JPH0714439A - Nbti superconducting wire - Google Patents

Nbti superconducting wire

Info

Publication number
JPH0714439A
JPH0714439A JP5173831A JP17383193A JPH0714439A JP H0714439 A JPH0714439 A JP H0714439A JP 5173831 A JP5173831 A JP 5173831A JP 17383193 A JP17383193 A JP 17383193A JP H0714439 A JPH0714439 A JP H0714439A
Authority
JP
Japan
Prior art keywords
nbti
aspect ratio
superconducting wire
billet
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5173831A
Other languages
Japanese (ja)
Inventor
Kaname Matsumoto
要 松本
Hirokazu Takewaki
広和 武脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5173831A priority Critical patent/JPH0714439A/en
Publication of JPH0714439A publication Critical patent/JPH0714439A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an NbTi superconducting wire with an excellent critical current vs. density characteristic in a magnetic field. CONSTITUTION:The sectional form of artifical pins 7 compounded continuously in the longitudinal direction in an NbTi superconductor 6 is made in a rectangular form, an elliptical form, or a zigzag form making the rectangular form as the standard unit. And the aspect ratio (the ratio of the vertical size and the lateral size in the section) of the rectangular form, the elliptical form, or the rectangular form of the standard unit of the zigzag form, is limited to 1.5 to 30. Consequently, the probability for quantized magnetic flux lines encountering the artificial pins, and the mean pinning force of the artificial pins 7 are balanced with high precision, so as to improve the superconductivity under a high magnetid field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導臨界電流特性に
優れたNbTi系超電導線材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a NbTi-based superconducting wire having excellent superconducting critical current characteristics.

【0002】[0002]

【従来の技術】NbTi系超電導線材は、加工性及び臨
界電流密度(Jc)等の超電導特性に優れており、磁気
浮上列車、高エネルギー粒子加速器、医療診断用核磁気
共鳴映像装置等の超電導応用製品に実用化されつつあ
る。NbTi系超電導線材は、銅やアルミ等の安定化金
属材、或いは銅合金等にNbTi系超電導フィラメント
を多数本埋込んだもので、その製造は、銅製管内にNb
Ti系超電導棒材を充填したビレットを延伸加工して単
芯の超電導線材となし、この単芯の超電導線材を再び銅
製管内に多数本充填してビレットとなし、このビレット
を延伸加工する工程を所望回繰返してなされている。
2. Description of the Related Art NbTi-based superconducting wires are excellent in workability and superconducting characteristics such as critical current density (Jc), and are used in magnetic levitation trains, high-energy particle accelerators, nuclear magnetic resonance imaging devices for medical diagnosis, etc. It is being put to practical use in products. The NbTi-based superconducting wire is a stabilized metal material such as copper or aluminum, or a large number of NbTi-based superconducting filaments embedded in a copper alloy or the like.
A process for drawing a billet filled with Ti-based superconducting rod material by drawing it to form a single-core superconducting wire, and again filling a large number of this single-core superconducting wire into a copper tube to form a billet Repeated as many times as desired.

【0003】ところで、NbTi系超電導体内に外部磁
場印加によって侵入した量子化磁束線は、使用中、Nb
Ti系超電導体内の析出物、格子欠陥、粒界等の不均質
部分にピン止めされているが、このピン止め力が弱い
と、量子化磁束線は超電導体内を移動して電圧が生じ、
ジュール損失が発生して超電導体は常電導体に転移して
しまう。このようなことから、種々のピン止め法が開発
されており、中でも加工中に熱処理を施してα−Ti相
を析出させる方法は、α−Ti相が加工中にリボン状に
変形して高いピン止め効果が得られ(例えばC.Meingast
et al. J.Appl. Phys.66 5962 1989)、実用化されて
いる。そしてこの方法でピン止めしたNbTi系超電導
線材のJc値は、最高3700〜3800A/mm2(at 5T,4.2K)
である。しかしながら、このα−Ti相析出法で、Jc
値を4000A/mm2(at 5T,4.2K)以上に高めるには、100
0時間以上の熱処理を要し生産性に劣る、長時間熱処
理によりNbTi系超電導体層と安定化銅層との界面に
CuとTiの脆い金属間化合物が生成してNbTi系超
電導線材の加工性が低下する、α−Ti相の形状、サ
イズ、分布を制御するのが困難である等の問題があっ
た。
By the way, the quantized magnetic flux lines penetrating into the NbTi-based superconductor by applying an external magnetic field are
Although it is pinned to inhomogeneous parts such as precipitates, lattice defects, and grain boundaries in the Ti-based superconductor, if the pinning force is weak, the quantized magnetic flux lines move in the superconductor to generate a voltage,
Joule loss occurs and the superconductor is transformed into a normal conductor. Therefore, various pinning methods have been developed. Among them, the method of precipitating the α-Ti phase by performing heat treatment during processing is high because the α-Ti phase is deformed into a ribbon shape during processing. Pinning effect can be obtained (eg C. Meingast
et al. J. Appl. Phys. 66 5962 1989), which has been put to practical use. The Jc value of NbTi-based superconducting wire pinned by this method is 3700 to 3800A / mm 2 (at 5T, 4.2K) at maximum.
Is. However, with this α-Ti phase precipitation method, Jc
To increase the value to 4000A / mm 2 (at 5T, 4.2K) or more, 100
Long-term heat treatment requires heat treatment for 0 hours or more, and brittle intermetallic compounds of Cu and Ti are generated at the interface between the NbTi-based superconductor layer and the stabilized copper layer by long-time heat treatment, resulting in workability of NbTi-based superconducting wire. And the shape, size, and distribution of the α-Ti phase are difficult to control.

【0004】[0004]

【発明が解決しようとする課題】このような背景から、
ピンニング点を人工的に形成する方法が提案された。こ
の方法は、銅製管内にNbTi系超電導棒材を充填した
ビレットの前記NbTi系超電導棒材の中に、Nb金属
等をピンニング点として人工的に複合する方法である。
この人工ピン法では、既に3800A/mm2(at 5T,4.2K、K.
Matsumoto etal. IEEE Trans.Appl.Supercond. 3 1362
1993)や3400A/mm2(at 5T,4.2K、H.C.Kanichi et al.
Adv.Cryog.Eng.38B 675 1992)等の、α−Ti相析出法
に匹敵するJc値が得られている。そして、この人工ピ
ン法では、ピンニング点となす物質の種類、及びその形
状、分布、量等を任意に選び又は制御することができる
為、Jc値の一層の向上が期待されている。
From such a background,
A method of artificially forming pinning points has been proposed. This method is a method of artificially compounding Nb metal or the like as a pinning point in the NbTi-based superconducting rod material of the billet in which a copper tube is filled with the NbTi-based superconducting rod material.
With this artificial pin method, 3800A / mm 2 (at 5T, 4.2K, K.
Matsumoto et al. IEEE Trans.Appl.Supercond. 3 1362
1993) and 3400 A / mm 2 (at 5T, 4.2K, HC Kanichi et al.
Adv.Cryog.Eng .38B 675 1992) and the like, Jc values comparable to the α-Ti phase precipitation method have been obtained. Further, in this artificial pin method, the type of the substance serving as the pinning point, and its shape, distribution, amount, etc. can be arbitrarily selected or controlled, so that further improvement of the Jc value is expected.

【0005】[0005]

【課題を解決する為の手段】本発明はこのような状況に
鑑み、人工ピン法について鋭意研究を行ない、複合する
人工ピンニング点の断面形状によりJc値が著しく左右
されることを知見し、更に研究を重ねて本発明を完成す
るに至ったものである。即ち、本発明は、NbTi系超
電導体中に、NbTi系超電導体の使用環境下で非超電
導体の物質、或いはNbTi系超電導体よりBc2(上部
臨界磁場) が弱い物質をピンニング点として長手方向に
連続的に複合したNbTi系超電導線材において、前記
ピンニング点として長手方向に連続的に複合した物質の
断面形状が、長方形、楕円形、又は長方形を基本単位と
するジグザク形であり、且つ前記長方形、楕円形、又は
ジグザグ形基本単位の長方形のアスペクト比(断面の縦
横比)が1.5 〜30であることを特徴とするNbTi系超
電導線材である。
In view of such a situation, the present invention has conducted intensive studies on the artificial pinning method and has found that the Jc value is remarkably influenced by the sectional shape of the composite artificial pinning point. The present invention has been completed through repeated research. That is, according to the present invention, in the NbTi-based superconductor, a substance which is a non-superconductor in a use environment of the NbTi-based superconductor or a substance having a weaker Bc 2 (upper critical magnetic field) than the NbTi-based superconductor is used as a pinning point in the longitudinal direction. In the NbTi-based superconducting wire rod that is continuously compounded in the above, the cross-sectional shape of the substance that is continuously compounded in the longitudinal direction as the pinning point is a rectangle, an ellipse, or a zigzag shape having a rectangle as a basic unit, and the rectangle The elliptical or zigzag basic unit has a rectangular aspect ratio (aspect ratio of cross section) of 1.5 to 30, which is an NbTi-based superconducting wire.

【0006】本発明において、人工ピンニング点(以下
人工ピンと略記する)となす非超電導体物質とは、Nb
Ti系超電導体の使用環境下で、つまりNbTi系超電
導体が超電導を示す条件下で、非超電導状態にある物質
である。人工ピンニング点には、NbTi系超電導体よ
りBc2(上部臨界磁場) が低い物質も適用される。これ
ら物質としては、Nb金属やNb合金等がNbTi系超
電導体を変質させず好適である。Nb以外には、Ti,
Ta,Al,Mg,Fe,Hf,Cu,Ge,Ni,Z
r,Cr等の金属、或いはこれらを適当に組み合わせた
合金、更にはこれらの金属を適当に積層したもの等が用
いられる。
In the present invention, the non-superconductor material serving as an artificial pinning point (hereinafter abbreviated as an artificial pin) is Nb.
It is a substance that is in a non-superconducting state under the usage environment of the Ti-based superconductor, that is, under the condition that the NbTi-based superconductor exhibits superconductivity. A material having a lower Bc 2 (upper critical magnetic field) than the NbTi-based superconductor is also applied to the artificial pinning point. As these substances, Nb metal, Nb alloy, and the like are preferable because they do not deteriorate the NbTi-based superconductor. Other than Nb, Ti,
Ta, Al, Mg, Fe, Hf, Cu, Ge, Ni, Z
Metals such as r and Cr, alloys in which these are appropriately combined, and those in which these metals are appropriately laminated are used.

【0007】本発明において、長手方向に連続的に複合
した人工ピンの断面形状を長方形、楕円形、又は長方形
を基本単位とするジグザク形とし、且つ前記長方形、楕
円形又はジグザグ形基本単位の長方形のアスペクト比
(断面の縦横比)を 1.5〜30に限定した理由は、人工ピ
ン断面のアスペクト比が、前記限定値を下回っても、又
上回っても、高いJc値が得られない為である。
In the present invention, the cross-sectional shape of the artificial pin which is continuously compounded in the longitudinal direction is a rectangle, an ellipse, or a zigzag shape whose basic unit is a rectangle, and the rectangle of the rectangular, elliptical or zigzag basic unit. The reason for limiting the aspect ratio (aspect ratio of cross section) to 1.5 to 30 is that a high Jc value cannot be obtained even if the aspect ratio of the artificial pin cross section is below or above the above limit value. .

【0008】アスペクト比が、1.5 〜30の範囲におい
て、高いJc値が得られる理由は、次のように考えられ
る。即ち、量子化磁束線のピン止め力は、量子化磁束線
が出会う人工ピンの表面積により左右され、人工ピンの
広幅面と量子化磁束線とのなす角度θが0の時、つまり
両者が平行な時、量子化磁束線は最も強くピン止めされ
る。前記θが増大するにつれてピン止め力は急激に減少
し、この減少率はアスペクト比が大きい程大きく、従っ
てθが0〜90度における平均的なピン止め力はアスペク
ト比が大きい程低下する。他方、量子化磁束線が人工ピ
ンの表面と出会う確率は人工ピンのアスペクト比が小さ
い程大きくなる。このように、アスペクト比が大きいと
人工ピンの平均的ピン止め力が低下し、アスペクト比が
小さいと量子化磁束線の人工ピンと出会う確率が増大す
る。そして出会いの確率とピン止め力とのバランスのと
れたアスペクト比が 1.5〜30の間であると考えられる。
The reason why a high Jc value is obtained when the aspect ratio is in the range of 1.5 to 30 is considered as follows. That is, the pinning force of the quantized magnetic flux line depends on the surface area of the artificial pin with which the quantized magnetic flux line meets, and when the angle θ between the wide surface of the artificial pin and the quantized magnetic flux line is 0, that is, both are parallel. When, the quantized flux lines are most strongly pinned. The pinning force sharply decreases as θ increases, and the rate of decrease increases as the aspect ratio increases. Therefore, the average pinning force at θ of 0 to 90 degrees decreases as the aspect ratio increases. On the other hand, the probability that the quantized magnetic flux line meets the surface of the artificial pin increases as the aspect ratio of the artificial pin decreases. As described above, when the aspect ratio is large, the average pinning force of the artificial pin is reduced, and when the aspect ratio is small, the probability of encountering the artificial pin of the quantized magnetic flux line is increased. It is considered that the balanced aspect ratio of the encounter probability and the pinning force is between 1.5 and 30.

【0009】[0009]

【作用】本発明では、長手方向に連続的に複合した人工
ピンの断面形状を、長方形、楕円形、又は長方形を基本
単位とするジグザク形となし、且つ前記長方形、楕円
形、又はジグザグ形基本単位の長方形のアスペクト比
(断面の縦横比)を1.5 〜30に限定したので、量子化磁
束線が人工ピンと出会う確率と、人工ピンの平均的ピン
止め力とが高位にバランスして、人工ピンのピン止め効
率が高まり、磁場中における超電導特性が向上する。
In the present invention, the cross-sectional shape of the artificial pin continuously compounded in the longitudinal direction is rectangular, elliptical, or zigzag with the rectangular unit as a basic unit, and the rectangular, elliptical, or zigzag basic shape is used. Since the aspect ratio of the unit rectangle (the aspect ratio of the cross section) is limited to 1.5 to 30, the probability that the quantized magnetic flux line encounters the artificial pin and the average pinning force of the artificial pin balance well Pinning efficiency is improved, and superconducting characteristics in a magnetic field are improved.

【0010】[0010]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 銅管に、厚さ 3.3mmの板状のNb−50wt%Ti合金材
と、厚さ1.3 mm、アスペクト比が最大30、最小で18の板
状のNb材とを交互に積層して充填して一次ビレットを
作製した。次にこの一次ビレットを熱間押出しと伸線加
工により線材に加工し、この線材を硝酸水溶液に浸漬し
て外周の銅層を除去して2.5 mmφのNbTiとNbとの
積層線材となし、この線材を銅管に200 本充填して二次
ビレットとなした。次にこれを熱間押出により複合化
し、更に伸線加工により1.3 mmφの線材に加工した。次
にこの線材を銅管に750 本充填して三次ビレットとな
し、これを熱間押出しにより一体化し、更に伸線加工し
て0.2 mmφのNbTi系超電導線材となした。銅管には
全て外径45mmφ、内径40mmφの銅管を用いた。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 A plate-shaped Nb-50 wt% Ti alloy material having a thickness of 3.3 mm and a plate-shaped Nb material having a thickness of 1.3 mm and an aspect ratio of maximum 30 and minimum 18 were alternately laminated on a copper tube. Were filled to prepare a primary billet. Next, this primary billet is processed into a wire rod by hot extrusion and wire drawing, and the wire rod is immersed in an aqueous nitric acid solution to remove the copper layer on the outer periphery to form a laminated wire rod of 2.5 mmφ NbTi and Nb. A copper tube was filled with 200 wires to form a secondary billet. Next, this was compounded by hot extrusion and further processed into a wire rod of 1.3 mmφ by wire drawing. Next, 750 copper pipes were filled with this wire rod to form a tertiary billet, which was integrated by hot extrusion and further drawn to form a 0.2 mmφ NbTi-based superconducting wire rod. As the copper tube, a copper tube having an outer diameter of 45 mmφ and an inner diameter of 40 mmφ was used.

【0011】実施例2 銅管に、厚さ6mmの板状のNb−50wt%Ti合金材と、
厚さ2.4 mm、アスペクト比が最大16、最小で13の板状の
Nb材とを交互に積層して充填して一次ビレットを作製
した。次にこの一次ビレットを熱間押出しと伸線加工に
より線材に加工し、この線材を硝酸水溶液に浸漬して外
周の銅層を除去して1.3 mmφのNbTiとNbとの積層
線材となし、この線材を銅管に700 本充填して二次ビレ
ットとなした他は、実施例1と同じ方法により0.2 mmφ
のNbTi系超電導線材を製造した。
Example 2 A copper pipe was provided with a plate-shaped Nb-50 wt% Ti alloy material having a thickness of 6 mm,
A plate-shaped Nb material having a thickness of 2.4 mm, an aspect ratio of 16 at the maximum, and a minimum of 13 was alternately laminated and filled to prepare a primary billet. Next, this primary billet is processed into a wire rod by hot extrusion and wire drawing, and this wire rod is immersed in a nitric acid aqueous solution to remove the copper layer on the outer periphery to form a laminated wire rod of 1.3 mmφ NbTi and Nb. 0.2 mmφ was obtained in the same manner as in Example 1 except that 700 wires were filled in a copper tube to form a secondary billet.
Of NbTi-based superconducting wire.

【0012】実施例3 銅管に、厚さ10.5mmのNb−50wt%Ti合金材と、厚さ
4.2 mm、アスペクト比9の板状のNb材とを交互に積層
して充填して一次ビレットを作製した。次にこの一次ビ
レットを熱間押出しと伸線加工により線材に加工し、こ
の線材を硝酸水溶液に浸漬して外周の銅層を除去して0.
8 mmφのNbTiとNbとの積層線材となし、この線材
を銅管に2000本充填して二次ビレットとなした他は、実
施例1と同じ方法により0.2 mmφのNbTi系超電導線
材を製造した。
Example 3 A copper tube was coated with a Nb-50 wt% Ti alloy material having a thickness of 10.5 mm and a thickness of
A plate-shaped Nb material having a thickness of 4.2 mm and an aspect ratio of 9 was alternately laminated and filled to prepare a primary billet. Next, this primary billet is processed into a wire rod by hot extrusion and wire drawing, and the wire rod is immersed in an aqueous nitric acid solution to remove the copper layer on the outer periphery.
A 0.2 mmφ NbTi-based superconducting wire was manufactured in the same manner as in Example 1 except that a laminated wire rod of 8 mmφ NbTi and Nb was used, and 2000 pieces of this wire rod were filled into a copper tube to form a secondary billet. .

【0013】実施例4 銅管に、厚さ15.5mmのNb−50wt%Ti合金材に、厚さ
8mm、アスペクト比5のNb材を挟んで充填して一次ビ
レットを作製した。次にこの一次ビレットを熱間押出し
と伸線加工により線材に加工し、この線材を硝酸水溶液
に浸漬して外周の銅層を除去して3.0 mmφのNbTiと
Nbとの積層線材となし、この線材を銅管に 140本充填
して二次ビレットとなした。次にこれを熱間押出により
縮径したのち、再び硝酸水溶液に浸漬して外周の銅層を
除去してNbTiとNbとの積層線材となし、この線材
を銅管に55本充填して三次ビレットとなし、これを熱間
押出しにより複合化し、更に伸線加工により1.3 mmφの
線材に加工した。次にこの線材を銅管に750 本充填して
四次ビレットとなし、これを熱間押出しにより一体化
し、更に伸線加工して0.2 mmφの超電導線材となした。
銅管には全て外径45mmφ、内径40mmφの銅管を用いた。
EXAMPLE 4 A copper tube was filled with a 15.5 mm thick Nb-50 wt% Ti alloy material sandwiching an 8 mm thick Nb material having an aspect ratio of 5 to prepare a primary billet. Next, this primary billet is processed into a wire rod by hot extrusion and wire drawing, and this wire rod is immersed in an aqueous nitric acid solution to remove the outer copper layer to form a laminated wire rod of 3.0 mmφ NbTi and Nb. A copper tube was filled with 140 wires to form a secondary billet. Next, after reducing the diameter by hot extrusion, it is immersed again in a nitric acid aqueous solution to remove the outer copper layer to form a laminated wire rod of NbTi and Nb, and 55 copper pipes are filled with this wire rod to form a tertiary wire. A billet was formed, which was compounded by hot extrusion, and further drawn into a 1.3 mmφ wire rod. Next, 750 copper pipes were filled with this wire rod to form a quaternary billet, which was integrated by hot extrusion and further drawn to form a 0.2 mmφ superconducting wire rod.
As the copper tube, a copper tube having an outer diameter of 45 mmφ and an inner diameter of 40 mmφ was used.

【0014】実施例5 Nb−50wt%Ti合金の中空丸棒材の中空部に、厚さ1
4.5mm、アスペクト比 1.5のNb角棒材を嵌入し、これ
を銅管に充填して一次ビレットを作製した。次にこの一
次ビレットを熱間押出しと伸線加工により線材に加工
し、この線材を硝酸水溶液に浸漬して外周の銅層を除去
して1.6 mmφのNbTi合金中にNbを複合した線材と
なし、この線材を銅管に 470本充填して二次ビレットと
なした他は、実施例4と同じ方法により0.2 mmφの超電
導線材を製造した。
Example 5 A hollow round bar made of Nb-50 wt% Ti alloy has a thickness of 1
A Nb square rod having an aspect ratio of 4.5 mm was inserted into the copper tube and the copper tube was filled with the rod to prepare a primary billet. Next, this primary billet is processed into a wire rod by hot extrusion and wire drawing, and this wire rod is immersed in an aqueous nitric acid solution to remove the copper layer on the outer periphery to form a wire rod composed of Nb in a 1.6 mmφ NbTi alloy. A 0.2 mmφ superconducting wire was manufactured in the same manner as in Example 4 except that 470 copper tubes were filled with this wire to form a secondary billet.

【0015】実施例6 銅管に、片面又は両面をジグザク状に形成した9枚のN
b−50wt%Ti合金材とジグザグ状に折り曲げた8枚の
Nb材(厚さ1.3 mm) とを交互に積層して充填した他
は、実施例2と同じ方法により 0.2mmφのNbTi超電
導線材を製造した。前記ジグザグ状Nb材の基本単位の
長方形のアスペクト比は5とした。
Example 6 N pieces of N formed by forming one or both surfaces in a zigzag shape on a copper tube
A 0.2 mmφ NbTi superconducting wire was prepared in the same manner as in Example 2 except that b-50 wt% Ti alloy material and eight Nb materials (thickness: 1.3 mm) bent in a zigzag shape were alternately laminated and filled. Manufactured. The aspect ratio of the rectangle of the basic unit of the zigzag Nb material was set to 5.

【0016】比較例1 銅管に、厚さ2mmの板状のNb−50wt%Ti合金材と、
厚さ0.8 mm、アスペクト比が最大40、最小で19の板状の
Nb材とを交互に積層して充填して一次ビレットを作製
した他は、実施例1と同じ方法により 0.2mmφのNbT
i系超電導線材を製造した。
Comparative Example 1 A copper tube having a plate-like Nb-50 wt% Ti alloy material having a thickness of 2 mm was used.
A NbT of 0.2 mmφ was prepared in the same manner as in Example 1 except that a plate-shaped Nb material having a thickness of 0.8 mm, an aspect ratio of 40 at the maximum and a minimum of 19 was alternately laminated and filled.
An i-based superconducting wire was manufactured.

【0017】比較例2 Nb−50wt%Ti合金の中空丸棒材の中空部に、断面18
mm×18mm(アスペクト比1)のNb材を嵌入し、これを
銅管に充填して一次ビレットを作製した他は、実施例4
と同じ方法により 0.2mmφのNbTi系超電導線材を製
造した。尚、上記実施例及び比較例の一次ビレットにお
けるNb材とNbTi材の体積比は1:3(Nb材の占
積率25%)に統一した。
Comparative Example 2 A cross section of a hollow round bar of Nb-50 wt% Ti alloy has a cross section of 18
Example 4 except that a Nb material having a size of 18 mm × 18 mm (aspect ratio of 1) was fitted and the copper tube was filled with the Nb material to produce a primary billet.
A 0.2 mmφ NbTi-based superconducting wire was manufactured by the same method as described above. The volume ratio of the Nb material to the NbTi material in the primary billets of the above Examples and Comparative Examples was unified to 1: 3 (the space factor of the Nb material was 25%).

【0018】実施例1〜6及び比較例1,2にて得られ
た各々の 0.2mmφのNbTi系超電導線材について、N
b材(人工ピン)の分布状態を観察し、その断面をそれ
ぞれ図1〜6及び図8,9に示した。参考に一次ビレッ
トのNb材の配置も示した。実施例1の一次ビレット
は、図1イにその断面を示したように、銅管1内にNb
Ti材2とNb材3とが層状に充填されている。Nb材
3のアスペクト比は断面の中心と端部で異なる。この一
次ビレット4を基にして得られたNbTi系超電導線材
5は、図1ロにその断面を示したように、NbTi系超
電導体6の中にNb材の人工ピン7が8層を一単位とし
て向きを種々に変えて分布している。一次ビレットのN
b材のアスペクト比と、NbTi超電導線材のNb材
(人工ピン)のアスペクト比とは極めて良く一致してい
た。以下、実施例2〜6及び比較例1,2の各々の一次
ビレット及びNbTi超電導線材の断面はそれぞれ図2
〜6及び図8,9に示した通りで説明は割愛する。尚、
実施例6のジグザグ形基本単位の長方形とは、図7に示
したように、ジグザグ状の人工ピン7の直線部分のこと
で、そのアスペクト比は、長さ(縦)を厚さ(横)で除
した値である。
For each 0.2 mmφ NbTi-based superconducting wire obtained in Examples 1 to 6 and Comparative Examples 1 and 2, N
The distribution state of the b material (artificial pin) was observed, and its cross section is shown in FIGS. 1 to 6 and FIGS. For reference, the arrangement of the Nb material of the primary billet is also shown. The primary billet of Example 1 has Nb inside the copper tube 1 as shown in the cross section of FIG.
The Ti material 2 and the Nb material 3 are filled in layers. The aspect ratio of the Nb material 3 differs between the center and the end of the cross section. The NbTi-based superconducting wire 5 obtained based on the primary billet 4 has an artificial pin 7 of Nb material in a unit of 8 layers in the NbTi-based superconductor 6, as shown in the cross section of FIG. 1B. As it is distributed in various directions. Primary billet N
The aspect ratio of the b material and the aspect ratio of the Nb material (artificial pin) of the NbTi superconducting wire material were extremely well matched. Hereinafter, the cross sections of the primary billets and NbTi superconducting wires of Examples 2 to 6 and Comparative Examples 1 and 2 are shown in FIG.
6 and FIGS. 8 and 9, the description is omitted. still,
The rectangle of the zigzag basic unit of Example 6 is a linear portion of the zigzag artificial pin 7 as shown in FIG. 7, and its aspect ratio is length (length) to thickness (width). It is the value divided by.

【0019】次に、得られた各々の 0.2mmφのNbTi
系超電導線材について、臨界電流密度(Jc)を 5T,4.
2Kの条件にて測定した。測定にあたり、線径を 0.2mmφ
前後で振らせて最大のJc値を求めた。結果を表1に示
した。
Next, each of the obtained 0.2 mmφ NbTi
System superconducting wire, the critical current density (Jc) 5T, 4.
It was measured under the condition of 2K. For measurement, wire diameter 0.2 mmφ
The maximum Jc value was obtained by shaking the sample before and after. The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】表1より明らかなように、本発明例品(No
1〜6)は、いずれも高いJc値を示した。これは人工
ピンのアスペクト比が 1.5〜30の範囲にあった為、量子
化磁束線が人工ピンと出会う確率と人工ピンの平均的ピ
ン止め力とが高位にバランスした為である。これに対し
比較例品のNo7は人工ピンのアスペクト比が30を超えた
為、平均的ピン止め力と、人工ピンと量子化磁束線との
出会いの確率が低下し、又No8はアスペクト比が1であ
った為人工ピンと量子化磁束線との出会いの確率は増大
したが、個々のピン止め力が低下した為いずれもJc値
が低下した。以上、人工ピンにNb金属を用いた場合に
ついて説明したが、本発明は、Nb合金等他の物質を人
工ピンに用いた場合にも同様の効果が得られる。
As is clear from Table 1, the products of the present invention (No.
1 to 6) all showed high Jc values. This is because the aspect ratio of the artificial pin was in the range of 1.5 to 30, so that the probability that the quantized magnetic flux line encounters the artificial pin and the average pinning force of the artificial pin are well balanced. On the other hand, in the comparative example No. 7, the aspect ratio of the artificial pin exceeded 30, so the average pinning force and the probability of encounter between the artificial pin and the quantized magnetic flux line decreased, and No. 8 had an aspect ratio of 1 Therefore, the probability of encounter between the artificial pin and the quantized magnetic flux line increased, but the Jc value decreased in each case because the individual pinning force decreased. Although the case where Nb metal is used for the artificial pin has been described above, the present invention has the same effect when the Nb alloy or other substance is used for the artificial pin.

【0022】[0022]

【効果】以上述べたように、本発明のNbTi系超電導
線材は、アスペクト比(断面の縦横比)が 1.5〜30の人
工ピンを複合したものなので、量子化磁束線が人工ピン
と出会う確率及び人工ピンの平均的ピン止め力とが高位
にバランスして高磁場下でのJc値が向上し、工業上顕
著な効果を奏する。
[Effect] As described above, the NbTi-based superconducting wire of the present invention is a composite of artificial pins having an aspect ratio (aspect ratio of cross section) of 1.5 to 30, so that the probability that the quantized magnetic flux line meets the artificial pin and the artificial pin The average pinning force of the pins is balanced to a high level, and the Jc value under a high magnetic field is improved, resulting in a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における一次ビレットと
超電導線材の横断面図である。
FIG. 1 is a cross-sectional view of a primary billet and a superconducting wire according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における一次ビレットと
超電導線材の横断面図である。
FIG. 2 is a cross-sectional view of a primary billet and a superconducting wire according to a second embodiment of the present invention.

【図3】本発明の第3の実施例における一次ビレットと
超電導線材の横断面図である。
FIG. 3 is a transverse sectional view of a primary billet and a superconducting wire according to a third embodiment of the present invention.

【図4】本発明の第4の実施例における一次ビレットと
超電導線材の横断面図である。
FIG. 4 is a transverse sectional view of a primary billet and a superconducting wire according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例における一次ビレットと
超電導線材の横断面図である。
FIG. 5 is a transverse sectional view of a primary billet and a superconducting wire according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施例における一次ビレットと
超電導線材の横断面図である。
FIG. 6 is a transverse sectional view of a primary billet and a superconducting wire according to a sixth embodiment of the present invention.

【図7】ジグザグ状人工ピンの基本単位の長方形とアス
ペクト比の説明図である。
FIG. 7 is an explanatory diagram of a rectangle and an aspect ratio of a basic unit of a zigzag artificial pin.

【図8】比較例1における一次ビレットと超電導線材の
横断面図である。
FIG. 8 is a transverse cross-sectional view of a primary billet and a superconducting wire in Comparative Example 1.

【図9】比較例2における一次ビレットと超電導線材の
横断面図である。
FIG. 9 is a cross-sectional view of a primary billet and a superconducting wire according to Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 銅管 2 NbTi材 3 Nb材 4 一次ビレット 5 NbTi超電導線材 6 NbTi超電導体 7 人工ピン 1 Copper Tube 2 NbTi Material 3 Nb Material 4 Primary Billet 5 NbTi Superconducting Wire Material 6 NbTi Superconductor 7 Artificial Pin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 NbTi系超電導体中に、NbTi系超
電導体の使用環境下で非超電導体の物質、或いはNbT
i系超電導体よりBc2(上部臨界磁場) が低い物質をピ
ンニング点として長手方向に連続的に複合したNbTi
系超電導線材において、前記ピンニング点として長手方
向に連続的に複合した物質の断面形状が、長方形、楕円
形、又は長方形を基本単位とするジグザク形であり、且
つ前記長方形、楕円形、又はジグザグ形基本単位の長方
形のアスペクト比(断面の縦横比)が1.5 〜30であるこ
とを特徴とするNbTi系超電導線材。
1. A NbTi-based superconductor in which NbTi-based superconductor is used as a non-superconductor material or NbT in an environment where the NbTi-based superconductor is used.
NbTi, which is a compound with a lower Bc 2 (upper critical magnetic field) lower than that of the i-based superconductor, is continuously compounded in the longitudinal direction with a pinning point.
In the system superconducting wire rod, the cross-sectional shape of the substance continuously compounded in the longitudinal direction as the pinning point is a rectangle, an ellipse, or a zigzag shape having a rectangle as a basic unit, and the rectangle, an ellipse, or a zigzag shape. An NbTi-based superconducting wire rod characterized in that the rectangular aspect ratio (the aspect ratio of the cross section) of the basic unit is 1.5 to 30.
JP5173831A 1993-06-21 1993-06-21 Nbti superconducting wire Pending JPH0714439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5173831A JPH0714439A (en) 1993-06-21 1993-06-21 Nbti superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5173831A JPH0714439A (en) 1993-06-21 1993-06-21 Nbti superconducting wire

Publications (1)

Publication Number Publication Date
JPH0714439A true JPH0714439A (en) 1995-01-17

Family

ID=15967969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5173831A Pending JPH0714439A (en) 1993-06-21 1993-06-21 Nbti superconducting wire

Country Status (1)

Country Link
JP (1) JPH0714439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974718A (en) * 1987-10-09 1990-12-04 W. Schlafhorst & Co. Method and apparatus for transporting yarn packages
US7828505B2 (en) 2005-03-18 2010-11-09 Yanmar Co., Ltd. Loading device for working machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974718A (en) * 1987-10-09 1990-12-04 W. Schlafhorst & Co. Method and apparatus for transporting yarn packages
US7828505B2 (en) 2005-03-18 2010-11-09 Yanmar Co., Ltd. Loading device for working machine

Similar Documents

Publication Publication Date Title
GB1580719A (en) Aluminum-stabilised multifilamentarx superconductor and method of its manufacture
EP1903620A1 (en) Nb3Sn superconducting wire and precursor therefor
JP2008300337A (en) Nb3Sn SUPERCONDUCTING WIRE AND PRECURSOR FOR THE SAME
EP2696381B1 (en) Niobium-titanium based superconducting wire
JP2008288000A (en) Nb3sn superconducting wire rod and precursor therefor as well as method of manufacturing precursor
EP3105799B1 (en) Ternary molybdenum chalcogenide superconducting wire and manufacturing thereof
KR0158459B1 (en) Superconductive wire material and method of producing the same
Koike et al. Fabrication of multifilament Nb3Sn conductors
JPH0714439A (en) Nbti superconducting wire
EP0113186B1 (en) Method of manufacturing fine filamentary nb-ti based alloy superconducting wire
US5374320A (en) Nb-Ti alloy type superconducting wire
JP4045082B2 (en) Superconducting wire
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH09167530A (en) Oxide multi-core superconductive conductor and its manufacture
JP2910586B2 (en) Nb (3) Sn superconducting wire
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JP3099460B2 (en) Nb-Ti alloy superconducting wire
JP3608232B2 (en) Nb3Sn superconducting wire
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
Kanithi et al. Low loss and high current Nb/sub 3/Sn conductors made by the internal-tin method
JPH07335052A (en) A15 type superconductor and its manufacture
JP2018163738A (en) NbTi SUPERCONDUCTING WIRE ROD, AND METHOD FOR PRODUCING NbTi SUPERCONDUCTING WIRE ROD
JPH06119829A (en) Superconductive wire and manufacture thereof
JPH06150737A (en) Nb multicore superconducting cable and manufacture thereof
JPH0143410B2 (en)