JPH09273688A - Electric fusion coupling - Google Patents

Electric fusion coupling

Info

Publication number
JPH09273688A
JPH09273688A JP8082180A JP8218096A JPH09273688A JP H09273688 A JPH09273688 A JP H09273688A JP 8082180 A JP8082180 A JP 8082180A JP 8218096 A JP8218096 A JP 8218096A JP H09273688 A JPH09273688 A JP H09273688A
Authority
JP
Japan
Prior art keywords
heating wire
resistance
joint
temperature coefficient
electric fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8082180A
Other languages
Japanese (ja)
Other versions
JP3647005B2 (en
Inventor
Takeshi Kato
健 加藤
Nobuhiro Nishikata
伸広 西方
Takaro Futami
高郎 二見
Takashi Anamizu
孝 穴水
Takarou Yoshii
崇朗 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Techno Material Co Ltd
Tokyo Gas Co Ltd
Proterial Ltd
Original Assignee
Furukawa Electric Co Ltd
Hitachi Metals Ltd
Furukawa Techno Material Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Hitachi Metals Ltd, Furukawa Techno Material Co Ltd, Tokyo Gas Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP08218096A priority Critical patent/JP3647005B2/en
Publication of JPH09273688A publication Critical patent/JPH09273688A/en
Application granted granted Critical
Publication of JP3647005B2 publication Critical patent/JP3647005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a defect in which a heating wire is partially bent and short-circuited as it is buckled in an electric fusion coupling. SOLUTION: In an electric fusion coupling in which a heating wire 3 is buried in the inner periphery of a coupling main body 1 made of a thermoplastic resin, the volume resistivity ρ of the heating wire 3 is set in the range of 0.20 to 0.30 (μΩm), and the temperature coefficient of resistance α is set in the range of 40 to 70×10<-5> (/ deg.C). For instance, the heating wire is made of a copper-silicon alloy containing Si in the range of 3.0 to 4.2%, Mn of 0.2% or less, the residual of impurities and Cu in the weight ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスや給水給湯配
管などに用いられる電気融着継手(以下、単に継手とい
うことがある。)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric fusion joint (hereinafter sometimes simply referred to as a joint) used for gas or hot water supply hot water supply piping.

【0002】[0002]

【従来の技術】従来、ポリエチレンやポリブテン等の熱
可塑性樹脂からなる継手本体の受口内周部に螺旋状の電
熱線を巻設し、この受口部に同じく熱可塑性樹脂からな
るパイプを挿入し、前記電熱線に通電してこれを加熱さ
せることによって両者を電気融着接続するいわゆる電気
融着継手(エレクトロフュージョン継手)は良く知られ
ている。この継手では、継手の品種口径毎に融着に必要
な単位面積当たりの投入エネルギー(KJ/cm2)、い
わゆる融着エネルギー(En)が個々決められており、こ
れの調節は、従来のコントローラが定電圧制御であった
ことから、En=V2t/Rのうち電熱線の抵抗値R
を、具体的には線径を変化させて調節していた。また従
来、電熱線はJISC2532において規格された銅ニ
ッケル(Cu−Ni)合金が使用され、図2(b)線に示
すように体積抵抗率ρは0.10〜0.49(μΩm)、抵抗温
度係数αは10〜70×10-5(/℃)の範囲にあるものであ
った。
2. Description of the Related Art Conventionally, a spiral heating wire is wound around the inner peripheral portion of a joint body made of a thermoplastic resin such as polyethylene or polybutene, and a pipe made of the same thermoplastic resin is inserted into the joint portion. A so-called electric fusion joint (electrofusion joint) is well known in which the electric heating wire is energized to heat the electric heating wire to electrically connect the two. In this joint, the input energy (KJ / cm 2 ) per unit area required for fusion, so-called fusion energy (En), is individually determined for each type of joint, and adjustment of this is done by the conventional controller. Was the constant voltage control, the resistance value R of the heating wire in En = V 2 t / R
Was specifically adjusted by changing the wire diameter. Further, conventionally, a copper nickel (Cu-Ni) alloy standardized in JISC2532 is used for the heating wire, the volume resistivity ρ is 0.10 to 0.49 (μΩm), and the temperature coefficient of resistance α is as shown in the line (b) of FIG. It was in the range of 10 to 70 × 10 −5 (/ ° C.).

【0003】[0003]

【発明が解決しようとする課題】ところで、この継手を
用いて冬場(およそ0°C以下の環境)に融着作業を行
うと極くまれではあるが、電熱線の一部が座屈したよう
に屈折し、隣り同士の線が短絡する不良が発生すること
があった。
By the way, it is extremely rare to perform welding work in the winter (environment of about 0 ° C. or less) using this joint, but it seems that a part of the heating wire is buckled. There was a problem that the wire was refracted to the side and a short circuit occurred between adjacent lines.

【0004】このメカニズムを考えると、まず通電が開
始されると電熱線は加熱され線膨張により伸びようとす
る。ところが樹脂側の加熱速度は遅く、ここで電熱線の
線膨張は樹脂によって遮られてしまう。これが原因で電
熱線には圧縮応力が生じる。特に、冬場では初期の樹脂
温度はかなり低く、他方、電熱線側の温度は、環境温度
にさほど関係なく上昇していくため樹脂と電熱線間の温
度差が大きくなり、結果的に圧縮応力も多く溜め込む形
となる。その後、電熱線周辺の樹脂が軟化を始める頃に
なると電熱線は開放され線膨張を始めるが、これと共に
溜った圧縮応力も開放される。
Considering this mechanism, first, when energization is started, the heating wire is heated and tends to expand due to linear expansion. However, the heating rate on the resin side is slow, and the linear expansion of the heating wire is blocked by the resin here. This causes compressive stress in the heating wire. Especially in winter, the initial resin temperature is quite low, while the temperature on the heating wire side rises irrespective of the environmental temperature, so the temperature difference between the resin and the heating wire becomes large, and as a result, the compressive stress also increases. It becomes a form that accumulates a lot. After that, when the resin around the heating wire begins to soften, the heating wire is released and starts linear expansion, but the accumulated compressive stress is also released.

【0005】一担開放されると線膨張と圧縮応力が急激
に電熱線に働き屈折に至ってしまう。これは口径が大き
いサイズになる程、樹脂の熱容量が大きくなるので開放
されるまでの時間も長いことから生じやすい。また樹脂
と電熱線間の温度差はワイヤーゾーンの中央部より両端
部のコールドゾーンに近い入口側及び奥側の方が大きい
からここに溜まる圧縮応力が大きくこの部分が基点とな
って屈折部が助長されていると考えられる。
When it is fully released, linear expansion and compressive stress act rapidly on the heating wire, leading to refraction. This is likely to occur because the larger the size of the bore, the larger the heat capacity of the resin and the longer it takes to open the resin. In addition, the temperature difference between the resin and the heating wire is larger on the inlet side and the back side near the cold zones at both ends than at the central part of the wire zone, so the compressive stress accumulated here is large and this part becomes the base point and the refraction part It is thought to have been encouraged.

【0006】以上のことから、上記屈折を原因とする電
熱線の短絡不良を解決する一つの手段として、圧縮応力
に耐えられる強度を持った太さの電熱線を使用すること
が考えられる。しかし、既存の電気融着システムでは、
上記したように融着エネルギーが決められているため、
抵抗値を変えずに線径を太くする必要があり、その為に
は体積抵抗率を見直す必要がある。この値から逆に電熱
線の抵抗温度係数も設定される。ここで、継手の融着エ
ネルギーはEn=V2t/R…で表わされるが、抵抗
値Rは抵抗温度係数αとの関係においてRT=Rt(1+
α(T−t))…であるため、αは融着エネルギーに影
響することになる。従いむやみに線径を太くして対屈折
強度を上げても融着エネルギーの変化を招くだけで融着
性能を悪化させるだけであった。
From the above, as one means for solving the short-circuiting defect of the heating wire due to the refraction, it is conceivable to use a heating wire having a thickness strong enough to withstand compressive stress. However, in the existing electric fusion system,
Since the fusion energy is determined as described above,
It is necessary to increase the wire diameter without changing the resistance value, and for that purpose it is necessary to review the volume resistivity. On the contrary, the resistance temperature coefficient of the heating wire is also set from this value. Here, the fusion energy of the joint is expressed by En = V 2 t / R ..., but the resistance value R is R T = R t (1+) in relation to the temperature coefficient of resistance α.
Since α (T−t)) ..., α will affect the fusion energy. Therefore, even if the wire diameter is unnecessarily increased to increase the refraction strength, the fusion energy is changed and the fusion performance is deteriorated.

【0007】本発明は、このような問題を解決するもの
で適切な融着エネルギーを保って、かつ屈折による電熱
線の短絡などが生じることのない電気融着継手を提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide an electric fusion splicing joint which maintains an appropriate fusion energy and does not cause a short circuit of a heating wire due to refraction. .

【0008】[0008]

【課題を解決するための手段】本発明は、熱可塑性樹脂
からなる継手本体の内周部に電熱線を埋設した電気融着
継手において、前記電熱線は、その体積抵抗率ρを0.20
〜0.30(μΩm)となし、かつこのときの抵抗温度係数α
を40〜70×10-5(/℃)とした電気融着継手である。尚、
ここで上記体積抵抗率ρが0.23〜0.25(μΩm)で、抵抗
温度係数αが43〜46×10-5(/℃)程度の図2(c)の範
囲であっても良い。
According to the present invention, there is provided an electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a joint body made of a thermoplastic resin, wherein the heating wire has a volume resistivity ρ of 0.20.
~ 0.30 (μΩm) and temperature coefficient of resistance α at this time
Is 40 to 70 × 10 −5 (/ ° C.). still,
Here, the volume resistivity ρ may be in the range of 0.23 to 0.25 (μΩm) and the temperature coefficient of resistance α may be in the range of about 43 to 46 × 10 −5 (/ ° C.) as shown in FIG. 2C.

【0009】また、本発明は、熱可塑性樹脂からなる継
手本体の内周部に電熱線を埋設した電気融着継手におい
て、前記電熱線は、重量比でSi:3.0〜4.2%、Mn:
0.2%以下、残部は不純物を除きCuからなる銅シリコ
ン(Cu−Si)合金とした電気融着継手である。尚、
Siの添加量は、4.2wt%以上となると加工性が劣化
し、巻線作業がしずらくなることから、望ましくは3.5
〜3.9wt%とする。また、Mnは多すぎると抵抗温度
係数が下がることから、0.2wt%以下が望ましい。
Further, according to the present invention, in an electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a joint body made of a thermoplastic resin, the heating wire has a weight ratio of Si: 3.0 to 4.2% and Mn:
0.2% or less, and the balance is an electric fusion-bonded joint made of Cu-silicon (Cu-Si) alloy excluding impurities. still,
If the amount of Si added is 4.2 wt% or more, the workability deteriorates and the winding work becomes difficult.
~ 3.9wt%. Further, if Mn is too much, the temperature coefficient of resistance decreases, so 0.2 wt% or less is desirable.

【0010】一般に、銅ニッケル合金では抵抗温度係数
αと体積抵抗率ρは反比例の関係にある。すなわち導体
抵抗値を守りながら線径を太くする為には体積抵抗率ρ
を大きくする必要があり、そうすると抵抗温度係数αは
小さくなる。よって、上記、式より融着エネルギー
としては過剰気味になる。そこで、本発明のうち前者で
は、線径を太くしある程度の強度を確保した体積抵抗率
の範囲でありながら、抵抗温度係数は比較的高いという
図2(a)の範囲の物理的特性を有する電熱線としたこと
で上記問題を解決したものである。
Generally, in a copper-nickel alloy, the temperature coefficient of resistance α and the volume resistivity ρ are in inverse proportion. That is, in order to increase the wire diameter while maintaining the conductor resistance value, the volume resistivity ρ
Needs to be increased, and then the temperature coefficient of resistance α becomes small. Therefore, from the above formula, the fusion energy tends to be excessive. Therefore, the former of the present invention has a physical characteristic in the range of FIG. 2 (a) that the temperature coefficient of resistance is relatively high, while it is in the range of volume resistivity in which the wire diameter is thick and a certain degree of strength is secured. The above problem is solved by using a heating wire.

【0011】また後者は、電熱線の材質に着目したもの
で、まずCuにNi、Si、Co、Mn、Znをこれら
の総添加量で38.25wt%以下を添加したとき、体積抵
抗率ρと抵抗温度係数αの関係が比例あるいは反比例の
関係から逸脱することを見い出し、特に上記元素の中か
ら最適の元素と添加量を発明したものである。
The latter is focused on the material of the heating wire. First, when Cu, Ni, Si, Co, Mn, and Zn are added in a total amount of 38.25 wt% or less, the volume resistivity ρ is It was found that the relationship of the temperature coefficient of resistance α deviates from the proportional or inversely proportional relationship, and in particular, the inventors invented the optimum element and addition amount from the above elements.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施例を図面を
参照して説明する。図1は、本発明の電気融着継手の一
例を示す半断面図で、パイプを接続するためのソケット
継手を例示している。この継手は、受口5の内周部に電
熱線3を螺旋状に埋設した電気融着接続部材Aとこれと
同じ接続部材Aの端面6を突合せ接合、即ちバット融着
してソケット継手として完成したものである。しかしこ
れに限ることなく一体的に射出成形で継手本体を形成し
ても良いし、また、この継手を構成する樹脂層を3層以
上としてそれぞれの層を射出成形で積層した多層成形体
としてもよい。他に継手の形状としてはT形あるいはL
形の中間部材を間に介し、これに上記と同様の電気融着
接続部材をバット融着して、チー継手やエルボ継手とし
たものもある。また、内周面に渦巻き状に電熱線を埋設
したサドル形の継手もあり、これらの全てについて本発
明を使用することが出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a half cross-sectional view showing an example of the electric fusion joint of the present invention, and illustrates a socket joint for connecting pipes. This joint is a socket joint in which the electric fusion splicing member A in which the heating wire 3 is embedded in a spiral shape in the inner peripheral portion of the receiving port 5 and the end face 6 of the same splicing member A are butt-joined, that is, butt-fused. It has been completed. However, the present invention is not limited to this, and the joint body may be integrally formed by injection molding, or a multilayer molded body in which three or more resin layers forming this joint are laminated by injection molding. Good. Other joint shapes are T or L
In some cases, a Q-joint or an elbow joint is obtained by butt-fusing an electric fusion-bonding member similar to the one described above with an intermediate member having a shape interposed therebetween. There is also a saddle type joint in which a heating wire is embedded in a spiral shape on the inner peripheral surface, and the present invention can be applied to all of these.

【0013】さて、図中1の継手本体主要部の寸法はJI
S K 6775の基本寸法にそって形成されており、3は電熱
線で両端のコネクターピン2,2を通じて電流を流すこ
とによって発熱するようになっている。この電熱線3
は、インナー部材1aに設けられた螺旋溝に沿って巻
き、この両端にコネクターピン2,2を接続して台座等
に埋設し、この上にアウター部材1bを射出成形してそ
の内周部に埋設したものである。電熱線3が巻かれたワ
イヤーゾーンHは融着部となり、その両端にコールドゾ
ーンcが、特に奥側はかなりの厚肉部に形成されてい
る。4はセンサを挿入する凹穴で、例えば熱電対のよう
な温度センサを挿入装着し、通電後の融着界面近傍の温
度を連続的に測定し、これが予め設定した温度になった
とき通電を停止するようにしている。5は受口部で接続
しようとするパイプの外径よりも若干大きな径となって
いる。7はフランジ状の厚肉部を全周にわたって形成し
強度補強を図ったものである。
Now, the size of the main part of the joint body 1 in the figure is JI
It is formed according to the basic dimensions of SK 6775, and 3 is a heating wire which is designed to generate heat by passing an electric current through the connector pins 2 and 2 at both ends. This heating wire 3
Is wound along a spiral groove provided on the inner member 1a, is connected to both ends thereof with connector pins 2 and 2 and is embedded in a pedestal or the like. It is buried. The wire zone H around which the heating wire 3 is wound serves as a fusion-bonded portion, and cold zones c are formed at both ends of the fusion zone, particularly on the back side in a considerably thick portion. Reference numeral 4 denotes a recessed hole for inserting a sensor, for example, a temperature sensor such as a thermocouple is inserted and mounted, and the temperature near the fusion interface after energization is continuously measured. When the temperature reaches a preset temperature, energization is performed. I'm trying to stop. The diameter 5 is slightly larger than the outer diameter of the pipe to be connected at the receiving portion. Reference numeral 7 is a flange-shaped thick portion formed over the entire circumference to strengthen the strength.

【0014】さて、先ず本実施例の口径150mmソケット
継手の場合、必要とする強度を考えると、座屈応力σk
は、次式で表される。 σk=nπ2E/(l/k)2 n:端末条件係数;両端固定として4。 l:一巻分の電熱線長さ(mm);約530mm k:断面二次半径;1/4d(mm)で表わされる。 E:線材のヤング率;11000〜13000(Kgf/mm2) ここで、σkはおよそ0.30Kgf/mm2程度は必要であること
から、上式から電熱線の線径φdを求めるとφd=1.6
〜1.7mmとなる。実際、従来同サイズの継手ではφd=
1.3mm(体積抵抗率ρ=0.15(μΩm)、抵抗温度係数α
=50×10-5(/℃))しかなく強度的に不十分であった。
このことからすればφdが1.6mmもあれば強度的には十
分である。ところが、従来の銅ニッケル線では、線径を
1.6mmと太くした上に体積抵抗率ρは0.20〜0.30(μΩ
m)の範囲とすると、抵抗温度係数αは20×10-5(/℃)
と急激に落ち込む。よって、通電の進行に伴い電熱線の
温度が上昇しても、RT=Rt(1+α(T−t))で表さ
れるRTは線径を太くする前のものより減少しているか
ら、融着エネルギーEn=V2t/Rの抵抗値Rも同様
に減少する。よって、通電時間tが同じであれば当然融
着エネルギーの過剰という結果となる。
First, in the case of the socket joint having a diameter of 150 mm according to the present embodiment, considering the required strength, the buckling stress σ k
Is represented by the following equation. σ k = nπ 2 E / (l / k) 2 n: Terminal condition coefficient; 4 at both ends fixed. l: length of heating wire for one winding (mm); about 530 mm k: secondary radius of cross section; expressed by 1/4 d (mm). E: Young's modulus of wire; 11000 to 13000 (Kgf / mm 2 ) Here, since σ k needs to be about 0.30 Kgf / mm 2 , it is necessary to calculate the wire diameter φd of the heating wire from the above equation: φd = 1.6
It will be ~ 1.7 mm. In fact, φd =
1.3 mm (volume resistivity ρ = 0.15 (μΩm), temperature coefficient of resistance α
= 50 × 10 −5 (/ ° C.)) and the strength was insufficient.
From this, if φd is 1.6 mm, the strength is sufficient. However, in the conventional copper-nickel wire, the wire diameter is
In addition to being thickened to 1.6 mm, the volume resistivity ρ is 0.20 to 0.30 (μΩ
m), the temperature coefficient of resistance α is 20 × 10 -5 (/ ℃)
And suddenly falls. Therefore, even if the temperature of the heating wire rises with the progress of energization, R T represented by R T = R t (1 + α (T−t)) is smaller than that before increasing the wire diameter. Therefore, the resistance value R of the fusion energy En = V 2 t / R also decreases. Therefore, if the energization time t is the same, the fusion energy will naturally be excessive.

【0015】ところが、本発明ではφd=1.6mmとし体
積抵抗率ρは0.20〜0.30(μΩm)の範囲としても、抵抗
温度係数αは40〜70×10-5(/℃)と比較的高い値を確保
するようになした。従って、通電の進行に伴い電熱線の
温度が上昇しても、融着エネルギーEn=V2t/Rの
抵抗値Rの減少幅は少なく保たれるから、結局、融着エ
ネルギーの過剰が抑制される。以上の物理的特性値を持
った電熱線は、例えば以下に説明する銅シリコン合金に
よって得られるが、これに限定されることなく上記特性
を有する電熱線素材であればよい。また、場合によって
は線状でなくてもシート状や網目状のものであっても良
い。
However, in the present invention, even if φd = 1.6 mm and the volume resistivity ρ is in the range of 0.20 to 0.30 (μΩm), the temperature coefficient of resistance α is 40 to 70 × 10 −5 (/ ° C.), which is a relatively high value. Came to secure. Therefore, even if the temperature of the heating wire rises with the progress of energization, the decrease amount of the resistance value R of the fusion energy En = V 2 t / R is kept small, so that the excess fusion energy is suppressed. To be done. The heating wire having the above physical characteristic values is obtained by, for example, a copper silicon alloy described below, but the heating wire material having the above characteristics is not limited to this and may be any heating wire material. Further, in some cases, it may not be linear but may be sheet-like or mesh-like.

【0016】次ぎに上記電熱線の一実施例について説明
する。先ず、電熱線に用いられるNi基合金に関して、
Si、Fe、Al、Co、Mn及びMgを総添加量で6.
15%以下添加したときの体積抵抗率ρと抵抗温度係数α
の特性調査を行った。その結果、図3、4に示すように
総添加量を横軸として体積抵抗率ρ(■で図示)は比例
関係に、抵抗温度係数α(●で図示)は反比例の関係に
ある。即ち、体積抵抗率ρと抵抗温度係数αは反比例の
関係にしか取れないことが分かった。
Next, an embodiment of the heating wire will be described. First, regarding the Ni-based alloy used for the heating wire,
Total amount of Si, Fe, Al, Co, Mn and Mg added 6.
Volume resistivity ρ and resistance temperature coefficient α when added below 15%
We conducted a characteristic survey. As a result, as shown in FIGS. 3 and 4, the volume resistivity ρ (illustrated by ▪) is proportional to the total addition amount on the horizontal axis, and the temperature coefficient of resistance α (illustrated by ●) is inversely proportional. That is, it was found that the volume resistivity ρ and the temperature coefficient of resistance α can only be in an inversely proportional relationship.

【0017】次ぎに、Cu基合金に関して、Ni、S
i、Co、Mn及びSnを総添加量で38.25%以下添加
したときの体積抵抗率ρと抵抗温度係数αの特性調査を
同様に行った。その結果、図5、6に示すように総添加
量を横軸として体積抵抗率ρ(■で図示)と抵抗温度係
数α(●で図示)と共に相関関係が無いことが判明し
た。即ち、このことは添加元素及び添加量を選択するこ
とで体積抵抗率ρと抵抗温度係数αの値を調節できるこ
とを意味している。以上のことより、本発明ではCu基
合金を用いることが適していることを見出した。
Next, regarding Cu-based alloys, Ni, S
The characteristics of the volume resistivity ρ and the temperature coefficient of resistance α when i, Co, Mn and Sn were added in a total amount of 38.25% or less were similarly investigated. As a result, as shown in FIGS. 5 and 6, it was found that there is no correlation with the volume resistivity ρ (illustrated by ▪) and the temperature coefficient of resistance α (illustrated by ●) with the total addition amount as the horizontal axis. That is, this means that the values of the volume resistivity ρ and the temperature coefficient of resistance α can be adjusted by selecting the additive element and the additive amount. From the above, it was found that it is suitable to use the Cu-based alloy in the present invention.

【0018】そこで一例として、Cu金属中にSiの添
加量を重量比で約2.0〜4.5%変化させ、体積抵抗率ρと
抵抗温度係数αの特性調査を行った。その結果、図7に
示すようにSi添加量を横軸として体積抵抗率ρ(■で
図示)は比例関係に、また抵抗温度係数α(●で図示)
は反比例関係にあるが、体積抵抗率ρ=0.20〜0.30(μ
Ωm)でかつ抵抗温度係数α=40〜70×10-5(/℃)の条
件を満たす範囲があることが分かった。即ち、概ねSi
が3.0〜4.2wt%の銅シリコン合金である。尚、その後
の試験でMnは抵抗温度係数αに影響を与える添加物で
あるが、0.2wt%以下であれば抵抗温度係数αの低下
が抑えられる。また、Siの添加量は、3.0以下では特
性に及ぼす影響は少なく、他方4.2wt%以上となると
加工性が劣化することが分かった。以上のことより、S
iは3.5〜3.9wt%、Mnは0.2wt%以下が望まし
く、このときおよそ体積抵抗率ρが0.23〜0.25(μΩm)
で、抵抗温度係数αは43〜46×10-5(/℃)程度の特性が
得られ実用に供することができた。しかしながら本発明
は、これに限定されるものではなく上記成分範囲内でそ
れぞれに適した特性を求めることが出来る。
Therefore, as an example, the amount of Si added to the Cu metal was changed by about 2.0 to 4.5% by weight, and the characteristics of the volume resistivity ρ and the temperature coefficient of resistance α were investigated. As a result, as shown in FIG. 7, the volume resistivity ρ (illustrated by ▪) is proportional to the horizontal axis of the Si addition amount, and the temperature coefficient of resistance α (illustrated by ●).
Is inversely proportional, but volume resistivity ρ = 0.20 to 0.30 (μ
Ωm) and the temperature coefficient of resistance α = 40 to 70 × 10 −5 (/ ° C.) was found to be satisfied in some ranges. That is, Si
Is a copper-silicon alloy of 3.0 to 4.2 wt%. In the subsequent test, Mn is an additive that affects the temperature coefficient of resistance α, but if it is 0.2 wt% or less, the decrease of the temperature coefficient of resistance α can be suppressed. It was also found that if the amount of Si added is 3.0 or less, it has little effect on the characteristics, while if it is 4.2 wt% or more, the workability deteriorates. From the above, S
It is desirable that i is 3.5 to 3.9 wt% and Mn is 0.2 wt% or less. At this time, the volume resistivity ρ is approximately 0.23 to 0.25 (μΩm).
Thus, the temperature coefficient of resistance α was about 43 to 46 × 10 −5 (/ ° C.), which was practically applicable. However, the present invention is not limited to this, and it is possible to obtain properties suitable for each within the above-mentioned range of components.

【0019】この電熱線を用いて上述した口径150mmの
ソケット継手を試作し、−40°Cの環境下で電気融着作
業を行った。その結果、全数(n=50)に対し短絡不
良等の異常は認められず正常融着が出来た。
Using this heating wire, a socket joint having the above-mentioned diameter of 150 mm was prototyped, and the electric fusion work was carried out in an environment of -40 ° C. As a result, no abnormalities such as a short circuit defect were found for all (n = 50), and normal fusion was possible.

【0020】[0020]

【発明の効果】本発明によれば、冬場に発生していた電
熱線の座屈を原因とする電熱線の短絡不良がなくなり、
より信頼性の高い電気融着継手を提供することができ
た。
According to the present invention, the short circuit failure of the heating wire caused by the buckling of the heating wire which occurred in winter is eliminated,
It was possible to provide a more reliable electric fusion joint.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す電気融着継手の一部
断面図である。
FIG. 1 is a partial cross-sectional view of an electric fusion joint showing an embodiment of the present invention.

【図2】 本発明の電気融着継手に用いた電熱線の体積
抵抗率ρと抵抗温度係数αの特性値範囲(a)、(C)及び従
来の電熱線の特性値(b)を示すグラフである。
FIG. 2 shows characteristic value ranges (a) and (C) of the volume resistivity ρ and the resistance temperature coefficient α of the heating wire used for the electric fusion joint of the present invention and the characteristic value (b) of the conventional heating wire. It is a graph.

【図3】 試作実験に関し、Ni中への添加元素量と体
積抵抗率ρの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the additive element amount in Ni and the volume resistivity ρ in the trial experiment.

【図4】 試作実験に関し、Ni中への添加元素量と抵
抗温度係数αの関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of an additive element in Ni and the temperature coefficient of resistance α in a trial experiment.

【図5】 試作実験に関し、Cu中への添加元素量と体
積抵抗率ρの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the additive element amount in Cu and the volume resistivity ρ in the trial experiment.

【図6】 試作実験に関し、CuNi中への添加元素量
と抵抗温度係数αの関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the additive element amount in CuNi and the temperature coefficient of resistance α in the trial experiment.

【図7】 本発明の電気融着継手に用いた電熱線である
銅シリコン合金に関し、Si添加量と体積抵抗率ρと抵
抗温度係数αの関係を示すグラフである。
FIG. 7 is a graph showing the relationship among the amount of Si added, the volume resistivity ρ, and the temperature coefficient of resistance α for the copper-silicon alloy that is the heating wire used in the electric fusion joint of the present invention.

【符号の説明】[Explanation of symbols]

1…継手本体 1a…インナー部材
1b…アウター部材 2…コネクターピン 3…電熱線
4…センサ用凹穴 5…受口部 6…バット融着端面
7…フランジ部 A…電気融着接続部材 C…コールドゾーン
H…ワイヤーゾーン
1 ... Joint body 1a ... Inner member
1b ... Outer member 2 ... Connector pin 3 ... Heating wire
4 ... Sensor recess 5 ... Receptacle 6 ... Butt fusion end face
7 ... Flange A ... Electrofusion connection member C ... Cold zone
H ... Wire zone

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 健 三重県桑名市大福2番地日立金属株式会社 桑名工場内 (72)発明者 西方 伸広 三重県桑名市大福2番地日立金属株式会社 桑名工場内 (72)発明者 二見 高郎 神奈川県平塚市東八幡5丁目1番8号 株 式会社古河テクノマテリアル内 (72)発明者 穴水 孝 東京都新宿区納戸町21市ヶ谷納戸ハイデン ス404 (72)発明者 吉井 崇朗 東京都北区赤羽南1−10−3 東京ガス赤 羽独身寮910号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Kato, 2 Daifuku, Hitachi Metals Co., Ltd., Kuwana City, Mie Prefecture, Kuwana Plant (72) Inventor Nobuhiro Nishikata, 2 Daifuku, Kuwana City, Mie Prefecture, Hitachi Metals, Ltd., Kuwana Plant ( 72) Inventor Takafumi Futami 5-18 Higashi-Hachiman, Hiratsuka City, Kanagawa Prefecture Furukawa Techno Material Co., Ltd. (72) Inventor Takashi Anamizu 21 Itogaya Nado, Shinto-ku, Tokyo 404 (72) Inventor Yoshii Soro 1-10-3 Akabane Minami, Kita-ku, Tokyo Tokyo Gas Akabane Single Dormitory No. 910

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂からなる継手本体の受口内
周部に電熱線を埋設した電気融着継手において、前記電
熱線は、その体積抵抗率ρを0.20〜0.30(μΩm)とな
し、かつこのときの抵抗温度係数αを40〜70×10-5(/
℃)としたことを特徴とする電気融着継手。
1. An electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a receiving port of a joint body made of a thermoplastic resin, wherein the heating wire has a volume resistivity ρ of 0.20 to 0.30 (μΩm), and The temperature coefficient of resistance α at this time is 40 to 70 × 10 -5 (/
(° C) The electric fusion joint.
【請求項2】 熱可塑性樹脂からなる継手本体の受口内
周部に電熱線を埋設した電気融着継手において、前記電
熱線は、重量比でSi:3.0〜4.2%、Mn:0.2%以
下、残部は不純物を除きCuからなる銅シリコン(Cu
−Si)合金であることを特徴とする電気融着継手。
2. An electric fusion joint in which a heating wire is embedded in an inner peripheral portion of a receiving port of a joint body made of a thermoplastic resin, wherein the heating wire has a weight ratio of Si: 3.0 to 4.2%, Mn: 0.2% or less, The remainder is copper silicon (Cu
-Si) alloy is an electric fusion joint.
JP08218096A 1996-04-04 1996-04-04 Electric fusion joint Expired - Fee Related JP3647005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08218096A JP3647005B2 (en) 1996-04-04 1996-04-04 Electric fusion joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08218096A JP3647005B2 (en) 1996-04-04 1996-04-04 Electric fusion joint

Publications (2)

Publication Number Publication Date
JPH09273688A true JPH09273688A (en) 1997-10-21
JP3647005B2 JP3647005B2 (en) 2005-05-11

Family

ID=13767248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08218096A Expired - Fee Related JP3647005B2 (en) 1996-04-04 1996-04-04 Electric fusion joint

Country Status (1)

Country Link
JP (1) JP3647005B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074622A (en) * 2007-09-21 2009-04-09 Hitachi Metals Ltd Marking jig and execution method of electrofusion joint
JP2019119929A (en) * 2017-12-27 2019-07-22 住友電気工業株式会社 Copper alloy wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074622A (en) * 2007-09-21 2009-04-09 Hitachi Metals Ltd Marking jig and execution method of electrofusion joint
JP2019119929A (en) * 2017-12-27 2019-07-22 住友電気工業株式会社 Copper alloy wire

Also Published As

Publication number Publication date
JP3647005B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
US20100295299A1 (en) Joint and joining method for plastic pipe
GB2425337A (en) Electrofusion fitting to seal barrier layer of composite pipe
CN107432056A (en) Heater
CN110035839A (en) Fixed insertion piece
JPH09273688A (en) Electric fusion coupling
JP2842665B2 (en) Aluminum heat exchanger
JP3949735B2 (en) Brazing alloy
JP5608292B2 (en) Glow plug
JPWO2015199078A1 (en) Manufacturing method of electric wire connection structure and electric wire connection structure
JPS59100250A (en) Sheet for heat exchanger made of aluminum
JPH05118486A (en) Structure of pipe connection
JPH0260730A (en) Connection part of plastic pipe and connection of said pipe
JP2000146074A (en) Electric fusion joint
JP5645570B2 (en) Copper-based alloys for forging and cutting, and water supply equipment
JPH10160081A (en) Joint for synthetic resin pipe
JPH0968296A (en) Electric fusion coupling
JPH0389094A (en) Thermoplastic pipe joint and manufacture thereof
JPH09229280A (en) Two-layer fusion pipe joint and manufacture therefor
JP2001047252A (en) Impeder for manufacture of welded steel pipe
US518798A (en) Heating apparatus
US11619421B2 (en) Continuous-flow heater, and a method for the manufacture of a continuous-flow heater
JP2005256934A (en) Electric fusion joint and its manufacturing method
JP4108194B2 (en) Metal stranded wire connection pipe
CN101500843A (en) Connector cable with lugs
JPH11300483A (en) Joining structure for different metallic materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees