JP3018663B2 - Nb-Ti alloy superconducting wire - Google Patents

Nb-Ti alloy superconducting wire

Info

Publication number
JP3018663B2
JP3018663B2 JP3276452A JP27645291A JP3018663B2 JP 3018663 B2 JP3018663 B2 JP 3018663B2 JP 3276452 A JP3276452 A JP 3276452A JP 27645291 A JP27645291 A JP 27645291A JP 3018663 B2 JP3018663 B2 JP 3018663B2
Authority
JP
Japan
Prior art keywords
alloy
superconducting wire
filament
wire
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3276452A
Other languages
Japanese (ja)
Other versions
JPH0594722A (en
Inventor
克己 宮下
修二 酒井
圀尚 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3276452A priority Critical patent/JP3018663B2/en
Publication of JPH0594722A publication Critical patent/JPH0594722A/en
Application granted granted Critical
Publication of JP3018663B2 publication Critical patent/JP3018663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、交流モードで運転さ
れる機器に用いられる超電導線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting wire used for equipment operated in an AC mode.

【0002】[0002]

【従来の技術】現状の超電導マグネットは、その殆どが
直流モードで運転されるようになっている。これは、通
常の銅(Cu)安定化Nb−Ti合金超電導線材におけ
る交流モード運転時の損失が非常に大きいからである。
2. Description of the Related Art Most of current superconducting magnets are operated in a DC mode. This is because the loss of the ordinary copper (Cu) stabilized Nb-Ti alloy superconducting wire during the AC mode operation is very large.

【0003】超電導線の交流損失は、ヒステリシス損
失,結合損失および渦電流損失の3成分の和からなって
いる。この3成分の損失を低減させるために、次のよう
な方策が講じられている。
[0003] The AC loss of a superconducting wire is composed of the sum of three components of hysteresis loss, coupling loss and eddy current loss. The following measures have been taken to reduce the loss of these three components.

【0004】(1)Nb−Ti合金フィラメントをサブ
ミクロンオーダーまで超極細化する。
(1) Ultrafine ultrafine Nb-Ti alloy filaments to submicron order.

【0005】(2)図3の断面図に示すように、Nb−
Ti合金フィラメント1とCu−Ni合金4との間にC
u−Mn合金材6による高抵抗層を介在させる。
(2) As shown in the sectional view of FIG.
C between the Ti alloy filament 1 and the Cu-Ni alloy 4
A high resistance layer of the u-Mn alloy material 6 is interposed.

【0006】(3)線径を小さくし、かつ、ツイストピ
ッチを小さくする。
(3) To reduce the wire diameter and the twist pitch.

【0007】(4)安定化銅をCu−Ni合金の高抵抗
層で分割する。
(4) The stabilized copper is divided by a Cu—Ni alloy high resistance layer.

【0008】これらの幾何学的構成の改善を行うことに
より結合損失および渦電流損失は大幅に低減されたが、
ヒステリシス損失の低減を図ることは未だ不十分なもの
がある。
[0008] While these geometric improvements have led to significant reductions in coupling and eddy current losses,
Attempts to reduce hysteresis loss are still insufficient.

【0009】ヒステリシス損失は超電導線の磁化に起因
する損失であり、これを小さくするためには、フィラメ
ント径を小さくすることが望ましい。理論的にはNb−
Ti超電導線では0.1μmのフィラメント径が最適で
あるといわれている。しかし、フィラメント径を小さく
していくと、フィラメント間隔が非常に狭くなり、超電
導電子がCu−Ni合金中に滲み出してフィラメント同
士が電気的に結合してしまい、実質的にフィラメントが
太くなったような挙動を示すことになる。これを近接効
果という。この近接効果は事実上のフィラメント径の増
大を意味するため、ヒステリシス損失の増加を引き起こ
してしまう。この対策として、現在まで次の3つの方法
が試みられている。
The hysteresis loss is a loss caused by the magnetization of the superconducting wire. To reduce the hysteresis loss, it is desirable to reduce the filament diameter. Theoretically, Nb-
It is said that a 0.1 μm filament diameter is optimal for a Ti superconducting wire. However, as the filament diameter was reduced, the filament interval became very narrow, the superconducting material oozed out into the Cu-Ni alloy, and the filaments were electrically coupled, and the filaments became substantially thicker. Such behavior will be shown. This is called a proximity effect. This proximity effect means an increase in the diameter of the filament, which causes an increase in hysteresis loss. As a countermeasure, the following three methods have been tried so far.

【0010】(1)フィラメント間隔を広げる。(1) The filament interval is increased.

【0011】(2)Cu−Ni合金のNi濃度を10重
量%から30重量%に高くすることにより高抵抗化して
超電導電子の滲み出しを防ぐ。
(2) By increasing the Ni concentration of the Cu—Ni alloy from 10% by weight to 30% by weight, the resistance is increased to prevent bleeding of the superconductor.

【0012】(3)強い磁気モーメントをもつMn元素
を含むCu−Mn合金をNb−Ti合金フィラメントの
周りに配置させ、超電導電子の滲み出しを防ぐ。
(3) A Cu-Mn alloy containing a Mn element having a strong magnetic moment is arranged around the Nb-Ti alloy filament to prevent bleeding of the superconductor.

【0013】以上3つの何れの方法でもヒステリシス損
失をより低減させることが可能となった。
[0013] The hysteresis loss can be further reduced by any of the above three methods.

【0014】[0014]

【発明が解決しようとする課題】以上のような近接効果
による低減対策として考えられた3つの方法は、即ち、 「(1)フィラメント間隔を大きくする。(2)Cu−
Ni合金のNi濃度を10重量%から30重量%に増加
させる。(3)Cu−Ni合金の内層(Nb−Ti合金
フィラメントの周り)にCu−Mn合金を配置する。」
ことの3つであったが、上記(1)の場合、線全体に対
するNb−Ti合金の占積率が低下するために電流密度
が低下してしまう。また、上記(2)の場合、Cu−3
0重量%NiではNb−Ti合金の硬さの違いが大き
く、加工性に難点がある。さらに、上記(3)の場合、
加工性の面でも問題なく、フィラメント間隔も小さくす
ることができるが、Nb−Ti合金/Cu−Mn合金/
Cu−Ni合金の3層構造を採るため、従来のNb−T
i合金/Cu−Ni合金の2層構造のものに比べて加工
段階の工程が増えることになる。
The three methods considered as the countermeasures for reduction by the proximity effect as described above are as follows: "(1) Increase the filament interval. (2) Cu-
The Ni concentration of the Ni alloy is increased from 10% by weight to 30% by weight. (3) A Cu-Mn alloy is arranged on the inner layer of the Cu-Ni alloy (around the Nb-Ti alloy filament). "
However, in the case of the above (1), since the space factor of the Nb-Ti alloy with respect to the entire wire is reduced, the current density is reduced. In the case of the above (2), Cu-3
At 0 wt% Ni, the difference in hardness of the Nb-Ti alloy is large, and there is a problem in workability. Further, in the case of the above (3),
There is no problem in workability, and the filament interval can be reduced.
To adopt a three-layer structure of Cu-Ni alloy, the conventional Nb-T
The number of processing steps is increased as compared with the i-alloy / Cu-Ni alloy two-layer structure.

【0015】この発明の目的は、前記した従来技術の欠
点を解消し、高臨界電流密度,低交流損失化が可能な超
電導線を作製することにある。
An object of the present invention is to solve the above-mentioned disadvantages of the prior art and to produce a superconducting wire capable of achieving a high critical current density and a low AC loss.

【0016】[0016]

【課題を解決すための手段】この発明の要旨は、上記し
た目的を達成するため、Nb−Ti合金フィラメント周
りのCu−Mn合金/Cu−Ni合金からなる2層構造
をCu−Ni−Mn合金とすることで、近接効果の低減
作用を損なうことなく、その構造を簡素化し、加工工程
を増やさずに高臨界電流密度,低交流損失のNb−Ti
合金超電導線材を作製したものである。
The gist of the present invention is to provide a two-layer structure of Cu-Mn alloy / Cu-Ni alloy around an Nb-Ti alloy filament to achieve the above object. By using an alloy, the structure can be simplified without impairing the effect of reducing the proximity effect, and without increasing the number of processing steps, Nb-Ti having a high critical current density and a low AC loss can be obtained.
An alloy superconducting wire was produced.

【0017】[0017]

【実施例】以下、図面を参照してこの発明の実施例を説
明する。図1は一実施例のNb−Ti合金超電導線材の
構成を示す横断面図である。この図では併せて各素材部
分を引き出して拡大して示している。即ち、Nb−Ti
合金フィラメント素材1としてNb−46.5重量%T
i合金材を用意し、このNb−Ti合金の棒をCu−1
0重量%Ni−1重量%Mn合金製の被覆材2と複合化
し、直径12mmφの押出材を作製した。これを、引抜
伸線し、対辺距離が1.39mmの6角断面のシングル
線とした。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of an Nb-Ti alloy superconducting wire of one embodiment. In this figure, each material portion is also drawn out and enlarged. That is, Nb-Ti
Nb-46.5 wt% T as alloy filament material 1
An i-alloy material is prepared, and this Nb-Ti alloy rod is
An extruded material having a diameter of 12 mm was prepared by combining with a coating material 2 made of a 0 wt% Ni-1 wt% Mn alloy. This was drawn and drawn to form a single line having a hexagonal cross section with the opposite side distance of 1.39 mm.

【0018】このシングル線253本をCu−10重量
%Ni合金管3に挿入組立てし、押出ビレットとした。
この押出ビレットをそれぞれ静水圧押出しにて外形12
mmとした後、引抜伸線して対辺距離が1.39mmの
6角断面のサブマルチ線とした。
253 single wires were inserted and assembled into a Cu-10% by weight Ni alloy tube 3 to obtain an extruded billet.
Each of the extruded billets was subjected to hydrostatic extrusion to obtain an outer shape 12
mm, the wire was drawn and drawn to obtain a sub-multi wire having a hexagonal cross section with an opposite side distance of 1.39 mm.

【0019】次に、このサブマルチ線の198本と同サ
イズのCu−10重量%Ni合金被覆銅線からなるダミ
ー線の55本を、Cu−10重量%Ni合金製の管4に
挿入組立し、それぞれ押出用ビレットとした。各押出用
ビレットをそれぞれ静水圧押出して外形12mmに加工
した。
Next, 55 dummy wires composed of Cu-10 wt% Ni alloy coated copper wire of the same size as the 198 sub multi wires are inserted and assembled into a tube 4 made of Cu-10 wt% Ni alloy. , Each of which was a billet for extrusion. Each of the extruded billets was extruded with hydrostatic pressure to form an outer shape of 12 mm.

【0020】その後、それらの押出材について、それぞ
れ途中で300℃〜375℃の温度範囲で50時間時効
熱処理を施した後引抜伸線したものと、この熱処理を行
なわないで引抜伸線したもの(冷間加工のみのもの)を
それぞれツイスト加工し、外径0.1mm,フィラメン
ト径0.2μm,フィラメント間隔0.08μm,ツイ
ストピッチ0.8mm,素線径0.1mmの線材とし
た。この線材の断面構成比はCu:Cu−Ni−Mn合
金:Nb−Ti合金=0.6:3.09:1となってい
る。
Thereafter, each of the extruded materials was subjected to aging heat treatment at a temperature range of 300 ° C. to 375 ° C. for 50 hours, then drawn and drawn, and drawn and drawn without performing this heat treatment ( (Only cold-worked) were twisted to obtain a wire having an outer diameter of 0.1 mm, a filament diameter of 0.2 μm, a filament interval of 0.08 μm, a twist pitch of 0.8 mm, and a strand diameter of 0.1 mm. The cross-sectional composition ratio of this wire is Cu: Cu—Ni—Mn alloy: Nb—Ti alloy = 0.6: 3.09: 1.

【0021】第1表に、以上のようにして作製した5種
類の線材の外部印加磁界0.5(T)中での臨界電流密
度JcとSQUID型磁束計により測定した±0.5
(T/cycle)当りのヒステリシス損失を示した。
Table 1 shows the critical current densities Jc of the five types of wires produced as described above in an externally applied magnetic field of 0.5 (T) and ± 0.5 measured with a SQUID magnetometer.
Hysteresis loss per (T / cycle) was shown.

【0022】[0022]

【表1】 [Table 1]

【0023】この表よりヒステリシス損失は0.4〜
0.8kJ/m3の値をとり、Cu−Ni−Mn合金の
部分をMnを除いたCu−Ni合金にした以外は全て同
じ条件で作製した線のヒステリシス損失の約2/3に減
少した。
According to this table, the hysteresis loss is 0.4 to
Taking a value of 0.8 kJ / m 3 , the hysteresis loss was reduced to about 2/3 of the hysteresis loss of the wires manufactured under the same conditions except that the Cu-Ni-Mn alloy was changed to a Cu-Ni alloy excluding Mn. .

【0024】なお、今回はCu−Ni−Mn合金層のN
i濃度を10重量%,Mn濃度1重量%としたが、も
し、加工性とCu−Ni−Mn合金自身のヒシテリシス
損失に問題がなければ、結合損失および近接効果の低減
により効果があがり、フィラメント間隔をより小さくす
ることができ、ひいてはより一層の高電流密度化が期待
できる。
In addition, this time, the N--N--Cu--Ni--Mn alloy layer
The i concentration was set to 10% by weight and the Mn concentration was set to 1% by weight. However, if there is no problem in the workability and the hysteresis loss of the Cu—Ni—Mn alloy itself, the effect is improved by reducing the coupling loss and the proximity effect, and The interval can be made smaller, and further higher current density can be expected.

【0025】次に、他の実施例としてCu−Ni−Mn
合金とNb−Ti合金の間にNb−Ti合金に対し重量
比10%以下のNb層を配置した線材について上記例と
同様に加工を行った。Nb層を配置した線材は、時効熱
処理時に生成されるNb−Ti合金中のTnとCu−N
i−Mn合金中のCuとの化合物Cu−Tiの生成を抑
える効果がある。
Next, as another embodiment, Cu--Ni--Mn
A wire in which an Nb layer having a weight ratio of 10% or less with respect to the Nb-Ti alloy was disposed between the alloy and the Nb-Ti alloy was processed in the same manner as in the above example. The wire on which the Nb layer is arranged is made of Tn and Cu-N in the Nb-Ti alloy generated during the aging heat treatment.
This has the effect of suppressing the formation of the compound Cu-Ti with Cu in the i-Mn alloy.

【0026】前述したように、Cu−Mn合金およびC
u−Ni−Mn合金は近接効果の低減作用を有するが、
Mnは強い磁気モーメントをもつためにCu−Ni−M
n合金自身がヒステリシス損失をもっている。このた
め、Mn濃度には限界があり、重量比で2%が上限であ
る。加えてNi濃度も加工性という観点から重量比で3
0%が上限である。
As mentioned above, Cu-Mn alloy and C
Although the u-Ni-Mn alloy has the effect of reducing the proximity effect,
Mn has a strong magnetic moment, so Cu-Ni-M
The n alloy itself has a hysteresis loss. For this reason, the Mn concentration has a limit, and the upper limit is 2% by weight. In addition, the Ni concentration is 3% by weight from the viewpoint of workability.
0% is the upper limit.

【0027】また、この発明による超電導線材は、多心
構造の単線である必要はなく、線材の大容量化のために
複数本の多芯構造の線材を素線とした撚線であっても差
し支えない。
Further, the superconducting wire according to the present invention does not need to be a single wire having a multi-core structure, and may be a stranded wire having a plurality of wires having a multi-core structure as a strand in order to increase the capacity of the wire. No problem.

【発明の効果】以上説明したとおり、この発明のNb−
Ti合金超電導線材によれば、交流用途を目的とするフ
ィラメント径が1μm以下のNb−Ti合金超電導線材
において、Nb−Ti合金フィラメントの周りにCu−
Ni−Mn合金層を配置することにより近接効果が低減
され、従来のCu−Mn合金/Cu−Ni合金構造より
も構造が簡素で、かつ、低交流損失のNb−Ti超電導
線材を容易に作製することができる効果がある。
As described above, according to the present invention, the Nb-
According to the Ti alloy superconducting wire, in a Nb-Ti alloy superconducting wire having a filament diameter of 1 μm or less for AC use, Cu-
By arranging the Ni-Mn alloy layer, the proximity effect is reduced, the structure is simpler than the conventional Cu-Mn alloy / Cu-Ni alloy structure, and the Nb-Ti superconducting wire having low AC loss is easily manufactured. There is an effect that can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のNb−Ti合金超電導線材の一実施
例を示す横断面図、
FIG. 1 is a cross-sectional view showing one embodiment of an Nb—Ti alloy superconducting wire of the present invention;

【図2】この発明のNb−Ti合金フィラメント周りの
構造図、
FIG. 2 is a structural diagram around an Nb—Ti alloy filament of the present invention;

【図3】従来のNb−Ti合金フィラメント周りの構造
図である。
FIG. 3 is a structural diagram around a conventional Nb—Ti alloy filament.

【符合の説明】[Description of sign]

1 Nb−Ti合金フィラメント素材 2 Cu−Ni−Mn合金 3 Cu−Ni合金 4 Cu−Ni合金 5 Nb−Ni合金超電導線材 6 Cu−Mn合金 DESCRIPTION OF SYMBOLS 1 Nb-Ti alloy filament material 2 Cu-Ni-Mn alloy 3 Cu-Ni alloy 4 Cu-Ni alloy 5 Nb-Ni alloy superconducting wire 6 Cu-Mn alloy

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鎌田 圀尚 東京都千代田区丸の内二丁目1番2号 「日立電線株式会社内」 (58)調査した分野(Int.Cl.7,DB名) H01B 12/06 H01B 12/10 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kunihisa Kamada 2-1-2, Marunouchi, Chiyoda-ku, Tokyo "Hitachi Cable Co., Ltd." (58) Field surveyed (Int. Cl. 7 , DB name) H01B 12/06 H01B 12/10 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Nb−Tiフィラメントの周りにCu−
Ni合金層を配置してなるNb−Ti超電導線材におい
て、上記Cu−Ni合金をCu−Ni−Mn合金に置き
換えたことを特徴とするNb−Ti合金超電導線材。
1. The method according to claim 1, wherein the Nb-Ti filament is surrounded by Cu-
An Nb-Ti alloy superconducting wire comprising a Ni alloy layer, wherein the Cu-Ni alloy is replaced with a Cu-Ni-Mn alloy.
【請求項2】 Nb−Tiフィラメントの周りにCu−
Ni合金層を配置してなるNb−Ti超電導線材におい
て、上記Cu−Ni合金をCu−Ni−Mn合金に置き
換えると共に、その内側にNb層を配置したことを特徴
とするNb−Ti合金超電導線材。
2. The method according to claim 1, further comprising the step of:
An Nb-Ti superconducting wire comprising a Ni alloy layer, wherein the Cu-Ni alloy is replaced by a Cu-Ni-Mn alloy and an Nb layer is arranged inside the Nb-Ti superconducting wire. .
JP3276452A 1991-09-30 1991-09-30 Nb-Ti alloy superconducting wire Expired - Fee Related JP3018663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3276452A JP3018663B2 (en) 1991-09-30 1991-09-30 Nb-Ti alloy superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3276452A JP3018663B2 (en) 1991-09-30 1991-09-30 Nb-Ti alloy superconducting wire

Publications (2)

Publication Number Publication Date
JPH0594722A JPH0594722A (en) 1993-04-16
JP3018663B2 true JP3018663B2 (en) 2000-03-13

Family

ID=17569636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3276452A Expired - Fee Related JP3018663B2 (en) 1991-09-30 1991-09-30 Nb-Ti alloy superconducting wire

Country Status (1)

Country Link
JP (1) JP3018663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004234A (en) * 2013-06-21 2015-01-08 日鐵住金建材株式会社 Joint for fence and fence

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004234A (en) * 2013-06-21 2015-01-08 日鐵住金建材株式会社 Joint for fence and fence

Also Published As

Publication number Publication date
JPH0594722A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
JP2003217370A (en) Magnesium diboride superconductive wire
JP3018663B2 (en) Nb-Ti alloy superconducting wire
JP3813260B2 (en) Oxide multi-core superconducting conductor and method for producing the same
Kreilick et al. Fine filamentary NbTi superconducting wires
JP3099460B2 (en) Nb-Ti alloy superconducting wire
Pyon et al. Development of Nb/sub 3/Sn conductors for fusion and high energy physics
JP2876667B2 (en) Aluminum stabilized superconducting wire
JPH11111081A (en) Oxide superconducting wire
JP3489293B2 (en) NbTi superconducting stranded wire
JPH10255563A (en) Nb3sn superconducting wire
JPH0377607B2 (en)
JP2562435B2 (en) Superfine superconducting wire
Hong et al. High current density of NbTi composite
JPH0465032A (en) Nb-ti superconducting wire
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPS59211909A (en) Composite superconductor
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JP3505894B2 (en) Compound superconducting wire
JP3143908B2 (en) Superconducting conductor
JPH10154422A (en) Nb-ti superconducting wire rod
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPH0559527B2 (en)
JPH0589726A (en) Nbyi superconductive wire
JPH10125150A (en) Oxide superconducting molded stranded wire and its manufacture

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees