JPWO2019082243A1 - 送液装置及び流体クロマトグラフ - Google Patents

送液装置及び流体クロマトグラフ Download PDF

Info

Publication number
JPWO2019082243A1
JPWO2019082243A1 JP2019549691A JP2019549691A JPWO2019082243A1 JP WO2019082243 A1 JPWO2019082243 A1 JP WO2019082243A1 JP 2019549691 A JP2019549691 A JP 2019549691A JP 2019549691 A JP2019549691 A JP 2019549691A JP WO2019082243 A1 JPWO2019082243 A1 JP WO2019082243A1
Authority
JP
Japan
Prior art keywords
pump
discharge
mobile phase
pressure
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019549691A
Other languages
English (en)
Other versions
JP6849095B2 (ja
Inventor
潤 柳林
潤 柳林
信也 今村
信也 今村
佳祐 小川
佳祐 小川
政隆 日光
政隆 日光
真一 藤崎
真一 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2019082243A1 publication Critical patent/JPWO2019082243A1/ja
Application granted granted Critical
Publication of JP6849095B2 publication Critical patent/JP6849095B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/16Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the fluid carrier
    • B01D15/163Pressure or speed conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • F04B11/0058Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons with piston speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/40Selective adsorption, e.g. chromatography characterised by the separation mechanism using supercritical fluid as mobile phase or eluent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0202Linear speed of the piston
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/326Control of physical parameters of the fluid carrier of pressure or speed pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

送液装置は、予圧行程が開始される直前の閉鎖ポンプのポンプ室内の移動相の体積V、予圧行程によって減少した閉鎖ポンプのポンプ室内の移動相の体積ΔV、及び送液圧力Pを用いて、ポンプ部から吐出流路へ吐出される移動相の流量LPREの大気圧下についての換算値LATMが設定された流量LSETになるようなプランジャポンプの吐出速度vを求めるように構成された吐出速度算出部と、前記吐出速度算出部により求められた吐出速度vで前記プランジャポンプを動作させるように構成された吐出動作制御部と、を備えている。

Description

本発明は、複数のプランジャポンプを相補的に動作させることで移動相の送液を安定的に行なう送液装置と、その送液装置を用いる高速液体クロマトグラフ(HPLC)や超臨界流体クロマトグラフ(SFC)などの流体クロマトグラフに関するものである。
HPLCシステムに用いられる送液装置は、移動相を高圧で安定して送液する能力が求められる。そのため、2つのプランジャポンプが直列又は並列に接続されたダブルプランジャ方式の送液装置が一般的に用いられている。
例えば、2つのプランジャポンプが直列に接続された送液装置は、上流側の一次側プランジャポンプと下流側の二次側プランジャポンプが相補的に動作するものであるが、その吐出行程として一次側プランジャポンプによる送液行程と、二次側プランジャポンプによる送液行程がある。
一次側プランジャポンプによる吐出行程では、一次側プランジャポンプが液を吐出している間に二次側プランジャポンプは吸引動作を行ない、一次側プランジャポンプにより吐出される液の一部を二次側プランジャポンプが吸引する。二次側プランジャポンプによる吐出行程では、二次側プランジャポンプが吐出動作を行ない、その間に一次側プランジャポンプが吸引動作を行なう。
一次側プランジャポンプによる吐出行程では、一次側プランジャポンプの吐出流量から二次側プランジャポンプの吸引流量を差し引いた流量が送液装置の送液流量となり、二次側プランジャポンプによる吐出行程では、二次側プランジャポンプの吐出流量が送液装置の送液流量となる。
このような直列型ダブルプランジャ方式の送液装置は、一次側プランジャポンプの入口側と出口側のそれぞれに逆流を防止するバルブが設けられている。一次側プランジャポンプが吐出動作を行なうときは入口側のバルブが閉じて出口側のバルブが開き、一次側プランジャポンプが吸引動作を行なうときは入口側のバルブが開いて出口側のバルブが閉じるようになっている。
一次側プランジャポンプの吸引動作は出口側のバルブが閉じた状態で行なわれるため、一次側プランジャポンプの吸引動作が完了した後の一次側プランジャポンプのポンプ室内の圧力がシステム圧力(HPLCやSFCの分析流路内の圧力)よりも低い状態となる。この状態で吐出動作を行なうポンプを二次側プランジャポンプから一次側プランジャポンプに切り替えると、一次側プランジャポンプのポンプ室内がシステム圧力と同じ圧力に上昇するまで一次側プランジャポンプから液が吐出されず、その結果、一時的に送液流量が低下して送液流量の安定性が低下する。
このような問題から、二次側プランジャポンプによる吐出行程の間に、一次側プランジャポンプは液の吸引動作に加えて、ポンプ室内がシステム圧力に近い圧力にまで高められるようにプランジャを吐出方向へ駆動する予圧動作を行なうことが提案され、実施もなされている(特許文献1、2参照。)。
これは、2つのプランジャポンプが並列に接続された並列型ダブルプランジャ方式の送液装置においても同様であり、一方のプランジャポンプが吐出動作を行なっている間に、他方のプランジャポンプは吸引動作と予圧動作を行なうようになっている。
米国特許第5637208号 米国特許第9360006号
HPLCに用いられる送液装置についての課題として、主に移動相の圧縮性に起因する流量正確さのずれの問題がある。HPLCの分析カラムよりも上流側の分析流路内は高圧状態となるため、送液ポンプからは圧縮された状態の移動相が送液される。一方で、分析カラムの出口側では分析流路内が大気圧となるため、移動相の体積流量が分析カラムの入口側と出口側では異なることになる。このため、プランジャポンプから吐出される移動相の流量が設定された流量となるようにプランジャの駆動速度を制御しても、分析カラムの出口側を流れる移動相の体積流量は設定された流量よりも大きなものとなる。
したがって、分析カラムの出口側における移動相の体積流量を設定された流量に正確に制御するためには、移動相の圧縮性を考慮して送液装置のプランジャの駆動速度を決定する必要がある。移動相の圧縮性を考慮してプランジャの駆動速度を決定するために、ユーザによって入力された圧縮率、又はユーザが入力した移動相の種類に基づいて装置側で選択された圧縮率を用いてプランジャの駆動速度を計算するように構成することが考えられる。
しかし、移動相の種類情報の入力をユーザに求めることは煩雑であり、入力ミスを誘発する虞がある。また、多岐にわたる移動相の種類や組成に対して正確な圧縮率の値を事前に用意することは非現実的である。さらに、移動相は短時間で断熱的に圧縮すると発熱膨張し、実効的な圧縮率が低下する。これは、
断熱圧縮率<等温圧縮率
の関係として知られる。すなわち、圧縮率には予圧行程に要する時間に対する依存性がある。このことも、正確な圧縮率を事前に用意することに対する障害となる。
そこで、本発明は、上記の問題に鑑みてなされたものであり、移動相の種類や圧縮率に関する事前情報がなくても、大気圧下での移動相の体積流量が所定の流量となるようにプランジャの駆動速度をより正確に制御して、移動相の圧縮性に起因する送液流量のずれを改善することを目的とするものである。
本発明に係る送液装置は、吐出流路と、ポンプ部と、送液圧力センサと、予圧行程実行部と、吐出速度算出部と、吐出動作制御部と、を備えている。
前記ポンプ部は、互いに直列又は並列に接続された複数のプランジャポンプを有し、前記吐出流路へ移動相を吐出するものである。当該ポンプ部の前記複数のプランジャポンプのうち少なくとも1つの前記プランジャポンプは、前記吐出流路へ移動相を吐出する吐出行程を実行していない非吐出時間中に前記吐出流路との間の連通が遮断される閉鎖ポンプである。
前記送液圧力センサは、前記吐出流路内の圧力を送液圧力として検出するものである。
前記予圧行程実行部は、少なくとも前記送液圧力センサの出力に基づき、前記ポンプ室内へ液を吸引する吸引行程が完了した後でかつ前記非吐出時間中の前記閉鎖ポンプに、前記閉鎖ポンプのポンプ室内の圧力が前記送液圧力と略同一になるように吐出動作させる予圧行程を実行させるように構成されている。
前記吐出速度算出部は、前記予圧行程が開始される直前の前記閉鎖ポンプの前記ポンプ室内の移動相の体積V、前記予圧行程によって減少した前記閉鎖ポンプの前記ポンプ室内の移動相の体積ΔV、及び前記送液圧力Pを用いて、前記ポンプ部から前記吐出流路へ吐出される移動相の流量LPREの大気圧下についての換算値LATMが設定された流量LSETになるような前記プランジャポンプの吐出速度vを求めるように構成されている。
前記吐出動作制御部は、前記吐出速度算出部により求められた吐出速度vで吐出行程中の前記プランジャポンプを動作させるように構成されている。
上記の予圧行程が正確に実行されるように、前記非吐出時間中における前記閉鎖ポンプのポンプ室内の圧力を非吐出時圧力として検出する非吐出時圧力センサをさらに備えていることが好ましい。この場合、前記予圧行程実行部は、前記予圧行程において、前記送液圧力センサの出力と前記非吐出時圧力センサの出力に基づいて、前記非吐出時圧力が前記送液圧力と略同一になるように前記閉鎖ポンプを吐出動作させるように構成されている。
ただし、予圧行程は上記非吐出時圧力センサが設けられていなくても実行することができる。特許文献2には、送液圧力に基づく定圧フィードバック制御を行なうことによって予圧を正確に行なう技術が開示されている。この技術では、前記閉鎖ポンプを所定量だけ吐出動作させることによって予圧行程を実施し、その直後に前記閉鎖ポンプの吐出行程を実施する。前記閉鎖ポンプでの予圧が不十分であれば前記閉鎖ポンプの吐出行程の際に負の脈動が出るので、その場合は前記閉鎖ポンプに正のプランジャ変位を加える。逆に前記閉鎖ポンプでの予圧が過剰であれば正の脈動が出るため、その場合は前記閉鎖ポンプに負のプランジャ変位を加える。そして、そのようなプランジャ変位パターンを記憶し、次サイクルの予圧行程に反映させる。これにより、非吐出時圧力センサを備えていなくても、サイクルを繰り返すうちに非吐出時圧力が送液圧力と略同一になるように予圧行程を実施することができる。
本発明に係る送液装置の好ましい実施形態では、前記吐出速度算出部が、前記予圧行程が開始される直前の前記閉鎖ポンプの前記ポンプ室内の移動相の体積V(以下、「予圧前内部体積V」と称する。)、前記予圧行程によって減少した前記閉鎖ポンプの前記ポンプ室内の移動相の体積ΔV(以下、「予圧体積ΔV」と称する。)、及び前記送液圧力Pを用いて前記移動相の圧縮率βを求め、その圧縮率βと前記送液圧力Pとに基づいて、前記プランジャポンプの吐出速度vを求めるように構成されている。
上記の場合、前記吐出速度算出部は、前記閉鎖ポンプの前記予圧行程が実行される周期よりも短い周期で前記送液圧力Pを読み取り、その都度、読み取った最新の送液圧力Pと前記移動相の最新の圧縮率βとを用いて前記プランジャポンプの吐出速度vを求めるように構成されていることが好ましい。そうすれば、送液圧力Pが予圧行程の実行される周期の間に時間変化するような場合にも送液圧力Pに応じた前記プランジャポンプの適切な吐出速度をリアルタイムで求めることができる。
ところで、予圧前内部体積Vとしてプランジャポンプの機械設計に基づく値を用いることができる。しかし、実際のポンプ室の内部体積Vは、プランジャポンプを構成する各部品の加工誤差などによって設計値からずれる場合がある。
そこで、本発明に係る送液装置の好ましい実施形態では、圧縮率が既知の移動相を前記圧縮ポンプの前記ポンプ室内に吸引して前記予圧行程を実行し、そのときの前記圧縮ポンプの吐出動作量、前記送液圧力及び当該移動相の既知の圧縮率を用いて前記ポンプ室の内部体積に関する情報を求めるように構成された内部体積算出部と、前記内部体積算出部により求められた前記ポンプ室の内部体積に関する情報を記憶する内部体積記憶部と、をさらに備え、前記吐出速度算出部は、前記内部体積記憶部に記憶された内部体積に関する情報を前記予圧行程が開始される直前の前記閉鎖ポンプの前記ポンプ室内の移動相の体積Vとして用い、前記吐出速度vを求めるように構成されている。これにより、ポンプ室の実際の内部体積を正確に把握することができ、それを用いて吐出行程時のプランジャポンプの吐出速度を正確に求めることができる。
本発明に係る流体クロマトグラフは、分析流路と、前記分析流路中において移動相を送液するための本発明の送液装置と、前記分析流路中に試料を注入するように構成された試料注入部と、前記分析流路上における前記試料注入部よりも下流に設けられ、前記試料注入部により注入された試料を分離するための分析カラムと、前記分析流路上における前記分析カラムよりも下流に設けられ、前記分析カラムで分離した試料成分を検出するための検出器と、を備えたものである。
本発明に係る送液装置では、前記予圧行程が開始される直前の前記閉鎖ポンプの前記ポンプ室内の移動相の体積V、前記予圧行程によって減少した前記閉鎖ポンプの前記ポンプ室内の移動相の体積ΔV、及び前記送液圧力Pを用いて、前記ポンプ部から前記吐出流路へ吐出される移動相の流量LPREの大気圧下についての換算値LATMが設定された流量LSETになるような前記プランジャポンプの吐出速度vを求めるように構成された吐出速度算出部と、前記吐出速度算出部により求められた吐出速度vで吐出行程中の前記プランジャポンプを動作させるように構成された吐出動作制御部と、を備えているので、移動相の種類や圧縮率に関する情報を用いることなく、大気圧下での移動相の体積流量が設定された流量LSETとなるようにプランジャの駆動速度を正確に制御することができる。これにより、移動相の圧縮性に起因する送液流量のずれが小さくなる。
本発明に係る流体クロマトグラフは、上記の送液装置を備えているので、分析カラムの出口側での流量が設定された流量に制御され、移動相の圧縮性に起因する送液流量のずれが小さくなる。
送液装置の一実施例を示す概略構成図である。 同実施例の動作の一例を概略的に示すフローチャートである。 同実施例の動作の他の例を概略的に示すフローチャートである。 同液装置の他の実施例を示す概略構成図である。 液体クロマトグラフの一実施例を示す概略構成図である。
まず、流体クロマトグラフの1つである液体クロマトグラフの一実施例について、図5を用いて説明する。
液体クロマトグラフ100は、送液装置1、分析流路102、試料注入部104、分析カラム106及び検出器108を備えている。送液装置1は分析流路102中において移動相を送液するためのものである。試料注入部104は分析流路102中に試料を注入するものであり、例えばオートサンプラによって実現される。分析カラム106は分析流路102上における試料注入部104よりも下流に設けられ、試料注入部104により分析流路102中に注入された試料を分離するためのものである。検出器108は分析流路102上における分析カラム106よりも下流に設けられ、分析カラム106で分離した試料成分を検出するためのものである。
分析流路102のうち分析カラム106よりも上流側部分は高圧(大気圧よりも高い圧力)となる一方で、分析カラム106よりも下流側部分は大気圧となる。すなわち、送液装置1によって送液される移動相は、分析流路102の分析カラム106よりも上流側部分においては圧縮された状態で流れるのに対し、分析カラム106よりも下流側部分においては圧縮されていない状態で流れる。したがって、分析カラム106の上流側と下流側で移動相の体積流量が異なっている。
送液装置1は、分析流路102の分析カラム106よりも下流側部分における移動相の体積流量、すなわち大気圧下での移動相の体積流量が、予め設定された流量となるように動作するものである。
送液装置の一実施例について図1を用いて説明する。
送液装置1は、2つのプランジャポンプ、すなわち一次側ポンプ2と二次側ポンプ22を備えている。一次側ポンプ2と二次側ポンプ22は互いに直列に接続されている。一次側ポンプ2と二次側ポンプ22は吐出流路38を通じて液を送液するポンプ部を構成している。
一次側ポンプ2は、内部にポンプ室4を有するポンプヘッド3と、ポンプボディ6を備えている。ポンプヘッド3はポンプボディ6の先端に設けられている。ポンプヘッド3には、ポンプ室4に液を流入させる入口部とポンプ室4から液を流出させる出口部が設けられている。ポンプヘッド3の入口部に、液の逆流を防止する逆止弁16が設けられている。
ポンプ室4にはプランジャ10の先端が摺動可能に挿入されている。プランジャ10の基端はポンプボディ6内に収容されたクロスヘッド8によって保持されている。クロスヘッド8は送りネジ14の回転によりポンプボディ6内で一方向(図において左右方向)に移動し、それに伴ってプランジャ10が一方向に移動する。ポンプボディ6の基端部に送りネジ14を回転させる一次側ポンプ駆動用モータ12が設けられている。一次側ポンプ駆動用モータ12はステッピングモータである。
二次側ポンプ22は、内部にポンプ室24を有するポンプヘッド23と、ポンプボディ28を備えている。ポンプヘッド23はポンプボディ28の先端に設けられている。ポンプヘッド23には、ポンプ室24に液を流入させる入口部とポンプ室24から液を流出させる出口部が設けられている。ポンプヘッド23の入口部に、液の逆流を防止する逆止弁26が設けられている。
ポンプ室24にはプランジャ32の先端が摺動可能に挿入されている。プランジャ32の基端はポンプボディ28内に収容されたクロスヘッド30によって保持されている。クロスヘッド30は送りネジ36の回転によりポンプボディ28内で一方向(図において左右方向)に移動し、それに伴ってプランジャ32が一方向に移動する。ポンプボディ28の基端部に送りネジ36を回転させる二次側ポンプ駆動用モータ34が設けられている。二次側ポンプ駆動用モータ34はステッピングモータである。
ポンプヘッド3の入口部は、送液対象の液を貯留する容器(図示は省略)に、流路を介して接続されている。ポンプヘッド23の入口部は、連結流路18を介して、ポンプヘッド3の出口部と接続されている。連結流路18上にポンプ室4内の圧力(P1)を検出する一次側圧力センサ20が設けられている。一次側圧力センサ20は、一次側ポンプ2が吐出行程にない非吐出時間中における一次側ポンプ2のポンプ室4内の圧力を非吐出時圧力として検出するためのものである。
ポンプヘッド23の出口部には吐出流路38が接続されている。吐出流路38は、例えば液体クロマトグラフの分析流路に通じている。吐出流路38上にポンプ室24内の圧力(P2)を送液圧力として検出する二次側圧力センサ40が設けられている。
一次側ポンプ駆動用モータ12及び二次側ポンプ駆動用モータ34の動作は、制御部42により制御される。制御部42は、吐出流路38を通じて送液される液の流量が予め設定された目標流量となるように、一次側ポンプ2と二次側ポンプ22を相補的に動作させるように構成されている。
一次側ポンプ2と二次側ポンプ22の相補的な動作について説明すると、一次側ポンプ2が液を吐出する吐出行程を実行している間に、二次側ポンプ22は液を吸引する吸引行程を実行し、一次側ポンプ2から吐出された液の一部が二次側ポンプ22のポンプ室24内に吸引される。二次側ポンプ22の吸引行程が完了すると、二次側ポンプ2は吐出行程へ移行する。このとき、一次側ポンプ2は吸引行程へ移行し、吸引行程が完了した後、予圧行程が実行される。
二次側ポンプ22の吐出行程中、すなわち一次側ポンプ2が吐出行程でない非吐出時間中は、逆止弁26が閉じた状態となる。これにより、一次側ポンプ2のポンプ室4と吐出流路38との間の連通が遮断される。このように、非吐出時間中に吐出流路38との間の連通が遮断されるポンプを、本願では閉鎖ポンプと称する。この実施例の送液装置は、直列型ダブルプランジャ方式であるため、一次側ポンプ2のみが閉鎖ポンプに該当するが、並列型ダブルプランジャ方式の場合は双方のプランジャポンプが閉鎖ポンプに該当する。
また、一次側圧力センサ20により検出される非吐出時圧力P1及び二次側圧力センサ40により検出される送液圧力P2は制御部42に取り込まれる。制御部42は、後述する予圧行程中における非吐出時圧力P1と送液圧力P2に基づいて一次側ポンプ駆動用モータ12の動作を制御するように構成されている。
制御部42は、予圧行程実行部44、吐出速度算出部46及び吐出動作制御部48を備えている。制御部42は、例えば、マイクロコンピュータなどの演算素子を有するコンピュータ回路とそのコンピュータ回路において実行されるプログラムを具備するものであり、予圧行程実行部44、吐出速度算出部46及び吐出動作制御部48は、制御部42の演算素子が所定のプログラムを実行することによって得られる機能である。
予圧行程実行部44は、一次側ポンプ2が吐出行程にない非吐出時間中であってポンプ室4に液を吸引する吸引行程が完了した後で、一次側ポンプ2に予圧行程を実行するように構成されている。予圧行程とは、吸引行程を完了した一次側ポンプ2が吐出行程へ移行する前のタイミングで、非吐出時圧力P1が送液圧力P2と略同一の圧力になるまで一次側ポンプ2を吐出動作させる行程である。一次側ポンプ2が予圧行程を開始するタイミングは、例えば一次側ポンプ2の吸引行程が完了した直後である。
なお、この実施例では、一次側圧力センサ20により検出される非吐出時圧力P1を用いて予圧行程を行なっているが、本発明はこれに限定されるものではなく、一次側圧力センサ20を備えていない送液装置に対しても適用することができる。一次側圧力センサ20が設けられていない場合、予圧行程実行部44は、まず、一次側ポンプ2を所定量だけ吐出動作させることによって予圧行程を実施する。その直後の一次側ポンプ2の吐出行程では、一次側ポンプ2の動作が二次側圧力センサ40により検出される送液圧力P2が一定になるように定圧フィードバック制御される。このとき、直前の一次側ポンプ2の予圧が不十分であれば送液圧力P2に負の脈動が生じるため、一次側ポンプ2の吐出動作の速度を上げる。逆に、直前の一次側ポンプ2の予圧が過剰であれば送液圧力P2に正の脈動が生じるため、一次側ポンプ2の吐出動作の速度を下げる。そして、そのような一次側ポンプ2の動作速度の補正パターンを記憶し、次サイクルの予圧行程に反映させていくことで、サイクルを繰り返すうちに予圧行程において一次側ポンプ2のポンプ室4内の圧力を送液圧力P2と略同一にすることができる。
吐出速度算出部46は、一次側ポンプ2の予圧行程が開始される直前のポンプ室4内の移動相の体積V(予圧前内部体積V)、その予圧行程により減少したポンプ室4内の移動相の体積ΔV(予圧体積ΔV)、及び送液圧力P2を用いて、一次側ポンプ2、二次側ポンプ22の吐出行程時の吐出動作の速度v(吐出速度v)の最適値を算出するように構成されている。吐出速度vの最適値とは、吐出流路38を通じて吐出される移動相の流量LPREの大気圧下についての換算値LATMが、予め設定された流量LSETとなるような吐出速度である。
ここで、吐出速度算出部46による吐出速度の算出動作について説明する。
一般に、流体に圧力が加えられると圧縮率βとその流体に加わる圧力Pの積に等しい割合の体積が減少し、圧力P下における流体の体積VPREは次式(1)によって表される。なお、VATMは大気圧下での流体の体積である。
PRE=(1−β×P)×VATM (1)
上記を高圧で流体を送得するHPLC用の送液装置に適用すると、次式(2)が成立する。なお、LPREは吐出圧力PPUMPでプランジャポンプのポンプ室から吐出される移動相の体積流量(吐出流量ともいう。)であり、LATMは大気圧下での移動相の体積流量である。
PRE=(1−β×PPUMP)×LATM (2)
ここで、
PRE=プランジャ断面積×プランジャ速度 (3)
の関係を有する。HPLCの送液装置はプランジャの速度を制御することで吐出流量LPREを調整している。上記式(2)を変形すると次式(4)が得られる。
ATM=LPRE/(1−β×PPUMP)≧LPRE (4)
上記式(4)は、送液装置が制御することができる吐出流量LPREに対して減圧膨張の分だけ大気圧流量LATMが増大することを示している。HPLCのユーザは分析条件として所望の流量を設定するが、純粋に送液装置から吐出される吐出流量LPREにその値を適用してしまうと、大気圧流量LATMは設定流量LSETよりも増大した値として観測される。送液装置の性能を確認するために、ベンダー又はユーザは設定流量LSETと大気圧流量LATMとの乖離を測定するバリデーションを実施することがある。しかし上記式(4)の関係のために両者の間に乖離を生じ、それが送液装置自体の不具合に由来するとは言えないにもかかわらず、バリデーションの結果を判定することの障害となる。
そこで、流体の圧縮率βを用いて、
PRE=(1−β×PPUMP)×LSET (5)
の関係式を用いて吐出流量LPREを調整するという方法もある。しかし、このような方法では、流体の圧縮率βと吐出圧力PPUMPの正確な値を必要とする。吐出圧力PPUMPについては圧力センサによって容易に計測することができる。一方で、圧縮率βについては、ユーザがHPLCシステムに圧縮率βの値を入力するか、あるいはユーザが入力した流体(移動相)の種類に基づいてHPLCシステムが適切な圧縮率βを適用する必要がある。このような情報入力をユーザに求めることは煩雑であり、入力ミスを誘発する虞もある。また、全ての移動相の種類や組成に対して正確な圧縮率βの値を用意することは非現実的である。さらに、移動相は短時間で断熱的に圧縮すると発熱膨張し、実効的な圧縮率が低下する。これは、
断熱圧縮率<等温圧縮率 (6)
の関係として知られる。すなわち、圧縮率には予圧時間に対する依存性があり、このことも正確な圧縮率を事前に用意することに対して障害となる。
この実施例では、圧縮ポンプ(一次側ポンプ2)における予圧行程を利用して、移動相の圧縮性に関する情報を取得し、その情報を用いて各ポンプ2、22の吐出速度を決定する。予圧行程における移動相の体積変化は、上記式(1)や(2)と同様に、次式(7)によって表すことができる。なお、Vは予圧行程が開始される直前のポンプ室4内の移動相の体積(ポンプ室4の内部体積)、VPREは予圧行程が終了した直後のポンプ室4内の移動相の体積(ポンプ室4の内部体積)である。P1はポンプ室4内の圧力である。
PRE=(1−β×P1)×V (7)
なお、ポンプ室4の内部体積とは、この実施例のように直列型ダブルプランジャポンプの場合は、一次側ポンプ2の入口側の逆止弁16と二次側ポンプ22の入口側の逆止弁20の間の系内の体積を意味する。また、並列側ダブルプランジャポンプの場合には、一方のポンプの入口側の逆止弁と出口側の逆止弁との間の系内の体積を意味する。
上記式(7)から、予圧行程前後のポンプ室4内の移動相の体積の変化量ΔV(以下、予圧体積ΔVと称する。)を表わす次式(8)が得られる。
ΔV=V−VPRE
=β×P1×V (8)
予圧行程では、ポンプ室4内の圧力P1が吐出圧力P2(=PPUMP)と略同一になるように圧縮ポンプ2が吐出方向へ駆動されるから、上記式(8)は、
ΔV=β×P2×V (9)
となる。この式(9)を変形することにより、次式(10)が得られる。
β×P2=ΔV/V (10)
式(5)に上記式(10)を代入することにより、次式(11)が得られる。
PRE=(1−ΔV/V)×LSET (11)
上記式(11)のLSETに流量の設定値を適用することで、大気圧下での移動相の流量LATMが設定流量LSETとなるような吐出流量LPREが得られる。すなわち、吐出流路LPREの大気圧下についての換算値LATMが設定流量LSETとなる。
この実施例では、制御部42の吐出速度算出部46が上記式(11)を用いて吐出流量LPREを算出し、吐出流路38を通じて吐出される移動相の流量がその吐出流量LPREとなるような各ポンプ2、22のプランジャ10、32の駆動速度(吐出速度)vを決定する。吐出動作制御部48は吐出速度算出部46が決定した駆動速度vでプランジャ10、32を駆動する。
図2は送液装置1の送液動作の一例を示すフローチャートである。
図2に示されているように、一次側ポンプ2と二次側ポンプ22は相補的に動作し、一次側ポンプ2が吐出行程を実行しているときに二次側ポンプ22が吸引行程を実行し(ステップS101、S201)、二次側ポンプ22が吐出行程を実行しているときに一次側ポンプ2が吸引行程と予圧行程を実行する(ステップS102、S103、S202)。
制御部42の吐出速度算出部46は、一次側ポンプ2の予圧行程が終了した後、その予圧行程中におけるプランジャ10の駆動量に基づいて予圧体積ΔVを求め(ステップS301)、その予圧体積ΔVを上述の式(11)に適用することにより吐出流量LPREを算出する(ステップ302)。そして、吐出速度算出部46は、吐出流路38を通じて吐出される移動相の流量が算出した吐出流量LPREとなるような各ポンプ2、22のプランジャ10、32の駆動速度(吐出速度)vを決定する。
吐出動作制御部48は、一次側ポンプ2と二次側ポンプ22の次回の吐出行程(ステップS101とS202)において、吐出速度算出部46により決定された吐出速度vで各ポンプ2、22のプランジャ10、32を吐出駆動する。
ところで、HPLCやSFCによる分析では、移動相組成の変化などによって分析中に送液圧力P2が変わる場合がある。上記の動作によって決定された吐出速度vは、少なくとも次の一次側ポンプ2の予圧行程(ステップS103)が実行されるまでは再計算されることがなく固定される。そのため、予圧行程と次の予圧行程の間に送液圧力P2が大きく変動すると、移動相の大気圧下での体積流量LATMが設定流量LSETから乖離してしまう虞がある。このような事態は、高圧グラジエントポンプで一方のポンプの流量比が小さい場合や、いわゆるミクロ・ナノLCのように設定流量が非常に小さい場合に、分析時間に対してポンプ周期が長くなることに起因して発生しやすい。
そこで、吐出速度算出部46を、吐出圧力P2の変化に追従して各ポンプ2、22の吐出速度vを再計算するように構成してもよい。そのように構成された吐出速度算出部46の好適な一形態について、図3のフローチャートを用いて説明する。
移動相の圧縮率βは、上述の式(9)を変形した次式(12)によって求めることができる。
β=ΔV/(V×P2) (12)
吐出速度算出部46は、一次側ポンプ2の予圧行程(S103)が終了した後で、予圧体積ΔVを算出し(ステップS301)、その予圧体積ΔVと予圧行程終了時の吐出圧力P2を用いて圧縮率βを求める(ステップS304)。ここで求められた圧縮率βは、制御部42に設けられている記憶領域に記憶される。
制御部42には送液圧力P2が一定時間ごとに取り込まれる(ステップS305)。吐出速度算出部46は送液圧力P2が取り込まれる度に、記憶された圧縮率βと最新の送液圧力P2を上述の式(5)と同等の式である次式(13)に適用して吐出流量LPREを求め、その吐出流量LPREに基づいて各ポンプ2、22の吐出速度vを決定する(ステップS306)。
PRE=(1−β×P2)×LSET (13)
吐出動作制御部48は、吐出速度算出部46によってポンプ2、22の吐出速度が再計算されるたびに吐出行程中にあるポンプ2又は22の吐出速度を再計算された速度vに調節する。これにより、送液中に送液圧力P2が変化した場合にも、それに追従してポンプ2、22の吐出速度を最適な値へ再計算することができる。圧縮率βは、一次側ポンプ予圧行程(S103)の周期ごとに更新される。
上記の実施例では、予圧行程を開始する前のポンプ室4の内部体積Vとして一次側ポンプ2の機械設計に基づく値を用いる。しかし、実際のポンプ室4の内部体積は、各部品の加工誤差などによって設計値からずれる場合がある。そこで、ポンプ室4の実際の内部体積Vを算出する機能を送液装置1にもたせるようにしてもよい。
具体的には、図4に示されているように、制御部42の機能として、内部体積算出部50と内部体積記憶部52を具備させることができる。予圧行程を開始する前の内部体積Vは、上述の式(9)を変形した次式(14)によって表すことができる。
V=ΔV/(β×P2) (14)
上記式(14)のうち予圧体積ΔVは予圧動作中のプランジャ10の駆動距離によって求めることができ、送液圧力P2は圧力センサ40から読み取ることができる。したがって、圧縮率βが既知の移動相を用いることで予圧行程を開始する前の内部体積Vを求めることができる。
内部体積算出部50は、圧縮率βが既知の移動相(例えば、水)を送液する際の一次側ポンプ2の予圧行程において予圧体積ΔVと送液圧力P2を取得し、それらを上記式(14)に適用して内部体積Vを計算により求めるように構成されている。内部体積記憶部52は、内部体積算出部50により算出された内部体積Vの値を記憶する記憶領域である。
吐出速度算出部46は、内部体積記憶部52に記憶されている内部体積Vの値を用いて、各ポンプ2の吐出速度の算出を行なうように構成されている。これにより、正確な内部体積Vの値を用いて各ポンプ2の吐出速度を決定することができ、送液流量の正確性を向上させることができる。
以上において説明した実施例では、一次側ポンプ2の予圧行程の完了ごとに各ポンプ2、22の吐出速度vの計算や圧縮率βの計算を行なうようになっている。これの変形として、ポンプの数サイクルの計算結果に対して移動平均などのフィルタリングを適用してもよい。また、移動相を変更した場合には、圧縮率βの計算や吐出速度vの計算を一度実行し、以降はその計算値を固定して適用してもよい。これらの変形により、計算誤差がポンプの脈動を発生させる懸念を軽減することができる。
また、以上の実施例では、送液装置1の下流へ連続的に移動相を吐出する状態に基づいて本発明の実施形態を説明したが、弁手段等を用いて吐出流路38を封止した状態にして送液することにより圧縮率βを求めて記憶し、実際の分析時においてはその圧縮率βを用いて吐出速度vを決定するようにしてもよい。これらの変形も本発明の範囲に包含される。
1,1a,1b 送液装置
2 一次側ポンプ(閉鎖ポンプ)
3,23 ポンプヘッド
4,24 ポンプ室
6,28 ポンプボディ
8,30 クロスヘッド
10,32 プランジャ
12,34 モータ
14,36 送りネジ
16,26 逆止弁
20,40 圧力センサ
22 二次側ポンプ
42 制御部
44 予圧行程実行部
46 吐出速度算出部
48 吐出動作制御部
50 内部体積算出部
52 内部体積保持部

Claims (6)

  1. 吐出流路と、
    互いに直列又は並列に接続された複数のプランジャポンプを有し、前記吐出流路へ移動相を吐出するポンプ部であって、前記複数のプランジャポンプのうち少なくとも1つの前記プランジャポンプが、前記吐出流路へ移動相を吐出する吐出行程を実行していない非吐出時間中に前記吐出流路との間の連通が遮断される閉鎖ポンプである、ポンプ部と、
    前記吐出流路内の圧力を送液圧力として検出する送液圧力センサと、
    少なくとも前記送液圧力センサの出力に基づき、前記ポンプ室内へ液を吸引する吸引行程が完了した後でかつ前記非吐出時間中の前記閉鎖ポンプに、前記閉鎖ポンプのポンプ室内の圧力が前記送液圧力と略同一になるように吐出動作させる予圧行程を実行させるように構成された予圧行程実行部と、
    前記予圧行程が開始される直前の前記閉鎖ポンプの前記ポンプ室内の移動相の体積V、前記予圧行程によって減少した前記閉鎖ポンプの前記ポンプ室内の移動相の体積ΔVを用いて、前記ポンプ部から前記吐出流路へ吐出される移動相の流量LPREの大気圧下についての換算値LATMが設定された流量LSETになるような前記プランジャポンプの吐出速度vを求めるように構成された吐出速度算出部と、
    前記吐出速度算出部により求められた吐出速度vで吐出行程中の前記プランジャポンプを動作させるように構成された吐出動作制御部と、を備えた送液装置。
  2. 前記非吐出時間中における前記閉鎖ポンプのポンプ室内の圧力を非吐出時圧力として検出する非吐出時圧力センサをさらに備え、 前記予圧行程実行部は、前記予圧行程において、前記送液圧力センサの出力と前記非吐出時圧力センサの出力に基づいて、前記非吐出時圧力が前記送液圧力と略同一になるように前記閉鎖ポンプを吐出動作させるように構成されている、請求項1に記載の送液装置。
  3. 前記吐出速度算出部は、前記予圧行程が開始される直前の前記閉鎖ポンプの前記ポンプ室内の移動相の体積V、前記予圧行程によって減少した前記閉鎖ポンプの前記ポンプ室内の移動相の体積ΔV、及び前記送液圧力Pを用いて前記移動相の圧縮率βを求め、その圧縮率βと前記送液圧力Pとに基づいて、前記プランジャポンプの吐出速度vを求めるように構成されている、請求項1又は2に記載の送液装置。
  4. 前記吐出速度算出部は、前記閉鎖ポンプの前記予圧行程が実行される周期よりも短い周期で前記送液圧力Pを読み取り、その都度、読み取った送液圧力Pと前記移動相の最新の圧縮率βとを用いて前記プランジャポンプの吐出速度vを求めるように構成されている、請求項3に記載の送液装置。
  5. 圧縮率が既知の移動相を前記圧縮ポンプの前記ポンプ室内に吸引して前記予圧行程を実行し、そのときの前記圧縮ポンプの吐出動作量、前記送液圧力及び当該移動相の圧縮率を用いて前記ポンプ室の内部体積に関する情報を求めるように構成された内部体積算出部と、
    前記内部体積算出部により求められた前記ポンプ室の内部体積に関する情報を記憶する内部体積記憶部と、をさらに備え、
    前記吐出速度算出部は、前記内部体積記憶部に記憶された内部体積に関する情報を前記予圧行程が開始される直前の前記閉鎖ポンプの前記ポンプ室内の移動相の体積Vとして用いるように構成されている、請求項1から4のいずれか一項に記載の送液装置。
  6. 分析流路と、
    前記分析流路中において移動相を送液するための請求項1から5のいずれか一項に記載の送液装置と、
    前記分析流路中に試料を注入するように構成された試料注入部と、
    前記分析流路上における前記試料注入部よりも下流に設けられ、前記試料注入部により注入された試料を分離するための分析カラムと、
    前記分析流路上における前記分析カラムよりも下流に設けられ、前記分析カラムで分離した試料成分を検出するための検出器と、を備えた流体クロマトグラフ。
JP2019549691A 2017-10-23 2017-10-23 送液装置及び流体クロマトグラフ Active JP6849095B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038208 WO2019082243A1 (ja) 2017-10-23 2017-10-23 送液装置及び流体クロマトグラフ

Publications (2)

Publication Number Publication Date
JPWO2019082243A1 true JPWO2019082243A1 (ja) 2020-04-02
JP6849095B2 JP6849095B2 (ja) 2021-03-24

Family

ID=66246286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019549691A Active JP6849095B2 (ja) 2017-10-23 2017-10-23 送液装置及び流体クロマトグラフ

Country Status (4)

Country Link
US (1) US11307179B2 (ja)
JP (1) JP6849095B2 (ja)
CN (1) CN110809713B (ja)
WO (1) WO2019082243A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794069A (zh) * 2019-10-08 2020-02-14 北京卫星制造厂有限公司 基于微升级体积有机溶剂液体压缩率在线测试方法及系统
CN114135460B (zh) * 2021-12-15 2024-01-26 大连依利特分析仪器有限公司 一种直驱型高压恒流泵装置及控制方法
JP2023097906A (ja) * 2021-12-28 2023-07-10 株式会社日立ハイテク 送液ポンプ
JP2023158680A (ja) * 2022-04-19 2023-10-31 株式会社日立ハイテク 送液ポンプ及び送液方法
CN114910215B (zh) * 2022-05-18 2024-05-14 杭州谱育科技发展有限公司 液体输送装置和液相色谱仪的校正方法
WO2023230240A1 (en) * 2022-05-26 2023-11-30 Schwing Bioset, Inc. Multi-piston pump diagnostic testing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266736A (ja) * 1999-03-19 2000-09-29 Gl Sciences Inc 液体クロマトグラフ等の送液方法及び装置
JP2007527534A (ja) * 2004-03-05 2007-09-27 ウオーターズ・インベストメンツ・リミテツド 圧力を測定する装置および方法
WO2007110946A1 (ja) * 2006-03-29 2007-10-04 Jms Co., Ltd. 圧力検知装置
WO2012166980A2 (en) * 2011-05-31 2012-12-06 Nxstage Medical, Inc. Pressure measurement devices, methods, and systems

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1003396B (zh) * 1985-04-01 1989-02-22 株式会社岛津制作所 液相色谱分析仪
GB2195473B (en) * 1986-09-17 1990-08-15 Philips Electronic Associated Liquid chromatograph
JPS63173866A (ja) * 1987-01-09 1988-07-18 Hitachi Ltd 無脈動ポンプの制御方式
JP3491948B2 (ja) * 1993-03-05 2004-02-03 ウォーターズ・インベストメンツ・リミテッド 溶剤ポンプ送り装置
JP3342935B2 (ja) * 1993-10-29 2002-11-11 日機装株式会社 無脈動ポンプの脈動調整機構
JP3507212B2 (ja) * 1994-08-23 2004-03-15 日機装株式会社 無脈動ポンプ
JP4136908B2 (ja) * 2003-11-21 2008-08-20 株式会社島津製作所 送液装置
JP4709629B2 (ja) * 2005-10-19 2011-06-22 株式会社日立ハイテクノロジーズ ポンプ装置
JP2007327449A (ja) * 2006-06-09 2007-12-20 Nikkiso Co Ltd 無脈動ポンプ
EP1785623B1 (en) * 2006-10-25 2009-05-06 Agilent Technologies, Inc. Pumping apparatus having a varying phase relationship between reciprocating piston motions
JP2008215978A (ja) * 2007-03-02 2008-09-18 Shimadzu Corp 送液ポンプ及びそれを用いた液体クロマトグラフ
US8182680B2 (en) * 2009-04-29 2012-05-22 Agilent Technologies, Inc. Primary piston correction during transfer
JP5624825B2 (ja) * 2010-07-29 2014-11-12 株式会社日立ハイテクノロジーズ 液体クロマトグラフ用ポンプ、および液体クロマトグラフ
JP2013119800A (ja) * 2011-12-07 2013-06-17 Tosoh Corp プランジャポンプ
CN108291897B (zh) * 2015-11-26 2021-04-09 株式会社岛津制作所 送液装置、送液装置的送液控制方法以及送液装置的送液控制程序
WO2017094097A1 (ja) * 2015-12-01 2017-06-08 株式会社島津製作所 送液装置
JP6753532B2 (ja) * 2017-07-28 2020-09-09 株式会社島津製作所 送液装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266736A (ja) * 1999-03-19 2000-09-29 Gl Sciences Inc 液体クロマトグラフ等の送液方法及び装置
JP2007527534A (ja) * 2004-03-05 2007-09-27 ウオーターズ・インベストメンツ・リミテツド 圧力を測定する装置および方法
WO2007110946A1 (ja) * 2006-03-29 2007-10-04 Jms Co., Ltd. 圧力検知装置
WO2012166980A2 (en) * 2011-05-31 2012-12-06 Nxstage Medical, Inc. Pressure measurement devices, methods, and systems

Also Published As

Publication number Publication date
US20200278329A1 (en) 2020-09-03
WO2019082243A1 (ja) 2019-05-02
US11307179B2 (en) 2022-04-19
CN110809713A (zh) 2020-02-18
CN110809713B (zh) 2022-06-21
JP6849095B2 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
JPWO2019082243A1 (ja) 送液装置及び流体クロマトグラフ
JP4887295B2 (ja) 流れを補償するポンプと注入器の同期のための装置、システム、および方法
CN108291897B (zh) 送液装置、送液装置的送液控制方法以及送液装置的送液控制程序
JP4511578B2 (ja) 送液装置、液体クロマトグラフ、および送液装置の運転方法
WO2018198234A1 (ja) 送液装置及び流体クロマトグラフ
JP7123968B2 (ja) 医療流体のための容積式ポンプおよび医療流体のための容積式ポンプを備える血液処理装置ならびに医療流体のための容積式ポンプを制御するための方法
CN110799754B (zh) 送液装置
CN103512986A (zh) 用于控制针对液相色谱法尤其是高效液相色谱法的活塞泵单元的控制装置
JP6439881B2 (ja) 送液装置
JP2014215125A (ja) 高圧力定流量ポンプ及び高圧力定流量送液方法
JP5155937B2 (ja) 送液装置および液体クロマトグラフ装置
US20220395633A1 (en) System and method for fluid delivery using pressure-based motor control for fluid injector devices
WO2021005728A1 (ja) 送液ポンプ及び液体クロマトグラフ
JP2012031817A (ja) 送液ポンプ及び送液装置
WO2020261405A1 (ja) バイナリポンプ及び液体クロマトグラフ
JP2023158680A (ja) 送液ポンプ及び送液方法
JP2008019823A (ja) 液体定量送り装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R151 Written notification of patent or utility model registration

Ref document number: 6849095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151