JP2019119929A - Copper alloy wire - Google Patents

Copper alloy wire Download PDF

Info

Publication number
JP2019119929A
JP2019119929A JP2018224641A JP2018224641A JP2019119929A JP 2019119929 A JP2019119929 A JP 2019119929A JP 2018224641 A JP2018224641 A JP 2018224641A JP 2018224641 A JP2018224641 A JP 2018224641A JP 2019119929 A JP2019119929 A JP 2019119929A
Authority
JP
Japan
Prior art keywords
wire
less
heat treatment
conductivity
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018224641A
Other languages
Japanese (ja)
Inventor
佑典 大島
Yusuke Oshima
佑典 大島
中本 稔
Minoru Nakamoto
稔 中本
西川 太一郎
Taichiro Nishikawa
太一郎 西川
和弘 南条
Kazuhiro Nanjo
和弘 南条
明子 井上
Akiko Inoue
明子 井上
鉄也 桑原
Tetsuya Kuwabara
鉄也 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JP2019119929A publication Critical patent/JP2019119929A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

To provide a copper alloy wire that makes it possible to obtain a fine line that has excellent wire drawing properties, low conductivity, and high strength.SOLUTION: A copper alloy wire has a composition composed of a copper-based alloy that contains one additional element selected from the group consisting of Ni, Si, and Al with the balance being Cu and unavoidable impurities, and has a conductivity of 30%IACs or less, a tensile strength of 400 MPa or more and a line diameter of 8 mm or less.SELECTED DRAWING: Figure 1

Description

本開示は、銅合金線に関する。   The present disclosure relates to a copper alloy wire.

自動車のシートヒータの発熱体用導体線には、従来、銀(Ag)を含む銅基合金(以下、Cu−Ag合金と呼ぶ)からなる線材が利用されている(例、特許文献1の背景技術)。特許文献1は、Agを含まない銅合金線として、SnとNiとPとを含む銅基合金(以下、SNP銅合金と呼ぶ)からなる線材を開示する。   Conventionally, a wire made of a copper-based alloy (hereinafter referred to as a Cu-Ag alloy) containing silver (Ag) is used for a conductor wire for a heating element of a seat heater of an automobile (for example, background of Patent Document 1) Technology). Patent Document 1 discloses a wire made of a copper-based alloy containing Sn, Ni, and P (hereinafter, referred to as an SNP copper alloy) as a copper alloy wire not containing Ag.

特開2006−004750号公報JP, 2006-004750, A

導電率が低く、高強度な細線が得られる素材として、伸線加工性に優れるものが望まれている。   What is excellent in wire-drawing processability is desired as a raw material with low conductivity and a high-strength thin wire can be obtained.

例えば、導電率が低い線材は、電気抵抗値が大きいため、通電によって発熱し易い。また、高強度な線材は、着座等によって線材に荷重が加わった場合に破断し難かったり、屈曲して塑性変形し難かったりする。更に、細線は、着座時等で線材に基づく異物感を低減でき、ヒータ付シートの使用感の向上を期待できる。これらのことから、導電率が低く、高強度な細線は、上述のシートヒータ等の発熱体用導体線に好適に利用できるといえる。又は、例えば、高強度な細線は、配索時に引っ張っても破断し難い上に、配索スペースや設置スペースを低減できる。そのため、導電率が低く、高強度な細線は、各種のワイヤーハーネスや産業用ロボット等に備えられる信号線等への利用が期待される。   For example, a wire material having a low conductivity has a large electric resistance value, and thus easily generates heat by energization. In addition, a high strength wire rod is difficult to break when a load is applied to the wire rod by seating or the like, or it is difficult to be bent and plastically deformed. Furthermore, the thin line can reduce the feeling of foreign matter based on the wire at the time of sitting, etc., and an improvement in the feeling of use of the sheet with a heater can be expected. From these things, it can be said that a thin wire having low conductivity and high strength can be suitably used for a conductor wire for a heating element such as the above-mentioned seat heater. Alternatively, for example, a high-strength thin wire is not easily broken even when it is pulled during the installation, and can reduce the installation space and the installation space. Therefore, the thin wire with low conductivity and high strength is expected to be used for signal wires and the like provided in various wire harnesses and industrial robots.

しかし、上述のCu−Ag合金線やSNP銅合金線といった従来の線材は、細線であると、導電率が高くなり易い。導電率を低くするために、AgやSnといった添加元素の濃度を高めると、伸線加工性に劣る。   However, conventional wires such as the above-described Cu—Ag alloy wire and SNP copper alloy wire tend to have high conductivity if they are fine wires. When the concentration of additive elements such as Ag and Sn is increased to lower the conductivity, the wire drawability is poor.

ここで、従来、銅合金線の製造過程において、塑性加工が施された素材に、更に、伸線加工等の塑性加工を施す場合、次の塑性加工前に熱処理を施すことがなされている(例、特許文献1)。上記熱処理によって、先の塑性加工に伴う歪みを除去でき、伸線加工性を高められる。細線を製造する場合にも、伸線加工前や伸線加工途中に熱処理を行って加工歪みを除去すれば、伸線加工性を高められる。しかし、Ag−Cu合金やSNP銅合金はいわゆる析出型合金である。そのため、Ag−Cu合金やSNP銅合金は、熱処理時にAgやSn等の添加元素を含む析出物が析出する。このような熱処理材に伸線加工を施しても、添加元素の析出に伴う導電率の上昇を招く。析出に伴う導電率の上昇を低減するために添加元素の含有量を多くすると、熱処理時に粗大な析出物が形成され易い。この粗大な析出物が割れの起点となって伸線加工時に破断が生じ易くなり、伸線加工性の低下を招く。   Here, conventionally, when plastic working such as wire drawing is further performed on a material subjected to plastic working in the manufacturing process of a copper alloy wire, heat treatment is performed before the next plastic working ( For example, Patent Document 1). By the heat treatment, the strain associated with the previous plastic working can be removed, and wire drawability can be enhanced. Also in the case of producing a thin wire, if the heat treatment is performed before and during the wire drawing process to remove the working distortion, the wire drawing processability can be enhanced. However, Ag-Cu alloy and SNP copper alloy are so-called precipitation type alloys. Therefore, in the Ag—Cu alloy and the SNP copper alloy, precipitates containing additive elements such as Ag and Sn are precipitated at the time of heat treatment. Even if such a heat-treated material is subjected to wire drawing, an increase in conductivity accompanied by the precipitation of the additive element is caused. If the content of the additive element is increased to reduce the increase in conductivity accompanying precipitation, coarse precipitates are likely to be formed during heat treatment. These coarse precipitates become the starting point of cracking, and breakage tends to occur at the time of wire drawing, resulting in deterioration of wire drawing workability.

そこで、本開示は、伸線加工性に優れる上に、導電率が低く、高強度な細線が得られる銅合金線を提供することを目的の一つとする。   Then, this indication makes it an object to provide a copper alloy wire which is excellent in wire drawability, has a low conductivity, and can obtain a high-strength thin wire.

本開示の銅合金線は、
Ni,Si,及びAlからなる群より選択される1種の添加元素を含み、残部がCu及び不可避不純物である銅基合金からなる組成を備え、
導電率が30%IACS以下であり、
引張強さが400MPa以上であり、
線径が8mm以下である。
The copper alloy wire of the present disclosure is
A composition comprising one additive element selected from the group consisting of Ni, Si, and Al, with the balance being Cu and a copper-based alloy as an unavoidable impurity,
Conductivity is less than 30% IACS,
Tensile strength is 400MPa or more,
The wire diameter is 8 mm or less.

本開示の銅合金線は、伸線加工性に優れる上に、導電率が低く、高強度な細線が得られる。   The copper alloy wire of the present disclosure is excellent in wire drawability, and in addition, a thin wire having low conductivity and high strength can be obtained.

図1は、試験例1において、熱処理温度(℃)と、導電率(%IACS)との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the heat treatment temperature (° C.) and the conductivity (% IACS) in Test Example 1. 図2は、試験例1において、熱処理温度(℃)と、引張強さ(MPa)及び破断伸び(%)との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the heat treatment temperature (° C.) and the tensile strength (MPa) and the elongation at break (%) in Test Example 1. 図3は、試験例1において、伸線加工の加工度(−LN(A/A))と、導電率(%IACS)との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the degree of processing of wire drawing (-LN (A / A 0 )) and the conductivity (% IACS) in Test Example 1. 図4は、試験例1において、伸線加工の加工度(−LN(A/A))と、引張強さ(MPa)との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the degree of working of wire drawing (-LN (A / A 0 )) and the tensile strength (MPa) in Test Example 1.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係る銅合金線は、
Ni,Si,及びAlからなる群より選択される1種の添加元素を含み、残部がCu及び不可避不純物である銅基合金からなる組成を備え、
導電率が30%IACS以下であり、
引張強さが400MPa以上であり、
線径が8mm以下である。
[Description of the embodiment of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
(1) A copper alloy wire according to an aspect of the present disclosure is
A composition comprising one additive element selected from the group consisting of Ni, Si, and Al, with the balance being Cu and a copper-based alloy as an unavoidable impurity,
Conductivity is less than 30% IACS,
Tensile strength is 400MPa or more,
The wire diameter is 8 mm or less.

本開示の銅合金線は、導電率及び引張強さが上記範囲を満たすと共に、上述の特定の添加元素を含むという二元の銅基合金からなる。このような本開示の銅合金線は、導電率が低く、高強度である上に、以下に説明するように伸線加工性に優れる。   The copper alloy wire of the present disclosure is made of a binary copper-based alloy in which the conductivity and the tensile strength satisfy the above-described ranges and that the above-described specific additive elements are contained. Such a copper alloy wire of the present disclosure has low conductivity and high strength, and is excellent in wire drawability as described below.

上記の二元の銅基合金はいずれも、上述の特定の範囲を満たす限りにおいて、いわゆる固溶型合金である。そのため、本開示の銅合金線は、伸線加工が施される素材(以下、細線用素材と呼ぶことがある)とし、伸線加工前や伸線加工途中の銅合金材に所定の温度(後述)で熱処理が施されても、添加元素が固溶したままであり実質的に析出しない。この点から、本開示の銅合金線は、伸線加工時に粗大な析出物に起因する断線が実質的に生じず、熱処理後に伸線加工を連続的に施せて伸線加工性に優れる。また、本開示の銅合金線は、引張強さが400MPa以上であるため、所定の温度で熱処理が施されて軟化されても、伸線加工が可能な強度を確保できる。この点からも、本開示の銅合金線は、伸線加工性に優れる。   Any of the above binary copper-based alloys is a so-called solid solution alloy as long as the above-mentioned specific range is satisfied. Therefore, the copper alloy wire of the present disclosure is a material to be subjected to wire drawing (hereinafter, may be referred to as a material for fine wire), and a predetermined temperature (before and during wire drawing) is given to the copper alloy material. Even if the heat treatment is performed in the following), the additive element remains in solid solution and does not substantially precipitate. From this point of view, the copper alloy wire of the present disclosure is substantially free from breakage due to coarse precipitates during wire drawing, and can be continuously subjected to wire drawing after heat treatment, and is excellent in wire drawability. In addition, since the copper alloy wire of the present disclosure has a tensile strength of 400 MPa or more, even if heat treatment is performed at a predetermined temperature to soften the wire, the strength capable of drawing can be ensured. Also from this point, the copper alloy wire of the present disclosure is excellent in wire drawability.

また、上述のように熱処理時に添加元素が実質的に析出しないことで、熱処理の前後で導電率が実質的に変化しない。そのため、熱処理後に伸線加工が施されて得られた最終線径の線材の導電率は30%IACS以下を満たすことができる。加工歪みの導入状態によっては、導電率がより低い場合がある。   Further, as described above, the conductivity does not substantially change before and after the heat treatment because the additive element is not substantially precipitated at the heat treatment. Therefore, the conductivity of the wire with the final wire diameter obtained by performing the wire drawing after the heat treatment can satisfy 30% IACS or less. Depending on the state of introduction of processing strain, the conductivity may be lower.

このように本開示の銅合金線に伸線加工及び適宜熱処理を施すことで、低導電性で高強度な細線を製造できる。従って、本開示の銅合金線は、低導電性で高強度な細線の素材、例えばヒートシータ等の発熱体用導体線や信号線等の素材に好適に利用できる。また、本開示の銅合金線は、伸線加工性に優れるため、上記の低導電性で高強度な細線を生産性よく製造でき、上記細線の量産に寄与する。   By subjecting the copper alloy wire of the present disclosure to wire drawing and appropriate heat treatment as described above, a thin wire with low conductivity and high strength can be manufactured. Therefore, the copper alloy wire of the present disclosure can be suitably used as a material of a thin wire having low conductivity and high strength, for example, a conductor wire for a heating element such as a heat sheeter, a material such as a signal wire. In addition, since the copper alloy wire of the present disclosure is excellent in wire drawability, the above-described low-conductivity and high-strength thin line can be produced with high productivity, and contributes to mass production of the thin line.

(2)本開示の銅合金線の一例として、
前記添加元素及びその含有量が以下のいずれかである形態が挙げられる。
Ni:3.0質量%以上10質量%以下
Si:0.5質量%以上4.0質量%以下
Al:1.4質量%以上8.8質量%以下
(2) As an example of the copper alloy wire of the present disclosure,
An embodiment in which the additive element and the content thereof are any of the following may be mentioned.
Ni: 3.0% by mass or more and 10% by mass or less Si: 0.5% by mass or more and 4.0% by mass or less Al: 1.4% by mass or more and 8.8% by mass or less

上記形態は、添加元素の含有量が上記の範囲を満たす銅基合金を原料に用いることで、導電率が30%IACS以下、かつ引張強さが400MPa以上を満たす銅合金線を製造し易く、製造性に優れる。添加元素の含有量が上記範囲において多いほど、導電率が低く、かつ強度が高い傾向にある。添加元素の含有量が上記範囲の下限を下回ると、導電率が30%IACSを上回り易い。   In the above embodiment, by using a copper-based alloy in which the content of the additive element satisfies the above range as a raw material, a copper alloy wire having a conductivity of 30% IACS or less and a tensile strength of 400 MPa or more can be easily manufactured. Excellent in manufacturability. The higher the content of the additive element in the above range, the lower the conductivity and the higher the strength. If the content of the additive element is below the lower limit of the above range, the conductivity tends to exceed 30% IACS.

(3)本開示の銅合金線の一例として、
破断伸びが0.3%以上5%以下であり、
0.2%耐力が400MPa以上である形態が挙げられる。
(3) As an example of the copper alloy wire of the present disclosure,
Elongation at break is 0.3% or more and 5% or less,
There is a form in which the 0.2% proof stress is 400 MPa or more.

上記形態は、上述のように導電率が低く、引張強さが高いことに加えて、破断伸び及び0.2%耐力が高い。そのため、上記形態が細線用素材であれば、伸線加工時に破断し難く、伸線加工性により優れる。   In addition to the low conductivity and high tensile strength as described above, the above embodiment has high breaking elongation and 0.2% proof stress. Therefore, if the said form is a raw material for fine lines, it will be hard to break at the time of wire-drawing, and it will be excellent by wire-drawing workability.

[本開示の実施形態の詳細]
以下、本開示の実施形態を具体的に説明する。
Details of Embodiments of the Present Disclosure
Hereinafter, embodiments of the present disclosure will be specifically described.

[銅合金線]
(概要)
実施形態の銅合金線は、代表的には導体線の素材や導体線そのものに利用されるものであり、特定の二元の銅基合金からなる。具体的には、実施形態の銅合金線は、Ni(ニッケル),Si(珪素),及びAl(アルミニウム)からなる群より選択される1種の添加元素を含み、残部がCu(銅)及び不可避不純物である銅基合金からなる組成を備える。かつ、実施形態の銅合金線は、導電率が30%IACS以下、引張強さが400MPa以上、線径が8mm以下を満たす。以下、詳細に説明する。
[Copper alloy wire]
(Overview)
The copper alloy wire of the embodiment is typically used as a material of a conductor wire or the conductor wire itself, and is made of a specific binary copper base alloy. Specifically, the copper alloy wire of the embodiment contains one additive element selected from the group consisting of Ni (nickel), Si (silicon), and Al (aluminum), with the balance being Cu (copper) and the like. It has a composition comprising a copper-based alloy which is an unavoidable impurity. In addition, the copper alloy wire of the embodiment has a conductivity of 30% IACS or less, a tensile strength of 400 MPa or more, and a wire diameter of 8 mm or less. The details will be described below.

(組成)
実施形態の銅合金線をなす銅基合金は、Cu−Ni合金、又はCu−Si合金、又はCu−Al合金という二元の銅基合金とする。各銅基合金は、導電率が30%IACS以下、かつ引張強さが400MPa以上を満たす範囲で、添加元素であるNi、又はSi、又はAlを含む。
(composition)
The copper-based alloy forming the copper alloy wire of the embodiment is a binary copper-based alloy called a Cu-Ni alloy, a Cu-Si alloy, or a Cu-Al alloy. Each copper base alloy contains the additive element Ni, Si, or Al in a range where the conductivity is 30% IACS or less and the tensile strength satisfies 400 MPa or more.

Niは、母相のCuに対して全固溶元素である。そのため、Cu−Ni合金は、製造過程で熱処理が施されても、析出物を実質的に生成しない。従って、原料段階で導電率が30%IACS以下となるようにNiの含有量を調整すれば、製造過程から最終線径を有する製品線材に至って、導電率を30%IACS以下にできる。例えば、導電率が30%IACS以下を満たす範囲でNiの含有量を調整し、引張強さが400MPa以上を満たすように伸線加工度や熱処理温度等の製造条件を調整する。こうすることで、Cu−Ni合金からなる実施形態の銅合金線を製造できる。   Ni is a total solid solution element with respect to Cu of the matrix phase. Therefore, the Cu-Ni alloy does not substantially form precipitates even if heat treatment is performed in the manufacturing process. Therefore, if the content of Ni is adjusted so that the conductivity is 30% IACS or less at the raw material stage, the product wire having a final wire diameter from the manufacturing process can be obtained, and the conductivity can be 30% IACS or less. For example, the content of Ni is adjusted in a range where the conductivity satisfies 30% IACS or less, and the production conditions such as the wire drawing degree and the heat treatment temperature are adjusted so that the tensile strength satisfies 400 MPa or more. By doing this, the copper alloy wire of the embodiment made of a Cu-Ni alloy can be manufactured.

Cu−Ni合金からなる実施形態の銅合金線は、成分調整や熱処理条件等の製造条件の調整等を比較的行い易く、製造性に優れる。特に、Cu−Ni合金からなる実施形態の銅合金線を細線用素材とすれば、熱処理条件を調整し易い上に、析出物に起因して導電率が増大したり、断線したりすることが実質的に無い。そのため、この場合、所望の線径の細線を生産性よく製造でき、量産性に優れて好ましい。   The copper alloy wire of the embodiment made of a Cu-Ni alloy is relatively easy to adjust component conditions and adjustment of manufacturing conditions such as heat treatment conditions, and is excellent in manufacturability. In particular, when the copper alloy wire of the embodiment made of a Cu-Ni alloy is used as a material for fine wires, it is easy to adjust the heat treatment conditions, and the conductivity is increased or broken due to the precipitates. There is virtually no. Therefore, in this case, a thin wire with a desired wire diameter can be manufactured with high productivity, and is excellent in mass productivity, which is preferable.

Si,Alは、母相のCuに対して固溶限を有し、所定の温度以下の範囲において固溶状態で存在する元素である。そのため、原料段階で導電率が30%IACS以下となるようにSiの含有量、Alの含有量を調整すると共に、製造過程で熱処理を行う場合には熱処理温度をSi,Alが析出しない温度(後述)とする。例えば、導電率が30%IACS以下を満たす範囲でSiの含有量やAlの含有量を調整し、引張強さが400MPa以上を満たすように伸線加工度や熱処理温度(但し、析出温度未満とする)等の製造条件を調整する。こうすることで、Cu−Si合金、又はCu−Al合金からなる実施形態の銅合金線を製造できる。   Si and Al are elements which have a solid solution limit with respect to Cu of the matrix and exist in a solid solution state in a range of a predetermined temperature or less. Therefore, the Si content and Al content are adjusted so that the conductivity becomes 30% IACS or less at the raw material stage, and the heat treatment temperature is a temperature at which Si and Al do not precipitate when heat treatment is performed in the manufacturing process It will be described later). For example, the Si content and the Al content are adjusted in a range where the conductivity satisfies 30% IACS or less, and the wire drawing degree and the heat treatment temperature (but less than the precipitation temperature) such that the tensile strength satisfies 400 MPa or more Adjust manufacturing conditions such as By doing this, the copper alloy wire of the embodiment made of a Cu-Si alloy or a Cu-Al alloy can be manufactured.

Si,Alは、Niに比較して含有量が少なくても、導電率が低く、引張強さが高くなり易い。この点で、添加元素の含有量の削減を図れる。   Even if the contents of Si and Al are smaller than Ni, the conductivity is low and the tensile strength tends to be high. At this point, the content of the additive element can be reduced.

添加元素の含有量の一例として、以下が挙げられる。
Cu−Ni合金である場合、Niの含有量は3.0質量%以上10%質量以下である。
Cu−Si合金である場合、Siの含有量は0.5質量%以上4.0%質量以下である。
Cu−Al合金である場合、Alの含有量は1.4質量%以上8.8質量%以下である。
The following is mentioned as an example of content of an additional element.
When it is a Cu-Ni alloy, the content of Ni is 3.0% by mass or more and 10% by mass or less.
When it is a Cu-Si alloy, content of Si is 0.5 mass% or more and 4.0 mass% or less.
In the case of a Cu-Al alloy, the content of Al is 1.4% by mass or more and 8.8% by mass or less.

上述の添加元素の含有量の範囲において下限値を満たせば、製造条件等にもよるが、各二元合金からなる銅合金線は、導電率が30%IACS以下、かつ引張強さが400MPa以上を満たし易い。上記範囲で添加元素の含有量が多いほど導電率が低く、強度が高くなり易い。更なる低導電性や高強度を望む場合、添加元素の含有量を例えば以下としてもよい。
Niの含有量:4.0質量%以上、5.0質量%以上、5.1質量%以上、5.3質量%以上、5.5質量%以上、6.0質量%以上、6.5質量%以上
Siの含有量:0.6質量%以上、0.7質量%以上、0.75質量%以上、0.78質量%以上、0.8質量%以上、1.0質量%以上、1.5質量%以上
Alの含有量:1.5質量%以上、2.0質量%以上、2.2質量%以上、2.4質量%以上、2.6質量%以上、3.0質量%以上、3.5質量%以上
If the lower limit is satisfied in the range of the content of the above-mentioned additive elements, the copper alloy wire made of each binary alloy has a conductivity of 30% IACS or less, and a tensile strength of 400 MPa or more, though it depends on manufacturing conditions etc. Easy to meet The higher the content of the additive element in the above range, the lower the conductivity and the higher the strength. When further low conductivity and high strength are desired, the content of the additive element may be, for example, as follows.
Content of Ni: 4.0% by mass or more, 5.0% by mass or more, 5.1% by mass or more, 5.3% by mass or more, 5.5% by mass or more, 6.0% by mass or more, 6.5 Mass% or more Content of Si: 0.6 mass% or more, 0.7 mass% or more, 0.75 mass% or more, 0.78 mass% or more, 0.8 mass% or more, 1.0 mass% or more, 1.5% by mass or more Content of Al: 1.5% by mass or more, 2.0% by mass or more, 2.2% by mass or more, 2.4% by mass or more, 2.6% by mass or more, 3.0% by mass % Or more, 3.5% by mass or more

上述の範囲において上限値を満たせば、導電率が低過ぎず、導体線やその素材に利用し易い。また、強度が高過ぎず、伸線加工性に優れるため、細線用素材に利用し易い。導電率及び引張強さが上述の特定の範囲を満たす限りにおいて、添加元素の含有量を例えば以下のようにより少なくしてもよい。
Niの含有量:9.5質量%以下、更に9.0質量%以下、8.5質量%以下
Siの含有量:3.8質量%以下、更に3.5質量%以下、3.0質量%以下
Alの含有量:8.5質量%以下、更に8.0質量%以下、7.5質量%以下
If the upper limit value is satisfied in the above-mentioned range, the conductivity is not too low, and it is easy to use for a conductor wire and its material. In addition, since the strength is not too high and the wire drawing processability is excellent, it is easy to use as a material for thin lines. As long as the conductivity and the tensile strength satisfy the specific ranges described above, the content of the additive element may be reduced, for example, as follows.
Content of Ni: 9.5% by mass or less, further 9.0% by mass or less, 8.5% by mass or less Content of Si: 3.8% by mass or less, further 3.5% by mass or less, 3.0% by mass % Or less Content of Al: 8.5% by mass or less, further 8.0% by mass or less, 7.5% by mass or less

(線径)
実施形態の銅合金線の線径は8mm以下である。線径が8mm以下であれば、導体線やその素材に利用し易い上に、銅合金線自体も製造し易い。線径は、8mm以下の範囲で用途等に応じて選択できる。線径が小さく細いほど、加工硬化による強度の向上によって、引張強さがより高くなり易い。また、加工歪みの導入によって、導電率がより低い場合があり、低導電性が望まれる線材に好適に利用できる。
(Wire diameter)
The wire diameter of the copper alloy wire of the embodiment is 8 mm or less. If the wire diameter is 8 mm or less, it is easy to use for a conductor wire and its material, and also it is easy to manufacture a copper alloy wire itself. The wire diameter can be selected in the range of 8 mm or less according to the application and the like. As the wire diameter is smaller and thinner, the tensile strength tends to be higher due to the improvement of the strength by work hardening. In addition, the introduction of processing strain may lower the conductivity in some cases, and can be suitably used for a wire material for which low conductivity is desired.

例えば、実施形態の銅合金線を細線用素材や比較的太径の導体線等に利用する場合には、線径を0.3mm以上8mm以下としてもよい。特に、実施形態の銅合金線を細線用素材に利用する場合には、線径がある程度小さいと、最終線径までの伸線加工量を少なくでき、細線の量産性に優れる。例えば、実施形態の銅合金線を、最終線径が0.1mm以下の極細線を製造するための素材とする場合には、線径を3mm以下、更に2.8mm以下、2.5mm以下、1.5mm以下、1.0mm以下としてもよい。又は、例えば、実施形態の銅合金線を比較的細径の導体線等に利用する場合には、線径を0.01mm以上1.0mm以下としてもよい。更に、線径を0.9mm未満、更に0.5mm以下、0.3mm以下としてもよい。線径が1.0mm以下の細線は、発熱体用導体線や信号線等に好適に利用できる。特に、線径が0.01mm以上0.1mm以下、更に0.08mm以下、0.06mm以下の極細線は、自動車のヒートシータ等の発熱体用導体線に好適に利用できる。上記極細線であれば、着座時等の異物感を低減できるからである。又は、上述の極細線は、自動車用ワイヤーハーネス等の信号線に好適に利用できる。上記極細線であれば、配索スペースや設置スペースを良好に低減できるからである。   For example, in the case of using the copper alloy wire of the embodiment for a wire material, a relatively large diameter conductor wire, or the like, the wire diameter may be 0.3 mm or more and 8 mm or less. In particular, when the copper alloy wire of the embodiment is used as a material for fine wires, if the wire diameter is small to some extent, the amount of wire drawing to the final wire diameter can be reduced and the mass productivity of the fine wires is excellent. For example, in the case of using the copper alloy wire of the embodiment as a material for producing an ultrafine wire having a final wire diameter of 0.1 mm or less, the wire diameter is 3 mm or less, further 2.8 mm or less, 2.5 mm or less, It is good also as 1.5 mm or less and 1.0 mm or less. Alternatively, for example, in the case where the copper alloy wire of the embodiment is used for a conductor wire or the like with a relatively small diameter, the wire diameter may be 0.01 mm or more and 1.0 mm or less. Furthermore, the wire diameter may be less than 0.9 mm, and further 0.5 mm or less, 0.3 mm or less. A thin wire having a wire diameter of 1.0 mm or less can be suitably used as a conductor wire for a heating element, a signal wire or the like. In particular, the extremely thin wire having a diameter of 0.01 mm or more and 0.1 mm or less, further 0.08 mm or less, and 0.06 mm or less can be suitably used as a conductor wire for a heating element such as a heat theta of an automobile. If it is the said super-fine wire, it is because a foreign body feeling at the time of seating etc. can be reduced. Or the above-mentioned extra-fine wire can be suitably used for signal wires, such as a wire harness for cars. If it is the said ultra-fine wire, it is because a wiring space and an installation space can be reduced favorably.

(特性)
〈導電率〉
実施形態の銅合金線の導電率は30%IACS以下である。導電率が30%IACS以下である銅合金線は、導電率が低いこと、又は電気抵抗値が高いことが望まれる導体線やその素材等に好適に利用できる。導電率は、30%IACS以下の範囲で用途等に応じて選択できる。例えば、実施形態の銅合金線を発熱体用導体線やその素材に利用する場合には、導電率が低いほど、電気抵抗値を高められる。そのため、導電率は、28%IACS以下、更に25%IACS以下、20%IACS以下、19%IACS以下、18%IACS以下でもよい。
(Characteristic)
<conductivity>
The conductivity of the copper alloy wire of the embodiment is 30% IACS or less. A copper alloy wire having a conductivity of 30% IACS or less can be suitably used for a conductor wire, a material thereof or the like for which a low conductivity or a high electric resistance value is desired. The conductivity can be selected in the range of 30% IACS or less according to the application and the like. For example, when the copper alloy wire of the embodiment is used for a conductor wire for a heating element or a material thereof, the electric resistance value can be increased as the conductivity is lower. Therefore, the conductivity may be 28% IACS or less, further 25% IACS or less, 20% IACS or less, 19% IACS or less, 18% IACS or less.

一方、実施形態の銅合金線を発熱体用導体線や信号線等、又はこれらの素材に利用する場合には、ある程度の導電性が望まれる。そのため、導電率は10%IACS以上、更に12%IACS以上、15%IACS以上でもよい。   On the other hand, when the copper alloy wire of the embodiment is used as a conductor wire for a heating element, a signal wire, or the like, or a material thereof, a certain degree of conductivity is desired. Therefore, the conductivity may be 10% IACS or more, and further 12% IACS or more, 15% IACS or more.

〈引張強さ〉
実施形態の銅合金線の引張強さは400MPa以上である。引張強さが400MPa以上である銅合金線は、強度に優れて破断し難い。また、上記銅合金線は、熱処理が施されて軟化されても、高い引張強さを有し易い。そのため、上記銅合金線は、高強度が望まれる用途等に好適に利用できる。
<Tensile strength>
The tensile strength of the copper alloy wire of the embodiment is 400 MPa or more. A copper alloy wire having a tensile strength of 400 MPa or more is excellent in strength and difficult to break. Further, the copper alloy wire tends to have high tensile strength even if it is softened by heat treatment. Therefore, the said copper alloy wire can be suitably utilized for the use etc. where high strength is desired.

引張強さは、400MPa以上の範囲で線径や用途等に応じて適宜選択できる。実施形態の銅合金線を発熱体用導体線や信号線等の素材に利用する場合には、例えば、線径を2.5mm以上、引張強さを400MPa以上、更に420MPa以上としてもよい。又は、例えば、線径を0.3mm以上2.5mm未満、特に0.3mm以上1.0mm以下、引張強さを500MPa以上、更に550MPa以上としてもよい。このように引張強さが高い銅合金線は、熱処理が施されて軟化されても伸線加工等の塑性加工が可能な強度を有しつつ、上記熱処理によって伸線加工性を高められる。従って、熱処理が施された銅合金線を細線用素材に利用することで、上記導体線等を生産性よく製造できる。   The tensile strength can be appropriately selected in the range of 400 MPa or more according to the wire diameter, the application and the like. When the copper alloy wire of the embodiment is used for a material such as a conductor wire for a heating element or a signal wire, for example, the wire diameter may be 2.5 mm or more, and the tensile strength may be 400 MPa or more, further 420 MPa or more. Alternatively, for example, the wire diameter may be 0.3 mm or more and less than 2.5 mm, particularly 0.3 mm or more and 1.0 mm or less, and the tensile strength may be 500 MPa or more, and further 550 MPa or more. As described above, the copper alloy wire having a high tensile strength can be improved in wire drawability by the heat treatment while having a strength capable of plastic working such as wire drawing even if heat treatment is applied and softened. Therefore, the said conductor wire etc. can be manufactured with sufficient productivity by utilizing the copper alloy wire to which heat processing was performed for the raw material for fine wires.

又は、実施形態の銅合金線を発熱体用導体線や信号線等に利用する場合には、例えば、線径を0.01mm以上0.9mm未満、引張強さを750MPa以上としてもよい。引張強さがこのように高い銅合金線は、疲労限も高く、繰り返しの曲げ等が付与されても破断し難い。そのため、この銅合金線は、ヒートシータのように、荷重の負荷や屈曲等が繰り返し行われる用途に好適に利用できる。又は、この銅合金線は、狭いスペースに配索される自動車用ワイヤーハーネスの信号線や、屈曲等が繰り返し行われるロボット用ワイヤーハーネスの信号線等の用途に好適に利用できる。引張強さが高いほど疲労限も高められる。そのため、上記の用途では、引張強さを780MPa以上、更に800MPa、820MPa以上、830MPa以上としてもよい。   Alternatively, when the copper alloy wire of the embodiment is used for a conductor wire for a heating element, a signal wire or the like, for example, the wire diameter may be 0.01 mm or more and less than 0.9 mm, and the tensile strength may be 750 MPa or more. A copper alloy wire having such a high tensile strength has a high fatigue limit, and is not easily broken even if repeated bending or the like is applied. Therefore, this copper alloy wire can be suitably used for applications such as a heat theta where loading of load, bending and the like are repeated. Alternatively, the copper alloy wire can be suitably used for applications such as a signal wire of a wire harness for an automobile installed in a narrow space, and a signal wire of a wire harness for a robot in which bending or the like is repeatedly performed. The higher the tensile strength, the higher the fatigue limit. Therefore, in the above application, the tensile strength may be 780 MPa or more, and further 800 MPa, 820 MPa or more, 830 MPa or more.

引張強さの上限は特に設けない。例えば、上述の素材用途等では引張強さが1000MPa以下程度であると、剛性が高過ぎず、伸線加工等を施し易いと考えられる。上述の発熱体用導体線やワイヤーハーネスの電線用導体線といった用途等では引張強さが1000MPa以下程度であると、剛性が高過ぎず、屈曲等し易いと考えられる。   There is no particular upper limit of tensile strength. For example, when the tensile strength is about 1000 MPa or less in the above-described material application and the like, the rigidity is not too high, and it is considered that wire drawing or the like is easily performed. In applications such as the above-mentioned conductor wire for heating element and conductor wire for wire harness, if the tensile strength is about 1000 MPa or less, the rigidity is not too high and it is considered that bending or the like is easy.

〈破断伸び〉
実施形態の銅合金線の一例として、破断伸びが0.3%以上5%以下を満たすことが挙げられる。引張強さが上記の範囲を満たすことに加えて、破断伸びが上記の範囲を満たせば、硬過ぎず軟らか過ぎない。そのため、上述の素材用途等では、伸線加工途中に破断し難く、伸線加工を連続して行えて、細線を生産性よく製造できる。上述の発熱体用導体線やワイヤーハーネスの電線用導体線といった用途等では、上述のように荷重の負荷や屈曲等が繰り返し行われても破断し難い。破断の防止の観点から、破断伸びは0.5%以上、0.8%以上、1.0%以上であることが好ましい。上述の導体線の用途等では、破断伸びが2.0%以上であることが好ましい。強度低下の抑制の観点から、破断伸びは4.8%以下、更に4.5%以下、4.0%以下であることが好ましい。
<Breaking elongation>
As an example of the copper alloy wire of the embodiment, it is mentioned that the breaking elongation satisfies 0.3% to 5%. In addition to the tensile strength satisfying the above range, if the breaking elongation satisfies the above range, it is not too hard nor too soft. Therefore, in the above-mentioned material use etc., it is hard to break in the middle of wire-drawing processing, wire-drawing processing can be performed continuously, and a thin wire can be manufactured with sufficient productivity. In applications such as the above-mentioned conductor wire for heating element and conductor wire for electric wire of wire harness, it is hard to break even if load, bending and the like are repeated as described above. From the viewpoint of preventing breakage, the elongation at break is preferably 0.5% or more, 0.8% or more, or 1.0% or more. In the use of the above-mentioned conductor wire etc., it is preferable that breaking elongation is 2.0% or more. From the viewpoint of suppressing the reduction in strength, the breaking elongation is preferably 4.8% or less, more preferably 4.5% or less, and 4.0% or less.

〈0.2%耐力〉
実施形態の銅合金線の一例として、0.2%耐力が400MPa以上を満たすことが挙げられる。引張強さが上記の範囲を満たすことに加えて、0.2%耐力が上記の範囲を満たせば、上述の素材用途等では、細線を生産性よく製造できる。伸線加工途中に破断し難く、伸線加工を連続して行えるからである。上述の発熱体用導体線やワイヤーハーネスの電線用導体線といった用途等では、荷重が加わったり引っ張られたり、屈曲されたり、更にこれらが繰り返されたりしても破断し難い。破断の防止の観点から、0.2%耐力を420MPa以上、更に500MPa以上、520MPa以上としてもよい。上記の導体線の用途等では、0.2%耐力を700MPa以上としてもよい。
<0.2% bearing capacity>
As an example of the copper alloy wire of the embodiment, it is mentioned that 0.2% proof stress satisfies 400 MPa or more. If the 0.2% proof stress satisfies the above range in addition to the tensile strength satisfying the above range, the thin wire can be manufactured with high productivity in the above-described material application and the like. This is because breakage is difficult during wire drawing and wire drawing can be performed continuously. In applications such as the above-mentioned conductor wire for heating element and conductor wire for electric wire of wire harness, it is difficult to break even if a load is applied, pulled or bent, and these are repeated again. From the viewpoint of preventing breakage, the 0.2% proof stress may be set to 420 MPa or more, further 500 MPa or more, and 520 MPa or more. In the application of the above-mentioned conductor wire etc., 0.2% proof stress may be 700 MPa or more.

〈特性等の調整方法〉
上述の線径を調整するには、例えば伸線加工度を調整することが挙げられる。
上述の導電率を調整するには、例えば添加元素の含有量を調整することが挙げられる。
上述の引張強さ、破断伸び、0.2%耐力を調整するには、例えば添加元素の含有量、伸線加工等の塑性加工の加工度、熱処理温度等を調整することが挙げられる。
<Method of adjusting characteristics etc.>
In order to adjust the above-mentioned wire diameter, adjusting a wire-drawing degree is mentioned, for example.
In order to adjust the above-mentioned conductivity, for example, adjusting the content of the additive element can be mentioned.
In order to adjust the above-described tensile strength, elongation at break, and 0.2% proof stress, for example, adjusting the content of additive elements, the working degree of plastic working such as wire drawing, the heat treatment temperature and the like can be mentioned.

(主要な効果)
実施形態の銅合金線は、導電率及び引張強さが特定の範囲を満たすと共に、特定の添加元素を含む二元の銅基合金からなることで、伸線加工性に優れる。そのため、実施形態の銅合金線に伸線加工と適宜熱処理とを施すことで、低導電性で高強度な細線(例、線径0.1mm以下)を生産性よく製造できる。この効果を後述の試験例1で具体的に説明する。
(Main effect)
The copper alloy wire of the embodiment is excellent in wire drawability by being made of a binary copper-based alloy containing a specific additive element while the conductivity and the tensile strength satisfy the specific range. Therefore, a low conductivity and high strength thin wire (for example, a wire diameter of 0.1 mm or less) can be manufactured with high productivity by subjecting the copper alloy wire of the embodiment to wire drawing and appropriate heat treatment. This effect is specifically described in Test Example 1 described later.

[銅合金線の製造方法]
実施形態の銅合金線は、例えば、以下の各工程を備える製造方法によって製造することが挙げられる。
(鋳造工程)Ni,Si,及びAlからなる群より選択される1種の添加元素を含む二元の銅基合金を溶解し、鋳造する工程。
(一次加工工程)鋳造工程で製造した鋳造材に塑性加工を施す工程。
(伸線工程)一次加工工程を経た加工材に伸線加工を施す工程。
(熱処理工程)一次加工工程及び伸線工程の少なくとも一方の工程において塑性加工が施された加工材に熱処理を施す工程。
以下、各工程を説明する。
[Method of manufacturing copper alloy wire]
The copper alloy wire of the embodiment can be produced, for example, by a production method including the following steps.
(Casting step) A step of melting and casting a binary copper-based alloy containing one additional element selected from the group consisting of Ni, Si and Al.
(Primary processing step) A step of plastically processing the cast material produced in the casting step.
(Wire-drawing process) A process of subjecting the processed material that has undergone the primary processing process to wire-drawing.
(Heat treatment step) A step of subjecting a processed material subjected to plastic working in at least one of the primary working step and the wire drawing step to a heat treatment.
Each step will be described below.

(鋳造工程)
原料の二元の銅基合金において添加元素の含有量は、上述のように最終線径の線材における導電率が30%IACS以上及び引張強さが400MPa以上を満たす範囲で調整する。具体的な含有量は上述の(組成)の項を参照するとよい。
(Casting process)
As described above, the content of the additive element in the binary copper base alloy of the raw material is adjusted in such a range that the conductivity in the wire with the final wire diameter is 30% IACS or more and the tensile strength 400 MPa or more. The specific content may be referred to the above (composition) section.

鋳造材の大きさは、線径8mm以下の銅合金線を製造可能な範囲で適宜選択できる。鋳造材の製造には、適宜な鋳造法を利用できる。例えば、横型連続鋳造法やアップキャスト法等の各種の連続鋳造を利用すれば、長尺な鋳造材が得られる。長尺な連続鋳造材を利用すれば、長尺な伸線材を製造し易い。鋳型にはカーボン等の銅や添加元素と反応しないものが利用できる。   The size of the cast material can be appropriately selected as long as a copper alloy wire having a wire diameter of 8 mm or less can be manufactured. Any suitable casting method can be used to manufacture the casting material. For example, a long cast material can be obtained by using various continuous casting methods such as a horizontal continuous casting method and an up-casting method. If a long continuous casting material is used, it is easy to manufacture a long wire drawing material. As a mold, one that does not react with copper such as carbon or an additive element can be used.

(一次加工工程)
この工程での塑性加工は、伸線加工以外の塑性加工が挙げられる。例えばスウェージ加工、圧延加工等の各種の加工が挙げられる。鋳造材をそのまま用いずに一次加工を施すことで、鋳造欠陥を低減したり、一次加工後の加工材を伸線加工に適した形状に変更したりすること等ができる。
(Primary processing process)
The plastic working in this process includes plastic working other than wire drawing. For example, various processes such as swaging process and rolling process can be mentioned. By performing the primary processing without using the cast material as it is, casting defects can be reduced, or the processed material after the primary processing can be changed to a shape suitable for wire drawing.

(伸線工程)
この工程では、上述の一次加工工程を経た加工材、又は一次加工工程と後述の熱処理工程とを経た加工材に、所定の線径となるまで伸線加工を施す。伸線加工は代表的には冷間加工を利用できる。具体的な線径は上述の(線径)の項を参照するとよい。
(Wire drawing process)
In this process, wire drawing is performed on the processed material that has undergone the above-described primary processing process, or the processed material that has undergone the primary processing process and a heat treatment process described later, to a predetermined wire diameter. As for wire drawing, cold working can typically be used. For the specific wire diameter, refer to the above (wire diameter) section.

(熱処理工程)
この工程では、代表的には、以下の目的で熱処理を行う。
〈熱処理の目的〉一次加工工程や伸線工程で行われる塑性加工によって加工材に導入された歪を除去し、熱処理後の伸線加工を行い易くする。
この熱処理によって、加工材又は伸線途中の中間材は軟化されて伸線加工性を高められ、断線し難くなることで連続的に伸線加工を行える。従って、上記熱処理を行うことで、所定の線径の伸線材を生産性よく製造できる。
(Heat treatment process)
In this process, heat treatment is typically performed for the following purpose.
<Purpose of heat treatment> The strain introduced into the processed material by the plastic working performed in the primary working process and the wire drawing process is removed to make it easy to carry out the wire drawing after the heat treatment.
By this heat treatment, the processed material or the intermediate material in the middle of wire drawing is softened to improve wire drawability, and wire breakage becomes difficult, whereby wire drawing can be performed continuously. Therefore, the drawn wire material of a predetermined wire diameter can be manufactured with high productivity by performing the above-mentioned heat treatment.

熱処理温度は、原料とする銅基合金の組成と、熱処理以降の伸線加工の加工度と、所定の線径での引張強さとを考慮して選択するとよい。   The heat treatment temperature may be selected in consideration of the composition of the copper base alloy used as the raw material, the degree of processing of wire drawing after the heat treatment, and the tensile strength at a predetermined wire diameter.

例えば、Cu−Ni合金であれば、上述のように実質的に析出物を生成しないため、所定の線径での引張強さが400MPa以上、線径によっては500MPa以上、更に750MPa以上を満たす範囲で熱処理温度を選択するとよい。Cu−Ni合金の場合の熱処理温度は例えば400℃以上600℃以下が挙げられる(後述の試験例1も参照)。   For example, in the case of a Cu-Ni alloy, since substantially no precipitates are generated as described above, the tensile strength at a predetermined wire diameter is 400 MPa or more, and depending on the wire diameter, 500 MPa or more, further 750 MPa or more The heat treatment temperature may be selected in The heat treatment temperature in the case of a Cu-Ni alloy is, for example, 400 ° C. or more and 600 ° C. or less (see also Test Example 1 described later).

Cu−Si合金又はCu−Al合金の熱処理温度は、析出物が生じない範囲で選択する。即ち、上述の組成、加工度、引張強さに加えて、固溶限を考慮して選択する。Siの含有量が4.0質量%以下の場合の熱処理温度は例えば200℃以上400℃以下が挙げられる。Alの含有量が8.8質量%以下の場合の熱処理温度は例えば200℃以上300℃以下が挙げられる。   The heat treatment temperature of a Cu-Si alloy or a Cu-Al alloy is selected in the range which a precipitate does not produce. That is, in addition to the above-mentioned composition, processing degree, and tensile strength, it selects in consideration of the solid solution limit. The heat treatment temperature when the content of Si is 4.0% by mass or less may be, for example, 200 ° C. or more and 400 ° C. or less. The heat treatment temperature when the content of Al is 8.8% by mass or less is, for example, 200 ° C. or more and 300 ° C. or less.

保持時間は、銅基合金の組成や熱処理温度にもよるが、例えば0.5時間以上10時間以下、更に1時間以上8時間以下が挙げられる。   The holding time depends on the composition of the copper base alloy and the heat treatment temperature, but may be, for example, 0.5 hours to 10 hours, and further 1 hour to 8 hours.

熱処理は、所定の線径での引張強さが400MPa以上、線径によっては500MPa以上、更に750MPa以上を満たす範囲で、一次加工工程以降、任意の時期に任意の回数行える。熱処理後の加工度と引張強さとの関係を予め求めておき(後述の試験例1も参照)、その関係データを利用すると、低導電性であり、所定の線径及び所定の引張強さを満たす線材を製造し易い。   The heat treatment can be performed any number of times after the primary processing step within a range that satisfies a tensile strength at a predetermined wire diameter of 400 MPa or more, and depending on the wire diameter, 500 MPa or more, and further 750 MPa or more. The relationship between the degree of processing after heat treatment and the tensile strength is determined in advance (see also the test example 1 described later), and the data is used to find that the conductivity is low and a predetermined wire diameter and a predetermined tensile strength are obtained. Easy to manufacture filling wire.

[試験例1]
二元の銅基合金からなる銅合金線を種々の条件で作製し、導電率、引張強さ等の特性を調べた。
[Test Example 1]
Copper alloy wires composed of binary copper base alloys were prepared under various conditions, and the characteristics such as conductivity and tensile strength were examined.

(試験概要)
この試験では、二元の銅基合金として、Niの含有量が7.0質量%であるCu−Ni合金を用いた。上記Cu−Ni合金を用いて、線径が2.6mmφである伸線材を作製した。この線径2.6mmφの伸線材について熱処理を施していない状態での特性と、種々の温度で熱処理を施した状態での特性とを調べた。結果を表1、図1及び図2に示す。
(Examination outline)
In this test, a Cu-Ni alloy having a Ni content of 7.0% by mass was used as a binary copper base alloy. The drawn wire material whose wire diameter is 2.6 mm diameter was produced using the said Cu-Ni alloy. The properties of the drawn wire with a wire diameter of 2.6 mmφ in the non-heat-treated state and the properties in the heat-treated state at various temperatures were examined. The results are shown in Table 1, FIG. 1 and FIG.

また、この試験では、上述の線径が2.6mmφの伸線材に熱処理を施さないまま、又は熱処理を施してから、更に伸線加工(冷間)を施して、最終線径が0.1mmの伸線材を作製した。2.6mmφから0.1mmφまでの各線径の線材について、特性を調べた。結果を表2、図3及び図4に示す。   Further, in this test, the above-mentioned wire drawing material having a wire diameter of 2.6 mmφ is not subjected to heat treatment or is subjected to heat treatment, and further subjected to wire drawing (cold) to have a final wire diameter of 0.1 mm. Was produced. The characteristics of the wire of each diameter from 2.6 mmφ to 0.1 mmφ were examined. The results are shown in Table 2, FIG. 3 and FIG.

ここでは、特性として、導電率(%IACS)、引張強さ(MPa)、破断伸び(%)、0.2%耐力(MPa)を調べた。
導電率(%IACS)は、ブリッジ法によって測定した。
引張強さ(MPa)、0.2%耐力(MPa)、破断伸び(%)は、JIS Z 2241(金属材料引張試験方法、1998)に準拠して、汎用の引張試験機を用いて測定した。
Here, as properties, conductivity (% IACS), tensile strength (MPa), elongation at break (%), 0.2% proof stress (MPa) were examined.
The conductivity (% IACS) was measured by the bridge method.
The tensile strength (MPa), 0.2% proof stress (MPa), and elongation at break (%) were measured using a general purpose tensile tester in accordance with JIS Z 2241 (Metal material tensile test method, 1998). .

(試料No.1〜No.5)
線径2.6mmφの線材は、以下のように作製した。
原料となるCu−Ni合金を溶解して鋳造し、線径が30mmφの鋳造材を作製した。
上記鋳造材を切削して、線径が24mmφの棒材とし、更にスウェージ加工(一次加工)を施して、線径が10.4mmφの加工材を作製した。
上記線径10.4mmφの加工材に線径が8.3mmφとなるまで伸線加工(冷間)を施した。この伸線加工後に第一の熱処理を施した。第一の熱処理後に更に伸線加工(冷間)を施して、線径が2.6mmφの伸線材を得た。第一の熱処理条件は、熱処理温度を550℃、保持時間を3時間とした。
(Sample No. 1 to No. 5)
A wire with a wire diameter of 2.6 mmφ was produced as follows.
The raw material Cu-Ni alloy was melt | dissolved and casted, and the wire diameter produced the cast material of 30 mm diameter.
The cast material was cut into a bar having a wire diameter of 24 mmφ, and swaging (primary processing) was performed to prepare a processed material having a wire diameter of 10.4 mmφ.
Wire drawing (cold) was performed on the processed material having a wire diameter of 10.4 mmφ until the wire diameter became 8.3 mmφ. The first heat treatment was performed after the wire drawing. After the first heat treatment, wire drawing (cold) was further performed to obtain a wire drawn material having a wire diameter of 2.6 mmφ. The first heat treatment conditions were a heat treatment temperature of 550 ° C. and a holding time of 3 hours.

試料No.1は、上述の線径2.6mmφの伸線材であり、以下の第二の熱処理を施していない線材である。第二の熱処理を施していない試料No.1は、室温RT(ここでは25℃)で各特性を調べた。   Sample No. 1 is a wire drawing material of the above-mentioned wire diameter of 2.6 mm diameter, and is a wire which has not given the following 2nd heat treatment. Sample No. 2 not subjected to the second heat treatment. 1 examined each characteristic at room temperature RT (here 25 degreeC).

試料No.2〜No.5は、線径2.6mmφの伸線材に第二の熱処理を施した熱処理材である。第二の熱処理条件は、熱処理温度を400℃、450℃、500℃、550℃のいずれかとし、保持時間を3時間とした。第二の熱処理を施した試料No.2〜No.5は、第二の熱処理後、室温RTで各特性を調べた。   Sample No. 2-No. 5 is a heat treatment material obtained by subjecting a drawn wire with a wire diameter of 2.6 mmφ to a second heat treatment. The second heat treatment conditions were such that the heat treatment temperature was any of 400 ° C., 450 ° C., 500 ° C., and 550 ° C., and the holding time was 3 hours. Sample No. 2 subjected to the second heat treatment. 2-No. 5 examined each characteristic at room temperature RT after 2nd heat processing.

図1は、熱処理温度(℃)と導電率(%IACS)との関係を示すグラフである。このグラフにおいて横軸は熱処理温度(℃)、縦軸は導電率(%IACS)を示す。
図2は、熱処理温度(℃)と、引張強さ(MPa)及び破断伸び(%)との関係を示すグラフである。このグラフにおいて横軸は熱処理温度(℃)、左縦軸は引張強さ(MPa)、右縦軸は破断伸び(%)を示す。
FIG. 1 is a graph showing the relationship between the heat treatment temperature (° C.) and the conductivity (% IACS). In this graph, the horizontal axis indicates the heat treatment temperature (° C.), and the vertical axis indicates the conductivity (% IACS).
FIG. 2 is a graph showing the relationship between the heat treatment temperature (° C.) and the tensile strength (MPa) and the elongation at break (%). In this graph, the horizontal axis indicates the heat treatment temperature (° C.), the left vertical axis indicates the tensile strength (MPa), and the right vertical axis indicates the breaking elongation (%).

(試料No.11〜No.15)
試料No.12〜No.15は、上述の線径2.6mmφの伸線材(試料No.1)に対して、以下の第三の熱処理を施さずに、表2に示す線径(mm)となるまで伸線加工を施した線材である。試料No.11は、上述の試料No.1と同じ試料である。試料No.15は、最終線径0.1mmφの伸線材である。各試料について、表2に示す各線径(mm)のときに室温RTで各特性を調べた。
(Sample No. 11 to No. 15)
Sample No. 12 to No. No.15 does not perform the following 3rd heat processing with respect to the above-mentioned wire drawing material (sample No. 1) of wire diameter 2.6mmφ, and performs wire drawing until it becomes the wire diameter (mm) shown in Table 2 It is the applied wire. Sample No. 11 is the sample No. 1 mentioned above. It is the same sample as 1. Sample No. 15 is a drawn wire with a final wire diameter of 0.1 mmφ. For each sample, each characteristic was examined at room temperature RT at each wire diameter (mm) shown in Table 2.

(試料No.21〜No.25)
試料No.22〜No.25は、上述の線径2.6mmφの伸線材(試料No.1)に対して、以下の第三の熱処理を施した後に、表2に示す線径(mm)となるまで伸線加工を施した線材である。第三の熱処理条件は、熱処理温度を550℃、保持時間を3時間とした。試料No.21は、上述の試料No.5と同じ試料である。試料No.25は、最終線径0.1mmφの伸線材である。各試料について、表2に示す各線径(mm)のときに室温RTで各特性を調べた。
(Sample No. 21 to No. 25)
Sample No. 22-No. No. 25 was subjected to the following third heat treatment on the above-described wire drawing material having a wire diameter of 2.6 mmφ (sample No. 1), and then wire drawing to a wire diameter (mm) shown in Table 2 It is the applied wire. The third heat treatment conditions were a heat treatment temperature of 550 ° C. and a holding time of 3 hours. Sample No. 21 is the sample No. 1 mentioned above. It is the same sample as 5. Sample No. The numeral 25 is a drawn wire with a final wire diameter of 0.1 mmφ. For each sample, each characteristic was examined at room temperature RT at each wire diameter (mm) shown in Table 2.

図3は、加工度(−LN(A/A))と導電率(%IACS)との関係を示すグラフである。このグラフにおいて横軸は加工度(−LN(A/A))、縦軸は導電率(%IACS)を示す。
図4は、加工度(−LN(A/A))と引張強さ(MPa)との関係を示すグラフである。このグラフにおいて横軸は加工度(−LN(A/A))、縦軸は引張強さ(MPa)を示す。
FIG. 3 is a graph showing the relationship between the degree of processing (−LN (A / A 0 )) and the conductivity (% IACS). In this graph, the horizontal axis indicates the degree of processing (-LN (A / A 0 )), and the vertical axis indicates the conductivity (% IACS).
FIG. 4 is a graph showing the relationship between the degree of processing (−LN (A / A 0 )) and the tensile strength (MPa). In this graph, the horizontal axis indicates the degree of processing (-LN (A / A 0 )), and the vertical axis indicates the tensile strength (MPa).

加工度(−LN(A/A))とは、熱処理後の線材の断面積をAとし、各線径の線材の断面積Aとし、これらの断面積の比(A/A)を用いた自然対数(−log(A/A))で表される値である。 With the degree of processing (-LN (A / A 0 )), the cross-sectional area of the wire after heat treatment is A 0, and the cross-sectional area A of the wire of each wire diameter is a ratio of these cross-sectional areas (A / A 0 ) It is a value represented by the natural logarithm (-log e (A / A 0 )) used.

試料No.11〜No.15において断面積Aは、第一の熱処理が施された8.3mmφの線材の断面積である。各試料の断面積Aは、線径2.6mm、0.91mm、0.45mm、0.2mm、0.1mmの線材の断面積である。
試料No.22〜No.25において断面積Aは、第三の熱処理が施された2.6mmφの線材の断面積である。各試料の断面積Aは、線径0.91mm、0.45mm、0.2mm、0.1mmの線材の断面積である。
試料No.21の断面積A及びAは等しいため、加工度は0である。
Sample No. 11 to No. Sectional area A 0 in 15 is a cross-sectional area of the wire of 8.3mmφ to a first heat treatment is performed. The cross-sectional area A of each sample is a cross-sectional area of a wire diameter of 2.6 mm, 0.91 mm, 0.45 mm, 0.2 mm, and 0.1 mm.
Sample No. 22-No. Sectional area A 0 in 25 is a cross-sectional area of the wire of 2.6mmφ to a third heat treatment is performed. The cross-sectional area A of each sample is a cross-sectional area of a wire with a wire diameter of 0.91 mm, 0.45 mm, 0.2 mm, and 0.1 mm.
Sample No. Since the cross-sectional areas A 0 and A of 21 are equal, the degree of processing is zero.

Figure 2019119929
Figure 2019119929

表1及び図1に示すように、二元の銅基合金であるCu−Ni合金からなる試料No.1〜No.5の銅合金線はいずれも、導電率が30%IACS以下を満たすことが分かる。ここではいずれの試料の導電率も概ね等しく、25%IACS以下、更に20%IACS以下、18%IACS以下である。このことから、このCu−Ni合金からなる銅合金線は、熱処理の有無、熱処理温度によらず、導電率が30%IACS以下を満たすことができるといえる。   As shown in Table 1 and FIG. 1, sample No. 1 comprising a Cu—Ni alloy which is a binary copper base alloy. 1 to No. It is understood that all the copper alloy wires of No. 5 satisfy the conductivity of 30% IACS or less. Here, the conductivity of any sample is almost equal, 25% IACS or less, 20% IACS or less, 18% IACS or less. From this, it can be said that the copper alloy wire made of this Cu-Ni alloy can have a conductivity of 30% IACS or less regardless of the presence or absence of heat treatment and the heat treatment temperature.

表1及び図2に示すように、第二の熱処理を施すことで、引張強さが250MPa以上とある程度高い値を有しつつ、破断伸びが40%以上と高く、伸びが大きく向上することが分かる。この理由の一つとして、熱処理時に析出物が生じず、特に粗大な析出物に起因する破断が実質的に生じないためと考えられる。また、このCu−Ni合金からなる銅合金線は、高い伸びを有しつつ、更なる伸線加工が可能な強度を有する。そのため、上記Cu−Ni合金からなる銅合金線は、400℃以上の温度で熱処理を行えば伸線加工性を高められるといえる。   As shown in Table 1 and FIG. 2, by performing the second heat treatment, while the tensile strength has a relatively high value of 250 MPa or more, the breaking elongation is as high as 40% or more, and the elongation is greatly improved. I understand. One of the reasons for this is considered to be that no precipitates are generated during the heat treatment, and in particular, breakage substantially does not occur due to coarse precipitates. Moreover, the copper alloy wire which consists of this Cu-Ni alloy has the intensity | strength which the further wire-drawing processing is possible, having high elongation. Therefore, it can be said that the copper alloy wire made of the above-described Cu-Ni alloy can be improved in wire drawability if heat treatment is performed at a temperature of 400 ° C. or higher.

第二の熱処理を施していない試料No.1では、引張強さが400MPa以上であり、かつ破断伸びが0.5%以上である。このような試料No.1の伸線材も、後述するように更なる伸線加工が可能であり、例えば線径が0.1mm程度の細線用素材に利用できることが分かる。   Sample No. 2 not subjected to the second heat treatment. In No. 1, the tensile strength is 400 MPa or more, and the breaking elongation is 0.5% or more. Such sample nos. It is understood that the wire drawing material of No. 1 can also be subjected to further wire drawing processing as described later, and can be used, for example, as a material for fine wire having a wire diameter of about 0.1 mm.

Figure 2019119929
Figure 2019119929

表2及び図3に示すように、上述のCu−Ni合金からなる試料No.11〜No.15、No.21〜No.25の銅合金線はいずれも、導電率が30%IACS以下を満たすことが分かる。ここでは、試料No.11〜No.15の導電率は25%IACS以下、更に20%IACS以下、17.5%IACS以下であり、概ね等しい。試料No.21〜No.25の導電率は更に低く、17.0%IACS以下であり、概ね等しい。このことから、上記Cu−Ni合金からなる銅合金線は、熱処理の有無、伸線加工の加工度によらず、導電率が30%IACS以下を満たすことができるといえる。この理由の一つとして、Niを含む二元の銅基合金は、全固溶型合金であり、Niが製造過程等で析出しないためと考えられる。   As shown in Table 2 and FIG. 11 to No. 15, No. 21 to No. It can be seen that all the 25 copper alloy wires satisfy the conductivity of 30% IACS or less. Here, sample no. 11 to No. The conductivity of 15 is 25% IACS or less, further 20% IACS or less, 17.5% IACS or less, and is approximately equal. Sample No. 21 to No. The conductivity of 25 is even lower, less than 17.0% IACS, and approximately equal. From this, it can be said that the copper alloy wire made of the Cu-Ni alloy can satisfy the conductivity of 30% IACS or less regardless of the presence or absence of heat treatment and the degree of processing of wire drawing. As one of the reasons for this, it is considered that the binary copper base alloy containing Ni is a full solid solution type alloy and Ni does not precipitate in the manufacturing process or the like.

表2及び図4に示すように、上述の試料No.1の伸線材に第三の熱処理を施すことなく更に伸線加工を行うことで、導電率が30%IACS以下を満たしつつ、引張強さがより高い線材が得られることが分かる(試料No.12〜No.15)。例えば、線径が0.91mmである試料No.12の引張強さは500MPa以上である。また、この試料No.12では、0.2%耐力が500MPa以上、破断伸びが1.0%以上であり、耐力及び伸びにも優れることが分かる。線径がより小さい試料No.13〜No.15では、引張強さ、0.2%耐力、破断伸びが試料No.11よりも高く、機械的特性により優れることが分かる。例えば、線径が0.1mmである試料No.15では、引張強さが800MPa以上、0.2%耐力が750MPa以上、破断伸びが2.0%以上である。このように細径で低導電性であり、高強度で伸びにも優れる試料No.15は、発熱体用導体線や信号線等に好適に利用できると期待される。なお、加工度の増大に伴って破断伸びが優れる理由の一つとして寸法効果の影響が考えられる。   As shown in Table 2 and FIG. It can be seen that a wire with a higher tensile strength can be obtained while further satisfying 30% IACS or less of electrical conductivity by further performing wire drawing without subjecting the wire drawing material of No. 1 to the third heat treatment (Sample No. 12 to No. 15). For example, sample No. 1 whose wire diameter is 0.91 mm. The tensile strength of 12 is 500 MPa or more. Also, for this sample no. In No. 12, the 0.2% proof stress is 500 MPa or more, the breaking elongation is 1.0% or more, and it is understood that the proof stress and the elongation are also excellent. Sample No. with smaller wire diameter. 13-No. In No. 15, tensile strength, 0.2% proof stress, elongation at break are sample No. It is understood that it is higher than 11 and excellent in mechanical characteristics. For example, sample No. 1 having a wire diameter of 0.1 mm. In No. 15, the tensile strength is 800 MPa or more, the 0.2% proof stress is 750 MPa or more, and the breaking elongation is 2.0% or more. As described above, sample No. 1 which is small in diameter, low in conductivity, high in strength and excellent in elongation. It is expected that No. 15 can be suitably used for conductor lines for heating elements, signal lines and the like. In addition, the influence of the dimensional effect can be considered as one of the reasons for the elongation at break to be excellent as the degree of processing increases.

表2及び図4に示すように、上述の試料No.1の伸線材に第三の熱処理を施した後に更に伸線加工を行った場合(試料No.22〜No.25)も、試料No.12〜No.15と同様に、導電率が30%IACS以下を満たしつつ、引張強さが上記伸線加工前より高い線材が得られることが分かる。また、試料No.22〜No.25は、試料No.12〜No.15と同様に、耐力及び伸びにも優れることが分かる。例えば、線径が0.1mmである試料No.25では、引張強さが750MPa以上、0.2%耐力が650MPa以上、破断伸びが1.5%以上である。   As shown in Table 2 and FIG. The sample No. 22 was also subjected to the third heat treatment to the wire drawing material of No. 1 and further subjected to wire drawing (sample No. 22 to No. 25). 12 to No. Similar to No. 15, it can be seen that while the conductivity satisfies 30% IACS or less, a wire having a tensile strength higher than that before the wire drawing can be obtained. Also, for sample no. 22-No. No. 25 is a sample No. 12 to No. Similar to No. 15, it is understood that the yield strength and the elongation are also excellent. For example, sample No. 1 having a wire diameter of 0.1 mm. In No. 25, the tensile strength is 750 MPa or more, the 0.2% proof stress is 650 MPa or more, and the breaking elongation is 1.5% or more.

更に、図4のグラフから以下のことが分かる。
(1)加工度と引張強さとは概ね比例の関係にある。
(2)熱処理を施していない試料No.11〜No.15のグラフと、熱処理を施した試料No.21〜No.25のグラフとが概ね平行する。
このことから、試料No.15の加工度を参照すれば、熱処理後に加工度が7以上である伸線加工を行えば、引張強さは750MPa以上の銅合金線が得られるといえる。同様に、熱処理後に加工度が8以上である伸線加工を行えば、引張強さが800MPa以上、更に820MPa以上の銅合金線が得られるといえる。
Further, the following can be understood from the graph of FIG.
(1) The degree of processing and tensile strength are generally in proportion.
(2) Sample No. 1 not subjected to heat treatment. 11 to No. The graph of No. 15 and the heat treated sample No. 21 to No. The 25 graphs are almost parallel.
From this, sample No. Referring to the degree of processing of 15, it can be said that a copper alloy wire having a tensile strength of 750 MPa or more can be obtained by performing drawing processing with a degree of processing of 7 or more after heat treatment. Similarly, it can be said that a copper alloy wire having a tensile strength of 800 MPa or more, further 820 MPa or more, can be obtained by performing a wire drawing process with a working degree of 8 or more after heat treatment.

例えば線径2.6mmよりも太径のときに熱処理を施した後、加工度が8以上となるように伸線加工を行えば、以下の線材が得られるといえる。
〈例1〉線径が0.1mm以上、更に0.3mm以上であって、引張強さが750MPa以上、更に800MPa以上である線材。
〈例2〉線径が0.1mm未満、例えば0.08mm以下、更に0.05mm以下であって、引張強さが800MPa以上、更に820MPa以上である線材。この線材の0.2%耐力及び破断伸びは、試料No.25より高いと期待される。
For example, it can be said that the following wire material can be obtained by performing a heat treatment after the heat treatment when the wire diameter is larger than 2.6 mm and performing wire drawing so that the degree of processing is 8 or more.
<Example 1> A wire having a wire diameter of 0.1 mm or more, further 0.3 mm or more, and a tensile strength of 750 MPa or more, further 800 MPa or more.
<Example 2> A wire having a wire diameter of less than 0.1 mm, for example, 0.08 mm or less, further 0.05 mm or less, and a tensile strength of 800 MPa or more, further 820 MPa or more. The 0.2% proof stress and elongation at break of this wire are as described in sample No. Expected to be higher than 25.

線径が0.1mmである試料No.25についても、更に伸線加工を施せば、線径が0.1mm未満、例えば0.08mm以下であって、引張強さが835MPa超である線材が得られるといえる。これらのより細径(例、0.05mm以下)で低導電性であり、高強度で伸びにも優れる線材は、発熱体用導体線(特にヒートシータ)や信号線等に好適に利用できると期待される。   Sample No. 1 having a wire diameter of 0.1 mm. As for No. 25, if wire drawing is further performed, it can be said that a wire having a wire diameter of less than 0.1 mm, for example, 0.08 mm or less and a tensile strength of more than 835 MPa can be obtained. It is expected that these smaller diameter wires (eg, 0.05 mm or less), low conductivity, high strength and excellent in elongation can be suitably used for conductor wires for heating elements (especially heat theta) and signal wires, etc. Be done.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
例えば、試験例1において、Niの含有量、線径、熱処理温度等を変更できる。また、Niに代えて、Siを含む二元の銅基合金又はAlを含む二元の銅基合金としてもよい。
The present invention is not limited to these exemplifications, but is shown by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
For example, in Test Example 1, the content of Ni, the wire diameter, the heat treatment temperature, and the like can be changed. Further, instead of Ni, a binary copper-based alloy containing Si or a binary copper-based alloy containing Al may be used.

Claims (3)

Ni,Si,及びAlからなる群より選択される1種の添加元素を含み、残部がCu及び不可避不純物である銅基合金からなる組成を備え、
導電率が30%IACS以下であり、
引張強さが400MPa以上であり、
線径が8mm以下である、
銅合金線。
A composition comprising one additive element selected from the group consisting of Ni, Si, and Al, with the balance being Cu and a copper-based alloy as an unavoidable impurity,
Conductivity is less than 30% IACS,
Tensile strength is 400MPa or more,
Wire diameter is 8 mm or less
Copper alloy wire.
前記添加元素及びその含有量が以下のいずれかである請求項1に記載の銅合金線。
Ni:3.0質量%以上10質量%以下
Si:0.5質量%以上4.0質量%以下
Al:1.4質量%以上8.8質量%以下
The copper alloy wire according to claim 1, wherein the additive element and the content thereof are any of the following.
Ni: 3.0% by mass or more and 10% by mass or less Si: 0.5% by mass or more and 4.0% by mass or less Al: 1.4% by mass or more and 8.8% by mass or less
破断伸びが0.3%以上5%以下であり、
0.2%耐力が400MPa以上である請求項1又は請求項2に記載の銅合金線。
Elongation at break is 0.3% or more and 5% or less,
The copper alloy wire according to claim 1 or 2, wherein 0.2% proof stress is 400 MPa or more.
JP2018224641A 2017-12-27 2018-11-30 Copper alloy wire Pending JP2019119929A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017252070 2017-12-27
JP2017252070 2017-12-27

Publications (1)

Publication Number Publication Date
JP2019119929A true JP2019119929A (en) 2019-07-22

Family

ID=67306136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018224641A Pending JP2019119929A (en) 2017-12-27 2018-11-30 Copper alloy wire

Country Status (1)

Country Link
JP (1) JP2019119929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680626A (en) * 2020-12-09 2021-04-20 爱发科电子材料(苏州)有限公司 Preparation process of copper-aluminum-silicon alloy target material for integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129045A (en) * 1995-11-02 1997-05-16 Hitachi Cable Ltd Nbti grouped multicore superconductive stranded cable
JPH09273688A (en) * 1996-04-04 1997-10-21 Tokyo Gas Co Ltd Electric fusion coupling
JP2013229112A (en) * 2012-04-24 2013-11-07 Totoku Electric Co Ltd Double core parallel lead wire and thermistor with lead wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129045A (en) * 1995-11-02 1997-05-16 Hitachi Cable Ltd Nbti grouped multicore superconductive stranded cable
JPH09273688A (en) * 1996-04-04 1997-10-21 Tokyo Gas Co Ltd Electric fusion coupling
JP2013229112A (en) * 2012-04-24 2013-11-07 Totoku Electric Co Ltd Double core parallel lead wire and thermistor with lead wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680626A (en) * 2020-12-09 2021-04-20 爱发科电子材料(苏州)有限公司 Preparation process of copper-aluminum-silicon alloy target material for integrated circuit

Similar Documents

Publication Publication Date Title
JP4118832B2 (en) Copper alloy and manufacturing method thereof
JP5051927B2 (en) High-strength, high-conductivity copper alloy tube, rod, wire
CN106164306B (en) Copper alloy wire and method for producing same
JP6573172B2 (en) Copper alloy wire, copper alloy twisted wire, electric wire, electric wire with terminal, and method for producing copper alloy wire
JP4177266B2 (en) High strength and high conductivity copper alloy wire with excellent stress relaxation resistance
KR101851473B1 (en) Copper alloy wire material and method for producing same
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP5590990B2 (en) Copper alloy
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5426936B2 (en) Copper alloy manufacturing method and copper alloy
JP2013256717A (en) High-strength high-conductive copper rod and wire material
JP2014058737A (en) Cu-Al-Mn BASED ALLOY MATERIAL EXHIBITING STABLE SUPERELASTICITY AND ITS MANUFACTURING METHOD
CN107849670B (en) Method for manufacturing aluminum alloy wire and aluminum alloy wire
TW201224171A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP5652741B2 (en) Copper wire and method for producing the same
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
JP2019119929A (en) Copper alloy wire
JP2010285688A (en) Al ALLOY AND Al ALLOY CONDUCTIVE WIRE
JP6591212B2 (en) Copper alloy material
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP4831969B2 (en) Brass material manufacturing method and brass material
JP6091912B2 (en) Copper-chromium alloy wire and method for non-heating production of high ductility, high-strength copper-chromium alloy wire
JP6175932B2 (en) Drawing copper wire, drawing copper wire manufacturing method and cable
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221024