JPWO2019044134A1 - 検出装置、制御装置およびインバータ装置 - Google Patents

検出装置、制御装置およびインバータ装置 Download PDF

Info

Publication number
JPWO2019044134A1
JPWO2019044134A1 JP2019539006A JP2019539006A JPWO2019044134A1 JP WO2019044134 A1 JPWO2019044134 A1 JP WO2019044134A1 JP 2019539006 A JP2019539006 A JP 2019539006A JP 2019539006 A JP2019539006 A JP 2019539006A JP WO2019044134 A1 JPWO2019044134 A1 JP WO2019044134A1
Authority
JP
Japan
Prior art keywords
value
switching element
unit
detection device
output current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019539006A
Other languages
English (en)
Other versions
JP6597948B2 (ja
Inventor
雅浩 佐々木
雅浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Application granted granted Critical
Publication of JP6597948B2 publication Critical patent/JP6597948B2/ja
Publication of JPWO2019044134A1 publication Critical patent/JPWO2019044134A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • H01F27/422Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers
    • H01F27/427Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers for current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

カレントトランスにより電流のゼロクロスを検出すると、リップルの影響により検出誤差が生じてしまう。直列に接続された第1スイッチング素子および第2スイッチング素子を有するスイッチ回路が出力する出力電流のゼロクロスを検出する検出装置であって、第1スイッチング素子および第2スイッチング素子のうち少なくとも1つのスイッチング素子の、ドレインゲート間のミラー容量を充電するミラー期間中における、ゲート電圧に基づく観測値またはゲート電流に基づく観測値を取得する取得部と、ミラー期間中の観測値に基づいて、第1スイッチング素子および第2スイッチング素子の間の出力端子と出力端子に接続される負荷との間に流れる出力電流のゼロクロスを検出する検出部と、を備える検出装置が提供される。

Description

本発明は、検出装置、制御装置およびインバータ装置に関する。
従来、直列に接続された2つのスイッチング素子を有するスイッチ回路では、スイッチ回路の入力電流または出力電流をカレントトランスで観測し、そのゼロクロスタイミングを検出している(例えば特許文献1参照)。
特許文献1 特開2015−80294号公報
解決しようとする課題
しかしながら、カレントトランスにより電流のゼロクロスを検出すると、リップルの影響により検出誤差が生じ、正確なタイミングを検出することが難しい場合がある。
一般的開示
(項目1)
上記課題を解決するために、本発明の第1の態様においては、直列に接続された第1スイッチング素子および第2スイッチング素子を有するスイッチ回路が出力する出力電流のゼロクロスを検出する検出装置が提供される。検出装置は、第1スイッチング素子および第2スイッチング素子のうち少なくとも1つのスイッチング素子の、ドレインゲート間のミラー容量を充電するミラー期間中における、ゲート電圧に基づく観測値またはゲート電流に基づく観測値を取得する取得部を備えてよい。検出装置は、ミラー期間中の観測値に基づいて、第1スイッチング素子および第2スイッチング素子の間の出力端子と出力端子に接続される負荷との間に流れる出力電流のゼロクロスを検出する検出部を備えてよい。
(項目2)
スイッチ回路は、ロー側の第1スイッチング素子およびハイ側の第2スイッチング素子が直列に接続されたものでよい。取得部は、第1スイッチング素子からの観測値を取得してよい。
(項目3)
検出部は、観測値を閾値と比較した結果に基づいて、ゼロクロスを検出してよい。
(項目4)
検出装置は、取得部により取得されるアナログ値の観測値をデジタル値の観測値に変換して検出部に供給するAD変換部を備えてよい。
(項目5)
検出部は、デジタル値の観測値を、内部に記憶する所定の基準値と比較した結果に基づいて、ゼロクロスを検出してよい。
(項目6)
検出部は、過去のデジタル値の観測値の履歴から次のデジタル値の観測値の予測値を算出する予測部を有してよい。検出部は、予測値を閾値と比較した結果に基づいて、ゼロクロスを検出してよい。
(項目7)
予測部は、直近の複数のデジタル値の観測値と、各観測値の取得タイミングとの関係の近似関数から予測値を算出してよい。
(項目8)
予測部は、直近の2つのデジタル値の観測値の時間変化率を、直近のデジタル値の観測値から予測値への時間変化率として用いて予測値を算出してよい。
(項目9)
検出部は、過去のデジタル値の観測値の時間変化率の履歴から次の時間変化率の予測値を算出する予測部を有してよい。検出部は、予測値を閾値と比較した結果に基づいて、ゼロクロスを検出してよい。
(項目10)
検出部は、デジタル値の観測値の時間変化率の最大値および最小値の少なくとも一方を閾値として用いてよい。
(項目11)
少なくとも1つのスイッチング素子は、出力電流の変動周期の間に複数回スイッチングされてよい。検出部は、複数回のスイッチングのうち2以上のスイッチングのそれぞれにおいて、出力電流がゼロクロスしたか否かを検出してよい。
(項目12)
検出部は、少なくとも1つのスイッチング素子における、オン状態およびオフ状態の少なくとも一方へのスイッチング毎に、出力電流がゼロクロスしたか否か、またはゼロクロスするか否かを検出してよい。
(項目13)
取得部は、観測値を微分する微分部を有してよい。取得部は、観測値の微分値に基づいて、ミラー期間を特定する特定部を有してよい。取得部は、ミラー期間中に観測値をサンプリングするサンプリング部を有してよい。
(項目14)
サンプリング部は、観測値を蓄積するサンプリングコンデンサを有してよい。サンプリング部は、ミラー期間の間に観測値を出力する端子とサンプリングコンデンサとの間を接続し、ミラー期間以外において観測値を出力する端子とサンプリングコンデンサとの間を遮断するサンプリングスイッチを有してよい。サンプリング部は、サンプリングコンデンサに蓄積された観測値を検出部に出力する出力バッファを有してよい。
(項目15)
取得部は、少なくとも1つのスイッチング素子に対するオン指示から予め定められた時間が経過したタイミングで観測値をサンプリングしてよい。
(項目16)
本発明の第2の態様においては、制御装置が提供される。制御装置は、本発明の第1の態様の検出装置を備えてよい。制御装置は、検出装置が検出したゼロクロスのタイミングに応じて、出力電流の正負を判定する判定部を備えてよい。制御装置は、スイッチ回路のスイッチングを制御する制御部を備えてよい。制御装置は、出力電流の正負に応じて、スイッチ回路のデッドタイムを補償する補償部を備えてよい。
(項目17)
スイッチ回路は、ロー側の第1スイッチング素子およびハイ側の第2スイッチング素子が直列に接続されたものでよい。補償部は、出力電流が正と判定されたことに応じて第1スイッチング素子のオン期間および第2スイッチング素子のオフ期間をより長くするように調整し、出力電流が負と判定されたことに応じて第1スイッチング素子のオフ期間および第2スイッチング素子のオン期間をより長くするように調整してよい。
(項目18)
制御部は、PWM制御により出力端子の出力値を目標値に近付けるようにスイッチ回路を制御してよい。補償部は、出力電流が正と判定されたことに応じて、目標値を出力値に対してデッドタイム補償値分相対的に増加させ、出力電流が負と判定されたことに応じて、目標値を出力値に対してデッドタイム補償値分相対的に減少させてよい。
(項目19)
本発明の第3の態様においては、インバータ装置が提供される。インバータ装置は、本発明の第2の態様の制御装置を備えてよい。インバータ装置は、スイッチ回路を備えてよい。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
第1の実施形態に係るインバータ装置を示す。 検出装置の取得部および検出部を示す。 サンプリング部を示す。 ターンオン時の出力電流と、ゲート電圧との関係を示す。 ターンオン時の出力電流と、ゲート電流との関係を示す。 出力電流と観測値との関係を示す。 検出装置の動作波形を示す。 第2の実施形態に係る検出装置を示す。 第3の実施形態に係る検出装置を示す。 予測部による予測値の算出例を示す。 出力電流および観測値と、観測値の時間変化率との関係を示す。 取得部の変形例を示す。 本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータの例を示す。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
[第1の実施形態]
図1は、本実施形態に係るインバータ装置1を交流電源5および負荷6と共に示す。
交流電源5は、インバータ装置1に交流電力(本実施形態では一例として3相交流電力)を供給可能となっている。例えば交流電源5は、200Vまたは400Vの商用電源であってよい。
負荷6は、インバータ装置1から電力供給を受ける電子部品である。本実施形態では一例として、負荷6は三相モータである。
インバータ装置1は、整流回路10と、平滑コンデンサ11と、1または複数(本実施形態では一例として相ごとの計3つ)のスイッチ回路2と、1または複数(本実施形態では一例として相ごとの計3つ)の制御装置3とを備える。
整流回路10は、交流電源5から供給される交流電流を整流する。整流回路10は、多相の全波整流回路でよく、本実施形態では一例として、三相の全波整流回路である。整流回路10は、ハイ側電線14およびロー側電線13の間にUVWの相ごとに直列に接続された2つの整流ダイオードを有する。整流回路10は、整流により得られた直流電力をハイ側電線14およびロー側電線13に供給する。
平滑コンデンサ11は、ハイ側電線14およびロー側電線13の間に並列に接続され、ハイ側電線14およびロー側電線13の間の電圧を平滑化する。
各スイッチ回路2は、第1スイッチング素子21および第2スイッチング素子22を有する。第1スイッチング素子21および第2スイッチング素子22は、第1スイッチング素子21をロー側、第2スイッチング素子22をハイ側としてハイ側電線14およびロー側電線13の間に直列に接続されている。第1スイッチング素子21および第2スイッチング素子22の間には出力端子25が設けられて負荷6に接続され、UVW相のうち何れかの相の電力を出力するようになっている。
第1スイッチング素子21および第2スイッチング素子22は、本実施形態では一例としてIGBTであるが、MOSFET、バイポーラトランジスタ等の他の素子でもよい。第1スイッチング素子21および第2スイッチング素子22には、ハイ側がカソードである還流ダイオード210,220がそれぞれ設けられてよい。第1スイッチング素子21および第2スイッチング素子22の動作周波数は、例えば10kHz等の高周波数である。第1スイッチング素子21および第2スイッチング素子22は、ワイドバンドギャップ半導体を含んでよい。ここで、ワイドバンドギャップ半導体とは、シリコン半導体よりもバンドギャップが大きい半導体であり、例えばSiC、GaN、ダイヤモンド、AlN、AlGaN、または、ZnOなどの半導体である。
各制御装置3は、UVW相のうち、対応する相のスイッチ回路2に接続されている。各制御装置3は、制御部30と、ゲート駆動回路31と、検出装置4と、判定部33と、補償部34とを備える。
制御部30は、スイッチ回路2のスイッチングを制御する。例えば、制御部30は、第1スイッチング素子21および第2スイッチング素子22の少なくとも1つを、出力端子25からの出力電流Iの変動周期の間に複数回スイッチングする。一例として、制御部30は、PWM制御によりスイッチ回路2を制御する。
また、制御部30は、出力端子25の出力値を目標値に近付けるようにフィードバック制御を行う。本実施形態では一例として、出力値および目標値は電流値である。例えば、制御部30は、出力端子25と負荷6との間に設けられた電流センサ300によって測定された出力電流Iを、制御装置3に入力される目標電流Itargetに近づけるようにスイッチ回路2を制御してよい。制御部30は、第1スイッチング素子21および第2スイッチング素子22のオン/オフの制御信号をゲート駆動回路に供給する。
ゲート駆動回路31は、入力される制御信号に基づいて第1スイッチング素子21および第2スイッチング素子22のゲートをそれぞれ駆動する。ゲート駆動回路31と第1スイッチング素子21および第2スイッチング素子22のゲートとの間には、ゲート抵抗310(図2参照)があってもよい。
検出装置4は、出力電流Iのゼロクロスを検出する。例えば、検出装置4は、出力電流Iがゼロまたはゼロ近傍であるか否かを検出してよい。検出装置4は、取得部41と、検出部42とを有する。
取得部41は、第1スイッチング素子21におけるミラー期間中のゲート電圧Vに基づく観測値Vicを取得する。ここで、ミラー期間とは、スイッチング素子がターンオンされる場合にドレインゲート間のミラー容量が充電される期間である。ミラー期間では、ミラー効果によりゲート電圧Vが一定値(ミラー電圧、ゲートプラトー電圧、ゲートクランプ電圧)にクランプされる。ミラー期間中のゲート電圧Vに基づく観測値Vicとは、ゲート電圧Vの大小により観測される値であり、本実施形態では一例としてミラー期間中のゲート電圧Vそのものである。ここで、ゲート電圧Vはミラー期間において出力電流Iと線形関係にあるため、ミラー期間中のゲート電圧Vgに基づく観測値Vicも出力電流Iと線形関係にある。取得部41は、取得した観測値Vicを検出部42に供給する。
検出部42は、観測値Vicに基づいて出力電流Iのゼロクロスを検出する。観測値Vicに基づいて出力電流Iのゼロクロスが検出可能であるのは、観測値Vicと出力電流Iとが線形関係にあるためである。
検出部42は、出力電流Iの変動周期において複数回のスイッチングが行われる場合には、そのうち2以上のスイッチングのそれぞれにおいて、出力電流Iがゼロクロスしたか否かを検出してよい。一例として検出部42は、第1スイッチング素子21におけるオン状態および/またはオフ状態へのスイッチング毎に、出力電流Iがゼロクロスしたか否かを検出してよい。なお、検出部42は、出力電流Iがゼロクロスするか否かを検出してもよい。
検出部42は、検出結果を判定部33に供給する。例えば、検出部42は、ゼロクロスが検出された場合にハイとなる検出信号を判定部33に供給してよい。
判定部33は、検出装置4が検出したゼロクロスのタイミングに応じて、出力電流Iの正負を判定する。例えば、判定部33は、ゼロクロスが検出される毎に出力電流Iを交互に正または負と判定する。判定部33は、電流センサ300の測定結果から正負を判定してもよい。なお、本実施形態では一例として、出力端子25から負荷6に向かって流れる出力電流Iを正とする。判定部33は、判定結果を補償部34に供給する。
補償部34は、出力電流Iの正負に応じて、スイッチ回路2のデッドタイムを補償する。ここで、デッドタイムとは、ショートスルー電流を防止するべく第1スイッチング素子21および第2スイッチング素子22の両方を一時的にオフにする時間である。
例えば、補償部34は、出力電流Iが正と判定されたことに応じて第1スイッチング素子21のオン期間および第2スイッチング素子22のオフ期間をより長くするように調整し、出力電流Iが負と判定されたことに応じて第1スイッチング素子21のオフ期間および第2スイッチング素子22のオン期間をより長くするように調整する。また、補償部34は、出力電流Iが正と判定されたことに応じて、制御装置3に入力される目標電流Itargetを出力電流Iに対してデッドタイム補償値分だけ相対的に増加させ、出力電流Iが負と判定されたことに応じて、目標電流Itargetを出力電流Iに対してデッドタイム補償値分だけ相対的に減少させて制御部30に供給する。これにより、デッドタイムを設けることによる出力波形の歪みが補償される。ここで、デッドタイム補償値とは、デットタイムを設けたことに伴う出力波形の歪みを解消するための出力電流Icの補償値である。デッドタイム補償値としては、例えば上述の特許文献1に記載の値など、従来より公知の手法で算出された値を用いてよい。
以上のインバータ装置1によれば、ミラー期間中の第1スイッチング素子21のゲート電圧Vに基づく観測値Vicに基づいて出力電流Iのゼロクロスを検出するので、カレントトランスにより出力電流Iのゼロクロスを検出する従来の場合と異なり、リップルの影響により検出誤差が生じるのが防止される。従って、ゼロクロスを正確に検出することができる。
また、正確なゼロクロスタイミングを用いてデッドタイム補償を行うので、デッドタイムを設けることによる出力波形の歪みを確実に補償することができる。
図2は、検出装置4の取得部41および検出部42を示す。
取得部41は、バッファ回路410と、微分部411と、特定部412と、サンプリング部413とを有する。
バッファ回路410は、ゲート電圧Vをバッファして、微分部411およびサンプリング部413に供給する。バッファ回路410のゲインは1でもよいし、1以外の値でもよい。
微分部411は、ゲート電圧Vを微分する。例えば、微分部411はゲート電圧Vを時間で微分してよい。この場合、微分値は、ゲート電圧Vの経時的変化を示すグラフの傾きを示す。微分部411は、ゲート電圧Vの微分値を特定部412に供給してよい。
特定部412は、ゲート電圧Vの微分値に基づいて、ミラー期間を特定する。例えば、特定部412は、微分値がゼロであるか否かに応じてミラー期間を特定してよい。特定部412は、特定結果をサンプリング部413に供給する。例えば、特定部412は、ミラー期間中にハイとなる信号をサンプリング部413に供給してよい。
サンプリング部413は、ミラー期間中に観測値Vicをサンプリングする。例えば、サンプリング部413は、ミラー期間中の少なくとも一時点でのゲート電圧Vを観測値Vicとしてサンプリングしてよい。サンプリング部413は、サンプリングした観測値Vicを次回のサンプリングまでホールドしてよい。サンプリング部413は、サンプリングした観測値Vicを検出部42に供給する。
検出部42は、比較回路420を有する。比較回路420は、観測値Vicを閾値Vrefと比較した結果に基づいて、出力電流Iのゼロクロスを検出する。例えば、比較回路420は、観測値Vicが閾値Vref以下であることに応じて、ゼロクロスが生じたものとしてよい。
閾値Vrefは、出力電流Iをゼロとみなし得るときに予めサンプリングされた電圧値Vic@Ic=0Aでもよいし、これに許容マージンKを加えた電圧値Vic@Ic=0A+Kでもよい。許容マージンKの値は、試行錯誤により任意に設定されてよい。本実施形態では、検出部42はロー側の第1スイッチング素子21からの観測値Vicに基づいてゼロクロスを検出するので、ハイ側の第2スイッチング素子22からの観測値Vicに基づいてゼロクロスを検出する場合と比較して、閾値Vrefとして低い電圧値が用いられる。
以上の検出装置4によれば、ミラー期間に観測値Vicをサンプリングするので、出力電流Iと線形関係にある観測値Vicをサンプリングすることができる。従って、出力電流Iのゼロクロスを正確に検出することができる。
図3は、サンプリング部413を示す。サンプリング部413は、サンプリングコンデンサ4130と、サンプリングスイッチ4131と、出力バッファ4132とを有する。
サンプリングコンデンサ4130は、観測値Vicを蓄積する。本実施形態では一例として、サンプリングコンデンサ4130は、バッファ回路410および検出部42を結ぶ配線と、グラウンドとの間に設けられる。
サンプリングスイッチ4131は、サンプリングコンデンサ4130とバッファ回路410との間に設けられる。サンプリングスイッチ4131は、観測値Vを出力する端子(本実施形態では一例としてバッファ回路410の出力端子)とサンプリングコンデンサ4130との間をミラー期間の間に接続し、当該出力端子とサンプリングコンデンサ4130との間をミラー期間以外において遮断する。例えば、サンプリングスイッチ4131は、特定部412により特定されたミラー期間の少なくとも一時点で閉状態となり、ミラー期間以外で開状態となってよい。
出力バッファ4132は、サンプリングコンデンサ4130と検出部42との間に設けられる。出力バッファ4132は、サンプリングコンデンサ4130に蓄積された観測値Vicを検出部42に出力する。
以上のサンプリング部413によれば、ミラー期間中にサンプリングコンデンサ4130に観測値Vicを示す電圧が蓄積され、ミラー期間の終了時には当該電圧がホールドされる。
図4は、ターンオン時の出力電流Iと、ゲート電圧Vとの関係を示す。図中、縦軸は電圧(V)であり、横軸は時間(秒)である。
ゲート電圧Vは、ミラー期間では一定値にクランプされる。ミラー期間のゲート電圧Vは出力電流Iと線形関係にあり、出力電流Iが大きいほど、ミラー期間のゲート電圧Vは大きくなる。
図5は、ターンオン時の出力電流Iと、ゲート電流Iとの関係を示す。図中、縦軸は電流(A)であり、横軸は時間(秒)である。
ゲート電流Igは、ミラー期間では一定値にクランプされる。ミラー期間のゲート電流Igは出力電流Iと線形関係にあり、出力電流Iが大きいほど、ミラー期間のゲート電流Igは小さくなる。
図6は、出力電流Iと観測値Vicとの関係を示す。上側のグラフは出力電流Iの経時変化を示す。このグラフでは、縦軸は電流(A)であり、横軸は時間(秒)である。下側のグラフはロー側の第1スイッチング素子21およびハイ側の第2スイッチング素子22のミラー期間中のゲート電圧Vに基づく観測値Vicの計時変化を示す。このグラフでは、縦軸は電圧(V)であり、横軸は時間(秒)である。なお、ハイ側の第2スイッチング素子22のゲート電圧Vに基づく観測値Vicは、第2スイッチング素子22に取得部41が設けられた場合に取得される観測値Vicである。
本実施形態では一例として、第1スイッチング素子21および第2スイッチング素子22が制御されることにより、出力電流Iが正弦波の波形で周期変動する。
そして、出力電流Iが正のときには、ハイ側の第2スイッチング素子22と、ロー側の第1スイッチング素子21の還流ダイオード210とに電流が流れる。そのため、第2スイッチング素子22の観測値Vicは出力電流Iと線形関係にある値となる。また、第1スイッチング素子21の観測値Vicは、出力電圧Iがゼロのときの電圧値Vic@Ic=0Aになる。
一方、出力電流Iが負のときには、ロー側の第1スイッチング素子21と、ハイ側の第2スイッチング素子22の還流ダイオード220とに電流が流れる。そのため、第1スイッチング素子21の観測値Vicは出力電流Iと線形関係にある値となる。また、第2スイッチング素子22の観測値Vicは、出力電圧Iがゼロのときの電圧値Vic@Ic=0Aになる。
このように、第1スイッチング素子21および第2スイッチング素子22のそれぞれの観測値Vicは、出力電流Iのゼロクロス点で電圧値Vic@Ic=0Aとなり、その前後で変動パターンが異なる。よって、第1スイッチング素子21および第2スイッチング素子22の少なくとも一方の観測値Vicが閾値Vref、例えば電圧値Vic@Ic=0Aまたは電圧値Vic@Ic=0A+K以下となるか否かにより、出力電流Iのゼロクロスを検出することができる。
図7は、検出装置4の動作波形を示す。上側のグラフはロー側の第1スイッチング素子21のゲート電圧Vおよび観測値Vicの計時変化を示す。このグラフでは、縦軸は電圧(V)であり、横軸は時間(秒)である。中央のグラフはPWM制御による第1スイッチング素子21の制御信号を示す。この制御信号は、ハイの場合に第1スイッチング素子21がオンとなり、ローの場合に第1スイッチング素子21がオフとなる。下側のグラフは検出部42から出力される検出信号を示す。この検出信号は、ハイの場合にゼロクロスが検出されていることを示し、ローの場合にゼロクロスが検出されていないことを示す。
まず、制御信号が立ち上がると、第1スイッチング素子21がターンオンされてミラー期間が開始する。次に、ミラー期間が特定部412によって特定され、その期間中のサンプルホールドタイミングでゲート電圧Vがサンプリング部413によりサンプリングおよびホールドされ、観測値Vicとして検出部42に供給される。そして、検出部42により観測値Vicが閾値Vrefと比較される。
これにより、観測値Vicが閾値Vref以下である時点t0までの期間では、ゼロクロスが生じたものとして検出信号がハイとなる。また、観測値Vicが閾値Vrefより大きい時点t0〜t1の期間では、ゼロクロスが生じていないものとして検出信号がローとなる。また、観測値Vicが閾値Vref以下となる時点t1からの期間ではゼロクロスが生じたものとして検出信号がハイとなる。以上のようにして出力電流Iのゼロクロスが検出される。
[第2の実施形態]
図8は、第2の実施形態に係る検出装置4Aを示す。なお、図1に示されたインバータ装置1と略同一の構成には同一の符号を付け、説明を省略する。検出装置4Aは、AD変換部43および検出部42Aを有する。
AD変換部43は、取得部41により取得されるアナログ値の観測値Vicをデジタル値の観測値Vic(観測値Vic(D)とも称する)に変換して検出部42Aに供給する。AD変換部43は、パイプライン型、フラッシュ型、逐次比較型およびデルタシグマ型の何れでもよい。
検出部42Aは、デジタル値の観測値Vic(D)を、内部に記憶する閾値と比較した結果に基づいて、出力電流Iのゼロクロスを検出する。閾値は検出装置4Aを備えるインバータ装置1において出力電流Iをゼロとみなし得るときに予めサンプリングされたアナログ値の電圧値Vic(A)@Ic=0Aに対応するデジタル値の観測値Vic(D)@Ic=0Aでもよいし、これに許容マージンKを加えた電圧値Vic(D)@Ic=0A+Kでもよい。閾値は個別の検出装置4Aに対して別々に設定されてよい。これにより検出装置4Aの製品ごとの特性のばらつきの影響が低減されて出力電流Iのゼロクロスが正確に検出される。
以上の検出装置4Aによれば、アナログ値からデジタル値に変換された観測値が検出部42Aに供給されるので、デジタル回路を検出部42Aとして用いることができる。
また、内部に記憶される閾値と比較した結果に基づいて出力電流Iのゼロクロスが検出されるので、入力される基準電圧などを閾値として比較に用いる場合と異なり、ノイズの影響による閾値のばらつきを防止して、出力電流Iのゼロクロスを正確に検出することができる。
[第3の実施形態]
図9は、第3の実施形態に係る検出装置4Bを示す。検出装置4Bは、検出部42Bを有する。
検出部42Bは、過去のデジタル値の観測値Vic(D)の履歴から次のデジタル値の観測値Vic(D)の予測値Vic(D)を算出する予測部420Bを有し、予測値Vic(D)を閾値と比較した結果に基づいて出力電流Iのゼロクロスを検出する。閾値は上記第2の実施形態と同様に設定されてよい。
以上の検出装置4Bによれば、観測値Vic(D)の予測値Vic(D)を用いて出力電流Iのゼロクロスが検出されるので、実測された観測値Vic(D)に基づいて出力電流Iのゼロクロスを検出する場合と比較して、ゼロクロスの検出タイミングを早めることができる。また、観測値Vic(D)の履歴から予測値Vic(D)が算出されるので、予測値Vic(D)の算出に用いる観測値Vic(D)の数を増やすことで、観測値Vic(D)の測定誤差による影響を低減し、出力電流Iのゼロクロスを正確に検出することができる。
図10は、予測部420Bによる予測値Vic(D)の算出例を示す。なお、本実施形態では観測値Vic(D)はスイッチング素子21(またはスイッチング素子22)に対してPWM制御を行うパルス信号の立ち上がり後のミラー期間において測定されており、各パルス信号の立ち上がりタイミングtn−1,t,tn+1,…の間隔Tn−1,T,Tn+1,…は一定となっている。
予測部420Bは、直近の複数のデジタル値の観測値Vic(D),…(但し、添え字の「n」は観測値Vic(D)の取得された順番を示す自然数)と、各観測値Vic(D)の取得タイミングt,…との関係の近似関数から、次の観測値Vic(D)の予測値Vic(D)を算出してよい。近似関数は非線形関数でもよいし、線形関数でもよい。一例として、予測部420Bは、直近の2つのデジタル値の観測値Vic(D),Vic(Dn+1)の時間変化率aを、直近のデジタル値の観測値Vic(Dn+1)から予測値Vic(D)への時間変化率として用いて予測値Vic(D)を算出してよい。
ここで、n番目の観測値Vic(D)から直近の(n+1)番目の観測値Vic(Dn+1)への時間変化率aが、(n+1)番目の観測値Vic(D)から予測値Vic(D)への時間変化率として用いられる場合には次の式(1)が成立する。
a={Vic(D)−Vic(Dn+1)}/(tn+1−t
={Vic(Dn+1)−Vic(D)}/(t−tn+1) …(1)
n+1−t=t−tn+1であるから、式(1)は次の式(2)のように変形される。予測部420Bは、この式(2)によって予測値Vic(D)を算出してよい。
ic(D)=2Vic(Dn+1)−Vic(D) …(2)
以上の算出例によれば、直近の複数の観測値Vic(D),…と、各観測値の取得タイミングt,…との関係の近似関数から予測値Vic(D)が算出されるので、予測値Vic(D)を正確に算出することができる。また、直近の2つの観測値Vic(D),Vic(Dn+1)の時間変化率aを、直近の観測値Vic(Dn+1)から予測値Vic(D)への時間変化率として用いて予測値Vic(D)を算出するので、簡易な計算により予測値Vic(D)を算出することができる。
[第3の実施形態の変形例]
本変形例に係る検出装置4Bにおける検出部42Bの予測部420Bは、過去のデジタル値の観測値Vic(D)の時間変化率a,…の履歴から次の時間変化率の予測値aを算出する。例えば、予測部420Bは、直近の複数の観測値Vic(D),…と、各観測値Vic(D)の取得タイミングt,…とから時間変化率a,…とタイミングt,…との関係の近似関数を算出してよく、この近似関数から次の取得タイミングでの観測値Vic(D)の時間変化率の予測値aを算出してよい。検出部42Bは、予測値aを閾値と比較した結果に基づいて出力電流Iのゼロクロスを検出してよい。閾値は、検出装置4Bを備えるインバータ装置1において出力電流Iのゼロクロス点で予め連続して取得されたデジタル値の電圧値Vic(Dn−1),Vic(D@Ic=0Aの時間変化率aでもよいし、これに許容マージンKを加えた時間変化率a+Kでもよい。本変形例においては一例として、検出部42Aはデジタル値の観測値Vic(D)の時間変化率aの最大値および最小値の少なくとも一方を閾値として用いる。閾値は個別の検出装置4Bに対して別々に設定されてよい。一例として、検出装置4Bの製造時の特性試験において予め測定される最大値および/または最小値が検出装置4Bに設定されてよい。これに加えて/代えて、検出装置4Bは、Vic(D)の時間変化率の履歴を記憶して、内部に記憶される最大値および/または最小値を逐次更新してよい。
以上の検出装置4Bによれば、時間変化率の予測値aを用いて出力電流Iのゼロクロスが検出されるので、実測値に基づいて出力電流Iのゼロクロスを検出する場合と比較して、ゼロクロスの検出タイミングを早めることができる。また、過去の観測値Vic(D)の時間変化率から次の時間変化率の予測値が算出されるので、予測値の算出に用いる観測値Vic(D)の数を増やすことで、観測値Vic(D)の誤差による影響を低減し、出力電流Iのゼロクロスを正確に検出することができる。
図11は、出力電流Iおよび観測値Vicと、観測値Vicの時間変化率aとの関係を示す。上段および中段のグラフは図6と同じである。下段のグラフは観測値Vicの時間変化率aの経時変化を示す。このグラフでは縦軸は観測値Vicの時間変化率aであり、横軸は時間(秒)である。このグラフに示されるように、出力電流Iのゼロクロス点では、ハイサイドおよびローサイドのそれぞれにおいて観測値Vicの時間変化率aが最大値または最小値から0に、あるいは0から最大値または最小値に変化する。従って、観測値Vic(D)の時間変化率aの最大値および最小値の少なくとも一方を閾値として用いることにより、出力電流Iのゼロクロスが検出される。
[その他の変形例]
なお、上記の実施形態および変形例では、取得部41は特定部412によりミラー期間を特定して、その期間中に観測値Vicをサンプリングすることとして説明したが、第1スイッチング素子21に対するオン指示から予め定められた時間が経過したタイミングで観測値Vicをサンプリングしてもよい。予め定められた時間は、オン指示からミラー期間が開始するまでの時間であってよい。取得部41は、オン指示の入力から当該時間だけ遅延を生じさせる遅延回路を用いて、サンプリングのタイミングをミラー期間中にしてよい。
また、取得部41は、ゲート電圧Vに基づく観測値Vicを取得することとして説明したが、ゲート電流Iに基づく観測値を取得してもよい。図12は、取得部41の変形例を示す。取得部41は、ゲート抵抗310でゲート電流Iを変換した電圧Vを観測値Vicとして取得してもよい。
また、第1スイッチング素子21をロー側、第2スイッチング素子22をハイ側として説明したが、逆の配置としてもよい。
また、取得部41は、ロー側の第1スイッチング素子21のゲート電圧Vまたはゲート電流Iに基づく観測値Vicを取得することとして説明したが、これに代えて/加えて、ハイ側の第2スイッチング素子22のゲート電圧Vまたはゲート電流Iに基づく観測値Vicを取得してもよい。この場合に検出部42は、第2スイッチング素子22におけるオン状態および/またはオフ状態へのスイッチング毎に、出力電流Iがゼロクロスしたか否か(またはゼロクロスするか否か)を検出してよい。なお、ハイ側ではゲート電圧Vの基準電位が高いため、取得部41は絶縁トランス等を用いて基準電位を変換してから観測値Vicを取得してもよい。
また、取得部41は、バッファ回路410を有することとして説明したが、これに代えて積分回路を有してもよい。この積分回路は、特定部412により特定されたミラー期間の少なくとも一部でゲート電圧Vを積分してサンプリング部413に供給してよい。積分回路はバンドパスフィルタであってよい。この場合には、ゲート電圧Vのノイズの影響を低減することができる。
また、制御部30のフィードバック制御に用いられる出力値および目標値を電流値として説明したが、電圧値としてもよい。
まあ、制御装置3がUVWの相ごとに1つ設けられることとして説明したが、3相の全体に対して1つ設けられてもよい。
また、スイッチ回路2に三相交流電力が供給されることとして説明したが、単相の交流電力が供給されてもよいし、直流電力が供給されてもよい。
また、検出装置4,4A,4Bがインバータ装置1に具備されることとして説明したが、コンバータ装置など、他の装置に具備されてもよい。
また、本発明の様々な実施形態は、フローチャートおよびブロック図を参照して記載されてよく、ここにおいてブロックは、(1)操作が実行されるプロセスの段階または(2)操作を実行する役割を持つ装置のセクションを表わしてよい。特定の段階およびセクションが、専用回路、コンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、およびコンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサの少なくとも1つによって実装されてよい。専用回路は、デジタルおよびアナログの少なくとも一方のハードウェア回路を含んでよく、集積回路(IC)およびディスクリート回路の少なくとも一方を含んでよい。プログラマブル回路は、論理AND、論理OR、論理XOR、論理NAND、論理NOR、および他の論理操作、フリップフロップ、レジスタ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックアレイ(PLA)等のようなメモリ要素等を含む、再構成可能なハードウェア回路を含んでよい。
コンピュータ可読媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読媒体は、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(RTM)ディスク、メモリスティック、集積回路カード等が含まれてよい。
コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されたコードまたはオブジェクトコードのいずれかを含んでよい。
コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供され、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
図13は、本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ2200の例を示す。コンピュータ2200にインストールされたプログラムは、コンピュータ2200に、本発明の実施形態に係る装置に関連付けられる操作または当該装置の1または複数のセクションとして機能させることができ、または当該操作または当該1または複数のセクションを実行させることができ、これに加えて、またはこれに代えて、コンピュータ2200に、本発明の実施形態に係るプロセスまたは当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ2200に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつかまたはすべてに関連付けられた特定の操作を実行させるべく、CPU2212によって実行されてよい。
本実施形態によるコンピュータ2200は、CPU2212、RAM2214、グラフィックコントローラ2216、およびディスプレイデバイス2218を含み、それらはホストコントローラ2210によって相互に接続されている。コンピュータ2200はまた、通信インタフェース2222、ハードディスクドライブ2224、DVD−ROMドライブ2226、およびICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ2220を介してホストコントローラ2210に接続されている。コンピュータはまた、ROM2230およびキーボード2242のようなレガシの入出力ユニットを含み、それらは入出力チップ2240を介して入出力コントローラ2220に接続されている。
CPU2212は、ROM2230およびRAM2214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ2216は、RAM2214内に提供されるフレームバッファ等またはそれ自体の中にCPU2212によって生成されたイメージデータを取得し、イメージデータがディスプレイデバイス2218上に表示されるようにする。
通信インタフェース2222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブ2224は、コンピュータ2200内のCPU2212によって使用されるプログラムおよびデータを格納する。DVD−ROMドライブ2226は、プログラムまたはデータをDVD−ROM2201から読み取り、ハードディスクドライブ2224にRAM2214を介してプログラムまたはデータを提供する。ICカードドライブは、プログラムおよびデータをICカードから読み取り、これに加えて、またはこれに代えてプログラムおよびデータをICカードに書き込む。
ROM2230はその中に、アクティブ化時にコンピュータ2200によって実行されるブートプログラム等、およびコンピュータ2200のハードウェアに依存するプログラムの少なくとも1つを格納する。入出力チップ2240はまた、様々な入出力ユニットをパラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ2220に接続してよい。
プログラムが、DVD−ROM2201またはICカードのようなコンピュータ可読媒体によって提供される。プログラムは、コンピュータ可読媒体から読み取られ、コンピュータ可読媒体の例でもあるハードディスクドライブ2224、RAM2214、またはROM2230にインストールされ、CPU2212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ2200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置または方法が、コンピュータ2200の使用に従い情報の操作または処理を実現することによって構成されてよい。
例えば、通信がコンピュータ2200および外部デバイス間で実行される場合、CPU2212は、RAM2214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース2222に対し、通信処理を命令してよい。通信インタフェース2222は、CPU2212の制御下、RAM2214、ハードディスクドライブ2224、DVD−ROM2201、またはICカードのような記録媒体内に提供される送信バッファ処理領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、またはネットワークから受信された受信データを記録媒体上に提供される受信バッファ処理領域等に書き込む。
また、CPU2212は、ハードディスクドライブ2224、DVD−ROMドライブ2226(DVD−ROM2201)、ICカード等のような外部記録媒体に格納されたファイルまたはデータベースの全部または必要な部分がRAM2214に読み取られるようにし、RAM2214上のデータに対し様々なタイプの処理を実行してよい。CPU2212は次に、処理されたデータを外部記録媒体にライトバックする。
様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU2212は、RAM2214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプの操作、情報処理、条件判断、条件分岐、無条件分岐、情報の検索,置換等を含む、様々なタイプの処理を実行してよく、結果をRAM2214に対しライトバックする。また、CPU2212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU2212は、第1の属性の属性値が指定される、条件に一致するエントリを当該複数のエントリの中から検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
上で説明したプログラムまたはソフトウェアモジュールは、コンピュータ2200上またはコンピュータ2200近傍のコンピュータ可読媒体に格納されてよい。また、専用通信ネットワークまたはインターネットに接続されたサーバーシステム内に提供されるハードディスクまたはRAMのような記録媒体が、コンピュータ可読媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ2200に提供する。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
1 インバータ装置、2 スイッチ回路、3 制御装置、4,4A,4B 検出装置、5 交流電源、6 負荷、10 整流回路、11 平滑コンデンサ、13 ロー側電線、14 ハイ側電線、21 第1スイッチング素子、22 第2スイッチング素子、25 出力端子、30 制御部、31 ゲート駆動回路、33 判定部、34 補償部、41 取得部、42,42A,42B 検出部、43 AD変換部、210 還流ダイオード、220 還流ダイオード、300 電流センサ、310 ゲート抵抗、410 バッファ回路、411 微分部、412 特定部、413 サンプリング部、420 比較回路、420B 予測部、4130 サンプリングコンデンサ、4131 サンプリングスイッチ、4132 出力バッファ、2200 コンピュータ、2201 DVD−ROM、2210 ホストコントローラ、2212 CPU、2214 RAM、2216 グラフィックコントローラ、2218 ディスプレイデバイス、2220 入出力コントローラ、2222 通信インタフェース、2224 ハードディスクドライブ、2226 DVD−ROMドライブ、2230 ROM、2240 入出力チップ、2242 キーボード

Claims (19)

  1. 直列に接続された第1スイッチング素子および第2スイッチング素子を有するスイッチ回路が出力する出力電流のゼロクロスを検出する検出装置であって、
    前記第1スイッチング素子および前記第2スイッチング素子のうち少なくとも1つのスイッチング素子の、ドレインゲート間のミラー容量を充電するミラー期間中における、ゲート電圧に基づく観測値またはゲート電流に基づく観測値を取得する取得部と、
    前記ミラー期間中の前記観測値に基づいて、前記第1スイッチング素子および前記第2スイッチング素子の間の出力端子と前記出力端子に接続される負荷との間に流れる出力電流のゼロクロスを検出する検出部と、
    を備える検出装置。
  2. 前記スイッチ回路は、ロー側の前記第1スイッチング素子およびハイ側の前記第2スイッチング素子が直列に接続されたものであり、
    前記取得部は、前記第1スイッチング素子からの前記観測値を取得する
    請求項1に記載の検出装置。
  3. 前記検出部は、前記観測値を閾値と比較した結果に基づいて、前記ゼロクロスを検出する請求項1または2に記載の検出装置。
  4. 前記取得部により取得されるアナログ値の前記観測値をデジタル値の前記観測値に変換して前記検出部に供給するAD変換部を備える
    請求項1または2に記載の検出装置。
  5. 前記検出部は、前記デジタル値の観測値を、内部に記憶する所定の基準値と比較した結果に基づいて、前記ゼロクロスを検出する請求項4に記載の検出装置。
  6. 前記検出部は、
    過去の前記デジタル値の観測値の履歴から次の前記デジタル値の観測値の予測値を算出する予測部を有し、
    前記予測値を閾値と比較した結果に基づいて、前記ゼロクロスを検出する
    請求項4または5に記載の検出装置。
  7. 前記予測部は、
    直近の複数の前記デジタル値の観測値と、各観測値の取得タイミングとの関係の近似関数から前記予測値を算出する
    請求項6に記載の検出装置。
  8. 前記予測部は、
    直近の2つの前記デジタル値の観測値の時間変化率を、直近の前記デジタル値の観測値から前記予測値への時間変化率として用いて前記予測値を算出する
    請求項6または7に記載の検出装置。
  9. 前記検出部は、
    過去の前記デジタル値の観測値の時間変化率の履歴から次の時間変化率の予測値を算出する予測部を有し、
    前記予測値を閾値と比較した結果に基づいて、前記ゼロクロスを検出する
    請求項4に記載の検出装置。
  10. 前記検出部は、前記デジタル値の観測値の時間変化率の最大値および最小値の少なくとも一方を前記閾値として用いる
    請求項9に記載の検出装置。
  11. 前記少なくとも1つのスイッチング素子は、前記出力電流の変動周期の間に複数回スイッチングされ、
    前記検出部は、前記複数回のスイッチングのうち2以上のスイッチングのそれぞれにおいて、前記出力電流がゼロクロスしたか否かを検出する
    請求項1から10のいずれか一項に記載の検出装置。
  12. 前記検出部は、前記少なくとも1つのスイッチング素子における、オン状態およびオフ状態の少なくとも一方へのスイッチング毎に、前記出力電流がゼロクロスしたか否か、またはゼロクロスするか否かを検出する請求項11に記載の検出装置。
  13. 前記取得部は、
    前記ゲート電圧または前記ゲート電流を微分する微分部と、
    前記ゲート電圧または前記ゲート電流の微分値に基づいて、前記ミラー期間を特定する特定部と、
    前記ミラー期間中に前記観測値をサンプリングするサンプリング部と、
    を有する請求項1から12のいずれか一項に記載の検出装置。
  14. 前記サンプリング部は、
    前記観測値を蓄積するサンプリングコンデンサと、
    前記観測値を出力する端子と前記サンプリングコンデンサとの間を前記ミラー期間の間に接続し、前記観測値を出力する端子と前記サンプリングコンデンサとの間を前記ミラー期間以外において遮断するサンプリングスイッチと、
    前記サンプリングコンデンサに蓄積された前記観測値を前記検出部に出力する出力バッファと
    を有する請求項13に記載の検出装置。
  15. 前記取得部は、前記少なくとも1つのスイッチング素子に対するオン指示から予め定められた時間が経過したタイミングで前記観測値をサンプリングする請求項1から12のいずれか一項に記載の検出装置。
  16. 請求項1から15のいずれか一項に記載の検出装置と、
    前記検出装置が検出したゼロクロスのタイミングに応じて、前記出力電流の正負を判定する判定部と、
    前記スイッチ回路のスイッチングを制御する制御部と、
    前記出力電流の正負に応じて、前記スイッチ回路のデッドタイムを補償する補償部と、
    を備える制御装置。
  17. 前記スイッチ回路は、ロー側の前記第1スイッチング素子およびハイ側の前記第2スイッチング素子が直列に接続されたものであり、
    前記補償部は、
    前記出力電流が正と判定されたことに応じて前記第1スイッチング素子のオン期間および前記第2スイッチング素子のオフ期間をより長くするように調整し、
    前記出力電流が負と判定されたことに応じて前記第1スイッチング素子のオフ期間および前記第2スイッチング素子のオン期間をより長くするように調整する
    請求項16に記載の制御装置。
  18. 前記制御部は、PWM制御により前記出力端子の出力値を目標値に近付けるように前記スイッチ回路を制御し、
    前記補償部は、
    前記出力電流が正と判定されたことに応じて、前記目標値を前記出力値に対してデッドタイム補償値分相対的に増加させ、
    前記出力電流が負と判定されたことに応じて、前記目標値を前記出力値に対してデッドタイム補償値分相対的に減少させる
    請求項16または17に記載の制御装置。
  19. 請求項16から18のいずれか一項に記載の制御装置と、
    前記スイッチ回路と
    を備えるインバータ装置。
JP2019539006A 2017-08-29 2018-06-21 検出装置、制御装置およびインバータ装置 Active JP6597948B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017164557 2017-08-29
JP2017164557 2017-08-29
PCT/JP2018/023707 WO2019044134A1 (ja) 2017-08-29 2018-06-21 検出装置、制御装置およびインバータ装置

Publications (2)

Publication Number Publication Date
JP6597948B2 JP6597948B2 (ja) 2019-10-30
JPWO2019044134A1 true JPWO2019044134A1 (ja) 2019-12-19

Family

ID=65527574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019539006A Active JP6597948B2 (ja) 2017-08-29 2018-06-21 検出装置、制御装置およびインバータ装置

Country Status (4)

Country Link
US (1) US10998812B2 (ja)
JP (1) JP6597948B2 (ja)
CN (1) CN110249520B (ja)
WO (1) WO2019044134A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313369B (zh) * 2020-03-13 2022-03-11 南京国电南自电网自动化有限公司 一种转子接地保护直流量抗干扰计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093885A (ja) * 2008-10-06 2010-04-22 Denso Corp パワースイッチング素子の駆動回路
WO2015008461A1 (ja) * 2013-07-18 2015-01-22 株式会社デンソー 半導体素子の電流検出装置
US20170222560A1 (en) * 2016-01-28 2017-08-03 Infineon Technologies Austria Ag Method and Apparatus for Estimating Load Current for Semi-Resonant and Resonant Converters

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886876B2 (ja) * 2002-01-17 2007-02-28 三菱電機株式会社 電力用半導体素子の駆動回路
FR2874767B1 (fr) * 2004-08-27 2006-10-20 Schneider Toshiba Inverter Dispositif de commande d'un transistor de puissance
US7800928B1 (en) * 2007-12-06 2010-09-21 Universal Lighting Technologies, Inc. Method of operating a resonant inverter using zero current switching and arbitrary frequency pulse width modulation
WO2009087775A1 (ja) * 2008-01-10 2009-07-16 Mitsubishi Electric Corporation 電力変換装置
US8471600B2 (en) * 2011-09-30 2013-06-25 Infineon Technologies Ag Detection of the zero crossing of the load current in a semiconductor device
US9678139B2 (en) * 2011-12-22 2017-06-13 Continental Automotive Systems, Inc. Method and apparatus for high side transistor protection
US8791648B2 (en) * 2012-04-10 2014-07-29 Monolithic Power Systems, Inc. LED driver circuits with current envelope control
PL2665172T3 (pl) 2012-05-18 2017-03-31 Silergy Corp. Obwód z miękką komutacją
JP6211377B2 (ja) 2013-10-15 2017-10-11 三菱重工業株式会社 Pwmコンバータの制御装置及びそのデッドタイム補償方法並びにpwmインバータの制御装置及びそのデッドタイム補償方法
CN103825469B (zh) * 2014-03-06 2016-05-18 矽力杰半导体技术(杭州)有限公司 用于隔离式变换器的控制电路和隔离式变换器
US9397658B2 (en) * 2014-06-25 2016-07-19 Freescale Semiconductor, Inc. Gate drive circuit and a method for controlling a power transistor
JP2016149903A (ja) * 2015-02-13 2016-08-18 トヨタ自動車株式会社 昇圧制御装置
JP6524020B2 (ja) * 2016-05-19 2019-06-05 三菱電機株式会社 遅延時間補正回路、半導体デバイス駆動回路および半導体装置
CN106602858B (zh) * 2017-03-08 2019-03-12 西门子电气传动有限公司 Pwm变流系统的igbt开关瞬间浪涌抑制装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093885A (ja) * 2008-10-06 2010-04-22 Denso Corp パワースイッチング素子の駆動回路
WO2015008461A1 (ja) * 2013-07-18 2015-01-22 株式会社デンソー 半導体素子の電流検出装置
US20170222560A1 (en) * 2016-01-28 2017-08-03 Infineon Technologies Austria Ag Method and Apparatus for Estimating Load Current for Semi-Resonant and Resonant Converters

Also Published As

Publication number Publication date
US20190356218A1 (en) 2019-11-21
WO2019044134A1 (ja) 2019-03-07
CN110249520A (zh) 2019-09-17
JP6597948B2 (ja) 2019-10-30
US10998812B2 (en) 2021-05-04
CN110249520B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
US10461628B1 (en) Control circuit for outputting pulse width modulation control signal with zero-crossing detection
US9806619B2 (en) Time-interleaved current feedback droop function for multiphase buck converters
US8674713B2 (en) Zero ampere level current data correction for a power device under test
US10651738B2 (en) Current sampling circuit applied to a multi-mode circuit and associated control method
US8885365B2 (en) Switching power supply device and method for control thereof
US9800145B2 (en) Control device, DC-DC converter, switching power supply apparatus, and information processing apparatus
CN109088531B (zh) 电力变换单元的驱动电路及驱动方法、电力变换单元以及电力变换装置
JP6597948B2 (ja) 検出装置、制御装置およびインバータ装置
CN112068624B (zh) 栅极驱动装置、开关装置及栅极驱动方法
WO2013089748A1 (en) Method and apparatus for precision cpu monitoring
US11159098B2 (en) Method and half bridge controller for determining a polarity of a half bridge current
KR102399873B1 (ko) 3상 펄스 폭 변조 인버터의 전류 측정 장치 및 이의 방법
CN115211009A (zh) 栅极驱动装置
JP6723393B1 (ja) ゲート駆動回路、及びゲート駆動システム
JP2021027788A (ja) 電力変換装置の制御回路及び電力変換装置
US11424610B2 (en) Apparatus, power supply, method and recording medium to determine a state of a three-phase AC power supply using instantaneous voltages of three phases of the AC voltage
CN105706350A (zh) 电源装置及消耗功率推算方法
CN110618308B (zh) 一种单相变交流电压零点检测方法及装置
JP6587134B2 (ja) コンバータ、モータ駆動装置、異常検出方法及びプログラム
JP7089966B2 (ja) コンバータ装置、制御信号特定方法及びプログラム
JP7080121B2 (ja) コンバータ装置、制御信号特定方法及びプログラム
KR20160090933A (ko) 역률 보상회로 및 역률 보상방법, 그의 컨버터 장치
Tampubolon et al. Methodology for Extracting Dynamic On-Resistance Testing Data in Gallium Nitride-Based Power Transistors
JP2024020088A (ja) 装置および電力変換装置
Townsend et al. Estimation of loss components in a cascaded H-bridge Statcom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190731

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R150 Certificate of patent or registration of utility model

Ref document number: 6597948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250