JP3099460B2 - Nb-Ti alloy superconducting wire - Google Patents

Nb-Ti alloy superconducting wire

Info

Publication number
JP3099460B2
JP3099460B2 JP03276453A JP27645391A JP3099460B2 JP 3099460 B2 JP3099460 B2 JP 3099460B2 JP 03276453 A JP03276453 A JP 03276453A JP 27645391 A JP27645391 A JP 27645391A JP 3099460 B2 JP3099460 B2 JP 3099460B2
Authority
JP
Japan
Prior art keywords
alloy
superconducting wire
filament
sample
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03276453A
Other languages
Japanese (ja)
Other versions
JPH0594723A (en
Inventor
克己 宮下
修二 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP03276453A priority Critical patent/JP3099460B2/en
Publication of JPH0594723A publication Critical patent/JPH0594723A/en
Application granted granted Critical
Publication of JP3099460B2 publication Critical patent/JP3099460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、交流モードで運転さ
れる機器に用いられる超電導線材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting wire used for equipment operated in an alternating current mode.

【0002】[0002]

【従来の技術】現状の超電導マグネットは、その殆どが
直流モードで運転されるようになっている。これは、通
常の銅(Cu)安定化Nb−Ti合金超電導線材におけ
る交流モード運転時の交流損失が非常に大きいからであ
る。
2. Description of the Related Art Most of current superconducting magnets are operated in a DC mode. This is because an ordinary copper (Cu) -stabilized Nb—Ti alloy superconducting wire has an extremely large AC loss during the AC mode operation.

【0003】超電導線の交流損失は、「ヒステリシス損
失」,「結合損失」および「渦電流損失」の3成分の和
からなっている。この3つの損失のうち結合損失と渦電
流損失は、導体断面の幾何学的構造や安定化銅をCu−
Ni合金の高抵抗層で分割することによりかなり低減さ
せることができる。
[0003] The AC loss of a superconducting wire is composed of the sum of three components of "hysteresis loss", "coupling loss" and "eddy current loss". The coupling loss and the eddy current loss of the three losses are determined by the geometric structure of the conductor cross section and the stabilized copper by Cu-
Substantial reduction can be achieved by dividing with a high resistance layer of Ni alloy.

【0004】しかし、ヒステリシス損失は、超電導体の
ピンニング力に起因するものであり、高い電流密度を有
する超電導線ほどピンニング力が大きいため、超電導体
のヒステリシス損失が大きくなる。つまり、超電導の大
きな利点である高い電流密度を保ちながらヒステリシス
損失を低減させることは、相反することがらとなる。一
般に、ヒステリシス損失は、超電導線の臨界電流密度と
フィラメント径の積に比例する。
[0004] However, the hysteresis loss is caused by the pinning force of the superconductor, and the superconducting wire having a higher current density has a larger pinning force, so that the hysteresis loss of the superconductor increases. In other words, reducing the hysteresis loss while maintaining a high current density, which is a great advantage of superconductivity, is contradictory. Generally, the hysteresis loss is proportional to the product of the critical current density of the superconducting wire and the filament diameter.

【0005】そのため、高電流密度,低ヒステリシス損
失の超電導線を作製するには、フィラメント径を小さく
することが望ましい。このため、直流用の超電導線のフ
ィラメント径が数μm〜数十μmなのに対し、交流用の
それはサブミクロンあるいは0.1μm以下の細さとな
り、直流用の数十分の1の細さとなる。
Therefore, in order to produce a superconducting wire having a high current density and a low hysteresis loss, it is desirable to reduce the filament diameter. For this reason, the filament diameter of the DC superconducting wire is several μm to several tens μm, whereas that of the AC superconducting wire is submicron or 0.1 μm or less, which is tens of tenths thinner for DC.

【0006】図2に直流用と交流用のフィラメントサイ
ズの違いを断面図に示す。即ち、(A)は従来のフィラ
メント径が数μm〜数十μmのものであり、ヒステリシ
ス損失が大きい。(B)は交流用のフィラメント径1μ
m以下のものである。Nb−Ti合金の占積率が減少し
て臨界電流密度が低下している。(C)はフィラメント
間隔を狭めることにより近接効果を出現させたものであ
る。
FIG. 2 is a cross-sectional view showing the difference between the DC and AC filament sizes. That is, (A) has a conventional filament diameter of several μm to several tens μm, and has a large hysteresis loss. (B) is a filament diameter of 1μ for AC.
m or less. The space factor of the Nb-Ti alloy decreases, and the critical current density decreases. (C) shows the proximity effect caused by reducing the filament interval.

【0007】このように、高電流密度を保ちながらフラ
メント径を小さくしていくと、フィラメント間隔が非常
に狭くなる。Nb−Tiフィラメントから滲み出してく
る超電導電子により、隣り合うフィラメント同士が電気
的に結合し、フィラメント周りの母材金属部分にも超電
導電流が流れ、実質的にフイラメント径が太くなったよ
うな状態となる。これを近接効果という。この近接効果
によりフィラメント同士が電気的に結合するとヒステリ
シス損失が増大してしまう。
As described above, when the diameter of a filament is reduced while maintaining a high current density, the distance between filaments becomes very small. Adjacent filaments are electrically coupled to each other by superconducting electrons oozing out of the Nb-Ti filament, and superconducting current flows also to the base metal around the filament, and the filament diameter becomes substantially large. Becomes This is called a proximity effect. When the filaments are electrically coupled to each other due to the proximity effect, the hysteresis loss increases.

【0008】現在、近接効果によるフィラメント同士の
電気的結合を防ぐため、母材金属を従来用いられていた
Cu−10重量%Ni合金からCu−30重量%Ni合
金に代えてより高抵抗化したり、Cu−10重量%Ni
合金の代わりに磁性元素Mnを含んだCu−Mn合金を
用いることでフィラメント間隔を広げずに高い臨界電流
を保っている。
At present, in order to prevent electrical coupling between filaments due to the proximity effect, the resistance of the base metal is increased by replacing the conventionally used Cu-10 wt% Ni alloy with a Cu-30 wt% Ni alloy. , Cu-10% by weight Ni
By using a Cu-Mn alloy containing a magnetic element Mn instead of an alloy, a high critical current is maintained without increasing the filament interval.

【0009】[0009]

【発明が解決しようとする課題】前述したように、Cu
−30重量%Ni合金あるいはCu−Mn合金を用いる
ことにより、近接効果によるフィラメント同士の電気的
結合を防止することができ、ヒステリシス損失を低減さ
せ、高い臨界電流密度を有する超電導線を作製すること
が可能になる。しかし、実用化レベルの値にはまだ達し
ておらず、より一層の低ヒステリシス損失化と高電流密
度化が望まれている。
As described above, as described above, Cu
By using a -30% by weight Ni alloy or a Cu-Mn alloy, it is possible to prevent electrical coupling between filaments due to the proximity effect, reduce hysteresis loss, and produce a superconducting wire having a high critical current density. Becomes possible. However, the value has not yet reached the level of practical use, and further lowering of hysteresis loss and higher current density are desired.

【0010】現在、加工技術の発達によりNb−Ti合
金フィラメント径が0.05μm以下の超電導線も作製
することが可能になった。しかし、いくら母材金属に上
記Cu−30重量%Ni合金やCu−Mn合金を用いた
としても、近接効果の低減作用には限度があり、フィラ
メント径を細くすることによるヒステリシス損失の低減
には限界がある。
At present, with the development of processing technology, it has become possible to produce a superconducting wire having an Nb-Ti alloy filament diameter of 0.05 μm or less. However, no matter how much the Cu-30 wt% Ni alloy or Cu-Mn alloy is used as the base metal, the effect of reducing the proximity effect is limited, and the reduction of the hysteresis loss by reducing the filament diameter is not sufficient. There is a limit.

【0011】そのため、Nb−Tiフィラメント1本1
本の臨界電流密度をヒステリシス損失を増大させること
なく高くしてやる必要がある。もし、Nb−Ti合金フ
ィラメントの臨界電流密度が高くなれば、超電導線の断
面積を小さくすることができ、その結果、単位体積当り
のヒステリシス損失は低減できなくとも、超電導線の体
積が減少するため、機器全体の損失も減少することにな
る。
Therefore, one Nb-Ti filament 1
It is necessary to increase the critical current density of the book without increasing the hysteresis loss. If the critical current density of the Nb-Ti alloy filament increases, the cross-sectional area of the superconducting wire can be reduced, and as a result, the volume of the superconducting wire decreases even if the hysteresis loss per unit volume cannot be reduced. Therefore, the loss of the entire device is also reduced.

【0012】この発明の目的は、上記した従来の超電導
線のNb−Ti合金フィラメント周りの構造を改良し、
低ヒステリシス損失を維持しつつ、高臨界電流密度を有
する超電導線を提供することにある。
An object of the present invention is to improve the structure around the Nb-Ti alloy filament of the conventional superconducting wire described above,
An object of the present invention is to provide a superconducting wire having a high critical current density while maintaining low hysteresis loss.

【0013】[0013]

【課題を解決するための手段】この発明の要旨は、Nb
−Ti合金フィラメントの周りにNb層を配置し、この
周りにCu−Mn合金あるいはCu−Ni−Mn合金を
配置することにある。これにより、まずNb層でNb−
Ti合金フィラメントから滲み出してきた超電導電子に
より、フィラメントの表面で磁束をピン止めして、磁界
中での臨界電流密度を上昇させ、Nb層の周りに配置し
たCu−Mn合金層あるいはCu−Ni−Mn合金層に
より、近接効果によるフィラメントの電気的結合を防
ぎ、ヒステリシス損失の増大を抑えている。
The gist of the present invention is that Nb
-An Nb layer is arranged around a Ti alloy filament, and a Cu-Mn alloy or a Cu-Ni-Mn alloy is arranged around the Nb layer . As a result, first, Nb-
The superconducting conductor oozing out of the Ti alloy filament pins the magnetic flux at the surface of the filament to increase the critical current density in the magnetic field, and the Cu-Mn alloy layer or the Cu-Ni layer disposed around the Nb layer. -The Mn alloy layer prevents electrical coupling of the filament due to the proximity effect, and suppresses an increase in hysteresis loss.

【0014】[0014]

【実施例】以下、図面に基づいてこの発明の実施例を説
明する。図1は線材の断面構造を示す断面図で、一部素
線を引き出して拡大して示している。即ち、Nb−Ti
合金素材1として、Nb−45重量%Ti材を用い、こ
のNb−Ti合金の棒を第1表に示すような被覆材2と
複合化し、それぞれ温間にて外径約29mmの押出用ビ
レットとした。この押出用ビレットをそれぞれ温間にて
外径12mmに静水圧押出をした後、それぞれ引抜伸線
し、対辺距離が1.39mmの六角断面を有するシング
ル線とした。このシングル線を所定の長さに切断したも
のを253本をそれぞれ外径が約28mmのCu−10
重量%Ni製の管4内に挿入組立てしてそれぞれ押出用
ビレットとした。この押出用ビレットをそれぞれ静水圧
押出して外径約12mmとした後、引抜伸線して対辺距
離が1.39mmの六角断面を有するサブマルチ線とし
た。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a cross-sectional structure of a wire rod, in which a part of a wire is drawn out and enlarged. That is, Nb-Ti
An Nb-45 wt% Ti material was used as an alloy material 1, and a rod of this Nb-Ti alloy was combined with a coating material 2 as shown in Table 1 and each extruded billet having an outer diameter of about 29 mm in a warm state. And Each of the extruded billets was subjected to hydrostatic extrusion to an outer diameter of 12 mm in a warm state, and then drawn and drawn to form single wires having a hexagonal cross section with a distance of opposite sides of 1.39 mm. 253 pieces of this single wire cut into a predetermined length are each Cu-10 having an outer diameter of about 28 mm.
The extruded billets were inserted and assembled into tubes 4 made of Ni by weight. Each of the extruded billets was hydrostatically extruded to an outer diameter of about 12 mm, and then drawn and drawn to form a sub-multi wire having a hexagonal cross section having a distance of opposite sides of 1.39 mm.

【0015】[0015]

【表1】 [Table 1]

【0016】次に、そのサブマルチ線を所定の長さに切
断したもの198本と、このサブマルチ線と同サイズの
Cu−10重量%Ni合金被覆銅線からなるダミー線の
55本をCu−10重量%Ni合金製の管4に挿入組立
し、それぞれ押出しビレットとした。この押出しビレッ
トをそれぞれ静水圧押出して外径約12mmに加工し
た。
Next, 198 pieces of the sub-multi wires cut to a predetermined length and 55 dummy wires made of a Cu-10% by weight Ni alloy-coated copper wire having the same size as the sub-multi wires were used as Cu-10 wires. The assembly was inserted into a tube 4 made of a weight% Ni alloy, and each was formed into an extruded billet. Each of the extruded billets was subjected to hydrostatic extrusion to be processed into an outer diameter of about 12 mm.

【0017】得られた各線材について、それぞれ数回の
引抜伸線した後、ツイスト加工し、それぞれ外径0.1
mm,Nb−Ti合金フィラメント径0.2mm,ツイ
ストピッチ0.8mmの線材とし試料とした。
Each of the obtained wires is drawn and drawn several times, then twisted, and each has an outer diameter of 0.1.
mm, a wire having an Nb-Ti alloy filament diameter of 0.2 mm and a twist pitch of 0.8 mm was used as a sample.

【0018】第2表に、以上のようにして作製した4種
類の線材の試料の断面構成比、臨界電流密度およびSQ
UID型磁束計で測定した±0.5T1サイクル当たり
のヒステリシス損失を示した。
Table 2 shows the sectional composition ratio, critical current density and SQ of the four types of wire rod samples prepared as described above.
The hysteresis loss per ± 0.5 T1 cycle measured by the UID type magnetometer is shown.

【0019】[0019]

【表2】 [Table 2]

【0020】臨界電流密度は試料番号4−試料番号3−
試料番号2−試料番号1の順で増加し、試料番号1の
0.5Tでの臨界電流密度は試料番号4の約2倍に達し
た。一方ヒステリシス損失は試料番号4−試料番号3−
試料番号2−試料番号1の順で増加し、試料番号1のヒ
ステリシス損失は試料番号4の約1.5倍となった。
[0020] The critical current density was as follows: Sample No. 4-Sample No. 3-
Sample No. 2 increased in the order of Sample No. 1, and the critical current density at 0.5 T of Sample No. 1 reached about twice that of Sample No. 4. On the other hand, the hysteresis loss was as follows:
Sample No. 2 increased in the order of Sample No. 1, and the hysteresis loss of Sample No. 1 was about 1.5 times that of Sample No. 4.

【0021】以上の結果から、試料番号1は高い電流密
度を有するが、ヒステリシス損失は試料番号2,試料番
号3に関しては両者(試料番号1と試料番号4)の中間
の値をとることが分かった。
From the above results, it was found that Sample No. 1 has a high current density, but the hysteresis loss of Sample No. 2 and Sample No. 3 is an intermediate value between the two (Sample No. 1 and Sample No. 4). Was.

【0022】[0022]

【0023】この発明の変形例として、上記の実施例で
の試料番号2にあたるNb層を銅に置き換えるものを作
製した。また、実施例でのNb層を4.2K以上の臨界
温度をもつ金属、例えば、バナジウム(V)、鉛(P
b)などで置き換えたものでもよい。これらの場合も実
施例とほぼ同様の結果がえられた。以上の他に、超電導
電子が滲み出し易いもの、低抵抗金属でNb層と置き換
えたものでもほぼ同様の結果がえられた。
As a modified example of the present invention, one in which the Nb layer corresponding to Sample No. 2 in the above embodiment was replaced with copper was manufactured. In the embodiment, the Nb layer is formed of a metal having a critical temperature of 4.2 K or more, for example, vanadium (V), lead (P).
b) or the like. In these cases, almost the same results as in the example were obtained. In addition to the above, substantially the same results were obtained in the case where the superconducting element was easily oozed and the case where the Nb layer was replaced with a low-resistance metal.

【0024】[0024]

【発明の効果】以上説明したとおり、この発明のNb−
Ti合金超電導線材によれば、Nb−Ti合金フィラメ
ントの周りに配置した場合、Nb層の代わりにCu−N
i合金層やCu−Ni−Mn合金層を配置するよりも、
高い臨界電流密度が得られた。しかも、臨界電流密度の
増加率が単位体積当たりのヒステリシス損失の増加率を
上回るために、同一長さで同じ臨界電流密度を有する超
電導線を試料番号1と試料番号2で作製した場合、試料
番号1の構造を有する超電導線のほうが線材の断面積を
小さくでき、なおかつ線材全体のヒステリシス損失も小
さくできる。また、断面積が小さいということは、超電
導線の使用量も少なくて済み、線材の冷却能力も向上す
る。その上、結合損失、渦電流損失は、線の直径に比例
するために、結合損失および渦電流損失も小さくするこ
とができる。
As described above, according to the present invention, the Nb-
According to the Ti alloy superconducting wire, when disposed around the Nb-Ti alloy filament, Cu-N
Rather than placing an i-alloy layer or a Cu-Ni-Mn alloy layer,
High critical current density was obtained. In addition, since the rate of increase of the critical current density exceeds the rate of increase of the hysteresis loss per unit volume, when the superconducting wires having the same length and the same critical current density were produced in sample numbers 1 and 2, The superconducting wire having the structure (1) can reduce the cross-sectional area of the wire, and can also reduce the hysteresis loss of the entire wire. Further, the small cross-sectional area means that the amount of superconducting wire used is small, and the cooling capacity of the wire is improved. In addition, since the coupling loss and the eddy current loss are proportional to the diameter of the wire, the coupling loss and the eddy current loss can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のNb−Ti合金超電導線材の一実施
例の構成を示す断面図、
FIG. 1 is a sectional view showing a configuration of an embodiment of an Nb—Ti alloy superconducting wire according to the present invention;

【図2】(A),(B),(C)は、直流用と交流用の
フィラメントサイズの違いを説明するための断面図、
FIGS. 2A, 2B, and 2C are cross-sectional views for explaining a difference between DC and AC filament sizes;

【符号の説明】[Explanation of symbols]

Nb−Ti合金素材被覆材 3 シングル線 4 Cu−10重量%Ni製の管DESCRIPTION OF SYMBOLS 1 Nb-Ti alloy raw material 2 Coating material 3 Single wire 4 Cu-10 wt% Ni tube

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 12/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01B 12/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cu/Cu−Ni合金/Cu−Mn合金ま
たはCu/Cu−Ni合金/Cu−Ni−Mn合金/N
b−Ti合金から構成される超電導線材において、Nb
−Ti合金フィラメント周りに配置されたCu−Mn合
金層またはCu−Ni−Mn合金層の内側にNb層を配
置してなることを特徴とするNb−Ti合金超電導線
材。
1. Cu / Cu-Ni alloy / Cu-Mn alloy or Cu / Cu-Ni alloy / Cu-Ni-Mn alloy / N
In a superconducting wire composed of a b-Ti alloy, Nb
-An Nb-Ti alloy superconducting wire characterized in that an Nb layer is arranged inside a Cu-Mn alloy layer or a Cu-Ni-Mn alloy layer arranged around a Ti alloy filament.
JP03276453A 1991-09-30 1991-09-30 Nb-Ti alloy superconducting wire Expired - Fee Related JP3099460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03276453A JP3099460B2 (en) 1991-09-30 1991-09-30 Nb-Ti alloy superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03276453A JP3099460B2 (en) 1991-09-30 1991-09-30 Nb-Ti alloy superconducting wire

Publications (2)

Publication Number Publication Date
JPH0594723A JPH0594723A (en) 1993-04-16
JP3099460B2 true JP3099460B2 (en) 2000-10-16

Family

ID=17569651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03276453A Expired - Fee Related JP3099460B2 (en) 1991-09-30 1991-09-30 Nb-Ti alloy superconducting wire

Country Status (1)

Country Link
JP (1) JP3099460B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491597B (en) * 2019-07-31 2020-09-18 西部超导材料科技股份有限公司 Preparation method of NbTi/CuMn/Cu superconducting composite wire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第43回春季低温工学・超電導学会予稿集、(平2−5−16)p.182

Also Published As

Publication number Publication date
JPH0594723A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US4148129A (en) Aluminum-stabilized multifilamentary superconductor and method of its manufacture
US5929385A (en) AC oxide superconductor wire and cable
JP3099460B2 (en) Nb-Ti alloy superconducting wire
US4153986A (en) Method for producing composite superconductors
JP3018663B2 (en) Nb-Ti alloy superconducting wire
JP3489293B2 (en) NbTi superconducting stranded wire
JP2876667B2 (en) Aluminum stabilized superconducting wire
JP2910586B2 (en) Nb (3) Sn superconducting wire
JPH07272555A (en) Niobium-titanium-based (nb-ti) superconductive wire
JPH10116522A (en) Nb-ti superconductive wire rod
JP2562435B2 (en) Superfine superconducting wire
JPH0714439A (en) Nbti superconducting wire
JPH06349349A (en) Superconductive wire
JPH0465032A (en) Nb-ti superconducting wire
JP3367316B2 (en) Ultra-fine multi-core Nb-Ti superconducting wire
JPH07272554A (en) Niobium-titanium-based (nb-ti) superconductive wire
JPH11111081A (en) Oxide superconducting wire
JPH10154422A (en) Nb-ti superconducting wire rod
Hong et al. High current density of NbTi composite
JP3042094B2 (en) Stabilizing material for superconducting conductor and superconducting conductor using the same
JP3036160B2 (en) Stabilizer for superconducting conductor
JP3154246B2 (en) Extruded billet for AC superconducting wire
JPH05182536A (en) Superconductor and stabilizing member used therein
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPH0589726A (en) Nbyi superconductive wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370