JPH09129045A - Nbti grouped multicore superconductive stranded cable - Google Patents

Nbti grouped multicore superconductive stranded cable

Info

Publication number
JPH09129045A
JPH09129045A JP7285942A JP28594295A JPH09129045A JP H09129045 A JPH09129045 A JP H09129045A JP 7285942 A JP7285942 A JP 7285942A JP 28594295 A JP28594295 A JP 28594295A JP H09129045 A JPH09129045 A JP H09129045A
Authority
JP
Japan
Prior art keywords
nbti
superconducting
wire
alloy
grouped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7285942A
Other languages
Japanese (ja)
Other versions
JP3489293B2 (en
Inventor
Fumikazu Hosono
史一 細野
Shoji Inaba
彰司 稲葉
Masahiro Kiyofuji
雅宏 清藤
Shuji Sakai
修二 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP28594295A priority Critical patent/JP3489293B2/en
Publication of JPH09129045A publication Critical patent/JPH09129045A/en
Application granted granted Critical
Publication of JP3489293B2 publication Critical patent/JP3489293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an NbTi grouped superconductive stranded cable wherein a couppling loss is reduced and stability is good. SOLUTION: Cu-Ni grouped alloys 5, 9 are disposed around superconductive filaments 2 and between a group 6 of filaments and stabilizing copper 7, 8 respectively, in the case of an NbTi grouped superconductive stranded cable made by stranding a plurality of superconductive strands wherein a multiplicity of superconductive filaments 2 are integrated in the stabilizing copper. In this event, the Cu-Ni grouped alloy 9 disposed between the group 6 of filaments and the stabilizing copper 7, 8 is adapted to have a highrer Ni concentration than the Cu-Ni grouped alloy 5 disposed around the superconductive filaments 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は多数のNbTi系超
電導フィラメントが内蔵された超電導素線の複数を撚合
せてなる超電導撚線に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting stranded wire formed by twisting a plurality of superconducting element wires containing a large number of NbTi-based superconducting filaments.

【0002】[0002]

【従来の技術】一般的なNbTi系超電導撚線の素線構
造は、CuとNbTi系超電導体との複合線材であり、
その製造工程はCu/NbTi複合シングルビレットを
押出し加工したものを伸線加工し、それを複数本Cu管
内に組込み、再度押出しした後、時効熱処理と伸線加工
を繰返し、所定の寸法に仕上げる。
2. Description of the Related Art A general NbTi-based superconducting stranded wire is a composite wire material of Cu and NbTi-based superconductor,
In the manufacturing process, a Cu / NbTi composite single billet is extruded, drawn, drawn into a plurality of Cu pipes, extruded again, and then subjected to aging heat treatment and wire drawing to obtain a predetermined size.

【0003】また、交流損失の低減、特に超電導フィラ
メント間の結合損失の低減を目的として、各種の構造の
NbTi系超電導線材が製造されている。その具体的な
技術として、例えばシングル線の構造がCu−Ni/C
u/NbTiの3層構造となったもの、Cu−Mn系合
金を安定化銅フィラメント群の中間に介在させたものが
知られている。
NbTi-based superconducting wire rods of various structures have been manufactured for the purpose of reducing AC loss, particularly coupling loss between superconducting filaments. As a concrete technique, for example, a single wire structure is Cu-Ni / C.
It is known that a three-layered structure of u / NbTi and a Cu-Mn-based alloy are interposed in the middle of the stabilized copper filament group.

【0004】[0004]

【発明が解決しようとする課題】前記の前者の例である
と、線材の縦抵抗値が小さくなりフィラメント間の結合
損失が大きくなる。また後者の構造をとると、構造が複
雑になりコスト面で工業的にメリットが出ないばかりで
なく、熱伝導率が悪くなり安定性マージンが小さくな
る。
In the former example described above, the longitudinal resistance value of the wire rod becomes small and the coupling loss between filaments becomes large. Further, if the latter structure is adopted, not only does the structure become complicated and no industrial advantage is obtained in terms of cost, but also the thermal conductivity deteriorates and the stability margin decreases.

【0005】本発明の目的は、結合損失を低減し、かつ
安定性が良好なNbTi系超電導撚線を提供することに
ある。
An object of the present invention is to provide a NbTi-based superconducting stranded wire having reduced coupling loss and good stability.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、NbT
i系超電導素線における超電導フィラメント群と安定化
銅の間と、超電導フィラメントの周りに夫々高抵抗のC
u−Ni系合金材を介在させたことにある。
The gist of the present invention is NbT.
In the i-based superconducting element wire, a high resistance C is provided between the superconducting filament group and the stabilized copper and around the superconducting filament.
This is because the u-Ni alloy material was interposed.

【0007】[0007]

【発明の実施の形態】超電導撚線のフィラメント間の結
合損失は、損失時定数に比例するため、時定数によって
結合損失の大きさが評価できる。損失時定数は以下の式
で表すことができる。この式に含まれる変数の意味を図
3に示す。以下の式から高抵抗材料を含ませることで縦
抵抗値が大きくなり、その結果損失時定数が小さくな
り、結合損失が小さくなることが判る。
BEST MODE FOR CARRYING OUT THE INVENTION Since the coupling loss between filaments of a superconducting stranded wire is proportional to the loss time constant, the magnitude of the coupling loss can be evaluated by the time constant. The loss time constant can be expressed by the following formula. The meaning of the variables included in this equation is shown in FIG. From the following equation, it can be seen that the inclusion of the high resistance material increases the longitudinal resistance value, resulting in a smaller loss time constant and a smaller coupling loss.

【0008】τcc=μ0 (lp /2π)2 (Rf /R
O 2 [(k/ρI )+(l/ρC )+(m/ρB )+
(n/ρO )] k=(Rf 2 −RC 2 )/Rf 2 =1−l l=(RC /Rf 2 m=a1 2 (Rf 2 +S2 B 2 )・(Re 2
f 2 )/Rf 2 n=a2 2 (RB 2 +RO 2 )・(RO 2 −RB 2 )/
B 21 =Rf 2 /(Rf 2 +SRB 2 ) a2 =[a1 (1−S)RB 2 ]/(RB 2 +RO 2 ) S=[ρO (RO 2 +RB 2 )+ρB (RO 2
B 2 )]/[ρO (RO 2 +RB 2 )−ρB (RO 2
−RB 2 )] μ:真空の透磁率 lp :ツイストピッチ ρ:各部の抵抗値 また、安定化については次のような線材が望ましいとい
える。機械的若しくは熱的じょう乱が生じて超電導状態
から常電導状態になったとき、一早く冷媒である液体ヘ
リウム若しくは超臨界ヘリウムに伝熱させて超電導線材
内の温度を低下させるような構造が望ましい。
Τcc = μ 0 (l p / 2π) 2 (R f / R
O ) 2 [(k / ρ I ) + (l / ρ C ) + (m / ρ B ) +
(N / ρ O )] k = (R f 2 −R C 2 ) / R f 2 = 1−l 1 = (R C / R f ) 2 m = a 1 2 (R f 2 + S 2 R B 2 ) ・ (R e 2
R f 2 ) / R f 2 n = a 2 2 (R B 2 + R O 2 ) · (R O 2 −R B 2 ) /
R B 2 a 1 = R f 2 / (R f 2 + SR B 2) a 2 = [a 1 (1-S) R B 2] / (R B 2 + R O 2) S = [ρ O (R O 2 + R B 2 ) + ρ B (R O 2
R B 2 )] / [ρ O (R O 2 + R B 2 ) −ρ B (R O 2
-R B 2)] μ: magnetic permeability of vacuum l p: Twist Pitch [rho: the resistance of each part also, it can be said that wire as follows for stabilization is desired. When mechanical or thermal disturbance occurs and the superconducting state changes to the normal conducting state, it is desirable to have a structure that quickly transfers heat to liquid helium or supercritical helium as a refrigerant to lower the temperature in the superconducting wire. .

【0009】Cu−Ni系合金が素線の最外周にある場
合と安定化銅のフィラメント群との中間にある場合とで
は、仮に厚みが同じであるとしても、体積的には最外周
にある法が多くなり、結果的に熱伝導が悪くなる。更に
Cu−Ni系合金を熱伝導が良好な銅で複数に分割する
と、内部発熱が生じても分割された部分から熱が伝搬し
て線材の温度上昇を防止することができる。従って、本
発明においては超電導フィラメント群と安定化銅との間
に介在させるCu−Ni系合金は素線の断面において周
方向に連続している必要はなく、周方向に銅又は銅合金
で複数に分割された形で間隔をおいて配置されていても
差支えない。
[0009] Even if the thickness is the same between the case where the Cu-Ni alloy is on the outermost periphery of the filament and the case where it is in the middle between the stabilized copper filaments, the volume is on the outermost periphery. There are many methods, resulting in poor heat conduction. Further, when the Cu—Ni alloy is divided into a plurality of pieces with good heat conductivity, even if internal heat is generated, the heat propagates from the divided portions and the temperature rise of the wire can be prevented. Therefore, in the present invention, the Cu-Ni-based alloy to be interposed between the superconducting filament group and the stabilized copper does not need to be continuous in the circumferential direction in the cross section of the wire, and a plurality of copper or copper alloys may be used in the circumferential direction. It does not matter if they are divided into two and are arranged at intervals.

【0010】本発明では2重にCu−Ni系合金が配置
される。その合金におけるNi濃度は0.5〜20重量
%であることが好ましい。これはNi濃度が0.5重量
%以下では抵抗値が小さく交流損失の低減は殆ど期待で
きず、又20重量%以上ではその材料の変形抵抗が大き
いため伸線過程において断線が多発するようになるため
である。
In the present invention, Cu-Ni alloys are doubly arranged. The Ni concentration in the alloy is preferably 0.5 to 20% by weight. This is because when the Ni concentration is 0.5% by weight or less, the resistance value is small and almost no reduction of AC loss can be expected, and when the Ni concentration is 20% by weight or more, the deformation resistance of the material is large, so that wire breakage frequently occurs. This is because

【0011】本発明において使用されるCu−Ni系合
金は、超電導フィラメント群と安定化銅の間に介在させ
る合金材と超電導フィラメントの周りに配置される合金
材とでNi濃度を異にし、前者の方が後者に比べて低濃
度であることが望ましい。
The Cu-Ni alloy used in the present invention has different Ni concentrations between the alloy material interposed between the superconducting filament group and the stabilized copper and the alloy material arranged around the superconducting filament. It is preferable that the concentration is lower than that of the latter.

【0012】前者の好ましいNi濃度は5〜20重量%
であり、後者の好ましいNi濃度は0.5〜5重量%で
ある。
The preferable Ni concentration of the former is 5 to 20% by weight.
The preferable Ni concentration of the latter is 0.5 to 5% by weight.

【0013】そのようなCu−Ni系合金における不純
物成分としてはFe≦0.5重量%、Mn≦1.5重量
%、P≦0.5重量%、その他の不可避的な不純物≦
0.5重量%であることが望ましい。
Impurity components in such Cu-Ni alloys are Fe≤0.5% by weight, Mn≤1.5% by weight, P≤0.5% by weight, and other unavoidable impurities≤
It is preferably 0.5% by weight.

【0014】なお、本発明はNbTi系であれば、いか
なる組成においても適用でき、その効果を得ることがで
きる。
The present invention can be applied to any composition as long as it is NbTi-based, and its effect can be obtained.

【0015】[0015]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0016】図1は、超電導撚線の例の断面を示し、多
数のNbTi系の超電導フイラメントが安定化銅で被覆
された超電導素線1が12本撚合わされて平角状に成形
されている。この撚線を構成する各素線1は図2に示す
ようにな構成となっている。すなわち、各超電導フィラ
メント2はNbTiの芯3が銅4とCu−Ni系合金5
によって被覆され、そのフィラメント群6は中心部の安
定化銅7を被覆するように配置され、その外周が安定化
銅8で覆われているが、安定化銅7、8との間には夫々
Cu−Ni系合金9が配置された構造となっている。
FIG. 1 shows a cross section of an example of a superconducting stranded wire, in which a large number of NbTi-based superconducting filaments are covered with stabilized copper and 12 superconducting element wires 1 are twisted and formed into a rectangular shape. Each strand 1 that constitutes this stranded wire is configured as shown in FIG. That is, in each superconducting filament 2, the core 3 of NbTi is copper 4 and Cu-Ni alloy 5
The filament group 6 is arranged so as to cover the stabilizing copper 7 in the central portion, and the outer periphery thereof is covered with the stabilizing copper 8, but between the stabilizing coppers 7 and 8 respectively. It has a structure in which the Cu-Ni alloy 9 is arranged.

【0017】(実施例1)超電導フィラメント2の周り
のCu−Ni系合金5としてCu−2重量%Ni合金に
固定し、フィラメント群6と安定化銅7、8の間のCu
−Ni系合金9として表1に示すように、Ni濃度を変
化させて各種の線材を次の方法により作製した。
(Example 1) As a Cu-Ni alloy 5 around the superconducting filament 2, a Cu-2 wt% Ni alloy was fixed, and Cu between the filament group 6 and the stabilized copper 7 and 8 was fixed.
As shown in Table 1 as the Ni-based alloy 9, various wire materials were manufactured by changing the Ni concentration by the following method.

【0018】NbTi/Cu/Cu−Niとなる3層構
造の複合ビレットを静水圧押出しと伸線により断面六角
形のシングル線に加工した後、得られた線材を複数に切
断してその複数本を再び銅パイプ内に収容して押出しと
伸線により所定のマルチ線材とした。得られたマルチ線
を複数に切断し、その7本をCu−Ni系合金で被覆さ
れた安定化銅の棒の周囲に配置すると共に、その周囲に
Cu−Ni系合金パイプと銅パイプを被覆し、再び押出
し加工をし、伸線と時効熱処理を繰返した後、ツイスト
加工を施し、更に伸線して線径1.1mm、フィラメント
径6.0μm、フィラメント数74000本、ツイスト
ピッチ20mm<Cu/Cu−Ni/NbTiが2.5/
2.0/1.0のNbTiファインマルチ線材を作製し
た。
A composite billet having a three-layer structure of NbTi / Cu / Cu-Ni is processed into a single wire having a hexagonal cross section by hydrostatic extrusion and wire drawing, and the obtained wire is cut into a plurality of pieces. Was again housed in a copper pipe and extruded and drawn to obtain a predetermined multi-wire material. The obtained multi-wire is cut into a plurality of pieces, and seven of them are placed around a stabilized copper rod coated with a Cu-Ni alloy, and a Cu-Ni alloy pipe and a copper pipe are coated around the rod. Then, extrusion processing is performed again, and after wire drawing and aging heat treatment are repeated, twist processing is applied, and wire drawing is further performed: wire diameter 1.1 mm, filament diameter 6.0 μm, number of filaments 74000, twist pitch 20 mm <Cu / Cu-Ni / NbTi is 2.5 /
A 2.0 / 1.0 NbTi fine multi-wire material was produced.

【0019】得られた各線材について交流損失を測定
し、その値から損失時定数を求めた。交流損失の測定は
図4に示すように、測定サンプル10となる超電導素線
をコイル状に巻き線してその外側にピックアップコイル
11を、外側にキャンセルコイル12をセットし、外周
に配置したバックグラウントセマグネット18のバック
アップ磁界を変動させることによって誘発される電圧を
ピックアップコイル11にて検出し、それを積分器14
にて磁束変換して結合損失を求める。なお、図4中、1
3は増幅器、15はデシタルメモリー・パソコン、16
はシャント抵抗、17は電源である。
The AC loss was measured for each of the obtained wire rods, and the loss time constant was determined from the measured value. As shown in FIG. 4, the AC loss is measured by winding a superconducting element wire as a measurement sample 10 in a coil shape, setting a pickup coil 11 on the outer side and a cancel coil 12 on the outer side, and placing the coil on the outer circumference. The pickup coil 11 detects a voltage induced by changing the backup magnetic field of the Grown semagnet 18, and the voltage is detected by the integrator 14.
Convert the magnetic flux at to obtain the coupling loss. In FIG. 4, 1
3 is an amplifier, 15 is a digital memory personal computer, 16
Is a shunt resistor, and 17 is a power supply.

【0020】測定の条件は温度4.2Kにて磁束振幅を
1Tとして行った。
The measurement conditions were a temperature of 4.2K and a magnetic flux amplitude of 1T.

【0021】かくして得られた値から次の式を用いて損
失時定数を求めた。
From the values thus obtained, the loss time constant was determined using the following formula.

【0022】 Qc=Bm2/2μ0 [τC /(τC +τp )] ここで、Qc[J]:結合損失、Bm[T]:最大磁
界、μ0 [−]:真空の透磁率、τC [s]:線材の損
失時定数、τp [s]:バックグラウンド磁界の遮断時
定数である。
Qc = Bm2 / 2μ 0C / (τ C + τ p )] where Qc [J]: coupling loss, Bm [T]: maximum magnetic field, μ 0 [−]: permeability of vacuum, τ C [s]: loss time constant of wire rod, τ p [s]: interruption time constant of background magnetic field.

【0023】その結果を表1に併せて示す。この結果か
らフィラメント群と安定化銅の間のCu−Ni系合金中
のNi濃度が5重量%以上のとき線材の結合損失が大幅
に低減できることが判る。
The results are also shown in Table 1. From this result, it is understood that the bonding loss of the wire can be significantly reduced when the Ni concentration in the Cu-Ni alloy between the filament group and the stabilized copper is 5% by weight or more.

【0024】[0024]

【表1】 [Table 1]

【0025】(実施例2)フィラメント群と安定化銅の
間のCu−Ni系合金をCu−10重量%Ni合金と
し、超電導フィラメント周りのCu−Ni系合金のNi
濃度を表2に示すように変化させた以外は実施例1と同
様にして各種の線材を作製した。
(Example 2) A Cu-10% by weight Ni alloy was used as the Cu-Ni alloy between the filament group and the stabilized copper, and the Ni of the Cu-Ni alloy around the superconducting filament was used.
Various wire rods were produced in the same manner as in Example 1 except that the concentration was changed as shown in Table 2.

【0026】その後、各線材について図1に示すような
12本撚りのラザフォード型撚線導体とし、各導体の安
定性マージンを求めた。
Then, for each wire rod, a 12-strand Rutherford type stranded wire conductor as shown in FIG. 1 was used, and the stability margin of each conductor was obtained.

【0027】安定性マージンの測定は、図5に示すよう
に、測定サンプルとなる導体に巻き付けられた誘導ヒー
タLoによって、そのときに発生する交流磁界によって
共振器から発信される交流電流が流され、サンプルに外
部からエネルギーガ投入される方法によった。測定の条
件は、温度4.2K、通電電流1kA、外部磁界5Tで
ある。
As shown in FIG. 5, the stability margin is measured by an induction heater Lo wound around a conductor serving as a measurement sample, and an alternating current generated by the alternating magnetic field generated at that time causes an alternating current to flow. , The energy was applied to the sample from the outside. The measurement conditions are a temperature of 4.2 K, a current of 1 kA, and an external magnetic field of 5 T.

【0028】超電導導体のサンプルがクエンチしない限
界の投入エネルギーヲ安定性マージンと呼び、通常、単
位素線体積当たりのエネルギー量を表す。
The limit input energy at which the sample of the superconducting conductor is not quenched is called the stability margin, and usually represents the amount of energy per unit wire volume.

【0029】その結果を表2に併せて示す。この結果か
ら、Cu−Ni系合金中のNi濃度が5重量%のとき純
銅の場合と殆ど変わらず、これ以上になると安定性マー
ジンが極度に低下することが判る。
The results are also shown in Table 2. From this result, it is understood that when the Ni concentration in the Cu-Ni alloy is 5% by weight, it is almost the same as that of pure copper, and when it is more than this, the stability margin is extremely lowered.

【0030】[0030]

【表2】 [Table 2]

【0031】(実施例3)超電導フィラメントの周りの
Cu−Ni系合金をCu−1重量%Ni合金とし、実施
例1と同様にしてサブマルチ線を得た。その後、ファイ
ンマルチ線用の複合ビレットを組み立てる際、Cu−N
i系合金パイプの代りに断面6角形の細いCu−10重
量%Ni合金線を用い、それをフィラメント群の外周に
配列し、その2/3を断面6角形の同寸法の銅線で置き
換えることにより、Cu−10重量%Ni合金線を外周
の4箇所に等分配置した。
Example 3 A sub-multi wire was obtained in the same manner as in Example 1, except that the Cu-Ni alloy around the superconducting filament was a Cu-1 wt% Ni alloy. After that, when assembling the composite billet for fine multi-wire, Cu-N
Use a thin Cu-10 wt% Ni alloy wire having a hexagonal cross section instead of the i-based alloy pipe, arrange it on the outer circumference of the filament group, and replace 2/3 of it with a copper wire having the same hexagonal cross section. Thus, the Cu-10 wt% Ni alloy wire was equally distributed at four locations on the outer circumference.

【0032】このようにして組み立てた複合ビレットを
用いて実施例1と同様にしてファインマルチ線を作製し
た。その後、その線材を図1に示すような12本撚りの
ラザフォード型撚線導体として実施例2と同様にして安
定性マージンを求めた。
Fine multi-lines were produced in the same manner as in Example 1 using the composite billet thus assembled. Then, the stability margin was obtained in the same manner as in Example 2 except that the wire material was a 12-strand Rutherford-type stranded wire conductor as shown in FIG.

【0033】その結果、フィラメント群と安定化銅の間
に介在させるCu−Ni系合金を分割した場合、分割し
ない場合の670に対し、約2倍高い1210の安定性
マージン(mJ/cc-strand)が得られた。
As a result, when the Cu-Ni based alloy interposed between the filament group and the stabilized copper was divided, the stability margin (mJ / cc-strand) of 1210 was about twice as high as 670 when the division was not made. )was gotten.

【0034】[0034]

【効果】以上の説明から明らかなように、本発明によれ
ば線材のフィラメント間の結合損失を低減し、かつ安定
性が良好なNbTi系超電導撚線を得ることができる効
果がある。
As is clear from the above description, according to the present invention, there is an effect that a coupling loss between filaments of a wire can be reduced and an NbTi-based superconducting stranded wire having good stability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超電導撚線の一実施例を示す断面
図。
FIG. 1 is a sectional view showing an embodiment of a superconducting stranded wire according to the present invention.

【図2】本発明に係る超電導撚線の素線の断面構成を示
す図。
FIG. 2 is a diagram showing a cross-sectional structure of a strand of a superconducting stranded wire according to the present invention.

【図3】線材の損失時定数を求めるときのモデルを示す
図。
FIG. 3 is a diagram showing a model for obtaining a loss time constant of a wire rod.

【図4】交流損失の測定方法を示す概念図。FIG. 4 is a conceptual diagram showing a method of measuring AC loss.

【図5】安定性マージンの測定方法を示す概念図。FIG. 5 is a conceptual diagram showing a method of measuring a stability margin.

【符号の説明】 1 超電導素線 2 超電導フィラメント 4 銅 5、9 Cu−Ni系合金 6 フィラメント群 7、8 安定化銅[Explanation of Codes] 1 superconducting element wire 2 superconducting filament 4 copper 5,9 Cu-Ni alloy 6 filament group 7,8 stabilized copper

フロントページの続き (72)発明者 酒井 修二 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内Front page continuation (72) Inventor Shuji Sakai 3550 Kidayomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable Ltd. System Materials Research Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】安定化銅に多数の超電導フィラメントが内
蔵された超電導素線の複数を撚合せてなるNbTi系超
電導撚線において、超電導フィラメントの周りと、フィ
ラメント群と安定化銅の間に夫々Cu−Ni系合金を配
置してなることを特徴とするNbTi系超電導撚線。
1. A NbTi-based superconducting stranded wire formed by twisting a plurality of superconducting element wires in which a large number of superconducting filaments are incorporated in stabilized copper, in the vicinity of the superconducting filament, and between the filament group and the stabilizing copper, respectively. A NbTi-based superconducting stranded wire comprising a Cu-Ni-based alloy.
【請求項2】フィラメント群と安定化銅の間に配置され
たCu−Ni系合金の方が超電導フィラメントの周りに
配置されたCu−Ni系合金よりNi濃度が高いことを
特徴とする請求項1に記載のNbTi系超電導撚線。
2. The Cu-Ni based alloy disposed between the filament group and the stabilized copper has a higher Ni concentration than the Cu-Ni based alloy disposed around the superconducting filament. The NbTi-based superconducting stranded wire according to 1.
【請求項3】フィラメント群と安定化銅の間に配置され
たCu−Ni系合金のNi濃度が5〜20重量%である
請求項1又は請求項2に記載のNbTi系超電導撚線。
3. The NbTi-based superconducting stranded wire according to claim 1, wherein the Ni concentration of the Cu—Ni-based alloy disposed between the filament group and the stabilized copper is 5 to 20% by weight.
【請求項4】超電導フィラメントの周りに配置されたC
u−Ni系合金のNi濃度が5重量%以下である請求項
1、請求項2又は請求項3に記載のNbTi系超電導撚
線。
4. C disposed around a superconducting filament
The NbTi-based superconducting stranded wire according to claim 1, 2 or 3, wherein the Ni concentration of the u-Ni-based alloy is 5% by weight or less.
【請求項5】フィラメント群と安定化銅の間に配置され
たCu−Ni系合金が超電導素線の周方向に複数に分割
されていることを特徴とする請求項1ないし4のいずれ
か1に記載のNbTi系超電導撚線。
5. The Cu-Ni alloy disposed between the filament group and the stabilized copper is divided into a plurality of pieces in the circumferential direction of the superconducting element wire, according to any one of claims 1 to 4. NbTi-based superconducting stranded wire according to.
JP28594295A 1995-11-02 1995-11-02 NbTi superconducting stranded wire Expired - Fee Related JP3489293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28594295A JP3489293B2 (en) 1995-11-02 1995-11-02 NbTi superconducting stranded wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28594295A JP3489293B2 (en) 1995-11-02 1995-11-02 NbTi superconducting stranded wire

Publications (2)

Publication Number Publication Date
JPH09129045A true JPH09129045A (en) 1997-05-16
JP3489293B2 JP3489293B2 (en) 2004-01-19

Family

ID=17697982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28594295A Expired - Fee Related JP3489293B2 (en) 1995-11-02 1995-11-02 NbTi superconducting stranded wire

Country Status (1)

Country Link
JP (1) JP3489293B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311341A (en) * 2006-05-19 2007-11-29 General Electric Co <Ge> Low-ac-loss superconductor for superconductor magnet and its manufacturing method
JP2019119929A (en) * 2017-12-27 2019-07-22 住友電気工業株式会社 Copper alloy wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311341A (en) * 2006-05-19 2007-11-29 General Electric Co <Ge> Low-ac-loss superconductor for superconductor magnet and its manufacturing method
JP2019119929A (en) * 2017-12-27 2019-07-22 住友電気工業株式会社 Copper alloy wire

Also Published As

Publication number Publication date
JP3489293B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
GB1580719A (en) Aluminum-stabilised multifilamentarx superconductor and method of its manufacture
JP3489293B2 (en) NbTi superconducting stranded wire
US4094059A (en) Method for producing composite superconductors
KR100724212B1 (en) PRECURSOR WIRE OF Nb-Sn PHASE SUPERCONDUCTING WIRE
JPS60199522A (en) Manufacture of superconductive alloy wire
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JP3646059B2 (en) Aluminum stabilized superconducting conductor
JP5117166B2 (en) NbTi superconducting multi-core wire for pulse and NbTi superconducting molded stranded wire for pulse
JP2910586B2 (en) Nb (3) Sn superconducting wire
JP2545793B2 (en) Nb-Ti alloy-based superconducting wire
JP3099460B2 (en) Nb-Ti alloy superconducting wire
JPH11111081A (en) Oxide superconducting wire
JP3018663B2 (en) Nb-Ti alloy superconducting wire
JP3367316B2 (en) Ultra-fine multi-core Nb-Ti superconducting wire
JP2003045247A (en) Superconductive cable
JPH0714442A (en) Nbti superconducting wire for palse or ac
JP3505894B2 (en) Compound superconducting wire
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPH07272554A (en) Niobium-titanium-based (nb-ti) superconductive wire
JP2000348548A (en) Ac superconducting wire and manufacture thereof
JPH0589726A (en) Nbyi superconductive wire
JPH1092235A (en) Ac superconductive conductor
JPS62110208A (en) Complex multi-core superconductor
JP2000067664A (en) Nb3Sn SUPERCONDUCTIVE WIRE ROD

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees