end portion of the central conductor of the coaxial cable. When the element wire constituting the center conductor and the element wire constituting the shield conductor have the same composition, there is a possibility that not only the shield conductor but also the center conductor is cut by the laser. On the other hand, the wire constituting the shield conductor has a plating layer so that the laser absorption characteristics of the center conductor and the laser absorption characteristics of the shield conductor are different, and the center conductor is appropriately exposed. be able to. Moreover, the corrosion resistance of a Cu-Ag alloy wire can be improved by having a plating layer.

上記メッキ層は、Ag,Ag合金,Sn及びSn合金から選択される1種以上からなるものが挙げられる。上記メッキ層は、単層でも複数層でもよい。メッキ層の厚さは適宜選択することができ、0.1μm〜0.4μm程度とすると、ハンダ付け性に優れて好ましい。   Examples of the plating layer include one or more selected from Ag, Ag alloy, Sn, and Sn alloy. The plating layer may be a single layer or a plurality of layers. The thickness of the plating layer can be selected as appropriate, and is preferably about 0.1 μm to 0.4 μm because of excellent solderability.

[用途(同軸ケーブル)]
本発明Cu-Ag合金線は、同軸ケーブルのシールド導体の構成素線に利用する。そこで、本発明同軸ケーブルとして、中心から順に、中心導体と、絶縁層と、シールド導体とを具え、上記シールド導体が上記絶縁層の外周に複数の極細線を巻回することで構成されており、上記極細線が上記本発明Cu-Ag合金線により構成されているものを提案する。本発明Cu-Ag合金線は、上述のように導電率が高い。従って、本発明同軸ケーブルは、本発明Cu-Ag合金線から構成されるシールド導体を具えることで、優れたシールド特性を有することができる。また、本発明Cu-Ag合金線は、上述のように高強度であることで、耐屈曲性や耐捻回性にも優れる。従って、上記絶縁層の外周に本発明Cu-Ag合金線を巻回してシールド導体を形成する場合に曲げや捻れなどの応力が加わっても断線し難く、シールド導体を生産性よく形成することができる上に、同軸ケーブルの使用時に曲げや捻れに伴う応力が加わっても、断線し難い。従って、本発明同軸ケーブルは、長期に亘り使用することができると期待される。
[Application (coaxial cable)]
The Cu-Ag alloy wire of the present invention is used as a constituent wire of a shield conductor of a coaxial cable. Therefore, the coaxial cable of the present invention comprises, in order from the center, a central conductor, an insulating layer, and a shield conductor, and the shield conductor is configured by winding a plurality of fine wires around the outer periphery of the insulating layer. Then, it is proposed that the fine wire is composed of the Cu-Ag alloy wire of the present invention. The Cu-Ag alloy wire of the present invention has high conductivity as described above. Therefore, the coaxial cable of the present invention can have excellent shielding characteristics by including a shield conductor composed of the Cu-Ag alloy wire of the present invention. Moreover, the Cu-Ag alloy wire of the present invention is excellent in bending resistance and twisting resistance due to its high strength as described above. Therefore, when forming the shield conductor by winding the Cu-Ag alloy wire of the present invention around the outer periphery of the insulating layer, it is difficult to break even if stress such as bending or twisting is applied, and the shield conductor can be formed with high productivity. In addition, it is difficult to break even when stress is applied due to bending or twisting when using a coaxial cable. Therefore, it is expected that the coaxial cable of the present invention can be used for a long time.

(製造方法)
上記本発明Cu-Ag合金線は、例えば、以下の本発明Cu-Ag合金線の製造方法により製造することができる。本発明のCu-Ag合金線の製造方法は、同軸ケーブルのシールド導体に利用されるCu-Ag合金線を製造する方法に係るものであり、以下の鋳造工程、伸線工程、及び熱処理工程を具える。
鋳造工程:原料のAg及びCuを溶解した混合溶湯を用いて、鋳造材を作製する工程。
伸線工程:上記鋳造材に伸線加工を施して、Agを1質量%以上20質量%以下含有し、残部がCu及び不純物からなり、最終線径が0.05mm以下であるCu-Ag合金線を作製する工程。
熱処理工程:上記最終線径のCu-Ag合金線が得られるまでの途中段階にある伸線材に中間熱処理を施す工程。
特に、上記中間熱処理は、加熱温度を350℃以上550℃以下とする。また、上記中間熱処理を施す伸線材の線径と、上記中間熱処理を施した熱処理材に上記最終線径までの伸線加工を施して得られた最終線材の導電率及び引張強さとの関係を予め求めておき、上記最終線径のCu-Ag合金線の導電率が82%IACS以上、引張強さが800MPa以上となるように、上記関係に基づいて、上記最終線径から遡って設定した所定の線径のときに上記中間熱処理を行う。
(Production method)
The said Cu-Ag alloy wire of this invention can be manufactured with the manufacturing method of the following this invention Cu-Ag alloy wire, for example. The method for producing a Cu-Ag alloy wire of the present invention relates to a method for producing a Cu-Ag alloy wire used for a shield conductor of a coaxial cable, and includes the following casting step, wire drawing step, and heat treatment step. Prepare.
Casting process: A process for producing a cast material using a molten metal in which Ag and Cu as raw materials are dissolved.
Wire drawing process: A Cu-Ag alloy wire in which the above cast material is drawn, Ag is contained in an amount of 1% by mass to 20% by mass, the balance is Cu and impurities, and the final wire diameter is 0.05mm or less. The process of producing.
Heat treatment step: A step of performing an intermediate heat treatment on the wire drawing material in the middle stage until the Cu—Ag alloy wire having the final wire diameter is obtained.
In particular, the intermediate heat treatment is performed at a heating temperature of 350 ° C. or higher and 550 ° C. or lower. Further, the relationship between the wire diameter of the drawn wire subjected to the intermediate heat treatment and the electrical conductivity and tensile strength of the final wire obtained by subjecting the heat treated material subjected to the intermediate heat treatment to the wire drawing up to the final wire diameter. Obtained in advance and set retrospectively from the final wire diameter based on the above relationship so that the conductivity of the Cu-Ag alloy wire with the final wire diameter is 82% IACS or higher and the tensile strength is 800 MPa or higher. The intermediate heat treatment is performed at a predetermined wire diameter.

本発明者らは、上述した高導電率及び高強度なCu-Ag合金線を製造するにあたり、伸線加工と中間熱処理との関係を検討した。ここで、最終線径が0.05mm以下といった極細の線材を製造する場合、通常、多段階(多パス)に亘る伸線加工を行う。また、伸線加工途中(パス間)に、伸線加工により線材に導入された歪みを除去して伸線性を高める目的で中間熱処理を施すことがある。そして、この中間熱処理は、従来、任意の段階で行っていた。しかし、任意の段階ではなく、特定の線径となったときに中間熱処理を施すと共に、中間熱処理の条件を上記特定の条件とすることで、導電率が高く、かつ高強度な極細のCu-Ag合金線が得られる、との知見を得た。このような高導電率、高強度なCu-Ag合金線が得られた理由は、以下のように考えられる。   The present inventors examined the relationship between wire drawing and intermediate heat treatment in producing the above-described high conductivity and high strength Cu—Ag alloy wire. Here, when manufacturing a very fine wire having a final wire diameter of 0.05 mm or less, drawing is usually performed in multiple stages (multi-pass). Further, during the drawing process (between passes), an intermediate heat treatment may be performed for the purpose of removing the strain introduced into the wire by the drawing process and improving the drawing property. This intermediate heat treatment has been conventionally performed at an arbitrary stage. However, it is not an arbitrary stage, and an intermediate heat treatment is performed when a specific wire diameter is reached, and the condition of the intermediate heat treatment is set to the above-mentioned specific conditions, so that an ultrafine Cu- The knowledge that an Ag alloy wire is obtained was obtained. The reason why such a high conductivity and high strength Cu—Ag alloy wire is obtained is considered as follows.

Cu-Ag合金に熱処理を施し、母相のCuからAgを析出させると、導電率を向上することができる。しかし、Agの析出量が多過ぎると、Agの固溶による強度の向上効果が低減する。かつ、上記析出したAgを伸線加工により引き延ばして繊維状とすることで、強度を向上することができる。しかし、Agが十分に引き延ばされた状態(長繊維)とならないと、即ち、上記熱処理後の伸線加工が不十分であると、析出したAgが後段の伸線加工時の破断の起点となる恐れがある。従って、Agを適切な量だけ析出させるように、最終線径までの伸線加工前、つまり、伸線前や伸線加工途中に熱処理を施すと共に、析出させたAgを適切な状態(繊維状)となるように伸線加工を行う。このように、適切な熱処理及び伸線加工を行うと、高導電率及び高強度なCu-Ag合金線が得られる。   When the Cu-Ag alloy is heat-treated and Ag is precipitated from the parent phase Cu, the conductivity can be improved. However, when there is too much precipitation amount of Ag, the strength improvement effect by the solid solution of Ag will reduce. Moreover, the strength can be improved by drawing the precipitated Ag into a fibrous shape by drawing. However, if the Ag is not sufficiently stretched (long fiber), that is, if the wire drawing after the heat treatment is insufficient, the precipitated Ag is the starting point of fracture during the subsequent wire drawing. There is a risk of becoming. Therefore, heat treatment is performed before wire drawing to the final wire diameter, that is, before wire drawing or in the middle of wire drawing so that an appropriate amount of Ag is precipitated, and the precipitated Ag is in an appropriate state (fibrous ) Is drawn. As described above, when appropriate heat treatment and wire drawing are performed, a Cu-Ag alloy wire having high conductivity and high strength can be obtained.

一方、伸線加工を指標とした場合、導電率と引張強さとはトレードオフの関係にある。即ち、伸線加工を多く施す(加工度を高める)と、引張強さが高くなる反面、加工に伴う歪みが伸線材に蓄積されて、伸線材の導電率が低下する傾向にある。一方、伸線加工が少なければ(加工度が小さければ)、加工に伴う歪みが伸線材にあまり導入されないことから、伸線材の導電率は高い状態を維持することができるものの、加工硬化などによる強度の向上が得られ難く、引張強さが低くなる。   On the other hand, when wire drawing is used as an index, the electrical conductivity and tensile strength are in a trade-off relationship. That is, if a lot of wire drawing is performed (the degree of work is increased), the tensile strength is increased, but strain accompanying the processing is accumulated in the wire drawing material, and the electrical conductivity of the wire drawing material tends to decrease. On the other hand, if there is little wire drawing (if the degree of work is small), the strain associated with the work will not be introduced much into the wire drawing material, so that the electrical conductivity of the wire drawing material can remain high, but due to work hardening etc. It is difficult to obtain an improvement in strength and the tensile strength is lowered.

他方、伸線加工後に伸線材に熱処理を施すと、上述のように歪みの除去により、導電率を向上することができる。そのため、同じ加工度の伸線加工を行った場合であっても、熱処理を行った場合は、熱処理を行わなかった場合と比較して、導電率が高い線材が得られる。また、中間熱処理の回数を多くするほど、歪みの蓄積量が低減されるため、同じ加工度の伸線加工を行った場合であっても、熱処理を複数回行った場合は、熱処理を1回行った場合と比較して、導電率が更に高い線材が得られる傾向にある。そして、中間熱処理の回数が一定の場合、最終線径に近い大きさにまで伸線加工を施して線径が小さい線材(以下、細径処理材と呼ぶ)に中間熱処理を施した場合と、伸線加工をあまり施しておらず線径が太い線材(以下、太径処理材と呼ぶ)に中間熱処理を施した場合とを比較すると、上記細径処理材に中間熱処理を施した方が導電率が高い傾向にある。なお、上述のように導電率と引張強さとはトレードオフの関係であるため、上記太径処理材の方が引張強さが高くなる傾向にある。これらのことから、導電率の向上には、伸線加工途中の適切な時期に熱処理を施すことが好ましいと言える。   On the other hand, when the wire drawing material is subjected to a heat treatment after the wire drawing, the electrical conductivity can be improved by removing the strain as described above. For this reason, even when wire drawing with the same degree of processing is performed, when heat treatment is performed, a wire with higher conductivity can be obtained as compared with the case where heat treatment is not performed. In addition, as the number of intermediate heat treatments increases, the amount of accumulated strain is reduced, so even if the same degree of wire drawing is performed, if heat treatment is performed multiple times, the heat treatment is performed once. Compared with the case where it did, it exists in the tendency for a wire material with higher electrical conductivity to be obtained. And, when the number of intermediate heat treatment is constant, when the intermediate heat treatment is applied to a wire rod having a small wire diameter (hereinafter referred to as a thin diameter treatment material) by drawing to a size close to the final wire diameter, Compared with the case where intermediate heat treatment is applied to a wire with a large wire diameter (hereinafter referred to as a large diameter treatment material) that has not been subjected to much wire drawing, it is more conductive when the intermediate heat treatment is applied to the thin diameter treatment material. The rate tends to be high. Since the electrical conductivity and the tensile strength are in a trade-off relationship as described above, the above-mentioned large diameter treated material tends to have a higher tensile strength. From these facts, it can be said that it is preferable to perform heat treatment at an appropriate time during the wire drawing for improving the electrical conductivity.

以上から、例えば、中間熱処理を1回行う場合、線径が細いときに中間熱処理を行うと、導電率が高い線材が得られ、熱処理を複数回行う場合、導電率を更に向上することができ、線径が太いときに中間熱処理を行うことで、引張強さが高い線材が得られる。このように中間熱処理を施す段階及び回数を、中間熱処理を施す伸線材の線径に応じて設計することで、導電率が82%IACS以上、引張強さが800MPa以上を満たすCu-Ag合金線が得られる。そこで、本発明製造方法では、伸線加工途中に施す中間熱処理を任意の段階で行うのではなく、上述のように中間熱処理を施す伸線材の線径と、最終線材の導電率と引張強さとの関係を求めておき、この関係に基づいて、中間熱処理を施すタイミング(線径)を設定することを規定する。   From the above, for example, when the intermediate heat treatment is performed once, if the intermediate heat treatment is performed when the wire diameter is thin, a wire with high conductivity is obtained, and when the heat treatment is performed a plurality of times, the conductivity can be further improved. By conducting an intermediate heat treatment when the wire diameter is large, a wire with high tensile strength can be obtained. By designing the stage and number of times of intermediate heat treatment according to the wire diameter of the wire to be subjected to intermediate heat treatment, a Cu-Ag alloy wire satisfying a conductivity of 82% IACS or higher and a tensile strength of 800 MPa or higher. Is obtained. Therefore, in the production method of the present invention, the intermediate heat treatment applied in the middle of the wire drawing process is not performed at an arbitrary stage, but the wire diameter of the drawn wire subjected to the intermediate heat treatment as described above, the conductivity and tensile strength of the final wire. It is prescribed that the timing (wire diameter) for performing the intermediate heat treatment is set based on this relationship.

上記中間熱処理は、1回でも複数回でもよい。複数回とする場合は、各回の中間熱処理を施す伸線材の線径と、当該中間熱処理を施した熱処理材に次の伸線加工を施して得られた線材の導電率及び引張強さの関係を予め求めておき、最終的に、最終線径のCu-Ag合金線の導電率が82%IACS以上、引張強さが800MPa以上となるように、各回の関係に基づいて、各回の伸線加工後の線径から遡って設定した所定の線径のときに中間熱処理を行うとよい。   The intermediate heat treatment may be performed once or a plurality of times. In the case of multiple times, the relationship between the wire diameter of the drawn wire subjected to each intermediate heat treatment and the electrical conductivity and tensile strength of the wire obtained by subjecting the heat treated material subjected to the intermediate heat treatment to the next drawing. Based on the relationship of each time, the wire is drawn each time so that the conductivity of the Cu-Ag alloy wire of the final wire diameter is 82% IACS or more and the tensile strength is 800 MPa or more. The intermediate heat treatment may be performed at a predetermined wire diameter set retrospectively from the processed wire diameter.

なお、伸線前の素材に対して、伸線前の加工(圧延など)により導入された歪みを除去する目的で別途熱処理を施してもよい。   In addition, you may heat-process with respect to the raw material before a wire drawing in order to remove the distortion introduce | transduced by the processes (rolling etc.) before a wire drawing.

或いは、本発明Cu-Ag合金線は、以下の製造方法によっても製造することができる。この製造方法は、Agを1質量%以上20質量%以下含有する素材に伸線加工を施して、最終線径が0.05mm以下の極細線を製造する方法であり、以下の表面層除去工程を具える。
表面層除去工程:最終線径に至るまでの伸線の途中段階にある線材の表面層を除去する。この表面層除去工程は、特に、線径が1.0mm以下の細い線材の表面層を除去する細線加工工程を具える。
上記細線加工工程において表面層の除去は、表面層の除去前の線材の線径の1/2をrとするとき、除去する表面層の厚さtがt/r≧0.02を満たすように行う。上記表面層の厚さtとは、線材の表面から、線材の径方向に沿った距離とする。また、線材の断面形状は、代表的には、円形状である。
Alternatively, the Cu-Ag alloy wire of the present invention can be manufactured by the following manufacturing method. This production method is a method of producing a fine wire having a final wire diameter of 0.05 mm or less by drawing a material containing 1 mass% or more and 20 mass% or less of Ag. Prepare.
Surface layer removal step: The surface layer of the wire in the middle of drawing until reaching the final wire diameter is removed. This surface layer removing step particularly includes a thin wire processing step of removing a surface layer of a thin wire having a wire diameter of 1.0 mm or less.
In the fine wire processing step, the removal of the surface layer is performed so that the thickness t of the surface layer to be removed satisfies t / r ≧ 0.02 when r is 1/2 of the wire diameter of the wire before the removal of the surface layer. . The thickness t of the surface layer is a distance along the radial direction of the wire from the surface of the wire. Moreover, the cross-sectional shape of a wire is typically circular.

上記製造方法では、伸線前の素材や最終線径の直前ではなく、伸線加工途中にある特定の大きさ、具体的には1.0mm以下といった細径の線材に対して特定量の表面層を除去することで、伸線時の断線を効果的に低減することができる。そのため、上記製造方法では、0.05mm以下といった極細のCu-Ag合金線を連続して製造することができ、長尺なCu-Ag合金線が得られる。かつ、上記製造方法によっても、導電率が高く、かつ高強度な本発明Cu-Ag合金線が得られる。   In the above manufacturing method, a specific amount of surface layer is not applied to the wire before the wire drawing process, but to a specific size in the middle of wire drawing, specifically 1.0 mm or less, not just before the material before wire drawing or the final wire diameter. By removing, disconnection during wire drawing can be effectively reduced. Therefore, in the above manufacturing method, an ultrafine Cu—Ag alloy wire of 0.05 mm or less can be continuously produced, and a long Cu—Ag alloy wire can be obtained. In addition, the Cu-Ag alloy wire of the present invention having high conductivity and high strength can also be obtained by the above production method.

上記製造方法は、断線が少ないことで、極細のCu-Ag合金線の生産性に優れる。特に、同軸ケーブルにおいてシールド導体の構成素線は、中心導体の外側に配置される。そのため、シールド導体の形成にあたり、中心導体の構成素線よりも多くの素線を利用したり、中心導体の構成素線よりも長い素線を利用する必要がある。従って、シールド導体の構成素線は、断線することなく連続して長尺な線材を製造可能な方法を利用することが望まれる。上記製造方法は、この要求に十分に応えることができる。また、上述した伸線加工途中の特定の時期に中間熱処理を行う本発明製造方法に、上記表面層除去工程を具えることで、高導電率で高強度な極細のCu-Ag合金線を生産性よく製造することができる。   The above manufacturing method is excellent in productivity of ultrafine Cu-Ag alloy wires because there are few disconnections. In particular, the constituent wire of the shield conductor in the coaxial cable is disposed outside the center conductor. For this reason, in forming the shield conductor, it is necessary to use more strands than the constituent wires of the center conductor or to use strands longer than the constituent wires of the center conductor. Therefore, it is desired that the constituent wire of the shield conductor uses a method capable of continuously producing a long wire without breaking. The above manufacturing method can sufficiently meet this requirement. In addition, the production method of the present invention in which the intermediate heat treatment is performed at a specific time during the wire drawing process described above includes the above-mentioned surface layer removal step, thereby producing an ultrafine Cu-Ag alloy wire with high conductivity and high strength. It can be manufactured with good performance.

上記表面層除去工程を複数回具えて、各工程におけるt/rの合計が0.08以上、特に0.12以上となるように表面層の除去を行うと、表面層の除去量が多くなることで、疵や異物を十分に除去することができ、断線の発生を低減することができる。そのため、この形態では、極細のCu-Ag合金線の生産性に更に優れる。   If the surface layer is removed so that the total t / r in each step is 0.08 or more, particularly 0.12 or more when the surface layer removal step is performed multiple times, the amount of removal of the surface layer increases. And foreign matter can be sufficiently removed, and occurrence of disconnection can be reduced. Therefore, in this embodiment, the productivity of the ultrafine Cu—Ag alloy wire is further improved.

更に、上述した二つの製造方法において、以下のようにして製造した鋳造材を利用することが好ましい。用意した原料Cu及び原料Agを高純度のカーボンからなる坩堝で溶解し、この混合溶湯をCuとAgとの混合物の液相点温度以上に30分以上保持して、混合溶湯の表面に不純物を分離させる。この後、高純度のカーボンからなる鋳型を用いて、上記不純物を分離した混合溶湯から鋳造材を作製する。この鋳造材は、断線に関与し得る異物が少ない。このような鋳造材を伸線に供する素材とすることで、伸線時の断線を更に効果的に低減することができ、極細のCu-Ag合金線の生産性に更に優れる。   Furthermore, in the two manufacturing methods described above, it is preferable to use a cast material manufactured as follows. The prepared raw material Cu and raw material Ag are melted in a crucible made of high-purity carbon, and this mixed molten metal is kept at a temperature higher than the liquidus temperature of the mixture of Cu and Ag for 30 minutes or more, so that impurities are introduced on the surface of the mixed molten metal. Separate. Thereafter, a cast material is produced from the molten metal from which the impurities are separated, using a mold made of high purity carbon. This cast material has few foreign substances that can be involved in disconnection. By using such a cast material as a material for wire drawing, wire breakage during wire drawing can be further effectively reduced, and the productivity of ultrafine Cu-Ag alloy wire is further improved.

本発明Cu-Ag合金線の製造にあたり、伸線に供する素材には、例えば、鋳造材に冷間圧延を施したものが利用できる。この素材に含有される異物を低減するために、原料Cuや原料Agは純度の高いもの、例えば、フォーナインクラス(純度99.99%)以上のものを利用することが好ましい。   In the production of the Cu-Ag alloy wire of the present invention, as a material used for wire drawing, for example, a material obtained by cold rolling a cast material can be used. In order to reduce foreign substances contained in this material, it is preferable to use raw material Cu or raw material Ag having a high purity, for example, a four-nine class (purity 99.99%) or higher.

上記伸線加工(代表的には冷間)は、最終線径となるまで複数パスに亘って行う。各パスの加工度は、組成(Agの含有量)、最終線径、引張強さ、導電率などを考慮して適宜調整するとよい。特に、最初に行う冷間伸線加工は、加工度が70%以上であると、以降の伸線加工を所定の加工度で行い易く好ましい。   The wire drawing (typically cold) is performed over a plurality of passes until the final wire diameter is reached. The degree of processing of each pass may be appropriately adjusted in consideration of the composition (Ag content), final wire diameter, tensile strength, conductivity, and the like. In particular, the cold wire drawing performed first is preferably 70% or more, since the subsequent wire drawing is easily performed at a predetermined degree of processing.

本発明製造方法では、伸線加工途中、特に上述した関係に基づいて設定された所定の線径のときに、少なくとも1回の中間熱処理を行う。この中間熱処理により、当該中間熱処理前に素材に導入された加工歪みを除去して、導電率を向上すると共に、以降の伸線加工を行い易くする。また、中間熱処理によりAgを析出させて、以降の伸線加工によりAg析出物を繊維状とすることで、極細線の強度を向上する。中間熱処理の条件は、加熱温度:350℃〜550℃とする。350℃未満では、Agを十分に析出できない上に、歪みを十分に除去できず、導電率の向上が難しく、550℃超では、Agが過剰に析出することで、固溶強化による強度の向上効果が得られ難くなる。特に、加熱温度は400℃〜450℃が好ましい。保持時間は、0.5時間〜10時間が好ましい。   In the manufacturing method of the present invention, at least one intermediate heat treatment is performed during the wire drawing process, particularly at a predetermined wire diameter set based on the above-described relationship. By this intermediate heat treatment, processing strain introduced into the material before the intermediate heat treatment is removed to improve the conductivity and facilitate subsequent wire drawing. Further, the strength of the ultrafine wire is improved by precipitating Ag by an intermediate heat treatment and making the Ag precipitate into a fibrous form by subsequent wire drawing. The conditions for the intermediate heat treatment are heating temperature: 350 ° C. to 550 ° C. If the temperature is lower than 350 ° C, Ag cannot be sufficiently precipitated, and the strain cannot be removed sufficiently, making it difficult to improve the electrical conductivity. If the temperature exceeds 550 ° C, Ag is excessively precipitated, resulting in improved strength due to solid solution strengthening. It becomes difficult to obtain the effect. In particular, the heating temperature is preferably 400 ° C to 450 ° C. The holding time is preferably 0.5 hours to 10 hours.

伸線加工途中に、上述した表面層の除去を行う場合、除去には、化学処理や電気化学処理を利用することが好ましい。表面層の除去を行う対象が線径:1.0mm以下の細い線材であるため、通常の皮剥ぎに利用される皮剥ぎダイスにより表面層の除去を行おうとすると、ダイス孔の中心に線材の中心を合わせることが難しく、生産性の低下を招く。一方、化学処理や電気化学処理は、任意の線径の線材に対して簡単に施せる上に、処理後の表面が非常に平滑で断線の原因となる疵などが存在し難い。従って、処理後の線材に更に伸線加工を施す際、断線し難く、伸線性に優れる。代表的な処理として、化学研磨や電解研磨などが挙げられる。公知の処理を利用してもよい。表面層の除去を行う線材は、製造コストの低減の観点から、線径が0.2mm以上であることが好ましい。また、上述した表面層の除去を行う形態においても、最終線径前までの任意の段階で、少なくとも1回の中間熱処理を施す。即ち、伸線前でも伸線途中でもよい。中間熱処理条件は、上述した本発明製造方法における条件と同様とすることが好ましい。   When the surface layer is removed during the wire drawing process, it is preferable to use chemical treatment or electrochemical treatment for the removal. Since the target to remove the surface layer is a thin wire with a wire diameter of 1.0 mm or less, if you try to remove the surface layer with a peeling die used for normal skinning, the center of the wire will be at the center of the die hole. It is difficult to match, leading to a decrease in productivity. On the other hand, chemical treatment and electrochemical treatment can be easily applied to a wire having an arbitrary wire diameter, and the surface after the treatment is very smooth and hardly causes wrinkles that cause disconnection. Accordingly, when the drawn wire is further drawn, it is difficult to break and excellent in drawability. Typical processing includes chemical polishing and electrolytic polishing. A known process may be used. The wire material for removing the surface layer preferably has a wire diameter of 0.2 mm or more from the viewpoint of reducing the manufacturing cost. Also in the embodiment in which the surface layer is removed as described above, at least one intermediate heat treatment is performed at any stage before the final wire diameter. That is, it may be before or during drawing. The intermediate heat treatment conditions are preferably the same as those in the above-described production method of the present invention.

メッキ層を有するCu-Ag合金線を製造する場合、メッキ層の形成は、伸線加工途中に行ってもよいし、最終の伸線後に行ってもよい。伸線加工途中に上述した表面層の除去を行う場合、表面層の除去を行った後の任意の時期にメッキ層を形成することができる。   When producing a Cu—Ag alloy wire having a plated layer, the plated layer may be formed during the drawing process or after the final drawing. When the surface layer is removed during the wire drawing process, the plating layer can be formed at any time after the surface layer is removed.

本発明Cu-Ag合金線は、高導電率かつ高強度である。本発明同軸ケーブルは、シールド特性に優れる上に、破断強度や疲労強度にも優れる。本発明Cu-Ag合金線の製造方法によれば、線径0.05mm以下の極細なCu-Ag合金線であって、高導電率かつ高強度なCu-Ag合金線を製造することができる。   The Cu-Ag alloy wire of the present invention has high conductivity and high strength. The coaxial cable of the present invention is excellent in shielding properties and excellent in breaking strength and fatigue strength. According to the method for producing a Cu-Ag alloy wire of the present invention, it is possible to produce an ultrafine Cu-Ag alloy wire having a wire diameter of 0.05 mm or less and having a high conductivity and high strength.

図1(I)は、中間熱処理を施した線径と、最終的に得られたCu-Ag合金線の導電率との関係を示すグラフ、図1(II)は、中間熱処理を施した線径と、最終的に得られたCu-Ag合金線の引張強さとの関係を示すグラフである。Fig. 1 (I) is a graph showing the relationship between the wire diameter subjected to the intermediate heat treatment and the conductivity of the finally obtained Cu-Ag alloy wire, and Fig. 1 (II) is a wire subjected to the intermediate heat treatment. It is a graph which shows the relationship between a diameter and the tensile strength of the Cu-Ag alloy wire finally obtained. 図2は、屈曲試験の状態を示す説明図である。FIG. 2 is an explanatory diagram showing a state of the bending test.

(試験例1)
Cu-Ag合金からなる複数の極細線を製造し、引張強さ及び導電率を調べた。その結果を図1に示す。
(Test Example 1)
Several ultrafine wires made of Cu-Ag alloy were manufactured and the tensile strength and electrical conductivity were investigated. The results are shown in FIG.

極細線は、以下のように作製した。原料Cuとして、純度99.99%以上の電気銅、原料Agとして純度99.99%以上の銀粒(Ag)を用意し、高純度カーボン製坩堝に投入して連続鋳造装置内で真空溶解させ、Cu及びAgが溶解した混合溶湯を作製した。なお、銀粒の添加量は、混合溶湯に対するAg含有量が2質量%となるように調整した。   The extra fine wire was produced as follows. Prepare copper as the raw material Cu with a purity of 99.99% or more, and silver grains (Ag) with a purity of 99.99% or more as the raw material Ag, put them in a high-purity carbon crucible, and vacuum-melt them in a continuous casting machine. A mixed molten metal was dissolved. In addition, the addition amount of the silver grain was adjusted so that Ag content with respect to mixed molten metal might be 2 mass%.

得られた混合溶湯を用いて、高純度カーボン製鋳型により、線径φ22.0mmの丸線の鋳造材を製造し、この鋳造材に複数パスの冷間伸線加工を施し、最終線径φ0.025mm(25μm)のCu-Ag合金線を得た。特に、上記伸線加工途中の伸線材に中間熱処理を施した。ここでは、中間熱処理を1回施した試料、中間熱処理を2回施した試料、3回施した試料を作製した。中間熱処理を1回施した試料(図1に▲で示す)は、線径φが0.9mmのとき、0.32mmのときのいずれかに、中間熱処理:450℃×3時間を1回施して作製したCu-Ag合金線である。中間熱処理を2回施した試料(図1に□で示す)は、線径φが8mmのときに、中間熱処理:450℃×3時間を1回施し、その後、線径φが0.9mmのとき、0.32mmのとき、0.12mmのときのいずれかに、2回目の中間熱処理:450℃×3時間を施して作製したCu-Ag合金線である。中間熱処理を3回施した試料(図1に◆で示す)は、線径φが8mm及び2.6mmのときにそれぞれ、中間熱処理:450℃×3時間を1回施し、更にその後、線径φが0.9mmのとき、0.32mmのときのいずれかに3回目の中間熱処理:450℃×3時間を施して作製したCu-Ag合金線である。   Using the resulting mixed molten metal, a high-purity carbon mold is used to produce a round wire casting with a diameter of φ22.0 mm, and this casting is subjected to multiple passes of cold drawing to obtain a final wire diameter of φ0. A .025 mm (25 μm) Cu—Ag alloy wire was obtained. In particular, an intermediate heat treatment was performed on the wire drawing material in the middle of the wire drawing. Here, a sample subjected to intermediate heat treatment once, a sample subjected to intermediate heat treatment twice, and a sample subjected to three times heat treatment were prepared. Samples that were subjected to an intermediate heat treatment (shown by ▲ in Fig. 1) were prepared by applying an intermediate heat treatment: 450 ° C x 3 hours once when the wire diameter φ was 0.9 mm or 0.32 mm. Cu-Ag alloy wire. Samples subjected to intermediate heat treatment twice (indicated by □ in FIG. 1) are subjected to intermediate heat treatment: 450 ° C x 3 hours once when the wire diameter φ is 8 mm, and then when the wire diameter φ is 0.9 mm A Cu—Ag alloy wire produced by subjecting the second intermediate heat treatment: 450 ° C. × 3 hours to either 0.32 mm or 0.12 mm. Samples that were subjected to intermediate heat treatment three times (indicated by ♦ in FIG. 1) were subjected to intermediate heat treatment: 450 ° C. × 3 hours once when the wire diameter φ was 8 mm and 2.6 mm, respectively, and then the wire diameter φ A Cu—Ag alloy wire produced by subjecting the third intermediate heat treatment: 450 ° C. × 3 hours to either 0.92 mm or 0.32 mm.

得られた各Cu-Ag合金線について、導電率及び引張強さを測定した。引張強さは、JIS Z 2241(1998)の規定に準じて測定した(標点距離GL:10mm)。導電率は、ブリッジ法により測定した。   About each obtained Cu-Ag alloy wire, electrical conductivity and tensile strength were measured. Tensile strength was measured in accordance with JIS Z 2241 (1998) (marking distance GL: 10 mm). The conductivity was measured by the bridge method.

図1に示すように、同じ組成のCu-Ag合金(ここでは、Ag:2質量%含有)の素材を用いても、伸線加工途中の中間熱処理を施す線径が異なることで、導電率及び引張強さが異なることが分かる。具体的には、線径が小さくなったときに中間熱処理を施す方が、導電率が高いCu-Ag合金線が得られ、線径が大きいときに中間熱処理を施す方が、引張強さが高いCu-Ag合金線が得られる傾向にあることが分かる。また、中間熱処理の回数を増やすことで、導電率を高め易い傾向にあることが分かる。   As shown in Fig. 1, even when using a Cu-Ag alloy material with the same composition (in this case, Ag: 2% by mass), the conductivity is different due to the difference in the wire diameter for intermediate heat treatment during wire drawing. It can be seen that the tensile strength is different. Specifically, a Cu-Ag alloy wire with higher conductivity is obtained when the intermediate heat treatment is performed when the wire diameter becomes smaller, and a tensile strength is higher when the intermediate heat treatment is performed when the wire diameter is larger. It can be seen that a high Cu-Ag alloy wire tends to be obtained. Moreover, it turns out that it exists in the tendency which is easy to raise electrical conductivity by increasing the frequency | count of intermediate heat processing.

上記試験結果から、中間熱処理を施す伸線材の線径と、当該中間熱処理を施した熱処理材に最終線径までの伸線加工を施して得られた最終線材の導電率及び引張強さとの関係を予め求めておき、この関係に基づいて、中間熱処理を施す時期を決定し、決定した所定の線径のときに中間熱処理を施すことで、導電率が82%IACS以上、引張強さが800MPa以上の極細のCu-Ag合金線が得られることが分かる。   From the above test results, the relationship between the wire diameter of the drawn wire subjected to the intermediate heat treatment and the electrical conductivity and tensile strength of the final wire obtained by subjecting the heat treated material subjected to the intermediate heat treatment to the final wire diameter. Based on this relationship, the timing for performing the intermediate heat treatment is determined, and the intermediate heat treatment is performed at the determined predetermined wire diameter, whereby the conductivity is 82% IACS or more and the tensile strength is 800 MPa. It turns out that the above ultrafine Cu-Ag alloy wire is obtained.

(試験例2)
Cu-Ag合金からなる複数の極細線を製造し、機械的特性、導電率、及び伸線性を調べた。
(Test Example 2)
A number of ultrafine wires made of Cu-Ag alloy were manufactured, and the mechanical properties, electrical conductivity, and wire drawability were investigated.

<試料No.2-0>
原料Cuとして、純度99.99%以上の電気銅、原料Agとして純度99.99%以上の銀粒(Ag)を用意した。用意した上記電気銅を酸洗し、電気銅の表面に付着した異物を除去した後、酸洗した電気銅と上記銀粒を高純度カーボン製坩堝に投入して、連続鋳造装置内で真空溶解させ、Cu及びAgが溶解した混合溶湯を作製した。なお、銀粒の添加量は、混合溶湯に対するAg含有量が2質量%となるように調整した。
<Sample No.2-0>
Electrolytic copper having a purity of 99.99% or more was prepared as a raw material Cu, and silver grains (Ag) having a purity of 99.99% or more were prepared as a raw material Ag. After pickling the prepared electrolytic copper and removing foreign matter adhering to the surface of the electrolytic copper, the pickled electrolytic copper and the silver particles are put into a high-purity carbon crucible and vacuum-dissolved in a continuous casting apparatus. Thus, a mixed molten metal in which Cu and Ag were dissolved was produced. In addition, the addition amount of the silver grain was adjusted so that Ag content with respect to mixed molten metal might be 2 mass%.

上記混合溶湯は、銀粒を添加した後、CuとAgとの混合物の液相点温度以上に30分保持して、上記坩堝内の混合溶湯の表面に異物を含む不純物を分離させた。   After the silver melt was added, the mixed molten metal was held at a temperature higher than the liquidus temperature of the mixture of Cu and Ag for 30 minutes to separate impurities including foreign matters on the surface of the mixed molten metal in the crucible.

不純物を分離させた後、高純度カーボン製鋳型を用いて線径φ8.0mmの丸線(鋳造材)を製造した。得られた鋳造材中のAl量及びSi量を測定した。ここでは、鋳造材を200g取り分けて、6.4mol以上の硝酸を含む水溶液に溶解し、この溶液を孔径0.2μmのフィルターで濾過して、残渣物をフィルターで回収した。回収した残渣物を白金製坩堝内で乾燥し、フィルターを灰化した後、融剤を加えて溶融し、ガラス状物質とした。得られたガラス状物質を、塩酸を含む水溶液に溶解した。鋳造材の溶解からガラス状物質の溶解までの作業は、クリーンブース内で実施した。そして、ガラス状物質が溶解した溶液を誘導結合プラズマ(ICP)発光分光分析により、Si量及びAl量を定量した。その結果、Si量:0.1質量ppm、Al:0.3質量ppmであり、いずれも1質量ppm以下であった。なお、Si量及びAl量の測定に利用する鋳造材の量は、100g〜200g程度で十分である。   After separating the impurities, a round wire (cast material) having a wire diameter of φ8.0 mm was manufactured using a high purity carbon mold. The amount of Al and the amount of Si in the obtained cast material were measured. Here, 200 g of the cast material was separated and dissolved in an aqueous solution containing 6.4 mol or more of nitric acid. This solution was filtered with a filter having a pore size of 0.2 μm, and the residue was collected with a filter. The collected residue was dried in a platinum crucible to incinerate the filter, and then melted by adding a flux to give a glassy substance. The obtained glassy substance was dissolved in an aqueous solution containing hydrochloric acid. The work from the melting of the cast material to the melting of the glassy substance was carried out in a clean booth. The amount of Si and Al was quantified by inductively coupled plasma (ICP) emission spectroscopic analysis of the solution in which the glassy substance was dissolved. As a result, the Si content was 0.1 mass ppm and the Al was 0.3 mass ppm, both of which were 1 mass ppm or less. In addition, about 100-200g is sufficient for the quantity of the casting material utilized for the measurement of Si amount and Al amount.

得られた鋳造材(線径φ8mm)に複数パスの冷間伸線加工を施し、線径φが2.6mmの線材を得た。この中間線材に400℃×8時間の中間熱処理を施した後、化学研磨を施し、表面層を除去した。化学研磨は、研磨液に硫酸水素水溶液を用い、浸漬時間:150min、温度:30℃として行った。除去した表面層の厚さt1は、t1=0.15mmとした。線径φ1の1/2をr1とすると、r1=1.30、t1/r1≒0.115である。更に、この試料No.2-0は、伸線の途中段階である、線径φ2が0.9mm(≦1.0mm)となったとき、上記と同様の化学研磨を線材に施し、表面層を除去した。除去した表面層の厚さt2は、浸漬時間を異ならせることで変化させ、t2=0.01mmとした。線径φ2の1/2をr2とすると、r2=0.45、t2/r2≒0.022(≧0.02)である。2回の表面層の除去におけるr1/t1及びt2/r2の合計は、0.115+0.022=0.137(≧0.08)である。 The obtained cast material (wire diameter φ8 mm) was subjected to cold drawing of multiple passes to obtain a wire material having a wire diameter φ of 2.6 mm. This intermediate wire was subjected to an intermediate heat treatment at 400 ° C. for 8 hours and then subjected to chemical polishing to remove the surface layer. Chemical polishing was performed using an aqueous hydrogen sulfate solution as the polishing liquid, with an immersion time of 150 min and a temperature of 30 ° C. The thickness t 1 of the removed surface layer was t 1 = 0.15 mm. If 1/2 of the wire diameter φ 1 is r 1 , r 1 = 1.30 and t 1 / r 1 ≈0.115. Furthermore, this sample No. 2-0 was subjected to the chemical polishing similar to the above when the wire diameter φ 2 was 0.9 mm (≦ 1.0 mm), which was an intermediate stage of wire drawing, and the surface layer was Removed. The thickness t 2 of the removed surface layer was changed by varying the immersion time, and t 2 = 0.01 mm. When 1/2 of the wire diameter φ 2 is r 2 , r 2 = 0.45, t 2 / r 2 ≈0.022 (≧ 0.02). The sum of r 1 / t 1 and t 2 / r 2 in the removal of the surface layer twice is 0.115 + 0.022 = 0.137 (≧ 0.08).

上記2回目の表面層の除去後、更に冷間伸線加工を施し、最終線径φが0.021mm(21μm),0.04mmの線材を得た。最終線径φが0.021mmの線材にSnメッキを施し(メッキ厚さ:0.1μm)、メッキ付きCu-Ag合金線を得た。このメッキ付きCu-Ag合金線、及び最終線径φ0.04mmのCu-Ag合金線を試料No.2-0とする。なお、この試験において伸線加工には、いずれの試料も、American Wire Gage規格(AWG規格)のダイスを使用した。   After the surface layer was removed for the second time, cold drawing was further performed to obtain wires having final wire diameters φ of 0.021 mm (21 μm) and 0.04 mm. Sn plating was applied to the wire having a final wire diameter of 0.021 mm (plating thickness: 0.1 μm) to obtain a plated Cu—Ag alloy wire. This plated Cu—Ag alloy wire and a Cu—Ag alloy wire having a final wire diameter of φ0.04 mm are designated as sample No. 2-0. In this test, for wire drawing, a die of American Wire Gage standard (AWG standard) was used for all samples.

<試料No.2-1〜2-6,100>
原料Cuとして試験例1と同様の電気銅、原料Agとして試験例1と同様の銀粒(Ag)を用意した。用意した電気銅を連続鋳造装置内で真空溶解させた。電気銅が完全に溶解した後、連続鋳造装置のチャンバー内をアルゴンガスに置換して、用意した上記銀粒を坩堝に投入して溶解し、Cu及びAgが溶解した混合溶湯を鋳造して鋳造材(線径φ22mm又は線径φ16mmの丸線)を作製した。なお、銀粒の添加量は、混合溶湯に対するAg含有量が表1に示す量となるように調整した。
<Sample No.2-1 to 2-6,100>
Electrolytic copper similar to Test Example 1 was prepared as the raw material Cu, and silver grains (Ag) similar to Test Example 1 were prepared as the raw material Ag. The prepared electrolytic copper was vacuum-melted in a continuous casting apparatus. After electrolytic copper is completely dissolved, the inside of the chamber of the continuous casting apparatus is replaced with argon gas, the prepared silver particles are put into a crucible and melted, and a molten mixture of Cu and Ag is cast and cast. A material (round wire having a wire diameter of φ22 mm or a wire diameter of φ16 mm) was produced. The amount of silver grains added was adjusted so that the Ag content relative to the molten mixture would be the amount shown in Table 1.

得られた鋳造材に複数パスの冷間伸線加工を施し、試料ごとに、最終線径φが0.021mm(21μm),0.04mm(40μm)のCu-Ag合金線を得た。特に、上記伸線加工途中の伸線材において、表2において○印が付された線径のときに中間熱処理:450℃×3時間を施した。また、試料No.2-1,2-3〜2-6については、線径φ0.9mmのときに、試料No.2-0と同様の化学研磨を線材に施して、表面層を除去した(t/r≒0.022)。   The obtained cast material was subjected to multiple passes of cold drawing, and Cu-Ag alloy wires having final wire diameters of 0.021 mm (21 μm) and 0.04 mm (40 μm) were obtained for each sample. In particular, the wire drawing material in the middle of the wire drawing was subjected to an intermediate heat treatment: 450 ° C. × 3 hours for the wire diameters marked with “◯” in Table 2. For sample Nos. 2-1, 2-3 to 2-6, when the wire diameter was 0.9 mm, the wire was subjected to the same chemical polishing as sample No. 2-0 to remove the surface layer. (t / r ≒ 0.022).

比較として、Agの含有量が多いCu-Ag合金線(最終線径φ0.021mm(21μm),0.04mm(40μm)、試料No.100)、及び伸線加工途中に中間熱処理を施していないCu-Ag合金線(最終線径φ0.021mm(21μm),0.04mm(40μm)、試料No.110)を用意した。試料No.100は、表1に示す組成のCu-Ag合金からなる線径φ22mmの鋳造材を上述した試料No.2-1〜2-6と同様にして作製し、表2において丸印が付された線径のときに中間熱処理:450℃×3時間を施した。試料No.110は、表1に示す組成のCu-Ag合金からなる線径φ22mmの鋳造材を上述した試料No.2-1〜2-6と同様にして作製し、この鋳造材に中間熱処理を施さずに伸線加工を施して作製した。   For comparison, Cu-Ag alloy wires with a high Ag content (final wire diameter φ 0.021 mm (21 μm), 0.04 mm (40 μm), sample No. 100), and Cu without intermediate heat treatment during wire drawing -Ag alloy wires (final wire diameter φ0.021 mm (21 μm), 0.04 mm (40 μm), sample No. 110) were prepared. Sample No. 100 was prepared in the same manner as Sample Nos. 2-1 to 2-6 described above with a cast material having a wire diameter of φ22 mm made of a Cu-Ag alloy having the composition shown in Table 1. Intermediate heat treatment: 450 ° C. × 3 hours was applied to the attached wire diameter. Sample No. 110 is a cast material having a wire diameter of φ22 mm made of a Cu-Ag alloy having the composition shown in Table 1, and is prepared in the same manner as Sample Nos. 2-1 to 2-6 described above. The wire was drawn without being subjected to wire drawing.

<Cu-Ag合金線の特性>
得られた各試料No.2-0〜2-6,100,110について、引張強さ(MPa)、導電率(%IACS)、屈曲回数、捻回回数、横巻性、伸線性を調べた。その結果を表1に示す。
<Characteristics of Cu-Ag alloy wire>
About each obtained sample No.2-0-2-6,100,110, tensile strength (MPa), electrical conductivity (% IACS), the frequency | count of bending, the frequency | count of twisting, horizontal winding property, and wire drawing property were investigated. The results are shown in Table 1.

[引張強さ、導電率]
各試料において引張強さ、及び導電率は、最終線径φが0.021mmの線材について測定した。引張強さは、JIS Z 2241の規定に準じて測定した(標点距離GL:10mm)。導電率は、ブリッジ法により測定した。
[Tensile strength, conductivity]
In each sample, the tensile strength and conductivity were measured for a wire having a final wire diameter φ of 0.021 mm. The tensile strength was measured in accordance with JIS Z 2241 (Gage distance GL: 10 mm). The conductivity was measured by the bridge method.

[屈曲回数]
各試料において屈曲回数は、最終線径φ0.04mmの線材について測定した。屈曲回数は、JIS G 3522の曲げ試験の規定に準じて測定した。ここでは、図2に示すように対向配置させた一対のマンドレルm間に試料Sを配置し、試料Sの一端に錘w(負荷加重:12.5g)を取り付け、他端を試験機のレバーlで把持してマンドレルmの外周に沿って試料Sに曲げ半径R(=2mm)の曲げを加え、反復方向に屈曲させて、サンプルが破断するまでの回数を求める。反復を1回として数える。この回数を屈曲回数とする。屈曲速度は、30回/minとする。
[Number of flexion]
The number of bendings in each sample was measured for a wire having a final wire diameter of φ0.04 mm. The number of bendings was measured according to the JIS G 3522 bending test. Here, as shown in FIG. 2, the sample S is arranged between a pair of mandrels m arranged opposite to each other, a weight w (load load: 12.5 g) is attached to one end of the sample S, and the other end is a lever l of the testing machine. The sample S is bent along the outer periphery of the mandrel m, the sample S is bent with a bending radius R (= 2 mm), bent in the repetition direction, and the number of times until the sample breaks is obtained. Count as one iteration. This number of times is defined as the number of bending times. The bending speed is 30 times / min.

[捻回回数]
各試料において捻回回数は、最終線径φ0.04mmの線材について測定した。捻回回数は、サンプルの一端側を荷重:25gを加えて固定し、他端側を把持して一方向に捻回した後、他方向に捻回して、即ち、反復方向に捻回して、サンプルが破断するまでの捻り回数を求める。反復を1回と数える。この試験では、標点距離GL=10mmとした。
[Number of twists]
In each sample, the number of twists was measured for a wire having a final wire diameter of φ0.04 mm. The number of twists is fixed by applying a load of 25 g to one end of the sample, and twisting in one direction by gripping the other end, then twisting in the other direction, that is, twisting in the repeat direction, Obtain the number of twists until the sample breaks. Count one iteration. In this test, the gauge distance GL = 10 mm.

[横巻性]
試料No.2-0,2-1,2-2,110に対して、横巻性を調べた。横巻性は、各試料において最終線径φ0.021mmの線材を20kg用意し、20kg全量を所定のピッチで螺旋状に横巻きし終わるまでの間に発生した断線回数を測定し、20kgをその断線回数で割った値(kg/回)により評価した。
[Horizontal winding]
For samples No. 2-0, 2-1, 2-2, and 110, the lateral rollability was examined. For horizontal winding, 20kg of wire rod with a final wire diameter of 0.021mm is prepared for each sample, and the number of breaks that occur until the entire 20kg is spirally wound at a predetermined pitch is measured. The value was divided by the number of disconnections (kg / time).

[伸線性の評価]
試料No.2-0,2-1,2-2,110に対して、線径φ22mmの素材を最終線径φ0.021mmまで伸線したときの伸線性を調べた。伸線性は、上記各素材を20kgずつ用意し、20kg全量が伸線し終わるまでの間に発生した断線回数を測定し、20kgをその断線回数で割った値(kg/回)により評価した。
[Evaluation of drawability]
With respect to Sample Nos. 2-0, 2-1, 2-2, and 110, the drawability when a material having a wire diameter of φ22 mm was drawn to a final wire diameter of φ0.021 mm was examined. The wire drawing property was evaluated by a value (kg / time) obtained by preparing 20 kg of each of the above materials, measuring the number of wire breaks that occurred until the entire 20 kg wire was drawn, and dividing 20 kg by the number of wire breaks.

Figure 2011146352
Figure 2011146352

Figure 2011146352
Figure 2011146352

表1,2に示すように、伸線加工途中において特定の線径のときに中間熱処理を施すことで、導電率が高く、かつ高強度で、耐屈曲性や耐捻回性に優れる極細なCu-Ag合金線が得られることが分かる。特に、同じ組成のCu-Ag合金であっても、伸線加工途中に中間熱処理を施す線径を小さくしたり、複数回の中間熱処理を施したりすることで、導電率が更に高い線材が得られることが分かる。このように特定の線径のときに中間熱処理を行うことで、高導電率と高強度とをバランスよく具えるCu-Ag合金線が得られることが分かる。また、伸線加工途中に更に表面層の除去を行うことで、伸線性を高められることが分かる。そのため、このような表面層の除去を行うことで上述のような高強度、高導電率の極細のCu-Ag合金線を生産性よく製造することができると言える。   As shown in Tables 1 and 2, by applying an intermediate heat treatment at a specific wire diameter during wire drawing, it has high conductivity, high strength, and extremely fine resistance to bending and twisting. It can be seen that a Cu-Ag alloy wire is obtained. In particular, even for Cu-Ag alloys with the same composition, a wire rod with higher electrical conductivity can be obtained by reducing the wire diameter for intermediate heat treatment during wire drawing or by performing multiple intermediate heat treatments. You can see that Thus, it can be seen that by performing the intermediate heat treatment at a specific wire diameter, a Cu—Ag alloy wire having a good balance between high conductivity and high strength can be obtained. Moreover, it turns out that a wire drawing property can be improved by removing a surface layer further in the middle of a wire drawing process. Therefore, it can be said that by removing such a surface layer, it is possible to produce the above-described high-strength, high-conductivity ultra-fine Cu-Ag alloy wire with high productivity.

更に、得られた試料No.2-0〜2-6はいずれも、捻回回数が高く、横巻性に優れることで、同軸ケーブルのシールド導体に利用する場合、絶縁層の外周に巻回する際に断線などが少ないと期待される。加えて、得られた試料No.2-0〜2-6はいずれも、導電率が高い上に、屈曲回数や捻回回数が多いことから、試料No.2-0〜2-6のCu-Ag合金線から構成されるシールド導体を具える同軸ケーブルは、シールド特性に優れる上に、使用時に加えられる捻れや曲げなどに対する耐性にも優れると期待される。   Furthermore, all of the obtained sample Nos. 2-0 to 2-6 have a high number of twists and are excellent in lateral winding, so that they can be wound around the outer periphery of the insulating layer when used as a shield conductor for coaxial cables. It is expected that there will be little disconnection etc. In addition, all of the obtained sample Nos. 2-0 to 2-6 have high conductivity, and have a large number of flexing and twisting times. -A coaxial cable with a shield conductor made of an Ag alloy wire is expected to have excellent shielding properties and resistance to twisting and bending applied during use.

なお、試料No.2-1〜2-6においても、試料No.2-0と同様に、上記伸線加工途中や伸線加工後の適宜な時期にメッキ層を形成する工程を加えることで、メッキ層を有するCu-Ag合金線が得られる。表面層の除去を行う場合、表面層の除去後の適宜な時期に、中間熱処理を行う場合、中間熱処理後の適宜な時期にメッキ層の形成を行うとよい。   In Sample Nos. 2-1 to 2-6, as in Sample No. 2-0, a step of forming a plating layer at an appropriate time during the drawing process or after the drawing process may be added. A Cu—Ag alloy wire having a plating layer is obtained. When the surface layer is removed, the intermediate heat treatment is performed at an appropriate time after the surface layer is removed. When the intermediate heat treatment is performed, the plating layer is preferably formed at an appropriate time after the intermediate heat treatment.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、Agの含有量、導電率、引張強さ、最終線径、中間熱処理を施す線径などを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the Ag content, conductivity, tensile strength, final wire diameter, wire diameter subjected to intermediate heat treatment, and the like can be appropriately changed.

本発明同軸ケーブルは、携帯電話といった携帯用電子機器、自動車などに載置される電子部品、医療機器、産業用ロボットなどの各種の機器の電線として好適に利用することができる。本発明Cu-Ag合金線は、上記本発明同軸ケーブルのシールド導体に好適に利用することができる。本発明Cu-Ag合金線の製造方法は、導電率が高く、高強度であって極細なCu-Ag合金線の製造に好適に利用することができる。   The coaxial cable of the present invention can be suitably used as an electric wire for various electronic devices such as portable electronic devices such as mobile phones, electronic parts mounted on automobiles, medical devices, and industrial robots. The Cu-Ag alloy wire of the present invention can be suitably used for the shield conductor of the coaxial cable of the present invention. The method for producing a Cu-Ag alloy wire of the present invention can be suitably used for producing an ultrafine Cu-Ag alloy wire having high electrical conductivity and high strength.

l レバー S 試料 w 錘 m マンドレル R 曲げ半径   l Lever S Specimen w Weight m Mandrel R Bending radius

Claims (4)

同軸ケーブルのシールド導体に用いられるCu-Ag合金線であって、
Agを1質量%以上20質量%以下含有し、残部がCu及び不純物からなり、
導電率が82%IACS以上であり、
引張強さが800MPa以上であり、
線径が0.05mm以下であることを特徴とするCu-Ag合金線。
Cu-Ag alloy wire used for the shield conductor of coaxial cable,
Contains 1% by mass to 20% by mass of Ag with the balance being Cu and impurities,
Conductivity is 82% IACS or higher,
Tensile strength is 800MPa or more,
A Cu-Ag alloy wire characterized by a wire diameter of 0.05 mm or less.
前記Cu-Ag合金線の表面にメッキ層を具えており、
前記メッキ層は、Ag,Ag合金,Sn及びSn合金から選択される1種以上からなることを特徴とする請求項1に記載のCu-Ag合金線。
It has a plating layer on the surface of the Cu-Ag alloy wire,
2. The Cu—Ag alloy wire according to claim 1, wherein the plating layer is made of at least one selected from Ag, Ag alloy, Sn, and Sn alloy.
中心から順に、中心導体と、絶縁層と、シールド導体とを具える同軸ケーブルであって、
前記シールド導体は、前記絶縁層の外周に、複数の極細線を巻回することで構成されており、
前記極細線は、請求項1又は2に記載のCu-Ag合金線であることを特徴とする同軸ケーブル。
A coaxial cable comprising, in order from the center, a central conductor, an insulating layer, and a shield conductor,
The shield conductor is configured by winding a plurality of fine wires around the outer periphery of the insulating layer,
3. The coaxial cable according to claim 1, wherein the extra fine wire is a Cu—Ag alloy wire according to claim 1 or 2.
同軸ケーブルのシールド導体に利用されるCu-Ag合金線の製造方法であって、
原料のAg及びCuを溶解した混合溶湯を用いて、鋳造材を作製する鋳造工程と、
前記鋳造材に伸線加工を施して、Agを1質量%以上20質量%以下含有し、残部がCu及び不純物からなり、最終線径が0.05mm以下であるCu-Ag合金線を作製する伸線工程と、
前記最終線径のCu-Ag合金線が得られるまでの途中段階にある伸線材に中間熱処理を施す熱処理工程とを具え、
前記中間熱処理は、
加熱温度を350℃以上550℃以下とし、
前記中間熱処理を施す伸線材の線径と、前記中間熱処理を施した熱処理材に前記最終線径までの伸線加工を施して得られた最終線材の導電率及び引張強さとの関係を予め求めておき、前記最終線径のCu-Ag合金線の導電率が82%IACS以上、引張強さが800MPa以上となるように、前記関係に基づいて、前記最終線径から遡って設定した所定の線径のときに行うことを特徴とするCu-Ag合金線の製造方法。
A method for producing a Cu-Ag alloy wire used for a shield conductor of a coaxial cable,
A casting process for producing a cast material using a mixed molten metal in which Ag and Cu as raw materials are dissolved,
The cast material is drawn to produce a Cu-Ag alloy wire containing Ag in an amount of 1% by mass to 20% by mass, the balance being Cu and impurities, and a final wire diameter of 0.05 mm or less. Wire process,
A heat treatment step of performing an intermediate heat treatment on the wire drawing material in the middle stage until the final wire diameter Cu-Ag alloy wire is obtained,
The intermediate heat treatment
The heating temperature is 350 ° C or higher and 550 ° C or lower,
The relationship between the wire diameter of the drawn wire subjected to the intermediate heat treatment and the conductivity and tensile strength of the final wire obtained by subjecting the heat treated material subjected to the intermediate heat treatment to the wire drawing up to the final wire diameter is obtained in advance. In addition, based on the above relationship, a predetermined value set retrospectively from the final wire diameter so that the conductivity of the Cu-Ag alloy wire having the final wire diameter is 82% IACS or more and the tensile strength is 800 MPa or more. A method for producing a Cu-Ag alloy wire, which is performed at a wire diameter.
JP2010008459A 2010-01-18 2010-01-18 Cu-Ag ALLOY WIRE Pending JP2011146352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008459A JP2011146352A (en) 2010-01-18 2010-01-18 Cu-Ag ALLOY WIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008459A JP2011146352A (en) 2010-01-18 2010-01-18 Cu-Ag ALLOY WIRE

Publications (1)

Publication Number Publication Date
JP2011146352A true JP2011146352A (en) 2011-07-28

Family

ID=44461009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008459A Pending JP2011146352A (en) 2010-01-18 2010-01-18 Cu-Ag ALLOY WIRE

Country Status (1)

Country Link
JP (1) JP2011146352A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146762A1 (en) * 2012-03-29 2013-10-03 大電株式会社 Microcrystal metal conductor and method for manufacturing same
JP2015021138A (en) * 2013-07-16 2015-02-02 住友電気工業株式会社 Method for manufacturing copper-silver alloy wire and copper-silver alloy wire
CN106282651A (en) * 2016-09-18 2017-01-04 上海康成铜业集团有限公司 A kind of copper silver rare-earth alloy superfine wire and production method thereof
WO2017199906A1 (en) * 2016-05-16 2017-11-23 古河電気工業株式会社 Copper alloy wire material
CN108288523A (en) * 2017-01-10 2018-07-17 日立金属株式会社 The manufacturing method of conductor wire, the manufacturing method and cable of conductor wire and casting conductor wire and cable
EP3550044A4 (en) * 2016-12-02 2020-07-22 Furukawa Electric Co., Ltd. Copper alloy wire rod and method for producing copper alloy wire rod
CN112501471A (en) * 2020-12-31 2021-03-16 江西理工大学 Preparation method of high-strength high-conductivity copper-silver alloy wire
CN114645153A (en) * 2022-03-17 2022-06-21 东北大学 High-strength high-conductivity copper-silver alloy wire and preparation method thereof
WO2023238476A1 (en) * 2022-06-08 2023-12-14 Swcc株式会社 Electrical-property-inspection conductor wire and manufacturing method therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146762A1 (en) * 2012-03-29 2013-10-03 大電株式会社 Microcrystal metal conductor and method for manufacturing same
JPWO2013146762A1 (en) * 2012-03-29 2015-12-14 大電株式会社 Microcrystalline metal conductor and method for producing the same
JP2015021138A (en) * 2013-07-16 2015-02-02 住友電気工業株式会社 Method for manufacturing copper-silver alloy wire and copper-silver alloy wire
US10626483B2 (en) 2016-05-16 2020-04-21 Furukawa Electric Co., Ltd. Copper alloy wire rod
WO2017199906A1 (en) * 2016-05-16 2017-11-23 古河電気工業株式会社 Copper alloy wire material
JP6284691B1 (en) * 2016-05-16 2018-02-28 古河電気工業株式会社 Copper alloy wire
CN108368565B (en) * 2016-05-16 2020-07-31 古河电气工业株式会社 Copper alloy wire
CN108368565A (en) * 2016-05-16 2018-08-03 古河电气工业株式会社 Copper series alloy wire rod
KR20180102063A (en) * 2016-05-16 2018-09-14 후루카와 덴키 고교 가부시키가이샤 Copper-based alloy wire
KR102117808B1 (en) 2016-05-16 2020-06-02 후루카와 덴키 고교 가부시키가이샤 Copper alloy wire
CN106282651B (en) * 2016-09-18 2018-07-17 上海康成铜业集团有限公司 A kind of copper silver rare-earth alloy superfine wire and its production method
CN106282651A (en) * 2016-09-18 2017-01-04 上海康成铜业集团有限公司 A kind of copper silver rare-earth alloy superfine wire and production method thereof
EP3550044A4 (en) * 2016-12-02 2020-07-22 Furukawa Electric Co., Ltd. Copper alloy wire rod and method for producing copper alloy wire rod
CN108288523A (en) * 2017-01-10 2018-07-17 日立金属株式会社 The manufacturing method of conductor wire, the manufacturing method and cable of conductor wire and casting conductor wire and cable
CN108288523B (en) * 2017-01-10 2021-05-28 日立金属株式会社 Method for manufacturing conductive wire, cast conductive wire, method for manufacturing cable, and cable
CN112501471A (en) * 2020-12-31 2021-03-16 江西理工大学 Preparation method of high-strength high-conductivity copper-silver alloy wire
CN112501471B (en) * 2020-12-31 2021-12-21 江西理工大学 Preparation method of high-strength high-conductivity copper-silver alloy wire
CN114645153A (en) * 2022-03-17 2022-06-21 东北大学 High-strength high-conductivity copper-silver alloy wire and preparation method thereof
CN114645153B (en) * 2022-03-17 2023-01-24 东北大学 High-strength high-conductivity copper-silver alloy wire and preparation method thereof
WO2023238476A1 (en) * 2022-06-08 2023-12-14 Swcc株式会社 Electrical-property-inspection conductor wire and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2011146352A (en) Cu-Ag ALLOY WIRE
JP3948203B2 (en) Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
JP5778818B2 (en) Aluminum alloy wire
JP5713230B2 (en) Cu-Ag alloy wire and method for producing Cu-Ag alloy wire
JP3941304B2 (en) Super fine copper alloy wire, method for producing the same, and electric wire using the same
JP5751268B2 (en) Copper alloy wire, copper alloy stranded wire, covered wire, and wire with terminal
WO2015064357A1 (en) Copper alloy wire, copper alloy stranded wire, coated electric wire, wire harness and manufacturing method of copper alloy wire
JP5344151B2 (en) Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
KR20170041164A (en) Copper alloy wire, stranded copper alloy wire, coated electric wire, and terminal-equipped electric wire
KR20160100922A (en) Copper alloy wire, twisted copper alloy wire, electric wire, electric wire having terminal attached thereto, and method for producing copper alloy wire
JP2009280860A (en) Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME
JP2009249660A (en) Drawn wire material, stranded wire, coaxial cable and cast material for drawn wire material
JP2007169687A (en) Coaxial cable and method for manufacturing the same, and multiconductor cable using the same
JP5376396B2 (en) Wire conductor for wire harness
JP5344150B2 (en) Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
CN113299421B (en) Copper alloy wire, plated wire, wire and cable
JP5510879B2 (en) Wire conductor and wire
JP5605594B2 (en) Method of manufacturing cast material for wire drawing material, method of manufacturing wire drawing material, method of manufacturing stranded wire, and method of manufacturing coaxial cable
JP6635732B2 (en) Method for manufacturing aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using the same
JP4973437B2 (en) Copper alloy wire, copper alloy twisted wire, coaxial cable, multi-core cable, and copper alloy wire manufacturing method
JP5443744B2 (en) Electric wire conductor manufacturing method and electric wire conductor
JP4501922B2 (en) Cu-Ag alloy wire for coaxial cable
JP6840347B2 (en) Manufacturing method of aluminum alloy wire
JP2013052434A (en) Method for manufacturing copper stock for wire rod